JP4815286B2 - Two-way refrigeration cycle equipment - Google Patents

Two-way refrigeration cycle equipment Download PDF

Info

Publication number
JP4815286B2
JP4815286B2 JP2006189655A JP2006189655A JP4815286B2 JP 4815286 B2 JP4815286 B2 JP 4815286B2 JP 2006189655 A JP2006189655 A JP 2006189655A JP 2006189655 A JP2006189655 A JP 2006189655A JP 4815286 B2 JP4815286 B2 JP 4815286B2
Authority
JP
Japan
Prior art keywords
refrigeration cycle
refrigerant
cylinder
compressor
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006189655A
Other languages
Japanese (ja)
Other versions
JP2008020083A (en
Inventor
全秋 佐藤
司 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2006189655A priority Critical patent/JP4815286B2/en
Publication of JP2008020083A publication Critical patent/JP2008020083A/en
Application granted granted Critical
Publication of JP4815286B2 publication Critical patent/JP4815286B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、空気調和機等に用いられる2元式冷凍サイクルに関し、特に効率を高めることができる技術に関する。   The present invention relates to a binary refrigeration cycle used for an air conditioner or the like, and more particularly to a technique capable of increasing efficiency.

冷凍装置において、低温度を発生させるために、1次側冷凍サイクルと2次側冷凍サイクルを備えた2元冷凍サイクル装置が用いられることがある。このような2元冷凍サイクル装置に用いられる圧縮機には、インバータ駆動の容量可変形圧縮機を用いたり、圧縮機を複数台設置したりすることが知られている(例えば特許文献1参照)。
特開平4−148160号公報
In order to generate a low temperature in the refrigeration apparatus, a binary refrigeration cycle apparatus including a primary side refrigeration cycle and a secondary side refrigeration cycle may be used. As a compressor used in such a binary refrigeration cycle apparatus, it is known to use a variable capacity compressor driven by an inverter or to install a plurality of compressors (see, for example, Patent Document 1). .
Japanese Patent Laid-Open No. 4-148160

上述した2元冷凍サイクル装置を空気調和機とした場合、次のような問題があった。すなわち、2次側の圧縮機の吸込容積が冷房運転時と暖房運転時とで同じであるため、能力可変幅が圧縮機回転数可変範囲に依存してしまう。このため低負荷や高負荷時において、能力可変幅を逸脱し、負荷に応じた運転ができないことや、圧縮機の効率が悪い低回転数での運転となることがあった。これは、一般的に圧縮機の運転回転数が低いと、シール部からの漏れ量が多くなり、効率が低下するためである。   When the above-described binary refrigeration cycle apparatus is an air conditioner, there are the following problems. That is, since the suction volume of the compressor on the secondary side is the same during the cooling operation and during the heating operation, the capacity variable width depends on the compressor rotation speed variable range. For this reason, at the time of low load or high load, it may deviate from the variable capacity range and cannot be operated according to the load, or may be operated at a low rotational speed where the efficiency of the compressor is poor. This is because, in general, when the operating rotational speed of the compressor is low, the amount of leakage from the seal portion increases and efficiency decreases.

そこで本発明は、圧縮機の吸込容積を可変とすることで、冷房運転時と暖房運転時に応じた適正な吸込容積とし効率の高い運転が可能な2元冷凍サイクル装置を提供することを目的としている。   Therefore, the present invention has an object to provide a two-stage refrigeration cycle apparatus capable of operating with high efficiency by making the suction volume of a compressor variable so as to have an appropriate suction volume according to cooling operation and heating operation. Yes.

前記課題を解決し目的を達成するために、本発明の2元冷凍サイクル装置は次のように構成されている。   In order to solve the above problems and achieve the object, the binary refrigeration cycle apparatus of the present invention is configured as follows.

室外熱交換器を有する1次側冷凍サイクルと、室内熱交換器を有する2次側冷凍サイクルと、この2次側冷凍サイクルに設けられ、2つのシリンダを有するとともに、これら2つのシリンダのうち1つは圧縮運転と非圧縮運転とを切替可能に構成され、インバータ駆動される2シリンダ形回転式圧縮機と、上記1次側冷凍サイクルの冷媒と上記2次側冷凍サイクルの冷媒とを熱交換する中間熱交換器とを備え、暖房運転時に、上記2次側冷凍サイクルの2シリンダ形回転式圧縮機の1つのシリンダを非圧縮運転させて吸込み容積を減少させるとともに、冷房運転時には、両方のシリンダを圧縮運転させることを特徴とする。 The primary side refrigeration cycle having an outdoor heat exchanger, the secondary side refrigeration cycle having an indoor heat exchanger, the secondary side refrigeration cycle, two cylinders, and one of these two cylinders. One is configured to be able to switch between compression operation and non-compression operation, and exchanges heat between the inverter-driven two-cylinder rotary compressor, the refrigerant in the primary side refrigeration cycle, and the refrigerant in the secondary side refrigeration cycle. An intermediate heat exchanger that performs a non-compression operation of one cylinder of the two-cylinder rotary compressor of the secondary-side refrigeration cycle during heating operation to reduce the suction volume, and during cooling operation, The cylinder is compressed and operated .

本発明によれば、圧縮機の吸込容積を可変とすることで、冷房運転時と暖房運転時に応じた適正な吸込容積とすることができ、効率の高い運転が可能となる。   According to the present invention, by making the suction volume of the compressor variable, it is possible to obtain an appropriate suction volume according to the cooling operation and the heating operation, and an efficient operation is possible.

図1は本発明の第1の実施の形態に係る2元冷凍サイクル装置(空気調和機)1を示す構成図、図2は2元冷凍サイクル装置1に組み込まれた第1圧縮機100及び第2圧縮機200を示す断面図、図3は2元冷凍サイクル装置1の暖房運転時におけるP−h線図である。   FIG. 1 is a configuration diagram showing a binary refrigeration cycle apparatus (air conditioner) 1 according to a first embodiment of the present invention, and FIG. 2 shows a first compressor 100 and a first compressor incorporated in the binary refrigeration cycle apparatus 1. FIG. 3 is a Ph diagram during the heating operation of the binary refrigeration cycle apparatus 1.

図1中二点鎖線Eは室外機構成を、二点鎖線Iは室内機構成を示している。また、図1中の矢印Cは冷房運転時の冷媒の流れを、矢印Hは暖房運転時の冷媒の流れを示している。なお、第2圧縮機200において図2の第1圧縮機100と同一機能部分には同一符号を付し、詳細な説明は省略する。   In FIG. 1, an alternate long and two short dashes line E indicates an outdoor unit configuration, and an alternate long and two short dashes line I indicates an indoor unit configuration. Moreover, the arrow C in FIG. 1 shows the flow of the refrigerant during the cooling operation, and the arrow H shows the flow of the refrigerant during the heating operation. In the second compressor 200, the same functional parts as those of the first compressor 100 in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

図1に示すように2元冷凍サイクル装置1は、1次側冷凍サイクル10と、2次側冷凍サイクル20とを備えている。また、2元冷凍サイクル装置1は、1次側冷凍サイクル10の冷媒(1次側冷媒)と2次側冷凍サイクル20の冷媒(2次側冷媒)とが熱交換できるように形成された中間熱交換器300とを備えている。なお、1次側冷媒と2次側冷媒とには、同じ冷媒又は特性の類似した冷媒を用いる。   As shown in FIG. 1, the binary refrigeration cycle apparatus 1 includes a primary side refrigeration cycle 10 and a secondary side refrigeration cycle 20. The two-way refrigeration cycle apparatus 1 is formed so that the refrigerant of the primary side refrigeration cycle 10 (primary side refrigerant) and the refrigerant of the secondary side refrigeration cycle 20 (secondary side refrigerant) can exchange heat. And a heat exchanger 300. In addition, the same refrigerant | coolant or the refrigerant | coolant with a similar characteristic is used for a primary side refrigerant | coolant and a secondary side refrigerant | coolant.

1次側冷凍サイクル10は、第1圧縮機100と、この第1圧縮機100の吐出口に連結された第1四方弁150と、この第1四方弁150に連結された室外熱交換器160と、この室外熱交換器160に連結された第1膨張機構170と、この第1膨張機構170に連結され、中間熱交換器300に組み込まれた第1中間熱交換器300Aと、この第1中間熱交換器300Aに第1四方弁150を介して連結されたアキュムレータ180とを順次備え、このアキュムレータ180は圧縮機100の吸込口へと連結されている。   The primary side refrigeration cycle 10 includes a first compressor 100, a first four-way valve 150 connected to a discharge port of the first compressor 100, and an outdoor heat exchanger 160 connected to the first four-way valve 150. A first expansion mechanism 170 connected to the outdoor heat exchanger 160, a first intermediate heat exchanger 300A connected to the first expansion mechanism 170 and incorporated in the intermediate heat exchanger 300, and the first An accumulator 180 connected to the intermediate heat exchanger 300 </ b> A via the first four-way valve 150 is sequentially provided, and the accumulator 180 is connected to the suction port of the compressor 100.

2次側冷凍サイクル20は、第2圧縮機200と、この第2圧縮機200の吐出口から連結された第2四方弁250と、この第2四方弁250に連結され、中間熱交換器300に組み込まれた第2中間熱交換器300Bと、この第2中間熱交換器300Bに連結された第2膨張機構260と、この第2膨張機構260に連結された室内熱交換器270と、この室内熱交換器270に第2四方弁250を介して連結されたアキュムレータ280とを順次備え、このアキュムレータ280は圧縮機200の吸込口へと連結されている。   The secondary refrigeration cycle 20 is connected to the second compressor 200, the second four-way valve 250 connected from the discharge port of the second compressor 200, and the second four-way valve 250, and the intermediate heat exchanger 300. A second intermediate heat exchanger 300B incorporated in the second intermediate heat exchanger 300B, a second expansion mechanism 260 connected to the second intermediate heat exchanger 300B, an indoor heat exchanger 270 connected to the second expansion mechanism 260, and An accumulator 280 connected to the indoor heat exchanger 270 via the second four-way valve 250 is sequentially provided, and the accumulator 280 is connected to the suction port of the compressor 200.

中間熱交換器300は、第1中間熱交換器300Aと第2中間熱交換器300Bとを備えており、1次側冷媒と2次側冷媒とを熱交換可能に構成されている。   The intermediate heat exchanger 300 includes a first intermediate heat exchanger 300A and a second intermediate heat exchanger 300B, and is configured to exchange heat between the primary side refrigerant and the secondary side refrigerant.

第1圧縮機100及び第2圧縮機200は共に2シリンダ形回転式圧縮機であり、密閉ケース101と、この密閉ケース101内の下部に設けられた圧縮機構部102と、密閉ケース101の上部に設けられた電動機部103とを備えている。これら電動機部103と圧縮機構部102とは回転軸104を介して連結されている。   Each of the first compressor 100 and the second compressor 200 is a two-cylinder rotary compressor, and includes a sealed case 101, a compression mechanism unit 102 provided at a lower portion in the sealed case 101, and an upper portion of the sealed case 101. And an electric motor unit 103 provided in the vehicle. The electric motor unit 103 and the compression mechanism unit 102 are connected via a rotation shaft 104.

圧縮機構部102は、回転軸104の下部に、中間仕切り板107を介して上下に配設される第1シリンダ108Aと、第2シリンダ108Bとを備えている。これら第1、第2シリンダ108A、108Bは、互いに外形形状寸法が相違し、かつ、内径寸法が同一となるよう設定されている。第1シリンダ108Aの外形寸法は密閉ケース101の内径寸法よりも僅かに大に形成され、密閉ケース101内周面に圧入されたうえに、密閉ケース101外部からの溶接加工によって位置決め固定される。   The compression mechanism unit 102 includes a first cylinder 108A and a second cylinder 108B which are disposed below the rotary shaft 104 with an intermediate partition plate 107 interposed therebetween. The first and second cylinders 108A and 108B are set to have different outer shape dimensions and the same inner diameter dimensions. The outer dimension of the first cylinder 108A is formed slightly larger than the inner diameter dimension of the sealed case 101, and after being press-fitted into the inner peripheral surface of the sealed case 101, it is positioned and fixed by welding from the outside of the sealed case 101.

第1シリンダ108Aの上面部には主軸受109が重ね合わされ、バルブカバー109aと取り付けボルト110とを用いてシリンダ108Aに取り付け固定される。第2シリンダ108Bの下面部には副軸受111が重ね合わされ、バルブカバー111aと取り付けボルト112とを用いて第1のシリンダ108Aに取り付け固定される。中間仕切板107及び副軸受111の外形寸法は第2シリンダ108Bの内径寸法よりもある程度大であり、しかもこのシリンダ108Bの内径位置がシリンダ中心からずれている。このため、第2シリンダ108Bの外周の一部は中間仕切板107及び副軸受111の外径よりも径方向に突出している。   A main bearing 109 is overlaid on the upper surface of the first cylinder 108A, and is fixed to the cylinder 108A using a valve cover 109a and mounting bolts 110. The sub bearing 111 is superimposed on the lower surface portion of the second cylinder 108B, and is attached and fixed to the first cylinder 108A using the valve cover 111a and the mounting bolt 112. The outer dimensions of the intermediate partition plate 107 and the auxiliary bearing 111 are somewhat larger than the inner diameter of the second cylinder 108B, and the inner diameter position of the cylinder 108B is shifted from the center of the cylinder. For this reason, a part of the outer periphery of the second cylinder 108 </ b> B protrudes in the radial direction from the outer diameters of the intermediate partition plate 107 and the auxiliary bearing 111.

電動機部103は、密閉ケース101の内面に固定されるステータ105と、このステータ105の内側に所定の間隔を存して配置され、かつ、回転軸104が介挿されるロータ106とを備えている。電動機部103は、運転周波数を可変するインバータ130に接続され、インバータ130は、このインバータ130を制御する制御部140に電気的に接続される。   The electric motor unit 103 includes a stator 105 that is fixed to the inner surface of the hermetic case 101, and a rotor 106 that is disposed inside the stator 105 at a predetermined interval and in which the rotating shaft 104 is inserted. . The electric motor unit 103 is connected to an inverter 130 that varies the operating frequency, and the inverter 130 is electrically connected to a control unit 140 that controls the inverter 130.

回転軸104は、中途部と下端部が主軸受109と副軸受111に回転自在に枢支される。さらに回転軸104は第1、第2シリンダ108A、108B内部を貫通するとともに、略180°の位相差をもって形成される2つの偏心部104a、104bを一体に備えている。各偏心部104a、104bの回転中心は同一直線上に設けられ、それぞれ第1、第2シリンダ108A、108B内径部に位置するよう組み立てられている。各偏心部104a、104bの周面には、互いに同一直線をなす偏心ローラ113a、113bがそれぞれ偏心回転自在に収容される。   The rotary shaft 104 is pivotally supported by the main bearing 109 and the sub bearing 111 so that the midway portion and the lower end portion thereof are rotatable. Further, the rotating shaft 104 penetrates through the first and second cylinders 108A and 108B, and integrally includes two eccentric portions 104a and 104b formed with a phase difference of about 180 °. The centers of rotation of the eccentric portions 104a and 104b are provided on the same straight line, and are assembled so as to be positioned at the inner diameter portions of the first and second cylinders 108A and 108B, respectively. Eccentric rollers 113a and 113b that are collinear with each other are accommodated on the peripheral surfaces of the eccentric portions 104a and 104b, respectively, so as to be eccentrically rotatable.

各偏心ローラ113a、113bの高さ寸法は、第1、第2シリンダ室114a、114bの高さ寸法と同一に形成される。したがって、偏心ローラ113a、113bは互いに略180°の位相差があるが、第1、第2シリンダ室114a、114bで偏心回転することにより、シリンダ室において同一の排除容積に設定される。第1、第2シリンダ108A、108Bには、シリンダ室114a、114bと連通するベーン室122a、122bが設けられている。各ベーン室122a、122bには、ベーン115a、115bが第1、第2シリンダ室114a、114bに対して突没自在に収容される。   The height of each eccentric roller 113a, 113b is formed to be the same as the height of the first and second cylinder chambers 114a, 114b. Accordingly, the eccentric rollers 113a and 113b have a phase difference of about 180 ° from each other, but are set to the same excluded volume in the cylinder chamber by rotating eccentrically in the first and second cylinder chambers 114a and 114b. Vane chambers 122a and 122b communicating with the cylinder chambers 114a and 114b are provided in the first and second cylinders 108A and 108B. In each of the vane chambers 122a and 122b, the vanes 115a and 115b are accommodated so as to protrude and retract with respect to the first and second cylinder chambers 114a and 114b.

各ベーン室122a、122bは、各ベーン115a、115bの両側面が摺動自在に移動できる各ベーン収納溝(不図示)と、各ベーン収納溝端部に一体に連接されベーン115a、115bの後端部が収容される各縦孔部(不図示)からなる。第1シリンダ108Aには、外周面とベーン室122aとを連通する横孔125が設けられ、ばね部材126が収容される。ばね部材126は、ベーン115aの背面側端面と密閉ケース101内周面との間に介在され、ベーン115aに弾性力(背圧)を付与して、この先端縁を偏心ローラ113aに接触させる圧縮ばねである。   Each vane chamber 122a, 122b is integrally connected to each vane storage groove (not shown) in which both side surfaces of each vane 115a, 115b are slidably movable and the end of each vane storage groove, and the rear ends of the vanes 115a, 115b. Each vertical hole portion (not shown) in which the portion is accommodated. The first cylinder 108A is provided with a lateral hole 125 that communicates the outer peripheral surface with the vane chamber 122a, and the spring member 126 is accommodated therein. The spring member 126 is interposed between the rear side end face of the vane 115a and the inner peripheral surface of the sealing case 101, and applies compression force to the vane 115a so that the tip edge contacts the eccentric roller 113a. It is a spring.

第2のシリンダ108B側のベーン室122bにはベーン115b以外に何らの部材も収容されていないが、後述するように、ベーン室122bの設定環境と、後述する圧力切換え機構Kの作用に応じて、ベーン115bの先端縁を偏心ローラ113bに接触させるようになっている。各ベーン115a、115bの先端縁には平面視で半円状に形成されており、平面視で円形状の偏心ローラ113a、113b周壁に偏心ローラ113aの回転角度にかかわらず線接触できる。   No member other than the vane 115b is accommodated in the vane chamber 122b on the second cylinder 108B side, but, as will be described later, depending on the setting environment of the vane chamber 122b and the action of the pressure switching mechanism K described later. The tip edge of the vane 115b is brought into contact with the eccentric roller 113b. The tip edges of the vanes 115a and 115b are formed in a semicircular shape in plan view, and can make line contact with the circumferential walls of the circular eccentric rollers 113a and 113b in plan view regardless of the rotation angle of the eccentric roller 113a.

そして、偏心ローラ113a、113bがシリンダ室114a、114bの内周壁にそって偏心回転したとき、ベーン115a、115bはベーン収容溝123a、123bに沿って往復運動し、かつベーン後端部がそれぞれの縦孔部から進退自在となる作用ができる。上述したように、第2シリンダ108Bの外形寸法形状と、中間仕切板107及び副受軸111の外形寸法との関係から、第2のシリンダ8Bの外形一部は密閉ケース101内に露出する。   When the eccentric rollers 113a and 113b rotate eccentrically along the inner peripheral walls of the cylinder chambers 114a and 114b, the vanes 115a and 115b reciprocate along the vane receiving grooves 123a and 123b, and the vane rear end portions are respectively It is possible to move forward and backward from the vertical hole. As described above, a part of the outer shape of the second cylinder 8B is exposed in the sealed case 101 due to the relationship between the outer dimensions of the second cylinder 108B and the outer dimensions of the intermediate partition plate 107 and the auxiliary receiving shaft 111.

この密閉ケース101への露出部分がベーン室122bに相当するように設計されており、ベーン室122b及びベーン115b後端部はケース内圧力を直接的に受けることになる。特に、第2のシリンダ108B及びベーン室122bは構造物であるからケース内圧力を受けても何の影響もないが、ベーン115bはベーン室122bに摺動自在に収容され、かつ、後頭部がベーン室122bの縦孔部に位置するので、ケース内圧力を直接的に受ける。   The exposed portion of the sealed case 101 is designed to correspond to the vane chamber 122b, and the rear end portions of the vane chamber 122b and the vane 115b directly receive the pressure in the case. In particular, since the second cylinder 108B and the vane chamber 122b are structures, there is no effect even if they are subjected to pressure inside the case, but the vane 115b is slidably accommodated in the vane chamber 122b, and the rear head is a vane. Since it is located in the vertical hole of the chamber 122b, it receives the pressure in the case directly.

そしてさらに、ベーン115bの先端部が第2のシリンダ室114bに対向しており、ベーン先端部はシリンダ室114b内の圧力を受ける。結局、ベーン115bは先端部と後端部が受ける互いの圧力の大小に応じて、圧力の大きい方から圧力の小さい方向へ移動するよう構成されている。第1、第2シリンダ108A、108Bには取り付けボルト110、112が挿通又は螺挿される取付け用孔若しくはねじ孔が設けられ、第1のシリンダ108Aのみ円弧状のガス通し用孔部127が設けられている。   Furthermore, the tip of the vane 115b faces the second cylinder chamber 114b, and the vane tip receives the pressure in the cylinder chamber 114b. Eventually, the vane 115b is configured to move in a direction from a higher pressure to a lower pressure according to the mutual pressure received by the front end and the rear end. The first and second cylinders 108A and 108B are provided with mounting holes or screw holes through which the mounting bolts 110 and 112 are inserted or screwed, and only the first cylinder 108A is provided with an arc-shaped gas passage hole 127. ing.

密閉ケース101の上端部には、吐出管118が接続されている。また、第1圧縮機100の底部には、吸込管116a、116bが接続されている。一方の吸込管116aは第1シリンダ108A側部を貫通し、第1シリンダ室114a内に直接連通する。他方の吸込管116bは密閉ケース101を介して第2のシリンダ108B側部を貫通し、第2シリンダ室114bに直接連通する。   A discharge pipe 118 is connected to the upper end of the sealed case 101. In addition, suction pipes 116 a and 116 b are connected to the bottom of the first compressor 100. One suction pipe 116a penetrates the side of the first cylinder 108A and directly communicates with the first cylinder chamber 114a. The other suction pipe 116b passes through the side of the second cylinder 108B through the sealed case 101 and directly communicates with the second cylinder chamber 114b.

また、第1圧縮機100と第1四方弁150とを連結する吐出管118の中途部から分岐して、第2シリンダ室114bに接続される吸込管116bの中途部に合流する分岐管Pが設けられている。この分岐管Pの中途部には、第1開閉弁128が設けられている。吸込管116bで分岐管Pの分岐部よりも上流側に第2開閉弁129が設けられている。第1開閉弁128と第2開閉弁129とは、それぞれ電磁弁であって、制御部140からの電気信号に応じて開閉制御されるような構成となっている。   Further, a branch pipe P branched from the middle part of the discharge pipe 118 that connects the first compressor 100 and the first four-way valve 150 and joined to the middle part of the suction pipe 116b connected to the second cylinder chamber 114b is provided. Is provided. A first on-off valve 128 is provided in the middle of the branch pipe P. A second on-off valve 129 is provided upstream of the branch portion of the branch pipe P in the suction pipe 116b. The first on-off valve 128 and the second on-off valve 129 are electromagnetic valves, and are configured to be controlled to open and close in response to an electrical signal from the control unit 140.

このように、第1圧縮機100及び第2圧縮機200は、インバータ130で駆動される2シリンダ形回転式圧縮機であり、必要時にシリンダ108Bに高圧冷媒を導入し、ベーン115b前後の圧力差を無くし第2シリンダ108Bのみ非圧縮運転ができるようになっている。   As described above, the first compressor 100 and the second compressor 200 are two-cylinder rotary compressors that are driven by the inverter 130. When necessary, the high-pressure refrigerant is introduced into the cylinder 108B, and the pressure difference before and after the vane 115b. And only the second cylinder 108B can perform non-compression operation.

このように構成された2元冷凍サイクル装置1では、次のようにして通常運転と片側シリンダ非圧縮運転(能力半減運転)との切換えを行う。すなわち、通常運転を行う場合は、制御部140が、圧力切換え機構Kの第1開閉弁128を閉成し、第2の開放弁129を開放するよう制御する。そして、制御部140はインバータ130を介して電動機部103に運転信号を送る。回転軸104が回転駆動され、偏心ローラ113a、113bは第1、第2シリンダ室114a、114b内で偏心回転を行う。   In the two-way refrigeration cycle apparatus 1 configured as described above, switching between the normal operation and the one-side cylinder non-compression operation (capacity half operation) is performed as follows. That is, when performing normal operation, the control unit 140 controls the first switching valve 128 of the pressure switching mechanism K to close and the second opening valve 129 to open. Then, the control unit 140 sends an operation signal to the electric motor unit 103 via the inverter 130. The rotating shaft 104 is rotationally driven, and the eccentric rollers 113a and 113b rotate eccentrically in the first and second cylinder chambers 114a and 114b.

第1シリンダ108Aにおいては、ベーン115aがばね部材126によって常に弾性的に押圧付勢されるところから、ベーン115aの先端縁が偏心ローラ113a周壁に摺接して第1シリンダ室114a内を吸込み室と圧縮室に二分する。偏心ローラ113aのシリンダ室114a内周面転接位置とベーン収納溝123aが一致し、ベーン115aが最も後退した状態で、このシリンダ室114aの空間容量が最大となる。冷媒ガスはアキュムレータ117から吸込管116aを介して上部シリンダ室114aに吸い込まれ充満する。   In the first cylinder 108A, since the vane 115a is always elastically pressed and biased by the spring member 126, the tip edge of the vane 115a is in sliding contact with the peripheral wall of the eccentric roller 113a, and the suction chamber is formed in the first cylinder chamber 114a. Divide into compression chambers. When the inner circumferential surface rolling contact position of the eccentric roller 113a and the vane storage groove 123a coincide with each other and the vane 115a is retracted most, the space capacity of the cylinder chamber 114a is maximized. The refrigerant gas is sucked from the accumulator 117 into the upper cylinder chamber 114a through the suction pipe 116a and is filled.

偏心ローラ113aの偏心回転に伴って、偏心ローラの第1シリンダ室114a内周面に対する転接位置が移動し、シリンダ室114aの区画された圧縮室の容積が減少する。すなわち、先にシリンダ室114aに導かれたガスが徐々に圧縮される。回転軸104が継続して回転され、第1シリンダ室114aの圧縮室の容量がさらに減少してガスが圧縮され、所定圧まで上昇したところで吐出弁(不図示)が開放する。高圧ガスはバルブカバー109aを介して密閉ケース101内に吐出され充満する。そして、密閉ケース101上部の吐出管118から吐出される。   With the eccentric rotation of the eccentric roller 113a, the rolling contact position of the eccentric roller with respect to the inner peripheral surface of the first cylinder chamber 114a moves, and the volume of the compression chamber partitioned by the cylinder chamber 114a decreases. That is, the gas previously introduced into the cylinder chamber 114a is gradually compressed. The rotation shaft 104 is continuously rotated, the capacity of the compression chamber of the first cylinder chamber 114a is further reduced, the gas is compressed, and the discharge valve (not shown) is opened when the pressure rises to a predetermined pressure. The high-pressure gas is discharged into the sealed case 101 through the valve cover 109a and fills up. And it discharges from the discharge pipe 118 of the airtight case 101 upper part.

第2シリンダ108Bにおいても、第1シリンダ108Aと同様にして通常の圧縮運転を行う。   Also in the second cylinder 108B, the normal compression operation is performed in the same manner as the first cylinder 108A.

次に、第1シリンダ108Aは圧縮運転で、第2シリンダ108Bのみ非圧縮運転を行う片側シリンダ非圧縮運転を行う場合について説明する。なお、片側シリンダ非圧縮運転は、冷房運転又は暖房運転に応じて第1圧縮機100及び第2圧縮機200の一方のみにおいて行われ、他方は上述した通常運転を行う。第2シリンダ108Bの非圧縮運転は次のように行う。すなわち、制御部140が圧力切換え機構Kの第1開閉弁128を開放し、第2開閉弁129を閉成するように切換え設定する。第1シリンダ室114aにおいては上述したように通常の圧縮作用がなされ、密閉ケース101内に吐出された高圧ガスが充満してケース内高圧となる。吐出管118から吐出される高圧ガスの一部が分岐管Pに分流され、開放する第1開閉弁128と吸込み管116bを介して第2シリンダ室114b内に導入される。   Next, the case where the first cylinder 108A performs the compression operation and the one-side cylinder non-compression operation in which only the second cylinder 108B performs the non-compression operation will be described. Note that the one-side cylinder non-compression operation is performed in only one of the first compressor 100 and the second compressor 200 according to the cooling operation or the heating operation, and the other performs the above-described normal operation. The non-compression operation of the second cylinder 108B is performed as follows. That is, the control unit 140 performs switching setting so that the first on-off valve 128 of the pressure switching mechanism K is opened and the second on-off valve 129 is closed. In the first cylinder chamber 114a, the normal compression action is performed as described above, and the high-pressure gas discharged into the sealed case 101 is filled to become a high pressure in the case. A part of the high-pressure gas discharged from the discharge pipe 118 is diverted to the branch pipe P, and is introduced into the second cylinder chamber 114b through the opened first on-off valve 128 and the suction pipe 116b.

第2シリンダ室114bが吐出圧(高圧)雰囲気にある一方で、ベーン室122bはケース内高圧と同一の状況下にあることには変わりがない。このため、ベーン115bは前後端部とも高圧の影響を受けていて、前後端部において差圧が存在しない。ベーン115bはローラ113b外周面から離間した位置で移動することなく停止状態を保持し、第2シリンダ室114bでの圧縮作用は行われない。結局、第1シリンダ室114aでの圧縮作用のみが有効であり、能力を半減した運転がなされることになる。   While the second cylinder chamber 114b is in the discharge pressure (high pressure) atmosphere, the vane chamber 122b remains in the same situation as the high pressure in the case. For this reason, the vane 115b is affected by the high pressure at both the front and rear ends, and there is no differential pressure at the front and rear ends. The vane 115b maintains a stopped state without moving at a position away from the outer peripheral surface of the roller 113b, and the compression action in the second cylinder chamber 114b is not performed. Eventually, only the compression action in the first cylinder chamber 114a is effective, and an operation with half the capacity is performed.

第2のシリンダ室114bの内部は高圧となっているので、密閉ケース101内から第2シリンダ室114b内への圧縮ガスの漏れは発生せず、圧縮ガスの漏れよる損失も発生しない。   Since the inside of the second cylinder chamber 114b is at a high pressure, no leak of compressed gas from the sealed case 101 into the second cylinder chamber 114b occurs, and no loss due to the leak of compressed gas occurs.

なお、第1シリンダ108Aの圧縮運転は前述したものと同じである。   The compression operation of the first cylinder 108A is the same as described above.

2元冷凍サイクル装置1の冷房運転時は図1中矢印Cのように、まず1次側冷凍サイクル10では、上述したように第1圧縮機100で圧縮された1次側冷媒は、第1圧縮機100の吐出管118から第1四方弁150、室外熱交換器160、第1膨張装置170及び第1中間熱交換器300Aを順次通過し、第1四方弁150、第1アキュムレータ180を介して第1圧縮機100へと戻る。   During the cooling operation of the two-way refrigeration cycle apparatus 1, as indicated by an arrow C in FIG. 1, first, in the primary side refrigeration cycle 10, as described above, the primary side refrigerant compressed by the first compressor 100 is the first The first four-way valve 150, the outdoor heat exchanger 160, the first expansion device 170, and the first intermediate heat exchanger 300A are sequentially passed from the discharge pipe 118 of the compressor 100 through the first four-way valve 150 and the first accumulator 180. To return to the first compressor 100.

同様に、2次側冷凍サイクル20では、第2圧縮機200で圧縮された2次側冷媒は、第2圧縮機200の吐出管118から第2四方弁250、第2中間熱交換器300B、第2膨張装置260及び室内熱交換器270を順次通過し、第2四方弁250、第2アキュムレータ280を介して第2圧縮機200へと戻る。このとき、1次側冷媒は室外熱交換器160で凝縮され、第1中間熱交換器300Aで蒸発し、2次側冷媒は第2中間熱交換器300Bにおいて放熱し冷熱を得て、室内熱交換器270によって室内の熱を吸収し室内空気を冷却する。   Similarly, in the secondary refrigeration cycle 20, the secondary refrigerant compressed by the second compressor 200 is discharged from the discharge pipe 118 of the second compressor 200 to the second four-way valve 250, the second intermediate heat exchanger 300B, It passes through the second expansion device 260 and the indoor heat exchanger 270 in sequence, and returns to the second compressor 200 via the second four-way valve 250 and the second accumulator 280. At this time, the primary refrigerant is condensed in the outdoor heat exchanger 160, evaporated in the first intermediate heat exchanger 300A, and the secondary refrigerant dissipates heat in the second intermediate heat exchanger 300B to obtain cold, The exchanger 270 absorbs indoor heat and cools indoor air.

2元冷凍サイクル装置1の暖房運転時は第1四方弁150と、第2四方弁250とを切換える。これにより、図1中矢印Hのように、冷媒の流れが冷房運転時と逆になり、1次側冷媒の流れは1次側冷凍サイクル10では、第1圧縮機100の吐出管118から第1四方弁150、第1中間熱交換器300A、第1膨張装置170及び室外熱交換器160を順次通過し、第1四方弁150、第1アキュムレータ180を介して第1圧縮機100へと戻る。   During the heating operation of the two-way refrigeration cycle apparatus 1, the first four-way valve 150 and the second four-way valve 250 are switched. Accordingly, as indicated by an arrow H in FIG. 1, the flow of the refrigerant is reversed from that during the cooling operation, and the flow of the primary-side refrigerant is changed from the discharge pipe 118 of the first compressor 100 to the first in the primary-side refrigeration cycle 10. The first four-way valve 150, the first intermediate heat exchanger 300A, the first expansion device 170, and the outdoor heat exchanger 160 are sequentially passed back to the first compressor 100 via the first four-way valve 150 and the first accumulator 180. .

同様に2次側冷凍サイクル20では、第2圧縮機200で圧縮された2次側冷媒が、第2圧縮機200の吐出管118から第2四方弁250、室内熱交換器270、第2膨張装置260及び第2中間熱交換器300Bを順次通過し、第2四方弁250、第2アキュムレータ280を介して第1圧縮機200へと戻る。   Similarly, in the secondary refrigeration cycle 20, the secondary refrigerant compressed by the second compressor 200 is discharged from the discharge pipe 118 of the second compressor 200 to the second four-way valve 250, the indoor heat exchanger 270, and the second expansion. It passes through the apparatus 260 and the second intermediate heat exchanger 300B sequentially, and returns to the first compressor 200 via the second four-way valve 250 and the second accumulator 280.

図3は冷凍サイクル1の暖房運転時における冷媒の状態を示しており、図3中実線Mは冷凍圧縮サイクル行程の1次側冷凍サイクル10の冷媒のP―hの変化を示し、aは第1圧縮機100の入口(吸込み)部、bは第1中間熱交換器300A、cは第1膨張装置170の入口部、dは室外熱交換器160の入口部の入口部の冷媒の状態を示している。また、図3中破線Nは冷凍圧縮サイクル行程の2次側冷凍サイクル20の冷媒のP―hの変化を示し、eは第2圧縮機200の入口(吸込み)部、fは室内熱交換器270の入口部、gは第2膨張装置26の入口部、hは第2中間熱交換器300Bの入口部の冷媒の状態を示している。   FIG. 3 shows the state of the refrigerant during the heating operation of the refrigeration cycle 1. In FIG. 3, the solid line M shows the change in the Ph of the refrigerant in the primary side refrigeration cycle 10 in the refrigeration compression cycle, and a is the first 1 is the inlet (suction) part of the compressor 100, b is the first intermediate heat exchanger 300A, c is the inlet part of the first expansion device 170, and d is the refrigerant state at the inlet part of the inlet part of the outdoor heat exchanger 160. Show. 3 indicates a change in the refrigerant Ph in the secondary refrigeration cycle 20 in the refrigeration compression cycle stroke, e indicates an inlet (suction) portion of the second compressor 200, and f indicates an indoor heat exchanger. 270 indicates the state of the refrigerant at the inlet portion of the second expansion device 26, and h indicates the state of the refrigerant at the inlet portion of the second intermediate heat exchanger 300B.

1次側冷媒は、第1中間熱交換器300Aで凝縮され、室外熱交換気160で蒸発する。2次側冷媒は室内熱交換器270において放熱し室内空気を暖め、第2中間熱交換器300Bによって蒸発する。このとき図3に示すように、中間熱交換器300では、1次側冷凍サイクル10の凝縮と2次側冷凍サイクル20の蒸発とでの温度差をとって熱交換させるため、1次側冷媒の冷凍サイクル行程と2次側冷媒の冷凍サイクル行程とが交差する二段構造となる。   The primary side refrigerant is condensed in the first intermediate heat exchanger 300 </ b> A and evaporated in the outdoor heat exchange air 160. The secondary side refrigerant dissipates heat in the indoor heat exchanger 270, warms the indoor air, and is evaporated by the second intermediate heat exchanger 300B. At this time, as shown in FIG. 3, the intermediate heat exchanger 300 performs heat exchange by taking a temperature difference between the condensation of the primary refrigeration cycle 10 and the evaporation of the secondary refrigeration cycle 20. This is a two-stage structure in which the refrigeration cycle stroke and the refrigeration cycle stroke of the secondary refrigerant intersect.

冷房運転時は、中間熱交換器300で1次側の蒸発と2次側の凝縮とを温度差をとって熱交換するため、冷凍サイクル行程は逆転し、下側冷凍サイクル行程M(a−b−c−d)が2次側冷凍サイクル20の冷媒の圧力―温度の変化で、上側冷凍サイクル行程N(e−f−g−h)が1次側冷凍サイクル10の冷媒の圧力―温度の変化である。   During the cooling operation, the intermediate heat exchanger 300 performs heat exchange by taking a temperature difference between the primary side evaporation and the secondary side condensation. Therefore, the refrigeration cycle process is reversed, and the lower refrigeration cycle process M (a− bcd) is a change in the pressure-temperature of the refrigerant in the secondary refrigeration cycle 20, and the upper refrigeration cycle stroke N (ef-gh) is the pressure-temperature in the refrigerant in the primary refrigeration cycle 10. Is a change.

冷房運転時は、第2圧縮機200の吸込み位置が下側冷凍圧縮サイクルの右下位置aであるため、冷房運転と暖房運転で第2圧縮機200の吸込み圧力が異なることがわかる。同様に、第1圧縮機100の吸込み圧力が冷房運転と暖房運転で異なる。   During the cooling operation, since the suction position of the second compressor 200 is the lower right position a of the lower refrigeration compression cycle, it can be seen that the suction pressure of the second compressor 200 is different between the cooling operation and the heating operation. Similarly, the suction pressure of the first compressor 100 is different between the cooling operation and the heating operation.

吸込み圧力が異なると冷媒比体積が異なるため、第1、第2圧縮機100、200が同じ吸込み体積(排除容積)の場合、圧縮機の回転数が冷房運転と暖房運転で大きく異なることになる。   When the suction pressure is different, the refrigerant specific volume is different. Therefore, when the first and second compressors 100 and 200 have the same suction volume (exclusion volume), the rotation speed of the compressor is greatly different between the cooling operation and the heating operation. .

すなわち、2次側冷凍サイクル20では、暖房運転時の吸込み圧力が、冷房運転時の吸込み圧力よりも高いため、暖房運転時に第2圧縮機200に吸い込まれる冷媒の比体積が、冷房運転時に第2圧縮機200に吸い込まれる冷媒の比体積より小さい(冷媒の密度が大きい)。このため、暖房運転時と冷房運転時で、圧縮機の吸込み容積を同じにすると、同一回転数では暖房運転時の能力が大きくなりすぎるため、暖房運転時には、効率の悪い低回転数で2元冷凍サイクル装置1を運転することになる。   That is, in the secondary refrigeration cycle 20, since the suction pressure during the heating operation is higher than the suction pressure during the cooling operation, the specific volume of the refrigerant sucked into the second compressor 200 during the heating operation is the same as that during the cooling operation. 2 It is smaller than the specific volume of the refrigerant sucked into the compressor 200 (the density of the refrigerant is large). For this reason, if the suction volume of the compressor is the same during the heating operation and the cooling operation, the capacity during the heating operation becomes too large at the same rotation speed. The refrigeration cycle apparatus 1 is operated.

そこで、暖房運転時に上述したように第2シリンダ108Bを非圧縮運転(能力半減運転)させて吸込み容積を減少させることにより、効率のよい高回転数で2元冷凍サイクル装置1を運転することができ、2元冷凍サイクル装置1の効率を向上することができる。冷房運転時は、両方のシリンダで圧縮運転を行う。   Therefore, as described above during the heating operation, the two-way refrigeration cycle apparatus 1 can be operated at an efficient high rotational speed by reducing the suction volume by performing the non-compression operation (half-capacity operation) of the second cylinder 108B. In addition, the efficiency of the binary refrigeration cycle apparatus 1 can be improved. During cooling operation, compression operation is performed in both cylinders.

暖房運転時に暖房負荷が大きいときには、第1、第2シリンダ108A、108Bの両方で圧縮運転を行うことも可能である。冷房運転時に冷房負荷が小さいときには、第2シリンダ108Bを非圧縮運転することも可能である。   When the heating load is large during the heating operation, the compression operation can be performed by both the first and second cylinders 108A and 108B. When the cooling load is small during the cooling operation, the second cylinder 108B can be non-compressed.

また、1次側冷凍サイクル10では、冷房運転時の吸込み圧力が、暖房運転時の吸込み圧力よりも高いため、冷房運転時に第1圧縮機100に吸い込まれる冷媒の比体積が、暖房運転時に第1圧縮機100に吸い込まれる冷媒の比体積より小さい(冷媒の密度が大きい)。このため、冷房運転時に片側シリンダを非圧縮運転させて冷媒の吸込み容積を減少させることにより、効率の良い高回転数で2元冷凍圧縮機1を運転することができ、2元冷凍サイクル装置1の効率を向上させることができる。暖房運転時は、第1、第2シリンダ108A、108Bの両方で圧縮運転を行う。   Further, in the primary side refrigeration cycle 10, since the suction pressure during the cooling operation is higher than the suction pressure during the heating operation, the specific volume of the refrigerant sucked into the first compressor 100 during the cooling operation is the same as that during the heating operation. 1 It is smaller than the specific volume of the refrigerant sucked into the compressor 100 (the density of the refrigerant is large). For this reason, the binary refrigeration compressor 1 can be operated at an efficient high rotation speed by reducing the refrigerant suction volume by performing the non-compression operation of the one-side cylinder during the cooling operation. Efficiency can be improved. During the heating operation, the compression operation is performed in both the first and second cylinders 108A and 108B.

冷房運転時に冷房負荷が大きいときには、第1、第2シリンダ108A、108Bの両方で圧縮運転を行うことも可能である。   When the cooling load is large during the cooling operation, it is possible to perform the compression operation in both the first and second cylinders 108A and 108B.

上述したように本実施の形態に係る2元冷凍サイクル装置1によれば、冷房運転時及び暖房運転時に、それぞれ2次側冷凍サイクル及び1次側冷凍サイクルのシリンダを通常運転、片側シリンダ非圧縮運転と使い分けることにより、負荷に応じて常に効率の良い高回転数で第1、第2圧縮機100、200を運転することができ、2元冷凍サイクル装置1の効率を向上することができる。   As described above, according to the two-stage refrigeration cycle apparatus 1 according to the present embodiment, during the cooling operation and the heating operation, the secondary side refrigeration cycle and the primary side refrigeration cycle cylinders are normally operated and the one side cylinder is not compressed, respectively. By properly using the operation, the first and second compressors 100 and 200 can always be operated at a high rotational speed with high efficiency according to the load, and the efficiency of the two-way refrigeration cycle apparatus 1 can be improved.

なお、上述した例では、第1及び第2圧縮機100、200のそれぞれ2つのシリンダ容積を同一(5:5)としたが、必要な冷媒循環量にあわせて、2つのシリンダ容積を5:5ではなく、7:3や4:6等使用状況や要求性能に応じて差をつけるようにしてもよい。このように、シリンダ容積に差をつけ、最適化することにより、効率をさらに高めることができる。また、上述した例では、1次側冷凍サイクル10の第1圧縮機100及び2次側冷凍サイクル20の第2圧縮機200の両方を2シリンダ形回転式圧縮機としたが、2次側冷凍サイクル20の第2圧縮機200のみを2シリンダ形回転式圧縮機にしても適用可能である。ただし、1次及び2次冷凍サイクル10、20の両方の圧縮機を2シリンダ形回転式圧縮機にすることが望ましいが、2次側冷凍サイクル20の第2圧縮機200のみ2シリンダ形回転式圧縮機にすることでも、従来の2元冷凍サイクル装置よりも高効率、かつ、製造コストの低減が可能となる。   In the above-described example, the two cylinder volumes of the first and second compressors 100 and 200 are the same (5: 5). However, the two cylinder volumes are set to 5: 5 according to the necessary refrigerant circulation amount. Instead of 5, the difference may be given according to usage conditions and required performance such as 7: 3 and 4: 6. Thus, the efficiency can be further increased by making a difference and optimizing the cylinder volume. In the above-described example, both the first compressor 100 of the primary side refrigeration cycle 10 and the second compressor 200 of the secondary side refrigeration cycle 20 are two-cylinder rotary compressors. Only the second compressor 200 of the cycle 20 can be applied to a two-cylinder rotary compressor. However, it is desirable that both the primary and secondary refrigeration cycles 10 and 20 have a two-cylinder rotary compressor, but only the second compressor 200 of the secondary refrigeration cycle 20 has a two-cylinder rotary type. Even by using a compressor, it is possible to achieve higher efficiency and lower manufacturing costs than the conventional two-way refrigeration cycle apparatus.

図4は2元冷凍サイクル装置1の変形例に係る冷房運転時のT−h線図、図5は本変形例の暖房運転時のT−h線図、図6は本変形例の1次側冷凍サイクル10と2次側冷凍サイクル20の熱交換時の凝縮温度と全体のサイクル効率(COP)を示したグラフ、図7は本変形例の二酸化炭素冷媒のP−h線図上に冷房運転と暖房運転における二酸化炭素の冷媒状態を示したグラフである。   4 is a Th diagram during cooling operation according to a modification of the two-way refrigeration cycle apparatus 1, FIG. 5 is a Th diagram during heating operation according to this modification, and FIG. 6 is a primary of this modification. FIG. 7 is a graph showing the condensation temperature and the overall cycle efficiency (COP) during heat exchange between the side refrigeration cycle 10 and the secondary side refrigeration cycle 20, and FIG. 7 shows the cooling on the Ph diagram of the carbon dioxide refrigerant of this modification. It is the graph which showed the refrigerant | coolant state of the carbon dioxide in a driving | operation and heating operation.

本変形例の2元冷凍サイクル装置1は、1次側冷凍サイクル10に使用する1次側冷媒をHC系冷媒であるプロパンを用い、2次側冷凍サイクル20に使用する2次側冷媒に二酸化炭素冷媒を用いたものである。   The binary refrigeration cycle apparatus 1 of the present modification uses propane, which is an HC refrigerant, as the primary refrigerant used in the primary refrigeration cycle 10, and uses carbon dioxide as the secondary refrigerant used in the secondary refrigeration cycle 20. A carbon refrigerant is used.

図4中破線Qは1次側冷媒であるプロパンのT−hの変化、図4中実線Rは2次側冷媒である二酸化炭素のT−hの変化を示したグラフである。   A broken line Q in FIG. 4 is a graph showing a change in Th of propane as a primary refrigerant, and a solid line R in FIG. 4 is a graph showing a change in Th of carbon dioxide as a secondary refrigerant.

2元冷凍サイクル装置1は、2次側冷凍サイクル20の室内熱交換器(蒸発)270で室内空気から吸熱して室内を冷却する。室内空気から吸熱した2次側冷媒は、中間熱交換器300の1次側冷凍サイクル10の第1中間熱交換器(蒸発)300Aと2次側冷凍サイクル20の第2中間熱交換器(凝縮)300Bとで熱交換し、冷媒の熱を2次側冷媒から1次側冷媒に移動させる。1次側冷媒の熱を1次側冷凍サイクル10の室外熱交換器(凝縮)160で室外空気へ放熱させる。   The dual refrigeration cycle apparatus 1 absorbs heat from room air by the indoor heat exchanger (evaporation) 270 of the secondary refrigeration cycle 20 to cool the room. The secondary side refrigerant that has absorbed heat from the indoor air is converted into the first intermediate heat exchanger (evaporation) 300A of the primary side refrigeration cycle 10 of the intermediate heat exchanger 300 and the second intermediate heat exchanger (condensation) of the secondary side refrigeration cycle 20. ) Exchange heat with 300B to move the heat of the refrigerant from the secondary side refrigerant to the primary side refrigerant. The heat of the primary refrigerant is radiated to the outdoor air by the outdoor heat exchanger (condensation) 160 of the primary refrigeration cycle 10.

図5は、本変形例の2元冷凍サイクル装置1の暖房運転時における、図5中破線Qは1次側冷媒であるプロパンのT−hの変化、図5中実線Rは2次側冷媒である二酸化炭素のT−hの変化を示したグラフである。   FIG. 5 shows a change in Th of propane, which is a primary side refrigerant, and a solid line R in FIG. 5 is a secondary side refrigerant during heating operation of the binary refrigeration cycle apparatus 1 of the present modification. It is the graph which showed the change of Th of carbon dioxide which is.

2元冷凍サイクル装置1は、1次側冷凍サイクル10の室外熱交換器(蒸発)160にて室外空気から吸熱し、中間熱交換器300の1次側冷凍サイクル10の第1中間熱交換器(凝縮)300Aと2次側冷凍サイクル20の第2中間熱交換器(蒸発)300Bとで熱交換し、冷媒の熱を1次側冷媒から2次側冷媒へ移動させる。そして、2次側冷媒の熱を2次側冷凍サイクル20の室内熱交換器270により室内を暖房する。   The binary refrigeration cycle apparatus 1 absorbs heat from outdoor air in the outdoor heat exchanger (evaporation) 160 of the primary side refrigeration cycle 10, and the first intermediate heat exchanger of the primary side refrigeration cycle 10 of the intermediate heat exchanger 300. (Condensation) 300A and the second intermediate heat exchanger (evaporation) 300B of the secondary-side refrigeration cycle 20 exchange heat to move the heat of the refrigerant from the primary-side refrigerant to the secondary-side refrigerant. Then, the heat of the secondary side refrigerant is heated by the indoor heat exchanger 270 of the secondary side refrigeration cycle 20.

図4、5に示すように、2次側冷媒として用いる二酸化炭素はサイクル効率が低いため、2次側冷凍サイクル20の冷媒に使用する場合は、1次側冷凍サイクル10で、高圧側と低圧側の温度差を可能な限り取り、2次側冷凍サイクルは圧力差を極力小さくすることが消費電力量の点で望ましい。   As shown in FIGS. 4 and 5, since carbon dioxide used as the secondary refrigerant has low cycle efficiency, when used as a refrigerant in the secondary refrigeration cycle 20, the primary side refrigeration cycle 10 uses a high pressure side and a low pressure. It is desirable from the viewpoint of power consumption that the secondary side refrigeration cycle takes the temperature difference on the side as much as possible and makes the pressure difference as small as possible.

図6は、1次側冷凍サイクル10と2次側冷凍サイクル20との熱交換時の凝縮温度と全体のサイクル効率(COP)を示したグラフである。冷房運転時は、2次側冷凍サイクル20の二酸化炭素の凝縮温度を下げるほど、暖房運転時は1次側冷凍サイクル10のプロパンの凝縮温度を上げるほど効率が高くなる。   FIG. 6 is a graph showing the condensation temperature and the overall cycle efficiency (COP) during heat exchange between the primary side refrigeration cycle 10 and the secondary side refrigeration cycle 20. The efficiency increases as the condensation temperature of carbon dioxide in the secondary refrigeration cycle 20 decreases during the cooling operation, and as the condensation temperature of propane in the primary refrigeration cycle 10 increases during the heating operation.

図7は、二酸化炭素のP−h線図上に、冷房運転時及び暖房運転時における二酸化炭素の冷媒状態を示したグラフである。図7に示すように、冷房運転時と暖房運転時で、作動圧力が極端に変わることが分かる。他の冷媒は圧力に大きな差があると、コンプレッサ吸込における冷媒の密度の差が大きくなる。しかし、二酸化炭素冷媒の場合は、暖房運転時に超臨界サイクルになり、エンタルピ差が冷房運転時に比べて極端に小さくなる。このため、上述した第1の実施の形態の2元冷凍サイクル装置1とは異なり、吸込み圧力が低く、冷媒の比体積の大きな(冷媒密度の小さい)冷房運転の方が暖房運転に比べて、能力が大きすぎることになる。   FIG. 7 is a graph showing the refrigerant state of carbon dioxide during the cooling operation and the heating operation on the Ph graph of carbon dioxide. As shown in FIG. 7, it can be seen that the operating pressure changes extremely between the cooling operation and the heating operation. When there is a large difference in pressure among other refrigerants, the difference in refrigerant density in the compressor suction increases. However, in the case of carbon dioxide refrigerant, a supercritical cycle occurs during heating operation, and the enthalpy difference becomes extremely smaller than that during cooling operation. For this reason, unlike the two-way refrigeration cycle apparatus 1 of the first embodiment described above, the cooling operation in which the suction pressure is low and the specific volume of the refrigerant is large (the refrigerant density is small) compared to the heating operation, The ability is too big.

したがって、一方のシリンダを圧縮運転と非圧縮運転とを切替可能な2シリンダ形回転式圧縮機(例えば第1圧縮機100、第2圧縮機200)を備えることにより、冷房運転時や低負荷時には1つのシリンダでの運転、暖房運転時や高負荷時には2シリンダでの運転とすることができ、適用能力範囲を広げることが可能となる。   Therefore, by providing a two-cylinder rotary compressor (for example, the first compressor 100 and the second compressor 200) that can switch one cylinder between compression operation and non-compression operation, during cooling operation or low load Operation with one cylinder, heating operation or high load can be performed with two cylinders, and the applicable capacity range can be expanded.

本実施例の2元冷凍サイクル装置1によれば1次側冷媒に炭化水素(HC)系の冷媒を用い、2次側冷媒に二酸化炭素冷媒を用いると、使用冷媒が自然界に存在する冷媒であることから、代替フロンを用いる必要がなく、地球温暖化への冷媒自体の直接効果を減少することが可能である。このため、冷媒の漏れなどによる温暖化防止に有効となる。また、室内側に使用する冷媒が二酸化炭素冷媒であるため、室内に可燃性冷媒が漏れることもなく、安全に使用可能である。   According to the binary refrigeration cycle apparatus 1 of the present embodiment, when a hydrocarbon (HC) refrigerant is used as the primary refrigerant and a carbon dioxide refrigerant is used as the secondary refrigerant, the refrigerant used is a refrigerant that exists in nature. As a result, it is not necessary to use an alternative chlorofluorocarbon, and it is possible to reduce the direct effect of the refrigerant itself on global warming. For this reason, it is effective in preventing global warming due to leakage of the refrigerant. Further, since the refrigerant used on the indoor side is a carbon dioxide refrigerant, the combustible refrigerant does not leak into the room and can be used safely.

なお、本発明は上記実施の形態に限定されるものではない。例えば、上述した例で2次側冷媒に二酸化炭素を用いるとしたが、この二酸化炭素冷媒は単一冷媒又は混合冷媒のどちらでも適用できる。この他、本発明の要旨を逸脱しない範囲で種々変形実施可能である。   The present invention is not limited to the above embodiment. For example, in the above-described example, carbon dioxide is used as the secondary side refrigerant, but this carbon dioxide refrigerant can be applied as either a single refrigerant or a mixed refrigerant. In addition, various modifications can be made without departing from the scope of the present invention.

本発明の第1の実施の形態に係る2元冷凍サイクル装置を示す構成図。1 is a configuration diagram illustrating a two-way refrigeration cycle apparatus according to a first embodiment of the present invention. 同2元冷凍サイクル装置に組み込まれた第1圧縮機及び第2圧縮機を示す断面図。Sectional drawing which shows the 1st compressor and the 2nd compressor incorporated in the same binary refrigeration cycle apparatus. 同2元冷凍サイクル装置の暖房運転時におけるP−h線図。The Ph diagram at the time of the heating operation of the binary refrigeration cycle apparatus. 同2元冷凍サイクル装置の変形例における冷房運転時のT−h線図。The Th diagram at the time of air_conditionaing | cooling operation in the modification of the same binary refrigeration cycle apparatus. 本変形例の暖房運転時のT−h線図。The Th diagram at the time of the heating operation of this modification. 本変形例の1次側冷凍サイクルと2次側冷凍サイクルの熱交換時の凝縮温度と全体のサイクル効率(COP)を示したグラフ。The graph which showed the condensation temperature at the time of heat exchange of the primary side refrigerating cycle of this modification, and a secondary side refrigerating cycle, and the whole cycle efficiency (COP). 本変形例の二酸化炭素冷媒のP−h線図上に冷房運転と暖房運転における二酸化炭素の冷媒状態を示したグラフ。The graph which showed the refrigerant | coolant state of the carbon dioxide in the air_conditionaing | cooling operation and heating operation on the Ph diagram of the carbon dioxide refrigerant of this modification.

符号の説明Explanation of symbols

1…2元冷凍サイクル装置、10…1次側冷凍サイクル、20…2次側冷凍サイクル、100…第1圧縮機、150…第1四方弁、160…室外熱交換器、170…第1膨張装置、180…第1アキュムレータ、200…第2圧縮機、250…第2四方弁、260…第2膨張弁、270…室内熱交換器、280…第2アキュムレータ、300…中間熱交換器、300A…第1中間熱交換器、300B…第2中間熱交換器、E…室外構成、I…室内構成、C…冷房運転時の冷媒の流れ、H…暖房運転時の冷媒の流れ。   DESCRIPTION OF SYMBOLS 1 ... Dual refrigeration cycle apparatus, 10 ... Primary side refrigeration cycle, 20 ... Secondary side refrigeration cycle, 100 ... 1st compressor, 150 ... 1st four-way valve, 160 ... Outdoor heat exchanger, 170 ... 1st expansion Apparatus 180 ... first accumulator 200 ... second compressor 250 ... second four-way valve 260 ... second expansion valve 270 ... indoor heat exchanger 280 ... second accumulator 300 ... intermediate heat exchanger 300A ... 1st intermediate heat exchanger, 300B ... 2nd intermediate heat exchanger, E ... Outdoor configuration, I ... Indoor configuration, C ... Flow of refrigerant during cooling operation, H ... Flow of refrigerant during heating operation.

Claims (2)

室外熱交換器を有する1次側冷凍サイクルと、
室内熱交換器を有する2次側冷凍サイクルと、
この2次側冷凍サイクルに設けられ、2つのシリンダを有するとともに、これら2つのシリンダのうち1つは圧縮運転と非圧縮運転とを切替可能に構成され、インバータ駆動される2シリンダ形回転式圧縮機と、
上記1次側冷凍サイクルの冷媒と上記2次側冷凍サイクルの冷媒とを熱交換する中間熱交換器とを備え
暖房運転時に、上記2次側冷凍サイクルの2シリンダ形回転式圧縮機の1つのシリンダを非圧縮運転させて吸込み容積を減少させるとともに、冷房運転時には、両方のシリンダを圧縮運転させることを特徴とする2元冷凍サイクル装置。
A primary refrigeration cycle having an outdoor heat exchanger;
A secondary refrigeration cycle having an indoor heat exchanger;
A two-cylinder rotary compression system that is provided in the secondary refrigeration cycle and has two cylinders, one of which is switchable between a compression operation and a non-compression operation, and is driven by an inverter. Machine,
An intermediate heat exchanger for exchanging heat between the refrigerant in the primary refrigeration cycle and the refrigerant in the secondary refrigeration cycle ,
During heating operation, one cylinder of the two-cylinder rotary compressor of the secondary side refrigeration cycle is non-compressed to reduce the suction volume, and during cooling operation, both cylinders are compressed. Two-way refrigeration cycle device.
上記2つのシリンダの容積は、互いに異なることを特徴とする請求項1に記載の2元冷凍サイクル装置。   The two-way refrigeration cycle apparatus according to claim 1, wherein volumes of the two cylinders are different from each other.
JP2006189655A 2006-07-10 2006-07-10 Two-way refrigeration cycle equipment Expired - Fee Related JP4815286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006189655A JP4815286B2 (en) 2006-07-10 2006-07-10 Two-way refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006189655A JP4815286B2 (en) 2006-07-10 2006-07-10 Two-way refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2008020083A JP2008020083A (en) 2008-01-31
JP4815286B2 true JP4815286B2 (en) 2011-11-16

Family

ID=39076163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006189655A Expired - Fee Related JP4815286B2 (en) 2006-07-10 2006-07-10 Two-way refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4815286B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103047721A (en) * 2012-12-21 2013-04-17 美意(浙江)空调设备有限公司 Air-cooling cascade heat pump
CN106440457A (en) * 2016-07-29 2017-02-22 广东美的制冷设备有限公司 Cooling-and-heating-type air conditioner and control method thereof
WO2018018766A1 (en) * 2016-07-29 2018-02-01 广东美的制冷设备有限公司 Cold-warm air conditioner and control method
WO2018018767A1 (en) * 2016-07-29 2018-02-01 广东美的制冷设备有限公司 Cooling and heating air conditioner, and control method
CN110770516A (en) * 2017-06-23 2020-02-07 大金工业株式会社 Heat transfer system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR078902A1 (en) * 2009-11-03 2011-12-14 Du Pont COOLING SYSTEM IN CASCADA WITH FLUOROOLEFINE REFRIGERANT
JP5518102B2 (en) * 2010-01-22 2014-06-11 三菱電機株式会社 Air conditioning and hot water supply complex system
JP5570364B2 (en) * 2010-09-23 2014-08-13 東芝キヤリア株式会社 Two-way refrigeration cycle equipment
CN101995110B (en) * 2010-10-29 2013-03-27 广东美的电器股份有限公司 Control method of double-cylinder variable-capacity compressor air conditioning system
JP2013190154A (en) * 2012-03-13 2013-09-26 Fuji Electric Co Ltd Refrigeration apparatus
CN104848489B (en) * 2015-05-15 2018-02-02 广东美的制冷设备有限公司 The control method of air conditioner
CN105928146B (en) * 2016-04-29 2018-10-26 广东美的制冷设备有限公司 The control method of heating and air conditioner
CN106288489A (en) * 2016-07-29 2017-01-04 广东美的制冷设备有限公司 Heating and air conditioner and control method
JP7305050B2 (en) * 2020-06-29 2023-07-07 三菱電機株式会社 refrigeration cycle equipment
JP7235998B1 (en) 2021-09-30 2023-03-09 ダイキン工業株式会社 Cascade unit and refrigeration cycle equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01193089A (en) * 1988-01-29 1989-08-03 Toshiba Corp Rotary compressor
JP2555464B2 (en) * 1990-04-24 1996-11-20 株式会社東芝 Refrigeration cycle equipment
JPH04148160A (en) * 1990-10-12 1992-05-21 Hitachi Ltd Binary refrigerating cycle
JPH0658280A (en) * 1992-08-06 1994-03-01 Toshiba Corp Multicylinder type rotary compressor
JP3414825B2 (en) * 1994-03-30 2003-06-09 東芝キヤリア株式会社 Air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103047721A (en) * 2012-12-21 2013-04-17 美意(浙江)空调设备有限公司 Air-cooling cascade heat pump
CN106440457A (en) * 2016-07-29 2017-02-22 广东美的制冷设备有限公司 Cooling-and-heating-type air conditioner and control method thereof
WO2018018766A1 (en) * 2016-07-29 2018-02-01 广东美的制冷设备有限公司 Cold-warm air conditioner and control method
WO2018018767A1 (en) * 2016-07-29 2018-02-01 广东美的制冷设备有限公司 Cooling and heating air conditioner, and control method
CN110770516A (en) * 2017-06-23 2020-02-07 大金工业株式会社 Heat transfer system

Also Published As

Publication number Publication date
JP2008020083A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP4815286B2 (en) Two-way refrigeration cycle equipment
JP3674625B2 (en) Rotary expander and fluid machine
US7419369B2 (en) Displacement type expansion machine and fluid machine
JP2004301114A (en) Rotary type closed compressor and refrigerating cycle device
AU2008222268C1 (en) Refrigeration system
US6877340B2 (en) Expander
JP4701875B2 (en) Rotary expander
JP4594301B2 (en) Hermetic rotary compressor
JP2005265278A (en) Refrigeration device
JP2007146747A (en) Refrigerating cycle device
CN107191372B (en) Rotary compressor and refrigerating device with same
JP2011069555A (en) Air conditioner
KR20040049270A (en) Refrigerant Cycling Device
JP2008057395A (en) Hermetic rotary compressor and refrigeration cycle device
JP2010156498A (en) Refrigerating device
JP4462023B2 (en) Rotary expander
JP2012107568A (en) Rotary compressor and refrigerating cycle device
JP2009063247A (en) Refrigeration cycle device, and fluid machine using it
JP4765910B2 (en) Fluid machinery
JP4634191B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP5925136B2 (en) Refrigerant compressor and heat pump equipment
JP2001207983A (en) Gas compressor
JP2001065888A (en) Carbon dioxide refrigerating machine
WO2023152799A1 (en) Compressor and refrigeration cycle device with said compressor
WO2009113261A1 (en) Expander

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees