JP4815913B2 - Method for preventing shear cracking of thick steel plates - Google Patents

Method for preventing shear cracking of thick steel plates Download PDF

Info

Publication number
JP4815913B2
JP4815913B2 JP2005208014A JP2005208014A JP4815913B2 JP 4815913 B2 JP4815913 B2 JP 4815913B2 JP 2005208014 A JP2005208014 A JP 2005208014A JP 2005208014 A JP2005208014 A JP 2005208014A JP 4815913 B2 JP4815913 B2 JP 4815913B2
Authority
JP
Japan
Prior art keywords
shearing
hydrogen
steel plate
cracking
thick steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005208014A
Other languages
Japanese (ja)
Other versions
JP2007021663A (en
Inventor
伸行 紫垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005208014A priority Critical patent/JP4815913B2/en
Publication of JP2007021663A publication Critical patent/JP2007021663A/en
Application granted granted Critical
Publication of JP4815913B2 publication Critical patent/JP4815913B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Shearing Machines (AREA)

Description

本発明は鋼中の残留水素に起因する厚鋼板の剪断割れ防止方法に関し、特に搬送ライン上に設けた冷却装置で、冷却を行う高強度ラインパイプ用鋼板に好適なものに関する。   The present invention relates to a method for preventing shear cracking of a thick steel plate caused by residual hydrogen in steel, and more particularly to a cooling device provided on a transfer line and suitable for a steel plate for high-strength line pipe that performs cooling.

ラインパイプ用厚鋼板は厚板分野における収益の一翼を担う重要な製品で、大量生産を特徴とし、年々高強度化している。量産にあたっては、将来的にX70〜X100グレードの安定生産を目的とした技術の確立が求められている。   Thick steel plates for line pipes are an important product that plays a part in profits in the field of thick plates. They are characterized by mass production and are becoming stronger every year. In mass production, establishment of technology aimed at stable production of X70 to X100 grades in the future is required.

高強度ラインパイプ材の量産プロセスにおける課題の一つとして、オンライン剪断時に生じる断面割れが挙げられる。断面割れは高強度材ほど発生し易く、剪断後の断面に板厚1/2部(中心部)の偏析部近傍を起点とした水平割れ及び斜め割れが生じる。特に剪断時に2〜3mm程度の深い亀裂が生じた場合、造管時に割れが拡大して重大な欠陥となるため、その抑制に十分な配慮が必要である。   One of the problems in the mass production process of high-strength line pipe materials is cross-sectional cracks that occur during online shearing. Cross-sectional cracks are more likely to occur with higher strength materials, and horizontal cracks and oblique cracks starting from the vicinity of the segregation part with a plate thickness of ½ part (center part) occur in the cross-section after shearing. In particular, when a deep crack of about 2 to 3 mm is generated at the time of shearing, the crack is enlarged at the time of pipe making and becomes a serious defect, and therefore sufficient consideration is required for its suppression.

剪断前における鋼板徐冷プロセスが、この剪断割れを防止する方法として有効である事は従来から知られ、剪断割れは鋼板中の水素に起因する水素脆化割れによるものであると想定されている。   It is conventionally known that the steel sheet slow cooling process before shearing is effective as a method for preventing this shear cracking, and it is assumed that the shear cracking is caused by hydrogen embrittlement cracking caused by hydrogen in the steel sheet. .

特に近年、厚板はHCRやTMCPを用いた製造方法が主流で、鋼中水素が十分に除去されないまま冷却され、水素過飽和の状態でシャーラインに搬送される傾向にあるため、剪断後の水素割れが発生し易い環境となっている。   Especially in recent years, the manufacturing method using HCR and TMCP has been the mainstream in recent years, and hydrogen in steel tends to be cooled without being sufficiently removed and transported to a shear line in a hydrogen supersaturated state. The environment is prone to cracking.

鋼板徐冷により水素割れを抑制する技術として、例えば特許文献1には、特に鋼板端部において効率的な徐冷を行うための鋼板積重ね方法が開示され、特許文献2には、徐冷ボックス内に鋼板を積置きした後、減圧する事により徐冷効率向上を図る方法が開示されている。   As a technique for suppressing hydrogen cracking by slow cooling of a steel plate, for example, Patent Document 1 discloses a steel plate stacking method for performing efficient slow cooling, particularly at the end of a steel plate, and Patent Document 2 discloses the inside of a slow cooling box. A method of improving the cooling efficiency by reducing the pressure after placing the steel plate on is disclosed.

また、特許文献3には、鋼板の降伏応力(YS)予測値を元に割れ臨界水素濃度Cthを求め、スラブ徐冷及び成品徐冷による残留水素率から最適な徐冷時間を算定する方法が開示されている。 Patent Document 3 discloses a method of calculating the optimum slow cooling time from the residual hydrogen rate by slab slow cooling and product slow cooling by determining the crack critical hydrogen concentration C th based on the yield stress (YS) prediction value of the steel sheet. Is disclosed.

上述した鋼板を徐冷して水素を除去する方法は水素割れを抑制する方法として、実際の鋼板製造プロセスにおいても実施されており、剪断後の水素割れ抑制にも有効と考えられている。
特開平10−202312号公報 特開2001−303127号公報 特開平10−251746号公報
The above-described method of gradually cooling a steel sheet to remove hydrogen is also implemented in an actual steel sheet manufacturing process as a method for suppressing hydrogen cracking, and is considered effective for suppressing hydrogen cracking after shearing.
Japanese Patent Laid-Open No. 10-203212 JP 2001-303127 A JP-A-10-251746

しかしながら、特許文献1や特許文献2に記載されている鋼板徐冷を行う方法は、冷却床上の鋼板をクレーンにより持ち上げ、徐冷場所に山積みするオフライン処理が必要で、長い処理時間を要する上に、表面疵発生等も懸念される。更に、一般に積重ね徐冷は、板厚,冷却終了温度によって徐冷温度,徐冷時間が変化するため、十分な徐冷効果が常に得られるわけではない。   However, the method of performing slow cooling of steel sheets described in Patent Document 1 and Patent Document 2 requires an off-line process in which the steel sheets on the cooling floor are lifted by a crane and stacked in a slow cooling place, and a long processing time is required. There are also concerns about the occurrence of surface flaws. Furthermore, in general, the stacked slow cooling does not always provide a sufficient slow cooling effect because the slow cooling temperature and the slow cooling time vary depending on the plate thickness and the cooling end temperature.

また、特許文献3記載の方法は徐冷による影響のみを考慮したものであり、鋼板の加速冷却による影響や、ある特定の温度、例えば剪断時の温度(100〜200℃)における鋼板水素量を予測する方法を明記したものではない。   In addition, the method described in Patent Document 3 considers only the effect of slow cooling, and the effect of accelerated cooling of the steel sheet and the amount of hydrogen in the steel sheet at a specific temperature, for example, the temperature during shearing (100 to 200 ° C.). It does not specify how to predict.

例えば、加熱炉挿入直前のスラブ残留水素値(ppm)/鋳込み直後のスラブ残留水素値(ppm)で定義されるα,工場より出荷する直前の製品残留水素値(ppm)/加熱炉挿入直前のスラブ残留水素値(ppm)で定義されるβで規定される残留水素率の値も、実際の水素の拡散現象を的確に評価した形で与えられたものではなく、剪断後の水素割れ発生有無を評価する方法として用いる事は出来ない。   For example, α defined by the slab residual hydrogen value (ppm) immediately before insertion of the heating furnace / slab residual hydrogen value (ppm) immediately after casting, the product residual hydrogen value (ppm) immediately before shipment from the factory / immediately before insertion of the heating furnace The residual hydrogen rate specified by β defined by the slab residual hydrogen value (ppm) is not given in the form of an accurate evaluation of the actual hydrogen diffusion phenomenon. It cannot be used as a method of evaluating

このように、剪断後の水素割れ発生を防止するため、鋼板を徐冷して水素を除去する方法は、実操業においてはその効果が不安定で、より高強度化が予想されるラインパイプ用鋼に適用できる技術とは言い難く、生産性も大きく低下させる。   Thus, in order to prevent the occurrence of hydrogen cracking after shearing, the method of slowly cooling the steel sheet to remove hydrogen is unstable for the actual operation, and for line pipes where higher strength is expected. It is difficult to say that this technology can be applied to steel, and the productivity is greatly reduced.

そこで、本発明は、X70〜X100グレード高強度ラインパイプ用鋼の鋼中水素に起因する剪断割れを、生産性を低下させることなく防止する方法を提供することを目的とする。   Then, an object of this invention is to provide the method of preventing the shear crack resulting from the hydrogen in steel of the steel for X70-X100 grade high strength line pipe, without reducing productivity.

本発明の課題は以下の手段により達成される。
1.熱間圧延後に水冷した厚鋼板を剪断機により剪断後、更に剪断後の端部を切断して剪
断割れを防止する方法において、
剪断時の前記厚鋼板中水素濃度Cを求め、C2ppm以上の場合は前記剪断後の端部から、前記剪断機の上刃と下刃のクリアランス量以上を切断除去する事を特徴とする厚鋼板の剪断割れ防止方法。
The object of the present invention is achieved by the following means.
1. In a method of preventing shear cracking by shearing the thick steel plate that has been water-cooled after hot rolling with a shearing machine and further cutting the end after shearing,
The hydrogen concentration C H in the thick steel plate at the time of shearing is obtained, and when the C H is 2 ppm or more, the amount of clearance between the upper blade and the lower blade of the shearing machine is cut and removed from the end after the shearing. A method for preventing shear cracking of thick steel plates.

2.前記剪断時の厚鋼板中水素濃度Cを、前記厚鋼板のスラブ製造時の水素レードル分析値、或いは前記水素レードル分析値から予測される圧延終了時の厚鋼板水素濃度CH0を元に、計算により求めることを特徴とする1記載の厚鋼板の剪断割れ防止方法。 2. Based on the hydrogen concentration C H0 at the end of rolling predicted from the hydrogen ladle analysis value at the time of manufacturing the slab of the thick steel plate, or the hydrogen ladle analysis value, the hydrogen concentration C H in the thick steel plate at the time of shearing, 2. The method for preventing shear cracking of a thick steel plate according to 1, wherein the method is obtained by calculation.

本発明によれば、剪断後、水素割れが発生し易い鋼板と発生し難い鋼板とが剪断前に予め分別され、水素割れが発生し易い鋼板についてのみ剪断後、切断を行うため、剪断ライン負荷を抑えつつ高強度材のオンライン剪断を行う事が可能となる。その結果、ガス切断のような低能率な切断方法を行う必要が無くなり、高強度材の大量受注にも柔軟に対応出来、産業上極めて有用である。   According to the present invention, after shearing, a steel plate that is prone to hydrogen cracking and a steel plate that is unlikely to occur are separated in advance before shearing, and only the steel plate that is prone to hydrogen cracking is cut after shearing. It is possible to perform on-line shearing of high-strength materials while suppressing the above. As a result, it is not necessary to perform a low-efficiency cutting method such as gas cutting, and it is possible to flexibly handle a large amount of orders for high-strength materials, which is extremely useful in the industry.

本発明は、剪断時における鋼中水素量を予測し(第1工程)、水素割れの発生が懸念される場合は、引張応力の原因となる剪断面の残留応力を低減させるため、剪断された端部の一部を切断除去すること(第2工程)を特徴とする。
(第1工程)
スラブ鋳造前の水素のレードル分析値よりスラブ段階での水素濃度を求める事は可能で、スラブ寸法、スラブ加熱温度、圧延パススケジュール等が明確な場合は、圧延終了時点における厚鋼板中の水素濃度を前記レードル分析値に関連付けて予め求めておく事が可能であるから、
スラブ段階または圧延終了時点での鋼中水素濃度(以下、初期水素濃度:CH0)と、圧延終了後冷却して剪断する時点における厚鋼板中の水素濃度(以下、剪断時の水素濃度:C)の関係を拡散モデルを用いた計算や、小サンプルによる実験的手法により予め求めておく。
The present invention predicts the amount of hydrogen in steel during shearing (first step), and when there is a concern about the occurrence of hydrogen cracking, it is sheared in order to reduce residual stress on the shear plane that causes tensile stress. It is characterized by cutting and removing a part of the end (second step).
(First step)
It is possible to obtain the hydrogen concentration at the slab stage from the hydrogen ladle analysis value before slab casting, and when the slab size, slab heating temperature, rolling pass schedule, etc. are clear, the hydrogen concentration in the thick steel plate at the end of rolling Can be obtained in advance in association with the ladle analysis value.
Hydrogen concentration in steel at the slab stage or at the end of rolling (hereinafter referred to as initial hydrogen concentration: C H0 ) and hydrogen concentration in the thick steel plate at the time of cooling and shearing after completion of rolling (hereinafter referred to as hydrogen concentration at shearing: C The relationship of ( H ) is obtained in advance by calculation using a diffusion model or by an experimental method using a small sample.

例えば、初期水素濃度をCH0とし、以降の圧延,水冷,空冷における温度履歴実績等を用いて、剪断時の厚鋼板中の水素濃度Cを拡散モデル計算にて求める。ここで剪断時とは、剪断開始直前の時点を示しており、圧延終了時点を時刻0とすると、圧延終了から剪断開始までの時間の実績値或いは予測値から与えられる。 For example, the initial hydrogen concentration is C H0, and the hydrogen concentration C H in the thick steel plate at the time of shearing is obtained by diffusion model calculation using the temperature history record in subsequent rolling, water cooling, and air cooling. Here, the time of shearing indicates a time point immediately before the start of shearing, and when the time point of rolling end is time 0, it is given from the actual value or predicted value of the time from the end of rolling to the start of shearing.

次に、鋼板材質と剪断割れ発生限界水素量とは相関があり、一般に高強度材ほど水素割れが起こり易い等の傾向があるため、所望する材質に応じた剪断時水素濃度の許容値Climitを予め求めておき、上記計算により求めた剪断時の水素濃度Cと比較し、剪断後の処理の要否を判定する。 Next, there is a correlation between the steel sheet material and the shear cracking limit hydrogen amount, and generally there is a tendency that hydrogen cracking is more likely to occur with higher strength materials, so the allowable value C limit of shearing hydrogen concentration according to the desired material. Is determined in advance, and compared with the hydrogen concentration C H during shearing determined by the above calculation, the necessity of processing after shearing is determined.

≧Climitの場合、剪断後に水素割れの発生が懸念されるとして剪断後、水素割れ防止のための処理を実施し、C<Climitの場合、剪断後に水素割れが発生する可能性が低いとして、水素割れ防止のための処理は実施しない。 When C H ≧ C limit , there is a concern that hydrogen cracking may occur after shearing. After shearing, treatment for preventing hydrogen cracking is performed. When C H <C limit , hydrogen cracking may occur after shearing. However, the treatment for preventing hydrogen cracking is not performed.

以下、具体的に説明する。水素の拡散は、次の数1で示す、1次元の非定常拡散方程式により表わす事にする。   This will be specifically described below. Hydrogen diffusion is expressed by a one-dimensional unsteady diffusion equation expressed by the following equation (1).

ここで、〔x:板厚方向(mm)(板厚2l,x=0・・・板厚中央,|x|= l・・・表裏面),C (x,t):水素濃度(mass ppm),D:拡散係数(m/sec),t:時間(sec)〕、時刻t=0における初期条件は次の数2、境界条件は次の数3とすると、上記数1の解として、次の数4が得られる。数4において、τは数5で与えられる。 Here, [x: plate thickness direction (mm) (plate thickness 2l, x = 0... Plate thickness center, | x | = l ... front and back surfaces), C (x, t): hydrogen concentration (mass ppm), D: diffusion coefficient (m 2 / sec), t: time (sec)], the initial condition at time t = 0 is the following equation 2, and the boundary condition is the following equation 3, the solution of the above equation 1. The following equation 4 is obtained. In Equation 4, τ is given by Equation 5.

水素拡散係数Dについては各種文献値が報告されているが、ここでは次の数6により得られるものとする。   Although various literature values have been reported for the hydrogen diffusion coefficient D, it is assumed here that the following equation 6 is obtained.

次に初期水素濃度CH0を、鋼板平均温度Tが730℃の時点(時間t=0とする)での次の数7による水素平均濃度とする。 Next, the initial hydrogen concentration C H0 is defined as the hydrogen average concentration according to the following equation 7 when the steel plate average temperature T is 730 ° C. (time t = 0).

H0が水素レードル値との相関で予め与えられているとし、例えば、CH0=3(mass ppm)とする。 And C H0 is given in advance in correlation with the hydrogen ladle value, for example, a C H0 = 3 (mass ppm) .

数5の計算を行う際、数6の温度Tが時間tの関数として与えられている必要がある。高強度材の温度パターンの一例として、制御冷却時の強冷却前提で、
「温度」 冷却開始温度:730℃ 冷却停止温度:200℃ 剪断温度:100℃
「冷速」 730℃〜200℃:20℃/sec 200℃〜100℃:0.2℃/sec(空冷)として与えると、温度Tと時間tの関係は、0<t≦26.5の場合は、次の数8、26.5<t≦526.5の場合は、次の数9で表される。得られた関係を数6に代入し、数5及び数4の計算を行う。
When performing the calculation of Equation 5, the temperature T of Equation 6 needs to be given as a function of time t. As an example of the temperature pattern of high-strength material, on the premise of strong cooling during controlled cooling,
“Temperature” Cooling start temperature: 730 ° C. Cooling stop temperature: 200 ° C. Shear temperature: 100 ° C.
“Cooling speed” When given as 730 ° C. to 200 ° C .: 20 ° C./sec 200 ° C. to 100 ° C .: 0.2 ° C./sec (air cooling), the relationship between temperature T and time t is 0 <t ≦ 26.5 In the case of the following equation 8, 26.5 <t ≦ 526.5, the following equation 9 is applied. Substituting the obtained relationship into Equation 6 and calculating Equations 5 and 4.

図5に、板厚25mmの厚鋼板(X100グレード材)について上述の方法で求めた初期水素濃度分布(t=0)と、剪断時水素濃度分布(t=526.5)を示す。   FIG. 5 shows the initial hydrogen concentration distribution (t = 0) and the sheared hydrogen concentration distribution (t = 526.5) obtained by the above-described method for a thick steel plate (X100 grade material) having a plate thickness of 25 mm.

図より、圧延終了時点(t=0)から剪断時(t=526.5)までの水素量の減少は小さくなっている。これは、高強度鋼板の場合、冷却停止温度が低く、十分な水素拡散時間が確保出来ない事などに起因する。   From the figure, the decrease in the amount of hydrogen from the end of rolling (t = 0) to the time of shearing (t = 526.5) is small. This is because, in the case of a high-strength steel sheet, the cooling stop temperature is low and a sufficient hydrogen diffusion time cannot be secured.

剪断時水素濃度の許容値Climitは材質によって異なるが、例えば、Climit=2ppmとした場合、図5において剪断時水素濃度分布(t=526.5)から板厚平均の水素濃度を計算で求めるとC=2.8ppmで、C≧Climitであるため、剪断後、水素割れを防止するための処理を実施する。 The allowable value C limit of the hydrogen concentration during shearing varies depending on the material. For example, when C limit = 2 ppm, the hydrogen concentration at the plate thickness can be calculated from the distribution of hydrogen concentration during shearing (t = 526.5) in FIG. Since it is determined that C H = 2.8 ppm and C H ≧ C limit , a treatment for preventing hydrogen cracking is performed after shearing.

以上の説明では、水素濃度として板厚平均の水素濃度を用いたが、C及びClimitとして、鋼板中で最も水素濃度が高くなる板厚中心部の水素濃度C(0,t)を用いても良い。 In the above description, with hydrogen concentration in the thickness average as the hydrogen concentration, the C H and C limit, using the hydrogen concentration in the thickness center portion comprising the highest hydrogen concentration in the steel plate C (0, t) May be.

(第2工程)
≧Climitの場合、剪断後、水素割れを防止するための処理として、剪断機の切断により生じた端部から、前記剪断機の上刃と下刃のクリアランス量以上を切断除去する。
(Second step)
In the case of C H ≧ C limit , as a process for preventing hydrogen cracking after shearing, a clearance greater than or equal to the clearance between the upper and lower blades of the shearing machine is cut and removed from the end portion caused by the cutting of the shearing machine.

すなわち、厚鋼板を所望する寸法に剪断機により切断後、更に切断後の端部を、少なくとも剪断時の歪が残留する領域、剪断時の上刃と下刃のクリアランスd(通常板厚の10%前後)内側となる領域を除去するように、新たに切断する。   That is, after cutting the thick steel plate to a desired size with a shearing machine, the end portion after the cutting is at least a region where strain during shearing remains, the clearance d between the upper blade and lower blade during shearing (normally 10 mm of the plate thickness). A new cut is made so as to remove the inner region.

ここで対象とする厚鋼板は、その強度や設備仕様にも依存するが、一般的な板厚 6mm〜40mm程度のものである。   The target thick steel plate here has a general thickness of about 6 mm to 40 mm, although it depends on its strength and equipment specifications.

FEM解析による剪断面歪分布より、剪断時に強加工が付与される領域に残存する歪が水素割れを助長する残留応力発生の原因となっているため、強加工が付与される領域である剪断時の上刃と下刃のクリアランスd(通常板厚の10%前後)に相当する領域を、剪断後の端部から新たに切断除去し、水素に起因する割れの開口を助長する残留応力を低減する。
尚、第2工程の実施は剪断機による切断でもエッジミラー等による切削でも可能であるので、切断には切削も含むものとする。
From the shear surface strain distribution by FEM analysis, the strain remaining in the region to which strong processing is applied during shearing causes the generation of residual stress that promotes hydrogen cracking. The area corresponding to the clearance d between the upper and lower blades (usually around 10% of the plate thickness) is newly cut and removed from the end after shearing to reduce residual stress that promotes the opening of cracks caused by hydrogen To do.
Since the second step can be performed by cutting with a shearing machine or cutting with an edge mirror or the like, the cutting includes cutting.

図6は、実際の高強度ラインパイプ材から採取した試験片を用いてラボ剪断実験を行った際の、剪断した後及び剪断後の端部を切断した後の断面を側方より撮影したものである(撮影位置を図7に示す。写真中の横縞模様は剪断前の鋸切断跡)。   FIG. 6 is a photograph of a cross section taken from the side after shearing and cutting the end after shearing when a laboratory shearing experiment was performed using a test piece taken from an actual high-strength line pipe material. (The photographing position is shown in FIG. 7. The horizontal stripe pattern in the photograph is a saw cutting mark before shearing).

剪断試験は、材質X100の13.4mm(板厚)×100mm(幅)×320mm(長)の矩形状の試験片を実験用剪断機(剪断時の上刃と下刃のクリアランスd=1.5mm)を用いて行い、剪断後に更に、前記実験用剪断機を用いて、剪断面(切断面)を含む端部を前記クリアランスと同じ量:1.5mmだけ切断除去した。   In the shear test, a rectangular test piece of 13.4 mm (plate thickness) × 100 mm (width) × 320 mm (long) of material X100 was used as a laboratory shear (clearance d = 1. After the shearing, the end portion including the shearing surface (cut surface) was cut and removed by the same amount as the clearance: 1.5 mm after the shearing.

図6(a)は剪断まま、(b)は剪断後に剪断時の歪残留部分を切断除去したものを示しており、剪断面近傍の鋸切断跡の歪みから断面の歪状態が目視確認出来る。   FIG. 6A shows the state of shearing, and FIG. 6B shows the state in which the strain remaining portion at the time of shearing is cut and removed after shearing, and the strain state of the cross section can be visually confirmed from the distortion of the saw cutting trace in the vicinity of the shear surface.

図6より、剪断ままの試験片では断面近傍に歪が残存しているのに対し(図6(a))、剪断後、前記クリアランスと同じ量:1.5mmだけ切断した試験片は元の歪部分が完全に除去されている(図6(b))。   From FIG. 6, while the strain remains in the vicinity of the cross section of the test piece as it is sheared (FIG. 6A), after the shear, the test piece cut by the same amount as the clearance: 1.5 mm is the original. The distortion portion is completely removed (FIG. 6B).

図3は、剪断ままの試験片(図では通常刃と表記)と、剪断後、剪断時の上刃と下刃のクリアランスと同じ量1.5mmだけ端部から切断除去した試験片について、断面中央位置のX線残留応力測定を行い、残留応力測定値を等方引張応力と相当応力に分けて整理した結果を示している。   FIG. 3 is a cross-sectional view of a test piece that has been sheared (indicated as a normal blade in the figure) and a test piece that has been sheared and removed from the end by 1.5 mm, which is the same amount as the clearance between the upper and lower blades during shearing. The X-ray residual stress measurement at the center position is performed, and the results of arranging the residual stress measurement values into isotropic tensile stress and equivalent stress are shown.

剪断時の上刃と下刃のクリアランスと同じ量を切断除去した試験片は、相当応力σeq、等方引張応力σともに剪断ままの試験片より小さくなっている。特に等方引張応力σの大幅な低減は割れ発生抑制に有効に作用すると考えられる。 The test piece obtained by cutting and removing the same amount as the clearance between the upper blade and the lower blade at the time of shearing is smaller in both the equivalent stress σ eq and the isotropic tensile stress σ s than the unsheared test piece. In particular, it is considered that a significant reduction in the isotropic tensile stress σ s effectively acts to suppress the occurrence of cracks.

図4に剪断ままの場合と、剪断後、剪断時の上刃と下刃のクリアランス量を切断除去した場合の水素割れ試験結果を示す。   FIG. 4 shows the results of the hydrogen cracking test in the case of the shearing state and after the shearing, when the clearance amount between the upper blade and the lower blade during shearing is cut and removed.

試験は上述した残留応力測定試験に準じた試験片を用いて行った。最初に、剪断した断面部及び剪断後、更に剪断後の端部を切断した断面部を残した状態で短冊状サンプル(13.4mm×100mm×30mm)を切り出し、得られた短冊状サンプルの断面部以外を表面研磨して水素割れ試験片として、0.2N−HSO中で陰極水素チャージ(−1.0V〔VSSCE〕)を行い、チャージ後に水素割れの有無を観察した。チャージされた水素量の測定はグリセリン置換法を用いて行った。 The test was performed using a test piece according to the above-described residual stress measurement test. First, a strip-shaped sample (13.4 mm × 100 mm × 30 mm) was cut out with the sheared cross-sectional portion and the cross-sectional portion cut after the shearing and the end portion after shearing remaining, and the cross-section of the obtained strip-shaped sample other than parts as hydrogen cracking test specimens with surface polishing, performed cathode hydrogen charging (-1.0 V [VS SCE]) in 0.2N-H 2 SO 4, was observed the presence of hydrogen cracking after charging. The amount of charged hydrogen was measured using a glycerol substitution method.

図より、剪断ままの場合、2h程度の短いチャージ時間で割れの発生が観察され、微小な水素量でも水素割れが起こり易く、一方、剪断後,剪断時の上刃と下刃のクリアランス量を切断除去した場合は、長時間(72h)のチャージ後にも割れが発生せず、剪断後の水素割れ発生抑制効果が確認された。   From the figure, cracking is observed in a short charge time of about 2 hours when shearing, and hydrogen cracking is likely to occur even with a small amount of hydrogen. On the other hand, after shearing, the clearance between the upper and lower blades during shearing is reduced. In the case of cutting and removing, cracks did not occur even after long-time (72 h) charging, and the effect of suppressing hydrogen cracking after shearing was confirmed.

第2工程の具体的実施例を図1に示す。図1は実機における剪断機を想定した場合の剪断面切断方法を示し、図において1は鋼板、2は上剪断刃、3は下剪断刃、4は剪断機の一部を構成する鋼板押さえ台を示す。   A specific example of the second step is shown in FIG. FIG. 1 shows a shear surface cutting method assuming a shearing machine in an actual machine. In the figure, 1 is a steel plate, 2 is an upper shearing blade, 3 is a lower shearing blade, and 4 is a steel plate presser base constituting a part of the shearing machine. Indicates.

鋼板1を上剪断刃2及び下剪断刃3により剪断時の上刃と下刃のクリアランスをdとして1ストローク目で剪断を行った後(図1(a))、切断量dが、剪断時の上刃と下刃のクリアランスd以上となるように厚鋼板位置を修正し(図1(b))、2ストローク目として上剪断刃2で切断を行う(図1(c))。また、2ストローク目の剪断における剪断時の上刃と下刃のクリアランスd´は、可能な限り小さくなるように切断刃の位置調整を行う。 After sheared first stroke the steel plate 1 a clearance of the upper and lower blades at the time of shearing the upper shear blade 2 and the lower shearing blades 3 as d 1 (FIG. 1 (a)), the cutting amount d 2, The position of the thick steel plate is corrected so that the clearance d1 between the upper blade and the lower blade during shearing is greater than or equal to 1 (FIG. 1 (b)), and cutting is performed with the upper shear blade 2 as the second stroke (FIG. 1 (c)). . Further, the position of the cutting blade is adjusted so that the clearance d 1 ′ between the upper blade and the lower blade at the time of shearing in the second stroke is as small as possible.

尚、第2工程の実施においては、厚鋼板を所望する寸法に切断する剪断機と、更に切断後の端部を切断する剪断機の2台としても良い。   In addition, in implementation of a 2nd process, it is good also as two units | sets, the shearing machine which cut | disconnects a thick steel plate to the desired dimension, and the shearing machine which cut | disconnects the edge part after a cutting | disconnection.

図2は他の実施例を示し、図において21は切欠部、22は1段目の刃、23は2段目の刃を示す(その他は図1と同じ記号とする)。剪断機が、剪断方向に2段で、その間に切欠部21を有する上刃(段付き剪断刃)2を有することを特徴とし、1段目の刃22で剪断を行った後、2段目の刃23で更に、端部を剪断時の上刃2と下刃3のクリアランスdと等しい量だけ切断する。 FIG. 2 shows another embodiment, in which 21 denotes a notch, 22 denotes a first-stage blade, and 23 denotes a second-stage blade (the other symbols are the same as those in FIG. 1). The shearing machine has an upper blade (stepped shearing blade) 2 having two stages in the shearing direction and having a notch portion 21 therebetween, and after shearing with the first stage blade 22, the second stage Further, the edge portion is cut by an amount equal to the clearance d 1 between the upper blade 2 and the lower blade 3 during shearing.

上述した構成の剪断機を用いると、最初の剪断後、厚鋼板の位置を調整したり(剪断機が一台の場合)、厚鋼板を搬送したり(剪断機が2台の場合)することが必要でなく、生産性がより向上し好ましい。   When the shearing machine having the above-described configuration is used, after the first shearing, the position of the thick steel plate is adjusted (when there is one shearing machine) or the thick steel plate is transported (when there are two shearing machines). Is preferable, and productivity is further improved.

第2工程は、図1,2に上述した方法以外にエッジミラー等を用いて、剪断面を所定量だけ切削する方法によっても実施可能である。尚、剪断後、更に剪断刃を用いて所定量を切断除去する場合、主な剪断変形領域は削り屑側に移行して材料側の変形が小さく、その結果、新たに導入される歪量は少なく、水素割れ発生を助長する残留応力は生じない。   The second step can be performed by a method of cutting the shear plane by a predetermined amount using an edge mirror or the like other than the method described above with reference to FIGS. In addition, when a predetermined amount is cut and removed using a shearing blade after shearing, the main shear deformation region moves to the shavings side and the deformation on the material side is small, and as a result, the newly introduced strain amount is There is little residual stress that promotes hydrogen cracking.

本発明の実施においては、厚鋼板搬送ライン上に、冷却装置、加熱装置とともに剪断機を配置して、該剪断機で剪断とその後の切断を行うと生産性が向上し望ましい。これらの配置は所望する材質に応じて適宜選定する。   In the practice of the present invention, it is desirable to arrange a shearing machine together with a cooling device and a heating device on a thick steel plate conveyance line, and to perform shearing and subsequent cutting with the shearing machine, thereby improving productivity. These arrangements are appropriately selected according to the desired material.

また、本発明は第1工程において、水素割れの発生する可能性が低いと判断された場合であっても、第2工程の実施を妨げるものでない。   Moreover, even if it is determined that the possibility of hydrogen cracking occurring in the first step is low, the present invention does not hinder the implementation of the second step.

本発明の一実施例を示す図。The figure which shows one Example of this invention. 本発明の他の実施例を示す図。The figure which shows the other Example of this invention. 剪断ままと、剪断後、剪断時の上刃と下刃のクリアランスと同じ量を切断除去したものの残留応力を示す図。The figure which shows the residual stress of what cut | disconnected and removed the same amount as the clearance of the upper blade and the lower blade at the time of shearing after shearing. 剪断ままと、剪断後、剪断時の上刃と下刃のクリアランス量を切断除去したものの水素割れ試験結果を示す図。The figure which shows the hydrogen-cracking test result of what cut | disconnected and removed the clearance amount of the upper blade and lower blade at the time of a shearing after shearing with shearing. 鋼中水素濃度の時間的変化を示す図。The figure which shows the time change of the hydrogen concentration in steel. 剪断後の剪断方向直角断面で、(a)は剪断まま、(b)は剪断後、剪断時の歪残留部分を除去したものを示す図。FIG. 4 is a cross-sectional view perpendicular to the shearing direction after shearing, in which (a) remains sheared and (b) shows a state in which the strain remaining portion at the time of shearing is removed after shearing. 剪断後、剪断後の端部を切断した後の断面の撮影位置を説明する図。The figure explaining the imaging | photography position of the cross section after cut | disconnecting the edge part after shearing after shearing.

符号の説明Explanation of symbols

1 鋼板
2 上剪断刃
3 下剪断刃
4 鋼板押さえ台
21 切欠部
22 1段目の刃
23 2段目の刃
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Upper shear blade 3 Lower shear blade 4 Steel plate presser base 21 Notch part 22 First stage blade 23 Second stage blade

Claims (2)

熱間圧延後に水冷した厚鋼板を剪断機により剪断後、更に剪断後の端部を切断して剪断割れを防止する方法において、剪断時の前記厚鋼板中水素濃度Cを求め、C2ppm以上の場合は前記剪断後の端部から、前記剪断機の上刃と下刃のクリアランス量以上を切断除去する事を特徴とする厚鋼板の剪断割れ防止方法。 In a method for preventing shear cracking by shearing a steel plate that has been water-cooled after hot rolling with a shearing machine and then cutting the end portion after shearing, the hydrogen concentration C H in the steel plate during shearing is obtained, and C H In the case of 2 ppm or more, a shear crack prevention method for a thick steel plate, characterized by cutting and removing a clearance amount or more between the upper blade and the lower blade of the shearing machine from the end after the shearing. 前記剪断時の厚鋼板中水素濃度Cを、前記厚鋼板のスラブ製造時の水素レードル分析値、或いは前記水素レードル分析値から予測される圧延終了時の厚鋼板水素濃度CH0を元に、計算により求めることを特徴とする請求項1記載の厚鋼板の剪断割れ防止方法。 Based on the hydrogen concentration C H0 at the end of rolling predicted from the hydrogen ladle analysis value at the time of manufacturing the slab of the thick steel plate, or the hydrogen ladle analysis value, the hydrogen concentration C H in the thick steel plate at the time of shearing, The method for preventing shear cracking of a thick steel plate according to claim 1, wherein the method is obtained by calculation.
JP2005208014A 2005-07-19 2005-07-19 Method for preventing shear cracking of thick steel plates Expired - Fee Related JP4815913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005208014A JP4815913B2 (en) 2005-07-19 2005-07-19 Method for preventing shear cracking of thick steel plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005208014A JP4815913B2 (en) 2005-07-19 2005-07-19 Method for preventing shear cracking of thick steel plates

Publications (2)

Publication Number Publication Date
JP2007021663A JP2007021663A (en) 2007-02-01
JP4815913B2 true JP4815913B2 (en) 2011-11-16

Family

ID=37783076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005208014A Expired - Fee Related JP4815913B2 (en) 2005-07-19 2005-07-19 Method for preventing shear cracking of thick steel plates

Country Status (1)

Country Link
JP (1) JP4815913B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103440424B (en) * 2013-09-04 2016-04-20 青岛理工大学 Method for detecting and determining landslide shear outlet by using side slope displacement monitoring data
CN113560817B (en) * 2021-07-10 2023-05-12 山西太钢不锈钢股份有限公司 Hot rolled steel plate blanking shearing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3406756B2 (en) * 1995-11-16 2003-05-12 日新製鋼株式会社 Saw edge prevention method for cold rolled steel strip

Also Published As

Publication number Publication date
JP2007021663A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
EP1980345B1 (en) Production method for steel continuously cast piece and system for caring surface defect of cast piece
JP5220115B2 (en) Titanium slab for hot rolling, its melting method and rolling method
JP4815913B2 (en) Method for preventing shear cracking of thick steel plates
KR101936008B1 (en) Continuously cast piece and manufacturing method and manufacturing device therefor, manufacturing method and manufacturing device for thick steel plate
JP4770274B2 (en) Thick steel plate shearing method
JP5397406B2 (en) Thick steel plate shearing method and shearing machine
JP5716376B2 (en) Method for determining surface cracks in slabs in continuous casting
JP5050537B2 (en) Thick steel plate cutting method
JP4710237B2 (en) Method for predicting deformation of thick steel plate and method for manufacturing the same
JP2007245261A (en) Method for cutting thick steel plate
JP3945238B2 (en) Steel plate manufacturing method
JP5130838B2 (en) Method for eliminating shear warpage of thick steel plate, shearing method and shearing line
JP4545130B2 (en) Steel plate manufacturing method
JP2006239739A (en) Slab and method for manufacturing it
JPH11254115A (en) Method for on-line judging surface quality of cast slab and steel slab in continuous casting and blooming and judging instrument
JPH11179509A (en) Continuous casting method of billet cast slab
JP4239729B2 (en) Steel manufacturing method
JP2006150400A (en) Continuously cast slab and producing method therefor, and method for producing hot rolled steel plate
JP2000271712A (en) Judging method of surface defect evaluation on cast slab in continuous casting process
Grigorenko et al. Autovacuum brazing in repair of copper panels of MCCB moulds
JP2007253214A (en) Method of evaluating high temperature embrittlement of continuous cast slab and method of continuously casting steel
JP2773813B2 (en) Alloy manufacturing method
JP2009082978A (en) Evaluation method for high temperature embrittlement of continuously cast slab and continuous casting method for steel
JP4954933B2 (en) Method for producing non-oriented electrical steel sheet with less seam defects
JP3891241B2 (en) Method for determining the cleanliness of cold rolled steel sheets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees