JP4817349B2 - 固体高分子型燃料電池のセパレータ及びその製造方法 - Google Patents

固体高分子型燃料電池のセパレータ及びその製造方法 Download PDF

Info

Publication number
JP4817349B2
JP4817349B2 JP2001156615A JP2001156615A JP4817349B2 JP 4817349 B2 JP4817349 B2 JP 4817349B2 JP 2001156615 A JP2001156615 A JP 2001156615A JP 2001156615 A JP2001156615 A JP 2001156615A JP 4817349 B2 JP4817349 B2 JP 4817349B2
Authority
JP
Japan
Prior art keywords
separator
density unevenness
reducing member
fuel cell
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001156615A
Other languages
English (en)
Other versions
JP2002352814A (ja
Inventor
正弘 安田
朗宏 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2001156615A priority Critical patent/JP4817349B2/ja
Publication of JP2002352814A publication Critical patent/JP2002352814A/ja
Application granted granted Critical
Publication of JP4817349B2 publication Critical patent/JP4817349B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、固体高分子型燃料電池のセパレータ及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、クリーンで発電効率の高い次世代の発電装置が望まれており、酸素及び水素の持つ化学エネルギーを直接電気エネルギーに変換する燃料電池(Fuelcell)に対する期待が次第に高まってきている。現状における燃料電池の種類としては、リン酸型、アルカリ型、溶融炭酸塩型、固体電解質型、固体高分子型(イオン交換膜型ともいう。)等が知られている。なかでも固体高分子型燃料電池(PEFC:Polymer Electrolyte Fuel Cell)は、小規模かつポータブルな電源としての用途(例えば電気自動車用電源等)に適すると考えられている。ゆえに、その実用化に向けて、現在精力的に開発が進められている。
【0003】
このタイプの燃料電池は、例えば電解質層としてプロトン導電性を有するイオン交換膜の1つである固体高分子膜(以後プロトン交換膜)の両側に電極を配置してなる膜・電極積層体(単電池)を備えている。このような固体高分子膜は、分子中に水素イオンの交換基を持つため、飽和含水状態とすることによりイオン導電性電解質として機能することができる。これらの電極には白金等の金属触媒が担持されている。一対の電極のうちの一方は水素極(陰極)と呼ばれ、他方は酸素極(陽極)と呼ばれる。膜・電極積層体の両側には一対のセパレータが配置されており、それらセパレータによって両電極及びイオン交換膜の外周部が挟持されている。
【0004】
水素極側のセパレータを介して供給された水素ガス(H2)は、水素極における触媒反応により水素イオン(H+)と電子(e-)とに解離する。水素イオンはプロトン交換膜を通過しながら酸素極に向かって移動し、電子は外部回路を通って酸素極側へ移動する。酸素極側には酸素ガス(O2)が供給されている。
【0005】
従って、酸素極における触媒反応により、水素イオン及び外部回路を経由した電子が酸素ガスと反応し、水(H2O)が生じる。このとき、外部回路を経由した電子は電流となり、負荷に対して電力を供給することができる。別の言い方をすると、酸素ガス及び水素ガスを燃料として、電気分解の逆反応により、起電力が得られるようになっている。
【0006】
図6に示すように、固体高分子型燃料電池のセパレータ51は、一軸プレス機にて成形材料を同セパレータ51の厚さ方向(矢印A2方向)にプレス成形することによって薄板状に形成されたものである。また、セパレータ51は導電性を有し、上面及び下面には多数のリブ52が設けられている。リブ52の無い箇所は、流体流路となる溝部54になっている。
【0007】
【発明が解決しようとする課題】
ところが、プレス成形時におけるプレス成形型のストローク量は、凸の部位(リブ52がある部分)で小さく、凹の部位(リブ52が無い部分)で大きい。また、成形材料に含まれる熱硬化性樹脂の流動性は十分なものではない。それゆえ、セパレータ51において両面が凸の部位と両面が凹の部位との間に密度のムラが生じ易かった。具体的には、セパレータ51において板厚が大きい部位(両面が凸の部位)になるほど密度が小さくなる傾向にあった。従って、密度が小さい部位に気孔が生じ易くなり、ガス不透過性が確保されなくなるという問題があった。
【0008】
尚、樹脂成形体全体にフィルム層を設けてガス不透過性を確保するという方法では、セパレータ51の導電性が損なわれるという問題があった。
本発明は上記の課題に鑑みてなされたものであり、その目的は、ガス不透過性を確保することができる固体高分子型燃料電池のセパレータを提供することにある。また、他の目的は、効率よく製造することができる固体高分子型燃料電池のセパレータの製造方法を提供することにある。
【0009】
【課題を解決するための手段】
上記の課題を解決するために、請求項1に記載の発明では、熱硬化性樹脂及び炭素粉末を成分とする板状の樹脂成形体からなり、プレス成形によって形成された凹凸を備える固体高分子型燃料電池のセパレータにおいて、前記樹脂成形体の凸部に対応する部分に、緻密体からなり、側縁部には先端に行くに従って幅が狭くなるテーパが設けられた密度ムラ低減部材を埋設したことを要旨とする。
【0011】
請求項に記載の発明では、熱硬化性樹脂及び炭素粉末を成分とする板状の樹脂成形体からなり、プレス成形によって形成された凹凸を備える固体高分子型燃料電池のセパレータにおいて、前記樹脂成形体の凸部に対応する部分に、高分子材料によって形成され、緻密体からなる密度ムラ低減部材を埋設したことを要旨とする。
【0012】
請求項に記載の発明では、熱硬化性樹脂及び炭素粉末を成分とする板状の樹脂成形体からなり、プレス成形によって形成された凹凸を備える固体高分子型燃料電池のセパレータを製造する方法において、プレス成形型の成形面の凹部に対応する位置に緻密体からなり、側縁部には先端に行くに従って幅が狭くなるテーパが設けられた密度ムラ低減部材を配置するとともに、前記密度ムラ低減部材を両面側から挟み込むように熱硬化性樹脂及び炭素粉末を成分とする成形材料を配置し、この状態で前記プレス成形型を駆動させて前記密度ムラ低減部材の厚さ方向に成形圧を加えることを要旨とする。
【0013】
請求項に記載の発明では、請求項に記載の発明において、前記密度ムラ低減部材は複数個であって、それらは支持部材により同一面内にて支持されていることを要旨とする。
【0014】
以下、本発明の「作用」について説明する。
請求項1に記載の発明によれば、セパレータにおいて樹脂成形体のみの板厚の大きさは、凸部に対応しているか否かにかかわらずほぼ等しくなっている。そのため、プレス成形時において、凸部に対応する部分のプレス成形型のストローク量と凸部に対応していない部分のプレス成形型のストローク量との差が小さくなる。よって、成形材料に含まれる熱硬化性樹脂の流動性が十分でなくても、成形材料を従来よりも均一に圧縮させることができる。その結果、樹脂成形体の密度ムラが小さくなり、樹脂成形体の低密度充填部位に気孔が生じてしまうのが防止される。また、密度ムラ低減部材は緻密体によって形成されているため、密度ムラ低減部材に気孔が存在する可能性が小さくなる。従って、ガスが気孔を介して樹脂成形体を透過してしまうのを防止することができる。ゆえに、セパレータのガス不透過性を確保することができる。
【0015】
加えて、密度ムラ低減部材の側縁部にテーパが設けられているため、プレス成形時に成形材料が圧縮されると、熱硬化性樹脂が密度ムラ低減部材の側方にスムーズに流れる。そのため、プレス成形時に密度ムラ低減部材に対して加えられる力が低減される。よって、プレス成形時に密度ムラ低減部材が破断してしまうのを防止することができる。従って、セパレータを確実に成形することができる。
【0016】
請求項に記載の発明によれば、密度ムラ低減部材を金属材料によって形成した場合とは異なり、金属材料が溶出してイオン交換膜を被毒化させるおそれがない。また、密度ムラ低減部材が比較的安価な高分子材料によって成形されるため、セパレータを作製するために必要なコストを低減させることができる。
【0017】
請求項に記載の発明によれば、セパレータは、側縁部にテーパが設けられた密度ムラ低減部材の両面を成形材料によって挟み込んだ状態でプレス成形を行うことによって製造される。そのため、密度ムラ低減部材と成形材料とを積層する工程と凹凸を形成する工程とが同時に行われる。よって、セパレータを製造するために必要な工程が少なくなる。従って、セパレータを効率よく製造することができる。
【0018】
請求項に記載の発明によれば、各密度ムラ低減部材は支持部材によって支持されている。そのため、支持部材が成形材料によって挟持されても、各密度ムラ低減部材は同一の高さに保持される。また、各密度ムラ低減部材は互いに所定の間隔を有した状態に保持される。よって、プレス成形時に密度ムラ低減部材の位置ズレを防止することができる。従って、セパレータを確実にかつ効率よく製造することができる。また、各密度ムラ低減部材は支持部材によって支持された状態で成形されるため、容易に大量生産することができる。従って、セパレータを作製するためのコストをより確実に低減させることができる。
【0019】
【発明の実施の形態】
以下、本発明を自動車用の固体高分子型燃料電池に具体化したセパレータの一実施形態を図1〜図5に基づき詳細に説明する。
【0020】
図1及び図2に示すように、この燃料電池1は、膜・電極積層体L1とセパレータ2とを備えている。
膜・電極積層体L1は、プロトン交換膜3の両側に電極4A,4Bを貼り付けた構造となっている。一方のものは水素極4Aであり、他方のものは酸素極4Bである。プロトン交換膜3は、水素イオンを通過させることができる。本実施形態では、例えばパーフルオロカーボンスルフォン酸からなる膜をプロトン交換膜3として用いている。水素極4A及び酸素極4Bは、炭素繊維等を主成分とする好通気性のマット状物であり、ここでは矩形状に加工されている。このマット状物には、白金及びパラジウムが触媒として担持されている。尚、マット状物には撥水処理のためフッ素樹脂等が添加されていてもよい。
【0021】
膜・電極積層体L1の両側には、一対のセパレータ2が配置されている。本実施形態のセパレータ2は矩形状かつ板状の充実体であって、水素極4A及び酸素極4Bよりも一回り大きく形成されている。そして、プロトン交換膜3の外縁に設けられた肉厚フランジ部3aは、両セパレータ2の内面外周部によって挟持されている。肉厚フランジ部3aとセパレータ2との間には、外部への流体漏れを防止するために、ゴムパッキング5が介在されている。その結果、両セパレータ2間に膜・電極積層体L1が位置ずれ不能に固定されている。
【0022】
図5に示すように、セパレータ2は、樹脂成形体を同セパレータ2の厚さ方向(矢印A1方向)にプレス成形することによって薄板状に形成されたものである。図1〜図3に示すように、セパレータ2は導電性を有し、基材部11及び複数の凸部としてのリブ12を備えている。各リブ12は、基材部11の上面及び下面において同基材部11と一体に形成されている。各リブ12はそれぞれ等断面形状をなし、基材部11の外周部を除く個所において平行に形成されている。膜・電極積層体L1をセパレータ2で挟持した場合、各リブ12の上端面は水素極4A及び酸素極4Bに対して当接するようになっている。そして、リブ12同士の間に形成される溝状の領域が、酸素ガス、水素ガス、水、水分等の流体を流通させるための流体流路13となる。
【0023】
また、樹脂成形体は、熱硬化性樹脂及び炭素粉末をその主成分としている。本実施形態の場合、樹脂成形体における熱硬化性樹脂の量は、10〜30wt%であることが好ましい。このような樹脂成形体は、一軸プレス機によるプレス成形により得ることができる。
【0024】
樹脂成形体における熱硬化性樹脂の役割は、ガス等の流体を透過させない性質をセパレータ2に与えること、及び好適な成形性を与えることである。使用可能な熱硬化性樹脂としては、例えばエポキシ樹脂、ポリイミド樹脂、フェノール樹脂等がある。これらのなかでも、特にフェノール樹脂を選択することが好ましい。フェノール樹脂は、成形性及び流体不透過性に優れるばかりでなく、耐酸性、耐熱性、コスト性にも優れるからである。尚、フェノール樹脂には、ノボラック系のものやレゾール系のものがある。ノボラック系フェノール樹脂及びレゾール系フェノール樹脂の混合物を用いても勿論構わない。
【0025】
また、樹脂成形体における炭素粉末としては、極力、不純物含有量の少ない高純度炭素粉末を用いることが望ましい。炭素粉末を用いた理由は、カーボンは金属のように、陽イオン溶出によりプロトン交換膜3を被毒化する危険性がないからである。尚、被毒化の確実な防止を図るためには、極力、不純物濃度の低い(具体的には不純物濃度が数百ppm以下の)炭素粉末を用いることがよい。但し、セパレータ2の形成にあたって、樹脂成形体に金、銀、白金、パラジウム等から選択される少なくとも1種類の貴金属を含有したものを用いてもよい。なぜなら、貴金属はイオン化傾向が小さいため、当該金属がプロトン交換膜3に接触したとしても、プロトン交換膜3を被毒化させる危険性がないからである。
【0026】
また、樹脂成形体における炭素粉末の役割は、セパレータ2の導電性を向上させることである。炭素粉末の平均粒子径は60μm以下であることが好ましい。その理由は、平均粒子径が大きすぎると、炭素粉末内部に存在するマイクロクラックにより、ガス不透過性が確保されないおそれがある。
【0027】
図2及び図3に示すように、樹脂成形体には、密度ムラ低減部材21が複数箇所に設けられている。各密度ムラ低減部材21は、樹脂成形体において気孔が発生すると予測される箇所に配設されている。具体的には、各密度ムラ低減部材21は、樹脂成形体のリブ12に対応する部分に埋設されている。各密度ムラ低減部材21の両面は樹脂成形体によって覆われている。また、各密度ムラ低減部材21は、支持部材21aによって同一面内に支持されている。そのため、各密度ムラ低減部材21は同一の高さに保持される。尚、各支持部材21aの厚さは各密度ムラ低減部材21の厚さの2分の1〜5分の1程度、具体的には1mm以下に設定されていることがよい。また、各密度ムラ低減部材21は、互いに所定の間隔を有した状態に保持される。図3に示すように、各密度ムラ低減部材21の厚さW1は、両面にリブ12が設けられている部分において厚さW1を除いた部分の厚さが、両面にリブ12が設けられていない部分の厚さW2とほぼ等しくなるように設定されることが好ましい。その理由は、厚さW1が小さすぎると、樹脂成形体の密度ムラを小さくすることが困難になるからである。逆に、厚さW1が大きすぎると、リブ12がある部分の密度がリブ12が無い部分の密度よりも大きくなってしまい、樹脂成形体の密度ムラが小さくならないからである。加えて、密度ムラ低減部材21がセパレータ2の表面から露出してしまう可能性があり、確実に埋設できなくなるおそれがあるからである。また、各密度ムラ低減部材21の側縁部にはテーパ22が設けられている。これらテーパ22により、密度ムラ低減部材21の幅は側端に行くに従って狭くなる。
【0028】
また、各密度ムラ低減部材21は緻密体からなっている。具体的には、密度ムラ低減部材21は、気孔が殆ど無い高分子材料によって形成されている。本実施形態において、各密度ムラ低減部材21はプラスチックによって形成されている。そのため、密度ムラ低減部材21のガス不透過性が確保される。また、各密度ムラ低減部材21は、樹脂成形体よりも硬い材料によって形成されている。そのため、セパレータ2が各密度ムラ低減部材21によって補強される。尚、使用可能な高分子材料としては、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂等がある。
【0029】
次に、本実施形態のセパレータ2を製造する手順を説明する。
まず、炭素粉末及び熱硬化性樹脂を所定割合(炭素粉末:熱硬化性樹脂=78wt%:22wt%)で配合し、混合物を得る。この混合物をメタノール等の溶剤を添加して適度な粘度に調整するとともに、混練機を用いてよく混練する。メタノールの代わりに、例えばアセトンや、高粘度の高級アルコール類等を溶剤として用いてもよい。得られたフレーク状混合物をミキサ等により粉砕して成形材料とする。また、成形材料とは別に、高分子材料からなる複数の密度ムラ低減部材21を射出成形する。
【0030】
次に、得られた成形材料に、各密度ムラ低減部材21を、図5に示すプレス成形型31の成形面32の凹部33に対応するように配置する。さらに、これら各密度ムラ低減部材21を覆うように成形材料を積層する。その結果、各密度ムラ低減部材21は、両面側が成形材料によって挟み込まれた状態に配置される。そして、この積層物を、プレス成形型31を駆動させることにより密度ムラ低減部材21の厚さ方向(矢印A1方向)にプレス成形する。このとき、積層物は、15〜30MPaで加圧されるとともに、150〜250℃に加熱される。その結果、成形品が形成され、同成形品の上面及び下面に複数のリブ12が一体に形成される。
【0031】
プレス工程の後、ある程度締まった成形品をさらにキュアすべく、成形品に対して所定温度・所定時間の加熱を行う。その結果、これまで備えていた柔軟性が失われ、成形品が硬化する。
【0032】
このようにして製作されたセパレータ2を、膜・電極積層体L1及びゴムパッキング5とともに組み立てれば、図2等に示す所望の燃料電池1が完成する。十分大きな起電力を得るために、このような燃料電池1を数十枚から数百枚ほど積層し、「燃料電池スタック」を構成しても勿論構わない。
【0033】
次に、図4に基づいて、この燃料電池1における発電原理を説明する。
使用に際し、水素極4Aと酸素極4Bとの間には、モータ等の負荷が外部回路として電気的に接続される。この状態で、水素極4A側のセパレータ2側に、水分とともに水素ガスを連続的に供給する。このとき、水分及び水素ガスは、リブ12間に位置する流体流路13内を一定方向に向かって流れる。同様に、酸素極4B側のセパレータ2側に、水分とともに酸素ガスを連続的に供給する。このとき、水分及び酸素ガスは、リブ12間に位置する流体流路13内を一定方向に向かって流れる。
【0034】
水素極4A側のセパレータ2を経由して供給されてきた水素ガスは、水素極4Aにおける触媒反応により水素イオンとなる。生成された水素イオンは、プロトン交換膜3を通過しながら酸素極4Bに向かって移動する。酸素極4Bに到った水素イオンは、酸素極4Bにおける触媒反応によって酸素ガスと反応し、水を生成させる。このような反応が起こる過程では、電子が外部回路を通って水素極4Aから酸素極4Bへ移動する。従って、電流は酸素極4Bから水素極4Aへ流れ、結果として起電力を得ることができる。すると、外部回路に直流電流が通電され、負荷であるモータ等が駆動される。
【0035】
従って、本実施形態によれば以下のような効果を得ることができる。
(1)樹脂成形体のリブ12に対応する部分には、密度ムラ低減部材21が埋設されている。そのため、セパレータ2において樹脂成形体のみの板厚の大きさは、リブ12に対応しているか否かにかかわらずほぼ等しくなっている。よって、プレス成形時において、リブ12に対応する部分のプレス成形型31のストローク量とリブ12に対応していない部分のプレス成形型31のストローク量との差が小さくなる。ゆえに、成形材料に含まれる熱硬化性樹脂の流動性が十分でなくても、成形材料を従来よりも均一に圧縮させることができる。その結果、樹脂成形体の密度ムラが小さくなり、樹脂成形体の低密度充填部位に気孔が生じてしまうのが防止される。また、密度ムラ低減部材21は緻密体によって形成されているため、密度ムラ低減部材21に気孔が存在する可能性が小さくなる。従って、ガスが気孔を介して樹脂成形体を透過してしまうのを防止することができる。
ゆえに、セパレータ2のガス不透過性を確保することができる。
【0036】
尚、密度ムラ低減部材21の代わりに樹脂成形体全体にフィルム層を設けてガス不透過性を確保した場合のように、フィルム層によってセパレータ2の導電性が損なわれてしまうのを防止することができる。
【0037】
また、各密度ムラ低減部材21は、樹脂成形体よりも硬い材料によって形成されている。そのため、プレス成形時に樹脂成形体及び密度ムラ低減部材21に力が加えられると、樹脂成形体の変形量が密度ムラ低減部材21の変形量より大きくなる。よって、セパレータ2を確実に形成することができる。また、セパレータ2が完成した後は、各密度ムラ低減部材21がいわば骨格となり、セパレータ2が補強される。従って、セパレータ2全体の強度を向上させることができる。
【0038】
(2)密度ムラ低減部材21は樹脂成形体に埋設されている。そのため、密度ムラ低減部材21が表面に露出した場合のように、樹脂成形体と密度ムラ低減部材21との継ぎ目から水が侵入してしまうのが防止される。また、継ぎ目が露出することにより、セパレータ2の見た目が悪くなってしまうのを防止することができる。さらに、密度ムラ低減部材21の露出によって、セパレータ2が部分的に絶縁されてしまうのを防止することができる。
【0039】
(3)各密度ムラ低減部材21の側縁部にテーパ22が設けられているため、プレス成形時に成形材料が圧縮されると、熱硬化性樹脂は各密度ムラ低減部材21の側方にスムーズに流れる。そのため、プレス成形時に密度ムラ低減部材21に対して加えられる力が低減される。よって、プレス成形時に密度ムラ低減部材21が破断してしまうのを防止することができる。従って、セパレータ2を確実に成形することができる。
【0040】
(4)密度ムラ低減部材21は高分子材料によって形成されている。そのため、密度ムラ低減部材21を卑金属材料によって形成した場合とは異なり、卑金属材料が溶出してプロトン交換膜3を被毒化させるおそれがない。また、密度ムラ低減部材21が比較的安価な高分子材料によって成形されるため、セパレータ2を作製するために必要なコストを低減させることができる。
【0041】
(5)セパレータ2はプレス成形を行うことによって作製されている。そのため、セパレータ2を切削加工を行うことによって作製した場合とは異なり、リブ12等の細かい形状を一度に形成することができる。従って、セパレータ2を作製するために必要なコストを低減させることができる。
【0042】
(6)セパレータ2は、密度ムラ低減部材21の両面を成形材料によって挟み込んだ状態でプレス成形を行うことによって製造される。そのため、密度ムラ低減部材21と成形材料とを積層する工程とリブ12及び流体流路13を形成する工程とが同時に行われる。よって、セパレータ2を製造するために必要な工程が少なくなる。従って、セパレータ2を効率よく製造することができる。
【0043】
(7)各密度ムラ低減部材21は支持部材21aによって支持されている。そのため、支持部材21aが成形材料によって挟持されても、各密度ムラ低減部材21は同一の高さに保持される。また、各密度ムラ低減部材21は互いに所定の間隔を有した状態に保持される。よって、プレス成形時に密度ムラ低減部材21の位置ズレを防止することができる。従って、セパレータ2を確実かつ効率よく製造することができる。また、各密度ムラ低減部材21は高分子材料からなり、支持部材21aによって支持された状態で成形されている。そのため、支持部材21aを射出成形等によって容易に大量生産することができる。従って、セパレータ2を作製するためのコストをより確実に低減させることができる。
【0044】
尚、本発明の実施形態は以下のように変更してもよい。
・前記実施形態では、各密度ムラ低減部材21の側縁部に、密度ムラ低減部材21の幅が側端に行くに従って小さくなるテーパ22が設けられていた。しかし、各テーパ22は省略されていてもよい。
【0045】
・前記実施形態において、密度ムラ低減部材21を、鉄、銅等の卑金属材料によって形成してもよい。このように構成すれば、密度ムラ低減部材21自体も導電性を有するため、実施形態のときに比べてセパレータ2の導電性を向上させることができる。また、密度ムラ低減部材21を、金、白金等の貴金属によって形成してもよい。この場合、卑金属材料が溶出してプロトン交換膜3を被毒化させるおそれがないという利点がある。尚、このような金属製の密度ムラ低減部材21は、例えば金属板材を金型で打ち抜くこと等により比較的簡単に得ることができる。
【0046】
・前記実施形態において、密度ムラ低減部材21をエポキシ樹脂等の高分子材料によって形成する代わりに、黒鉛材料によって形成してもよい。このように構成すれば、密度ムラ低減部材21自体も導電性を有するため、セパレータ2の導電性を向上させることができる。また、樹脂成形体にも黒鉛材料からなる炭素粉末が含まれるため、密度ムラ低減部材21と樹脂成形体との馴染みが良くなる。ゆえに、セパレータ2を形成し易くなる。また、熱膨張係数が等しくなるため、反りや剥離が起こりにくくなり、耐久性に優れたものとなる。また、密度ムラ低減部材21を、高分子材料と黒鉛材料との混合物によって形成してもよい。この場合、プレス成形や切削成形を行わなくてもよくなるため、セパレータ2を作製するためのコストを低減させることができる。
【0047】
・前記実施形態において、密度ムラ低減部材21をエポキシ樹脂等の高分子材料によって形成する代わりに、セラミックによって形成してもよい。
・セパレータ2の形状は、前記実施形態のような矩形状に限定されるものではなく、円形状、略三角形状等の他の形状であってもよい。
【0048】
次に、上記実施形態及び別例によって把握される技術的思想を以下に列挙する。
(1)イオン交換膜の両側に電極を配置してなる膜・電極積層体と、導電性を有するとともに熱硬化性樹脂及び炭素粉末を成分とする板状の樹脂成形体をプレス成形することによって凹凸が形成され、前記膜・電極積層体を挟持する一対のセパレータとを備えた固体高分子型燃料電池において、前記樹脂成形体の凸部に対応する部分に、緻密体からなる密度ムラ低減部材を埋設したことを特徴とする固体高分子型燃料電池。
【0049】
(2)イオン交換膜の両側に電極を配置してなる膜・電極積層体と、導電性を有するとともに熱硬化性樹脂及び炭素粉末を成分とする板状の樹脂成形体をプレス成形することによって凹凸が形成され、前記膜・電極積層体を挟持する一対のセパレータとを備えた固体高分子型燃料電池を複数枚積層することによって構成した燃料電池スタックにおいて、前記樹脂成形体の凸部に対応する部分に、緻密体からなる密度ムラ低減部材を埋設したことを特徴とする燃料電池スタック。
【0050】
【発明の効果】
以上詳述したように、請求項1に記載の発明によれば、セパレータのガス不透過性を確保することができる。
【0051】
加えて、プレス成形時に密度ムラ低減部材が破断してしまうのを防止することができる。従って、セパレータを確実に成形することができる。
請求項に記載の発明によれば、密度ムラ低減部材を金属材料によって形成した場合とは異なり、金属材料が溶出してイオン交換膜を被毒化させるおそれがない。また、セパレータを作製するために必要なコストを低減させることができる。
【0052】
請求項に記載の発明によれば、セパレータを効率よく製造することができる。
請求項に記載の発明によれば、セパレータを確実にかつ効率よく製造することができる。また、セパレータを作製するためのコストをより確実に低減させることができる。
【図面の簡単な説明】
【図1】 本発明を具体化した固体高分子型燃料電池の分解斜視図。
【図2】 燃料電池の概略断面図。
【図3】 セパレータの概略断面図。
【図4】 燃料電池の原理説明図。
【図5】 セパレータが成形されるときの状態を示す断面図。
【図6】 従来技術におけるセパレータの要部断面図。
【符号の説明】
1…固体高分子型燃料電池、2…セパレータ、12…凸部としてのリブ、21…密度ムラ低減部材、21a…支持部材、22…テーパ、31…プレス成形型、32…成形面、33…凹部。

Claims (4)

  1. 硬化性樹脂及び炭素粉末を成分とする板状の樹脂成形体からなり、プレス成形によって形成された凹凸を備える固体高分子型燃料電池のセパレータにおいて、
    前記樹脂成形体の凸部に対応する部分に、緻密体からなり、側縁部には先端に行くに従って幅が狭くなるテーパが設けられた密度ムラ低減部材を埋設したことを特徴とする固体高分子型燃料電池のセパレータ。
  2. 熱硬化性樹脂及び炭素粉末を成分とする板状の樹脂成形体からなり、プレス成形によって形成された凹凸を備える固体高分子型燃料電池のセパレータにおいて、
    前記樹脂成形体の凸部に対応する部分に、高分子材料によって形成され、緻密体からなる密度ムラ低減部材を埋設したことを特徴とする固体高分子型燃料電池のセパレータ。
  3. 熱硬化性樹脂及び炭素粉末を成分とする板状の樹脂成形体からなり、プレス成形によって形成された凹凸を備える固体高分子型燃料電池のセパレータを製造する方法において、
    プレス成形型の成形面の凹部に対応する位置に緻密体からなり、側縁部には先端に行くに従って幅が狭くなるテーパが設けられた密度ムラ低減部材を配置するとともに、前記密度ムラ低減部材を両面側から挟み込むように熱硬化性樹脂及び炭素粉末を成分とする成形材料を配置し、この状態で前記プレス成形型を駆動させて前記密度ムラ低減部材の厚さ方向に成形圧を加えることを特徴とする固体高分子型燃料電池のセパレータの製造方法。
  4. 前記密度ムラ低減部材は複数個であって、それらは支持部材により同一面内にて支持されていることを特徴とする請求項3に記載の固体高分子型燃料電池のセパレータの製造方法。
JP2001156615A 2001-05-25 2001-05-25 固体高分子型燃料電池のセパレータ及びその製造方法 Expired - Lifetime JP4817349B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001156615A JP4817349B2 (ja) 2001-05-25 2001-05-25 固体高分子型燃料電池のセパレータ及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001156615A JP4817349B2 (ja) 2001-05-25 2001-05-25 固体高分子型燃料電池のセパレータ及びその製造方法

Publications (2)

Publication Number Publication Date
JP2002352814A JP2002352814A (ja) 2002-12-06
JP4817349B2 true JP4817349B2 (ja) 2011-11-16

Family

ID=19000606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001156615A Expired - Lifetime JP4817349B2 (ja) 2001-05-25 2001-05-25 固体高分子型燃料電池のセパレータ及びその製造方法

Country Status (1)

Country Link
JP (1) JP4817349B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2781606B1 (fr) * 1998-07-21 2000-10-13 Sorapec Nouveau collecteur bipolaire pour pile a combustible
JP3692274B2 (ja) * 1999-02-09 2005-09-07 日清紡績株式会社 燃料電池用セパレータ及び固体高分子型燃料電池
JP3330343B2 (ja) * 1999-02-09 2002-09-30 日本ピラー工業株式会社 燃料電池用セパレータ
JP4232273B2 (ja) * 1999-05-11 2009-03-04 トヨタ自動車株式会社 燃料電池用のセパレータおよびその製造方法
JP2001052721A (ja) * 1999-08-12 2001-02-23 Osaka Gas Co Ltd 燃料電池用セパレータおよびその製造方法

Also Published As

Publication number Publication date
JP2002352814A (ja) 2002-12-06

Similar Documents

Publication Publication Date Title
JP6026561B2 (ja) 膜電極接合体および膜電極接合体の製造方法
US8431284B2 (en) Low electrical resistance bipolar plate-diffusion media assembly
KR20190104548A (ko) 바이폴라 플레이트/밀봉 어셈블리 및 바이폴라 플레이트/밀봉 어셈블리를 갖는 연료 전지 스택
US9397351B2 (en) Apparatus and methods for connecting fuel cells to an external circuit
JP2001283873A (ja) 高分子電解質型燃料電池用セパレータとその製造法およびこれを用いた高分子電解質型燃料電池
KR100901362B1 (ko) 연료 전지용 분리판 및 그 제조방법
EP1329970A2 (en) Fuel cell separator production method, fuel cell separators, and polymer electrolyte fuel cells
US7681304B2 (en) Membrane electrode assembly and method of manufacturing a membrane electrode assembly
US8530108B2 (en) Composite membrane, fuel cell and method of making composite membrane
JP2004103296A (ja) 固体高分子型燃料電池
JP4817349B2 (ja) 固体高分子型燃料電池のセパレータ及びその製造方法
JP4511610B2 (ja) 燃料電池及びその製造方法
JP2004536424A (ja) フローフィールドプレート及びそれらの間のシール形成方法
CN1183616C (zh) 燃料电池单元的密封方法
CN2475144Y (zh) 燃料电池单元的密封装置
KR101027098B1 (ko) 연료 전지 및 그 제조 방법
JP5015387B2 (ja) 固体高分子型燃料電池のセパレータ
JP2019139993A (ja) 燃料電池モジュールおよびその製造方法
KR20070024124A (ko) 연료 전지용 세퍼레이터, 그의 제조 방법 및 그를 포함하는연료 전지 시스템
JP2002254464A (ja) プレス成形用型及びその製造方法
JP7398636B2 (ja) 燃料電池モジュール及びその製造方法
JP5282871B2 (ja) 燃料電池及びその製造方法
JP2008288068A (ja) 燃料電池、燃料電池のアノード、および、膜電極接合体
JP2011216405A (ja) 固体高分子形燃料電池および固体高分子形燃料電池用のセパレータ
JP2008153081A (ja) 燃料電池及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4817349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term