JP4817044B2 - Cutting tool manufacturing method - Google Patents

Cutting tool manufacturing method Download PDF

Info

Publication number
JP4817044B2
JP4817044B2 JP2005282324A JP2005282324A JP4817044B2 JP 4817044 B2 JP4817044 B2 JP 4817044B2 JP 2005282324 A JP2005282324 A JP 2005282324A JP 2005282324 A JP2005282324 A JP 2005282324A JP 4817044 B2 JP4817044 B2 JP 4817044B2
Authority
JP
Japan
Prior art keywords
film
sic
cutting tool
base material
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005282324A
Other languages
Japanese (ja)
Other versions
JP2007090483A (en
Inventor
修 神田
和宏 石井
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005282324A priority Critical patent/JP4817044B2/en
Publication of JP2007090483A publication Critical patent/JP2007090483A/en
Application granted granted Critical
Publication of JP4817044B2 publication Critical patent/JP4817044B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

本発明は、切削工具製造方法に関する。詳しくは、旋削加工、ドリル加工、エンドミル加工及びフライス加工など各種の切削加工に用いる切削工具の製造方法であって、接触する被切削材の凝着を大きく抑制でき、しかも、基材と皮膜との密着性に優れ、これによって優れた耐摩耗性を確保することができる切削工具製造方法に関する。 The present invention relates to a method for producing a cutting tool. Specifically, it is a manufacturing method of a cutting tool used for various cutting processes such as turning, drilling, end milling, and milling, and can largely suppress adhesion of a workpiece to be contacted, and further, a base material and a film. It is related with the manufacturing method of the cutting tool which is excellent in adhesiveness of this and can ensure the outstanding abrasion resistance by this.

鋼管等の各種工業製品に対する要求特性の高度化に伴って、鋼管端部のねじ切り加工用など各種の切削工具の耐摩耗性を向上させることが求められている。   As the required characteristics of various industrial products such as steel pipes become more sophisticated, it is required to improve the wear resistance of various cutting tools such as those for threading a steel pipe end.

より具体的には、切削加工能率を一層高めるために、高速で切削加工した場合にも良好な耐摩耗性を確保できる切削工具が要求されている。また、13Cr系のマルテンサイト系ステンレス鋼などの高強度材、更には、オーステナイト系やフェライト系のステンレス鋼といった難削材に対しても凝着を生じることなく優れた切削機能を有する切削工具が要求されている。   More specifically, in order to further increase the cutting efficiency, there is a demand for a cutting tool that can ensure good wear resistance even when cutting at high speed. Further, there is a cutting tool having an excellent cutting function without causing adhesion to a high-strength material such as 13Cr martensitic stainless steel, and difficult-to-cut materials such as austenitic and ferritic stainless steel. It is requested.

斯様な要求に対処するために、従来、超硬合金からなる基材の表面に、硬質保護膜として、TiやZrなどの炭化物、窒化物及び炭窒化物、並びに、Alなどを形成させることが行われている。具体的には、化学蒸着法(CVD法)や物理蒸着法(PVD法)によって、基材の表面に前記した硬質保護膜を単層もしくは複層で、数μmから数十μmの厚さで形成させることが行われ、切削工具の摩耗抑制及び被切削材との凝着抑制が図られている。 In order to cope with such a demand, conventionally, carbide, nitride and carbonitride such as Ti and Zr, Al 2 O 3 and the like are used as a hard protective film on the surface of a substrate made of cemented carbide. It is made to form. Specifically, the above-mentioned hard protective film is formed as a single layer or multiple layers on the surface of the base material by a chemical vapor deposition method (CVD method) or a physical vapor deposition method (PVD method) with a thickness of several μm to several tens of μm. Forming is performed to suppress wear of the cutting tool and adhesion to the workpiece.

しかしながら、従来の硬質保護膜、例えば、TiN、Ti(C、N)、TiAlN及びAlなどの皮膜は、常温では優れた密着力と耐摩耗性を有するものの、高速で切削加工する場合や高強度材を切削加工する場合には、被切削材との接触面が1000℃以上の高温に上昇するので、酸化分解や被切削材との化学反応が生じ、密着力が低下してしまう。その結果、耐摩耗性の低下や被切削材の凝着などが生じ、硬質保護膜としての機能が著しく損なわれる。 However, conventional hard protective films such as TiN, Ti (C, N), TiAlN, and Al 2 O 3 have excellent adhesion and wear resistance at room temperature, but are processed at high speed. When cutting high-strength materials, the contact surface with the material to be cut rises to a high temperature of 1000 ° C. or higher, which causes oxidative decomposition and chemical reaction with the material to be cut, resulting in a decrease in adhesion. . As a result, a decrease in wear resistance, adhesion of the workpiece, and the like occur, and the function as the hard protective film is significantly impaired.

このため、硬質保護膜には従来にも増した耐酸化性や密着力が要求されるようになり、この要求に応えるべく、いくつかの新しい技術が提案されている。   For this reason, the hard protective film is required to have higher oxidation resistance and adhesion than before, and several new techniques have been proposed to meet this demand.

例えば、特許文献1には、硬質保護膜の酸化分解を抑制する技術、換言すれば、酸化開始温度を高くして耐酸化特性を向上させる技術が開示されている。より具体的に説明すれば、特許文献1には、基材上に形成された4a族元素、5a族元素、6a族元素及びAlからなる群の中から選択される1種以上の元素の窒化物又は炭窒化物を主成分とする耐摩耗性皮膜の中に、皮膜の硬度を高めることを目的として、BC、BN、TiB、TiB、TiC、WC、SiC、SiN(X=0.5〜1.33)及びAlよりなる群から選択される少なくとも1種の超微粒化合物を含有させた切削工具が提案されている。 For example, Patent Document 1 discloses a technique for suppressing oxidative decomposition of a hard protective film, in other words, a technique for improving oxidation resistance characteristics by increasing an oxidation start temperature. More specifically, Patent Document 1 discloses nitriding one or more elements selected from the group consisting of Group 4a elements, Group 5a elements, Group 6a elements, and Al formed on a substrate. B 4 C, BN, TiB 2 , TiB, TiC, WC, SiC, SiN X (X = A cutting tool containing at least one ultrafine compound selected from the group consisting of 0.5 to 1.33) and Al 2 O 3 has been proposed.

特許文献2には、母材(基材)の表面近傍の塑性変形性を高めるとともに、皮膜との密着性を改善させる技術が開示されている。すなわち、特許文献2には、超硬合金母材と硬
質皮膜との間に母材の硬質相粒子と皮膜粒子とからなる硬質複合層を設けた被覆超硬合金が記載されている。
Patent Document 2 discloses a technique for improving the plastic deformability in the vicinity of the surface of a base material (base material) and improving the adhesion with a film. That is, Patent Document 2 describes a coated cemented carbide in which a hard composite layer composed of a hard phase particle and a coating particle of a base material is provided between a cemented carbide base material and a hard coating.

より具体的に説明すれば、特許文献2には、硬質相粒子が炭化タングステン、或いは炭化タングステンと周期律表の4a族元素、5a族元素及び6a族金属の炭化物、窒化物及び炭窒化物、並びにこれらの相互固溶体の中の1種以上からなる立方晶化合物で、結合相が鉄族金属である超硬合金を母材とし、その母材表面から内部に向かって3〜20μmの深さに亘って、結合相の量が2重量%以下で、且つ母材の硬質相粒子と周期律表の4a族元素、5a族元素、6a族元素、Al及びSiの炭化物、窒化物及び酸化物、並びにこれらの相互固溶体の中から選ばれた1種以上の化合物粒子とから構成された均一な硬質複合層とを有し、更に、母材表面に前記4a族元素からSiまでの炭化物、窒化物及び酸化物、並びにこれらの相互固溶体の中から選ばれた1種以上の化合物でなる単層又は2層以上の積層でなる0.5〜20μmの硬質膜を被覆した被覆超硬合金が提案されている。   More specifically, in Patent Document 2, the hard phase particles are tungsten carbide, or carbide, tungsten carbide and carbides of group 4a element, group 5a element and group 6a metal of the periodic table, nitride and carbonitride, In addition, a cubic compound composed of one or more of these mutual solid solutions and having a cemented carbide whose binder phase is an iron group metal as a base material, and having a depth of 3 to 20 μm from the base material surface to the inside. In addition, the amount of the binder phase is 2% by weight or less, and the hard phase particles of the base material and the 4a group element, 5a group element, 6a group element, Al and Si carbides, nitrides and oxides of the periodic table, And a uniform hard composite layer composed of one or more kinds of compound particles selected from these mutual solid solutions, and further carbide, nitride from the group 4a element to Si on the surface of the base material And oxides, and their mutual solid solutions Coated cemented carbide coated with a single layer or a 0.5~20μm hard film of consisting of two or more layers of the multilayer consisting of one or more compounds selected from have been proposed.

特許文献3には、特定の密度を有する高硬度の炭素膜が開示されている。この特許文献3で提案された炭素膜は、ダイヤモンド膜やダイヤモンド状炭素膜に代わって、切削工具の耐摩耗性及び耐久性を向上させることができるものである。   Patent Document 3 discloses a high-hardness carbon film having a specific density. The carbon film proposed in Patent Document 3 can improve the wear resistance and durability of a cutting tool in place of a diamond film or a diamond-like carbon film.

特開2001−293601号公報JP 2001-293601 A 特開2002−38205号公報JP 2002-38205 A 特開2003−147508号公報JP 2003-147508 A

前述の特許文献1で提案された切削工具を用いれば、250m/分という高速切削の場合にも、優れた耐摩耗性や高い潤滑性が確保でき、また凝着抑制の効果も得られる。しかしながら、この切削工具の基材上には、前記特定の元素の窒化物又は炭窒化物を主成分とし、その中に、上述のBCからAlまでの中から選択される少なくとも1種の超微粒化合物を含む皮膜を設ける必要がある。このため、工業的な量産規模での製造が極めて難しいという問題がある。 By using the cutting tool proposed in Patent Document 1 described above, excellent wear resistance and high lubricity can be secured even in high-speed cutting at 250 m / min, and an effect of suppressing adhesion can be obtained. However, the base material of the cutting tool is mainly composed of the nitride or carbonitride of the specific element, and includes at least selected from B 4 C to Al 2 O 3 described above. It is necessary to provide a film containing one kind of ultrafine compound. For this reason, there exists a problem that manufacture by industrial mass-production scale is very difficult.

次に、特許文献2で提案された被覆超硬合金は、硬質複合層が母材の塑性変形を抑制すると同時に母材と硬質膜との密着性を高めるので、切削工具に用いると、500m/分という極めて大きな切削速度の場合にも、優れた耐摩耗性が確保でき、長い工具寿命が得られる。しかし、この被覆超硬合金は、母材である超硬合金の表面から結合相である鉄族金属を一旦除去したうえで、前述の硬質膜を被覆し、硬質膜と母材との間に硬質複合相を母材表面から3〜20μmの範囲に形成させる必要がある。このため、工業的な量産規模での製造が極めて難しく、また、製造コストも嵩む。   Next, the coated cemented carbide proposed in Patent Document 2 has a hard composite layer that suppresses plastic deformation of the base material and at the same time enhances the adhesion between the base material and the hard film. Even at extremely high cutting speeds of minutes, excellent wear resistance can be ensured and a long tool life can be obtained. However, this coated cemented carbide first removes the iron group metal that is the binder phase from the surface of the cemented carbide that is the base material, and then covers the hard film described above, and between the hard film and the base material. It is necessary to form the hard composite phase in the range of 3 to 20 μm from the surface of the base material. For this reason, it is very difficult to manufacture on an industrial mass production scale, and the manufacturing cost is increased.

そして、特許文献3で提案された技術は、工具使用温度が400℃以下の冷間加工が主な対象であって、熱間加工には不向きである。すなわち、炭素膜は400℃以上では酸素と反応して炭酸ガスとして気化してしまうので、硬質保護膜としての機能が著しく損なわれてしまうという問題がある。   The technique proposed in Patent Document 3 is mainly intended for cold working with a tool use temperature of 400 ° C. or lower, and is not suitable for hot working. That is, since the carbon film reacts with oxygen and vaporizes as carbon dioxide gas at 400 ° C. or higher, there is a problem that the function as the hard protective film is remarkably impaired.

本発明は、斯かる従来技術の問題点を解決するべくなされたものであり、接触する被切削材の凝着を大きく抑制でき、しかも、基材と皮膜との密着性に優れ、これによって優れた耐摩耗性を確保することが可能な切削工具、工業的な量産規模での製造を可能とする前記切削工具の製造方法を提供することを課題とする。 The present invention has been made to solve such problems of the prior art, can greatly suppress the adhesion of the workpiece to be contacted, and is excellent in adhesion between the substrate and the film, and thereby excellent. All cutting tools capable of ensuring wear resistance, and to provide a manufacturing method of the cutting tool which enables the production on an industrial mass production scale.

前記課題を解決するべく、本発明の発明者らは、超硬合金からなる基材を用いて、該基材の表面を被覆する硬質保護膜の化学組成とそれらの皮膜生成方法について詳細に検討した。その結果、下記(a)〜(g)の知見を得た。   In order to solve the above-mentioned problems, the inventors of the present invention have studied in detail the chemical composition of a hard protective film covering the surface of the base material using a base material made of cemented carbide and a method for generating the film. did. As a result, the following findings (a) to (g) were obtained.

(a)摩耗を抑制し、更に、接触する被切削材の凝着を抑制するためには、硬質保護膜である皮膜の酸化分解開始温度が高いことが必要であり、しかも、その皮膜は、接触する被切削材との化学反応、特に、液相析出を抑止できるものとする必要がある。   (A) In order to suppress wear and further suppress adhesion of the workpiece to be contacted, it is necessary that the oxidative decomposition start temperature of the film which is a hard protective film is high, and the film is It is necessary to be able to suppress chemical reaction with the workpiece to be contacted, in particular, liquid phase precipitation.

(b)SiCは、酸化分解の開始温度が1200℃以上で、高温でも極めて安定した状態を保つことができる。   (B) SiC has an oxidation decomposition starting temperature of 1200 ° C. or higher, and can maintain a very stable state even at high temperatures.

(c)SiCは、熱的に安定している。このため、高温に曝されても基材との密着性に優れ、剥離することがない。そして、SiCの線膨張係数は、基材である超硬合金に比べて十分小さいので、高温に曝された場合、基材と皮膜の界面に引張応力が発生し、基材との密着性は極めて優れている。   (C) SiC is thermally stable. For this reason, even if exposed to high temperature, it is excellent in adhesiveness with a base material, and does not peel. And, since the linear expansion coefficient of SiC is sufficiently small compared to the cemented carbide that is the base material, when exposed to high temperature, tensile stress is generated at the interface between the base material and the film, and the adhesion with the base material is Very good.

(d)SiCは、機械的に安定しており、硬さ、ヤング率、耐熱衝撃性などに優れるので、硬質保護膜として適している。   (D) SiC is mechanically stable and excellent in hardness, Young's modulus, thermal shock resistance, and the like, and is therefore suitable as a hard protective film.

(e)例えば、各種鋼材の切削工具として、基材の表面にSiCを被覆したものを用いれば、SiCは、被切削材である鋼材の主成分としてのFeとの反応性が極めて低いので、高速切削時の高温状態においても化学的に安定した状態で存在することができる。   (E) For example, if a steel material coated with SiC is used as a cutting tool for various steel materials, SiC has a very low reactivity with Fe as the main component of the steel material that is the material to be cut. It can exist in a chemically stable state even at high temperatures during high-speed cutting.

(f)SiCの化学的な組成変動を生じ難くし、前述した各物性を損なうことなく皮膜として適用するためには、純度の高いSiCを十分に焼結した後、これを原料、つまり、成膜源(以下、「ターゲット」ともいう。)として用い、物理蒸着法によって基材表面に皮膜を生成させればよい。換言すれば、物理蒸着法によって上述のターゲットから励起されたクラスターイオンを基材の表面に堆積させた皮膜の物性は、上記のSiCの物性と変わらない。   (F) In order to make the chemical composition of SiC less likely to change and to be applied as a film without impairing the above-mentioned physical properties, after high-purity SiC is sufficiently sintered, this is used as a raw material, that is, a composition. What is necessary is just to produce | generate a membrane | film | coat on the base-material surface by a physical vapor deposition method as a film | membrane source (henceforth a "target"). In other words, the physical properties of the film obtained by depositing cluster ions excited from the above target by the physical vapor deposition method on the surface of the substrate are the same as the above physical properties of SiC.

(g)物理蒸着法の採用によって、ターゲットから皮膜への正確な物質移動が可能になり、しかも、好ましくは粒径0.4μm以下の原料微粉焼結体ターゲットの使用により、クラスターイオンの微細化も可能となるので、基材の表面凹凸状態に関係なく、直接に緻密な皮膜の生成が実現できる。   (G) By adopting the physical vapor deposition method, accurate mass transfer from the target to the coating becomes possible, and the use of a raw material fine powder sintered compact target having a particle size of 0.4 μm or less is preferable. Therefore, it is possible to directly generate a dense film regardless of the surface irregularity state of the substrate.

本発明は、上記の発明者らの知見に基づいて完成されたものである。
すなわち、本発明は、SiCを成膜源とする発振波長266nmのYAGレーザによるレーザデポジション法を用いて、室温で、超硬合金からなる基材の表面に最外層がSiCからなる皮膜を形成することを特徴とする切削工具の製造方法を提供するものである。
The present invention has been completed based on the findings of the inventors.
That is, according to the present invention, a film whose outermost layer is made of SiC is formed on the surface of a base material made of cemented carbide at room temperature using a laser deposition method using a YAG laser having an oscillation wavelength of 266 nm using SiC as a film forming source. The present invention provides a method for manufacturing a cutting tool .

本発明に係る製造方法によって、少なくとも被切削材と接触する接触面或いは逃げ面において皮膜の最外層をSiCからなる切削工具を製造すれば、接触する被切削材の凝着を大きく抑制でき、しかも、基材と皮膜との密着性に優れ、これによって優れた耐摩耗性を確保することが可能である本発明に係る切削工具の製造方法によれば、上記の特性を有する切削工具を安定且つ確実に得ることができると共に、工業的な量産規模での製造が可能である。 By producing a cutting tool made of SiC at the outermost layer of the coating at least on the contact surface or flank surface in contact with the workpiece by the manufacturing method according to the present invention, adhesion of the workpiece to be contacted can be greatly suppressed. The adhesion between the substrate and the film is excellent, and it is possible to ensure excellent wear resistance . According to the method for manufacturing a cutting tool according to the present invention, it is possible to stably and surely obtain a cutting tool having the above-described characteristics and to manufacture it on an industrial mass production scale.

以下、添付図面を適宜参照しつつ、本発明の一実施形態に係る切削工具及びその製造方法について説明する。   Hereinafter, a cutting tool and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the accompanying drawings as appropriate.

図1は、本実施形態に係る切削工具の概略構成を示す図であり、図1(a)は本実施形態に係る切削工具によって、円柱状の被切削材を切削している状態を模式的に示す図を、図1(b)は、図1(a)に示す切削工具の逃げ面近傍の断面を模式的に示す図を表す。図1(a)に示すように、本実施形態に係る切削工具1は、略直方体状の形状を有し、その4つの側面が逃げ面、上下面がすくい面とされている。そして、2つの逃げ面1a、1bと、上側のすくい面1cとが交差する角部が切り込み箇所とされ、該切り込み箇所によって被切削材Mの外周面が切削される。より具体的に説明すれば、被切削材Mの外周面に切削工具1の前記切り込み箇所を接触させた状態で、被切削材Mを周方向に回転させると共に、切削工具1を被切削材Mの軸方向に所定の速度で送ることにより、被切削材Mの外周面が切削されることになる。   FIG. 1 is a diagram illustrating a schematic configuration of a cutting tool according to the present embodiment. FIG. 1A schematically illustrates a state in which a cylindrical workpiece is cut by the cutting tool according to the present embodiment. FIG. 1B schematically shows a cross section near the flank of the cutting tool shown in FIG. As shown to Fig.1 (a), the cutting tool 1 which concerns on this embodiment has a substantially rectangular parallelepiped shape, The four side surfaces are made into a flank and the upper and lower surfaces are rake faces. And the corner | angular part which the two flank 1a, 1b and the upper rake face 1c cross | intersect is made into a cut location, and the outer peripheral surface of the workpiece M is cut by this cut location. More specifically, the cutting material 1 is rotated in the circumferential direction while the cutting portion of the cutting tool 1 is in contact with the outer peripheral surface of the cutting material M, and the cutting tool 1 is moved to the cutting material M. The outer peripheral surface of the workpiece M is cut by feeding it at a predetermined speed in the axial direction.

本発明に係る切削工具は、超硬合金からなる基材と、該基材の表面に形成された皮膜とを備え、少なくとも被切削材と接触する接触面において前記皮膜の最外層がSiCからなるか、或いは、少なくとも逃げ面において前記皮膜の最外層がSiCからなることを特徴としている。本実施形態では、上記の切り込み箇所を変更して、逃げ面1a、1b以外の残りの2つの逃げ面も切削に供される場合があることを考慮し、少なくとも逃げ面において前記皮膜の最外層がSiCからなる構成とされている。すなわち、図1(b)に示すように、本実施形態に係る切削工具1は、超硬合金からなる基材1Aと、基材1Aの表面に形成された皮膜とを備え、少なくとも逃げ面において皮膜1Bの最外層がSiCから構成されている。以下、上記最外層のことを適宜「SiC層」という。   The cutting tool according to the present invention includes a base material made of a cemented carbide and a film formed on the surface of the base material, and at least an outermost layer of the film is made of SiC at a contact surface in contact with a workpiece. Alternatively, the outermost layer of the film is made of SiC at least on the flank. In the present embodiment, the outermost layer of the coating is formed at least on the flank in consideration of the fact that the other two flank surfaces other than the flank surfaces 1a and 1b may be used for cutting by changing the above-described cut portions. Is made of SiC. That is, as shown in FIG.1 (b), the cutting tool 1 which concerns on this embodiment is equipped with the base material 1A which consists of a cemented carbide, and the membrane | film | coat formed in the surface of the base material 1A, At least in a flank The outermost layer of the coating 1B is made of SiC. Hereinafter, the outermost layer is appropriately referred to as “SiC layer”.

基材1Aは、上記のように超硬合金からなり、例えば、WC、WC−TiCを主成分とする超硬合金を用いることができる。   Base material 1A consists of a cemented carbide as mentioned above, for example, the cemented carbide which has WC and WC-TiC as a main component can be used.

皮膜1Bは、単層又は複層のいずれの構成を採用することも可能であるが、いずれにせよ、上記のように最外層(単層の場合は当該層)がSiCから構成されている。前述のように、SiCは、酸化分解温度が1200℃以上と高く、しかも、熱的及び機械的に安定しているため、高温に曝されても基材1Aとの密着性に優れ、剥離することがないし、安定した機械的性質を発揮することができる。また、被切削材Mが各種鋼材である場合、SiCは、被切削材Mである鋼材の主成分としてのFeとの反応性が極めて低いので、高速切削時の高温状態においても化学的に安定した状態で存在しうる。従って、本実施形態に係る切削工具1によれば、接触する被切削材Mの凝着を大きく抑制でき、しかも、基材1Aと皮膜1Bとの密着性に優れ、これによって優れた耐摩耗性を確保することが可能である。   The coating 1B can adopt either a single layer structure or a multilayer structure, but in any case, the outermost layer (in the case of a single layer, the layer) is composed of SiC as described above. As described above, SiC has a high oxidative decomposition temperature of 1200 ° C. or higher, and is thermally and mechanically stable, so that it has excellent adhesion to the substrate 1A even when exposed to high temperatures, and peels off. And stable mechanical properties can be exhibited. In addition, when the material to be cut M is various steel materials, SiC has a very low reactivity with Fe as a main component of the steel material that is the material to be cut M, so that it is chemically stable even in a high temperature state during high speed cutting. Can exist in the state. Therefore, according to the cutting tool 1 according to the present embodiment, the adhesion of the workpiece M to be contacted can be greatly suppressed, and the adhesiveness between the base material 1A and the coating 1B is excellent, thereby providing excellent wear resistance. Can be secured.

なお、SiC層の厚さが0.5μmを下回る場合には、十分な耐摩耗性が得られない場合がある。一方、SiC層の厚さが10μmを超えても耐摩耗性は飽和し、コストが嵩むばかりである。従って、SiC層の厚さは、0.5〜10μmとすることが好ましく、より好ましくは1〜5μmとされる。   In addition, when the thickness of a SiC layer is less than 0.5 micrometer, sufficient abrasion resistance may not be acquired. On the other hand, even if the thickness of the SiC layer exceeds 10 μm, the wear resistance is saturated and the cost is increased. Therefore, the thickness of the SiC layer is preferably 0.5 to 10 μm, more preferably 1 to 5 μm.

切削工具1の製造方法(SiC層の生成方法)としては、SiCを成膜源とする物理蒸着法を用いて、超硬合金からなる基材1Aの表面に最外層がSiC層である皮膜1Bを形成することが好ましい。物理蒸着法によってSiC層を生成することにより、SiCが有する各種の特性、つまり、高い酸化分解温度、熱的及び機械的な安定性、高速切削時の高温状態における化学的安定性などの特性を確保することができる。   As a manufacturing method of the cutting tool 1 (SiC layer generation method), a coating 1B in which the outermost layer is a SiC layer on the surface of a base material 1A made of cemented carbide using a physical vapor deposition method using SiC as a film forming source. Is preferably formed. By producing a SiC layer by physical vapor deposition, various characteristics of SiC, that is, characteristics such as high oxidative decomposition temperature, thermal and mechanical stability, and chemical stability in high temperature conditions during high-speed cutting, etc. Can be secured.

より具体的には、真空槽内に導入した不活性ガス雰囲気下において、SiCの焼結体をターゲットとしてクラスターイオンを励起させ、前記励起したクラスターイオンを堆積(好ましくは、厚さ0.5〜10μm)させて皮膜(SiC層)を得ることが好ましい。   More specifically, in an inert gas atmosphere introduced into the vacuum chamber, the cluster ions are excited with a SiC sintered body as a target, and the excited cluster ions are deposited (preferably with a thickness of 0.5 to 10 μm) to obtain a film (SiC layer).

ここで、真空槽内に導入した不活性ガス雰囲気下での処理とするのが好ましいのは、SiCの不要な酸化を防ぐためである。なお、不活性ガスとしては、窒素ガスやArガスなどを、ターゲットに応じて適宜選択すればよい。これらのガスは、例えば、10−3Pa以下に真空引きした真空槽内に導入し、真空槽内の圧力を10−3Pa程度に保てばよい。 Here, it is preferable to perform the treatment under an inert gas atmosphere introduced into the vacuum chamber in order to prevent unnecessary oxidation of SiC. In addition, as an inert gas, nitrogen gas, Ar gas, etc. should just be selected suitably according to a target. For example, these gases may be introduced into a vacuum chamber evacuated to 10 −3 Pa or less, and the pressure in the vacuum chamber may be maintained at about 10 −3 Pa.

また、クラスターイオンの励起は、ターゲットであるSiCの焼結体にレーザ光、電子線や高速加速された各種イオンなどを照射すればよい。特に、クラスターイオンの励起にレーザ光を用いるレーザデポジション法を採用すれば、SiC層の生成温度を室温(20℃)程度にすることができるという点で好ましい。つまり、SiC層の生成温度が高温であると、熱応力によって基材1Aに寸法変化が生じる結果、皮膜1Bとの界面における密着力が低下し、耐摩耗性が低下するおそれがあるが、レーザデポジション法によれば、生成温度を室温程度にすることができ、上記のような事態が生じるおそれがない。   In addition, the excitation of cluster ions may be performed by irradiating the target SiC sintered body with a laser beam, an electron beam, or various ions accelerated at high speed. In particular, it is preferable to employ a laser deposition method that uses a laser beam for excitation of cluster ions in that the generation temperature of the SiC layer can be about room temperature (20 ° C.). In other words, if the generation temperature of the SiC layer is high, a dimensional change occurs in the substrate 1A due to thermal stress. As a result, the adhesion at the interface with the coating 1B may be reduced, and the wear resistance may be reduced. According to the deposition method, the generation temperature can be set to about room temperature, and there is no possibility that the above situation will occur.

ターゲットであるSiCの焼結体としては、粒径0.4μm以下で、且つ、純度97%以上の微粉末を、理論密度に対して95%以上で焼結させたものを用いることが好ましい。上記の焼結体を用いることにより、SiC層の各種特性を安定且つ確実に確保することができる。なお、粉末の粒径とは、粒径分布が50%以上の割合を有する粒子の直径を、焼結の理論密度とは、格子定数から計算される単一格子体積と単一格子内の含有原子質量から算出される密度を指す。   As the sintered body of SiC as a target, it is preferable to use a sintered body of fine powder having a particle size of 0.4 μm or less and a purity of 97% or more at a theoretical density of 95% or more. By using the above sintered body, various characteristics of the SiC layer can be secured stably and reliably. The particle size of the powder is the diameter of the particles having a particle size distribution of 50% or more, and the theoretical density of sintering is the single lattice volume calculated from the lattice constant and the content in the single lattice. The density calculated from the atomic mass.

ここで、粒径を0.4μm以下とするのが好ましいのは、ターゲットから励起されるクラスターイオンを微細化させることにより、成膜エネルギーを引き下げることが可能となるためである。なお、成膜エネルギーは、成膜時の核となるイオンが生成しやすいほど低くなるので、クラスターイオンの微細化が有効である。   Here, the particle size is preferably set to 0.4 μm or less because it is possible to reduce the film formation energy by miniaturizing the cluster ions excited from the target. In addition, since the film formation energy becomes so low that ions serving as nuclei during film formation are easily generated, miniaturization of cluster ions is effective.

また、純度が97%以上の微粉末を用いるのが好ましいのは、成膜後の膜質の均質性を向上させるためである。更に、理論密度に対して95%以上で焼結させたものを用いるのが好ましいのは、理論密度に対して95%未満で焼結させたものをターゲットにすれば、空隙に入り込んだ空気や前記不活性ガス雰囲気を構成する気体が、クラスターイオン励起のためにレーザ光、電子線や高速加速された各種イオンなどを照射した際に熱膨張し、ターゲットにクラックや割れを生じることがあるため、こうした事態を避けるためである。   Moreover, it is preferable to use a fine powder having a purity of 97% or more in order to improve the uniformity of the film quality after film formation. Furthermore, it is preferable to use a material sintered at 95% or more of the theoretical density. If the target sintered at less than 95% of the theoretical density is used as a target, The gas constituting the inert gas atmosphere may thermally expand when irradiated with laser light, electron beam, or various ions accelerated at high speed for cluster ion excitation, and may cause cracks or cracks in the target. This is to avoid this situation.

以上に説明したように、本実施形態に係る切削工具1によれば、少なくとも逃げ面において皮膜1Bの最外層をSiCからなるものとしたことにより、接触する被切削材Mの凝着を大きく抑制でき、しかも、基材1Aと皮膜1Bとの密着性に優れ、これによって優れた耐摩耗性を確保することが可能である。また、本実施形態に係る切削工具1の製造方法によれば、上記の特性を有する切削工具1を安定且つ確実に得ることができると共に、工業的な量産規模での製造が可能である。   As described above, according to the cutting tool 1 according to the present embodiment, the outermost layer of the coating 1B is made of SiC at least on the flank surface, thereby greatly suppressing adhesion of the workpiece M to be contacted. In addition, the adhesion between the substrate 1A and the coating 1B is excellent, and it is possible to ensure excellent wear resistance. Moreover, according to the manufacturing method of the cutting tool 1 which concerns on this embodiment, while being able to obtain the cutting tool 1 which has said characteristic stably and reliably, manufacture on an industrial mass-production scale is possible.

以下、実施例及び比較例を示すことにより、本発明の特徴をより一層明らかにする。   Hereinafter, the features of the present invention will be further clarified by showing examples and comparative examples.

<実施例1>
ISO型番SNMN120408の、幅が12.7mm、長さが12.7mmで厚さが4.76mmのチップ寸法のWC超硬合金を基材として、これにSiCからなる皮膜を物理蒸着法(具体的にはレーザーデポジション法)によって生成させた。レーザデポジション法による皮膜生成の詳細は、次に示すとおりである。
<Example 1>
A WC cemented carbide with a chip size of ISO model SNMN120408 with a width of 12.7 mm, a length of 12.7 mm and a thickness of 4.76 mm is used as a base material, and a film made of SiC is applied to this by physical vapor deposition (specifically Was generated by the laser deposition method. Details of film formation by the laser deposition method are as follows.

すなわち、SiCの原料粉として、純度が97%以上で、粒径(つまり、平均直径)が0.4μm以下である市販の粉末組成品を用意した。次いで、これらの原料粉を、有機バインダーであるポリビニルアルコールを用いて造粒し、焼結後の寸法が直径30mmで厚さが10mmのペレット状となるように、超硬合金製金型を用いて加圧成形した。   That is, as the SiC raw material powder, a commercially available powder composition having a purity of 97% or more and a particle size (that is, an average diameter) of 0.4 μm or less was prepared. Next, these raw material powders are granulated using polyvinyl alcohol as an organic binder, and a cemented carbide mold is used so that the size after sintering becomes a pellet shape with a diameter of 30 mm and a thickness of 10 mm. And molded under pressure.

なお、脱バインダー及び焼成の条件は、焼結密度がXRD(X線回折パターン)測定による単一格子の格子定数から計算される理論密度に対して95%以上となるようにした。具体的には、中性雰囲気中で1500℃×1.0時間の条件で焼成を行った。   The binder removal and firing conditions were such that the sintered density was 95% or more of the theoretical density calculated from the lattice constant of a single lattice by XRD (X-ray diffraction pattern) measurement. Specifically, firing was performed in a neutral atmosphere at 1500 ° C. × 1.0 hour.

上記のようにして得た直径30mmで厚さが10mmのペレット状の焼結体をターゲットとし、レーザデポジション法によって、基材であるWC超硬合金にSiCの皮膜を生成させた。   Using a pellet-like sintered body having a diameter of 30 mm and a thickness of 10 mm obtained as described above, a SiC film was formed on a WC cemented carbide as a substrate by a laser deposition method.

すなわち、図2に概略構成を示すように、密閉したチャンバー3の内部に備えられた基材成膜ステージ5上の回転台4に基材1Aを載置した。なお、基材1Aは、予め純水とエタノールによって洗浄した後、十分に乾燥させ、チップのすくい面側が上になるように回転台4上に20個(図2では、便宜上1個の基材1Aを図示)載置した。   That is, as shown in a schematic configuration in FIG. 2, the substrate 1 </ b> A was placed on the turntable 4 on the substrate film forming stage 5 provided in the sealed chamber 3. The substrate 1A was previously washed with pure water and ethanol, and then sufficiently dried, and 20 pieces on the turntable 4 so that the rake face side of the chip was on (in FIG. 2, one substrate for convenience) 1A is shown).

次いで、チャンバー3内の圧力が10−3Paになるまで真空引きし、その後、不活性ガス(Arガス)をチャンバー3内に導入し、チャンバー3内を10−3Paに保った。 Next, evacuation was performed until the pressure in the chamber 3 became 10 −3 Pa, and then an inert gas (Ar gas) was introduced into the chamber 3 to keep the inside of the chamber 3 at 10 −3 Pa.

次に、レーザ光源6からレーザ光7をターゲット2に照射し、クラスターイオン8を励起させ、この励起したクラスターイオン8を基材1Aに堆積させて厚さ5μmの皮膜を生成させた。なお、レーザ光源6としては、発振波長266nmのYAGレーザを用い、レーザ光7の出力を約500Wに制御した。   Next, the laser beam 7 was irradiated from the laser light source 6 to the target 2 to excite the cluster ions 8, and the excited cluster ions 8 were deposited on the substrate 1A to form a film having a thickness of 5 μm. As the laser light source 6, a YAG laser having an oscillation wavelength of 266 nm was used, and the output of the laser light 7 was controlled to about 500W.

なお、上記のレーザデポジション法による処理全体を通じて、チャンバー3内の温度は20℃とした。   Note that the temperature in the chamber 3 was set to 20 ° C. throughout the processing by the laser deposition method.

以上のようにして、SiCの皮膜を有するチップを作製した。   As described above, a chip having a SiC film was produced.

<実施例2>
物理蒸着法として、ターゲット2からクラスターイオン8を励起させるために高周波電流を用いるRF(Radio Frequency)スパッタ法を用い、チャンバー3内の温度を300℃とした以外は、実施例1と略同様の条件で、基材であるWC超硬合金にSiCの皮膜を生成させて、チップを作製した。
<Example 2>
As physical vapor deposition, RF (Radio Frequency) sputtering using high frequency current to excite cluster ions 8 from the target 2 is used, and the temperature in the chamber 3 is set to 300 ° C. Under the conditions, a SiC film was formed on the WC cemented carbide as the base material to produce a chip.

<比較例1>
ターゲット2をTiNの焼結体とした以外は、実施例2と略同様の条件で、RFスパッタ法により、基材であるWC超硬合金にTiNの皮膜を生成させて、チップを作製した。
<Comparative Example 1>
A chip was produced by forming a TiN film on a WC cemented carbide as a base material by RF sputtering under substantially the same conditions as in Example 2 except that the target 2 was a TiN sintered body.

<比較例2>
皮膜を生成させることなく、基材であるWC超硬合金そのものをチップとした。
<Comparative example 2>
The WC cemented carbide as the base material itself was used as a chip without forming a film.

<評価試験>
上記の実施例1、2及び比較例1の各皮膜について、密着性を評価した。また、実施例1、2及び比較例1の各皮膜を備えるチップ並びに比較例2のチップを用いて旋削試験を行い、摩耗量を調査した。また、実施例1、2及び比較例1のチップについて、被切削材の凝着状況を調査した。
<Evaluation test>
The adhesion of each of the coating films of Examples 1 and 2 and Comparative Example 1 was evaluated. In addition, a turning test was performed using the tip provided with each coating of Examples 1 and 2 and Comparative Example 1 and the tip of Comparative Example 2, and the amount of wear was investigated. Moreover, about the chip | tip of Examples 1, 2 and the comparative example 1, the adhesion state of a to-be-cut material was investigated.

なお、皮膜の密着性は、通常のスクラッチ方式によって調査した。すなわち、直径が2.0μmの針を皮膜の表面に触れさせて、0〜100Nの荷重掃印によるスクラッチ方式のテストを行い、密着力低下のシグナルの発生有無を調査した。   The adhesion of the film was investigated by a normal scratch method. That is, a 2.0 μm diameter needle was brought into contact with the surface of the film, and a scratch test was performed by load sweeping of 0 to 100 N to investigate the presence or absence of a signal indicating a decrease in adhesion.

旋削試験は、下記の表1に示す化学組成を有する直径100mmでビッカース硬さ(HV)が250の丸棒を供試材として、下記の条件で行った。
送り量:0.1mm/rev、
切り込み量:1.5mm、
切削速度:200m/分、
切削時間:540秒
潤滑:ドライ(無潤滑)

Figure 0004817044

そして、上記の切削試験を行った後、光学顕微鏡を用いて、チップ逃げ面の平均摩耗量を計測した。 The turning test was performed under the following conditions using a round bar having a chemical composition shown in Table 1 and having a diameter of 100 mm and a Vickers hardness (HV) of 250 as a test material.
Feed amount: 0.1 mm / rev,
Cutting depth: 1.5 mm,
Cutting speed: 200 m / min,
Cutting time: 540 seconds Lubrication: Dry (no lubrication)
Figure 0004817044

And after performing said cutting test, the average abrasion loss of the chip flank was measured using the optical microscope.

<評価結果>
表2及び図3に上記の各試験結果を示す。

Figure 0004817044
<Evaluation results>
Table 2 and FIG. 3 show the results of the above tests.
Figure 0004817044

(1)密着性
表2に示すように、実施例1及び2に係るSiCの皮膜を有するチップの場合、上限である100N荷重時においても密着力低下のシグナルは検出されず、皮膜は良好な密着性を有していた。これに対し、比較例1に係るTiNの皮膜を有するチップの場合、密着力低下のシグナルは80Nで観察され、皮膜の密着性に劣っていた。以上の結果より、本発明に係る切削工具は、密着性に優れることが明らかである。
(1) Adhesiveness As shown in Table 2, in the case of the chip having the SiC film according to Examples 1 and 2, even when the upper limit is 100 N load, no signal of lowering the adhesive force is detected, and the film is good. It had adhesion. On the other hand, in the case of the chip having the TiN film according to Comparative Example 1, a signal for decreasing the adhesion was observed at 80 N, and the film adhesion was inferior. From the above results, it is clear that the cutting tool according to the present invention is excellent in adhesion.

(2)摩耗量
表2又は図3に示すように、実施例1及び2に係るSiCの皮膜を有するチップの場合、摩耗量(切削開始から180秒経過後の摩耗量)は、それぞれ7μm、10μmと極めて小さいのに対し、比較例1に係るTiNの皮膜を有するチップの場合には、15μmと極めて大きく、下地(基材)が完全に露出していた。以上の結果より、本発明に係る切削工具は、耐摩耗性に優れることが明らかである。
(2) Amount of wear As shown in Table 2 or FIG. 3, in the case of the chip having the SiC film according to Examples 1 and 2, the amount of wear (the amount of wear after 180 seconds from the start of cutting) is 7 μm, Whereas the chip having a TiN film according to Comparative Example 1 was extremely small as 10 μm, it was as large as 15 μm, and the ground (base material) was completely exposed. From the above results, it is clear that the cutting tool according to the present invention is excellent in wear resistance.

(3)凝着
比較例2に係るTiNの皮膜を有するチップの場合には、被切削材の凝着が認められた。そこで、SEM(走査型電子顕微鏡)を用いてチップ表面を詳細に観察したところ、チップ表面への凝着だけではなくTiN皮膜が剥離していることも判明した。一方、実施例1、2に係るSiNの皮膜を有するチップ表面には凝着は全く認められなかった。また、皮膜の剥離も認められなかった。
(3) Adhesion In the case of the chip having the TiN film according to Comparative Example 2, adhesion of the work material was observed. Then, when the chip surface was observed in detail using SEM (scanning electron microscope), it became clear that not only the adhesion to the chip surface but also the TiN film was peeled off. On the other hand, no adhesion was observed on the chip surface having the SiN film according to Examples 1 and 2. Also, no peeling of the film was observed.

図1は、本発明の一実施形態に係る切削工具の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a cutting tool according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る切削工具の製造装置(皮膜の生成装置)の概略構成を示す図である。FIG. 2 is a diagram showing a schematic configuration of a cutting tool manufacturing apparatus (film generating apparatus) according to an embodiment of the present invention. 図3は、本発明の実施例及び比較例に係る切削工具の摩耗量評価結果の一例を示すグラフである。FIG. 3 is a graph showing an example of a wear amount evaluation result of cutting tools according to examples and comparative examples of the present invention.

符号の説明Explanation of symbols

1・・・切削工具
1A・・・基材
1B・・・皮膜
2・・・ターゲット
3・・・チャンバー
4・・・回転台
5・・・基材成膜ステージ
6・・・レーザ光源
7・・・レーザ光
8・・・クラスターイオン
M・・・被切削材
DESCRIPTION OF SYMBOLS 1 ... Cutting tool 1A ... Base material 1B ... Film | membrane 2 ... Target 3 ... Chamber 4 ... Turntable 5 ... Base material film-forming stage 6 ... Laser light source 7. ..Laser beam 8 ... Cluster ion M ... Work material

Claims (1)

SiCを成膜源とする発振波長266nmのYAGレーザによるレーザデポジション法を用いて、室温で、超硬合金からなる基材の表面に最外層がSiCからなる皮膜を形成することを特徴とする切削工具の製造方法。   Using a laser deposition method with a YAG laser having an oscillation wavelength of 266 nm using SiC as a film formation source, a coating film made of SiC is formed on the surface of a substrate made of cemented carbide at room temperature. Cutting tool manufacturing method.
JP2005282324A 2005-09-28 2005-09-28 Cutting tool manufacturing method Expired - Fee Related JP4817044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005282324A JP4817044B2 (en) 2005-09-28 2005-09-28 Cutting tool manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005282324A JP4817044B2 (en) 2005-09-28 2005-09-28 Cutting tool manufacturing method

Publications (2)

Publication Number Publication Date
JP2007090483A JP2007090483A (en) 2007-04-12
JP4817044B2 true JP4817044B2 (en) 2011-11-16

Family

ID=37976745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005282324A Expired - Fee Related JP4817044B2 (en) 2005-09-28 2005-09-28 Cutting tool manufacturing method

Country Status (1)

Country Link
JP (1) JP4817044B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4388582B2 (en) 2008-06-09 2009-12-24 株式会社神戸製鋼所 Hard coating layer and method for forming the same
EP2792765B1 (en) 2011-12-15 2018-09-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Multilayer hard film and method for producing same
CN114850517B (en) * 2022-02-23 2024-06-18 深圳富联精匠科技有限公司 Polycrystalline diamond cutter and processing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170474A (en) * 1986-01-23 1987-07-27 Agency Of Ind Science & Technol Laser vapor deposition device
JPH04343603A (en) * 1991-05-20 1992-11-30 Hitachi Metals Ltd Covered tool
JP3986243B2 (en) * 2000-09-28 2007-10-03 独立行政法人科学技術振興機構 Hard thin film fabrication method using ion beam

Also Published As

Publication number Publication date
JP2007090483A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
EP2636764B1 (en) Nanolaminated coated cutting tool
CN101960051B (en) Thermally stabilized (Ti, Si)n layer for cutting tool insert
JP5190971B2 (en) Coating, cutting tool, and manufacturing method of coating
KR101079902B1 (en) Surface-coated cutting tool
JP2007229821A (en) Surface-coated cutting tool
JPH08104583A (en) Composite high hardness material for tool
JP2004100004A (en) Coated cemented carbide and production method therefor
KR101082655B1 (en) Surface-coated cutting tool
JP2000129445A (en) Wear resistant coating film, its production and wear resistant member
JP2008290163A (en) Coating film, cutting tool and coating film making method
JP4817044B2 (en) Cutting tool manufacturing method
JP5250706B2 (en) Hard film with excellent wear resistance
JP4616213B2 (en) Hard coating for cutting tools
JP3719708B2 (en) Amorphous carbon coated tool and method for manufacturing the same
JP4475397B2 (en) Cutting tool and manufacturing method thereof
JP4849212B2 (en) Surface-coated cermet cutting tool with excellent wear resistance with a hard lubricating layer in high-speed cutting
JP4575009B2 (en) Coated cutting tool
JP5321360B2 (en) Surface coated cutting tool
JP4475399B2 (en) Cutting tool and manufacturing method thereof
JP5402155B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP4845490B2 (en) Surface coated cutting tool
JP7170965B2 (en) Cemented Carbide and Coated Cemented Carbide
JP5321356B2 (en) Surface coated cutting tool
JP2005262323A (en) Surface-coated cermet cutting tool with hard coating layer having excellent chipping resistance
JP3620480B2 (en) Surface-coated cemented carbide end mill or drill with excellent wear-resistant coating layer for excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4817044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees