JP4811637B2 - Steel for die casting mold and die casting mold - Google Patents
Steel for die casting mold and die casting mold Download PDFInfo
- Publication number
- JP4811637B2 JP4811637B2 JP2005086850A JP2005086850A JP4811637B2 JP 4811637 B2 JP4811637 B2 JP 4811637B2 JP 2005086850 A JP2005086850 A JP 2005086850A JP 2005086850 A JP2005086850 A JP 2005086850A JP 4811637 B2 JP4811637 B2 JP 4811637B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- mold
- die casting
- machinability
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 41
- 239000010959 steel Substances 0.000 title claims description 41
- 238000004512 die casting Methods 0.000 title claims description 24
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 238000005496 tempering Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 238000010791 quenching Methods 0.000 description 8
- 230000000171 quenching effect Effects 0.000 description 8
- 229910001563 bainite Inorganic materials 0.000 description 7
- 238000005121 nitriding Methods 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000003483 aging Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000001376 precipitating effect Effects 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910002549 Fe–Cu Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Description
本発明は、優れた被削性および靭性を有し、耐ヒートクラック性も兼備するダイカスト金型用鋼およびダイカスト金型に関するものである。 The present invention relates to a die casting mold steel and a die casting mold that have excellent machinability and toughness and also have heat crack resistance.
ダイカスト金型においてはアルミ合金などの溶湯との接触による加熱と、水溶性離型剤などによる冷却が繰返し行われるため、その金型表面には圧縮および引張の熱応力が負荷される。実操業においては、この熱応力が繰り返し負荷されるため、金型表面に熱疲労クラックが発生し、被加工材に転写されるようになる。このクラックの転写は徐々に激しくなり、金型が使用できなくなると廃却となる。 In a die-cast mold, heating by contact with a molten metal such as an aluminum alloy and cooling by a water-soluble mold release agent are repeatedly performed, so that the mold surface is subjected to compressive and tensile thermal stress. In actual operation, since this thermal stress is repeatedly applied, thermal fatigue cracks are generated on the mold surface and transferred to the workpiece. The transfer of this crack gradually becomes violent and is discarded when the mold cannot be used.
このような熱応力負荷のもとで、多くのダイカスト金型は数万〜十数万ショットの使用に耐えなければならず、素材としては高温強度、靭性に優れる材料が必要となり、一般的にはJIS SKD61が使用される。SKD61は焼入れ焼戻し状態では十分な被削性が得られないため、金型製作は焼きなまし状態で粗加工を行ってから、焼入れ焼戻し処理が行われ、最後に仕上げ加工が行われる工程となっている。 Under such a thermal stress load, many die casting molds must withstand the use of tens of thousands to several tens of thousands of shots, and materials that are excellent in high-temperature strength and toughness are generally required. JIS SKD61 is used. In SKD61, sufficient machinability cannot be obtained in the quenching and tempering state. Therefore, the mold production is a process in which the roughing process is performed in the annealed state, the quenching and tempering process is performed, and finally the finishing process is performed. .
一方で、ダイカスト金型では試作型や少量生産用の金型などのようにSKD61で得られるほどの寿命をさして必要としない金型もある。このような金型には、その使用サイクルの速さに対応すべく、製作リードタイムを短縮することが求められる。すなわち、焼入れ焼戻しにより硬さ調質した後に、粗加工から仕上げ加工までを行なう工程とする必要があり、被削性に優れた金型材料が使用されている(特許文献1参照)。
被削性に優れた金型材料として上述した特許文献1に開示される手法は、被削性を向上させる点では有利であるものの、金型材料としてもう一つ重要な特性である耐ヒートクラック性の点では、硬さが低く設定されているため目標寿命を達成できない懸念がある。他方、一般的には、被削性に優れた金型材料としてSKD61等をベースにSなどの快削性元素を多く含有し、40HRC前後に調質された鋼も使用されており、MnSなどの介在物が多く分布した組織となっている。しかし、それら介在物は素材製造時の鍛造により鍛伸方向に細長く伸びた形態となっているため、被削性は良好である反面、介在物を起点としたヒートクラックが発生し易く、靭性も低いという欠点がある。このためヒートクラックが早期に発生し、介在物に沿って急速に深く進展してしまい、試作型や少量生産用の金型といえども目標とする寿命を達成することができない場合が多くあった。 Although the technique disclosed in Patent Document 1 described above as a mold material having excellent machinability is advantageous in terms of improving machinability, heat crack resistance, which is another important characteristic as a mold material. In terms of the nature, there is a concern that the target life cannot be achieved because the hardness is set low. On the other hand, generally, a mold material having excellent machinability, which includes many free-cutting elements such as S based on SKD61 or the like and is tempered around 40 HRC, such as MnS, is used. It is an organization in which many inclusions are distributed. However, since these inclusions are elongated in the forging direction due to forging at the time of manufacturing the material, the machinability is good, but heat cracks are easily generated from the inclusions, and the toughness is also good. There is a disadvantage that it is low. For this reason, heat cracks occurred early and progressed deeply along the inclusions, and there were many cases where the target life could not be achieved even for trial molds and molds for small volume production. .
このような場合、寿命を向上させるために金型の型彫面に窒化処理を施すという対策も採られているが、それでも介在物が細長く伸びた形態となっていると、発生したヒートクラックが母材まで急速進展してしまうため、窒化による大きな効果は得られ難い。しかも窒化処理を行なうことによって金型作製リードタイムや生産コストの増大となる。 In such a case, in order to improve the service life, measures have been taken to perform nitriding treatment on the mold surface of the mold, but if the inclusions are still elongated, the generated heat cracks Since it rapidly progresses to the base material, it is difficult to obtain a great effect by nitriding. In addition, performing the nitriding treatment increases the die production lead time and production cost.
そこで本発明は、優れた被削性および靭性を有し、耐ヒートクラック性も兼備するダイカスト金型用鋼およびダイカスト金型を提供することを目的とする。 Accordingly, an object of the present invention is to provide a die casting mold steel and a die casting mold that have excellent machinability and toughness and also have heat crack resistance.
本発明者は、快削性元素の添加を必要最低限に抑えることで介在物による靭性低下を抑制し、その基地の被削性を向上させることで快削性元素の多量添加をせずとも良好な被削性を与え、さらには、耐ヒートクラック性を向上させるための良好な高温強度と室温延性を得ることができる成分について鋭意研究を行った結果、本発明に到達した。 The present inventor suppresses toughness deterioration due to inclusions by suppressing the addition of free-cutting elements to the minimum necessary, and improves the machinability of the base without adding a large amount of free-cutting elements. As a result of earnest research on components capable of giving good machinability and further obtaining good high temperature strength and room temperature ductility for improving heat crack resistance, the present invention has been achieved.
すなわち、本発明のダイカスト金型用鋼は、質量%で、C:0.02〜0.1%未満、Si:1.0%以下、Mn:0.1〜3.0%、P:0.005〜0.05%、S:0.01〜0.05%、Ni:2.0%以下、Cr:1.0〜3.0%、MoおよびWは単独または複合で(Mo+1/2W):2.0%以下、V:0.01〜1.0%、Cu:0.5%より多く3.0%以下、残部Feおよび不可避的不純物からなるものであって、優れた被削性を有し、金型としての耐ヒートクラック性をも達成できるダイカスト金型用鋼である。 That is, the die-cast die steel of the present invention is in mass%, C: 0.02 to less than 0.1%, Si: 1.0% or less, Mn: 0.1 to 3.0%, P: 0 0.005 to 0.05%, S: 0.01 to 0.05%, Ni: 2.0% or less, Cr: 1.0 to 3.0%, Mo and W are used alone or in combination (Mo + 1 / 2W) ): 2.0% or less, V: 0.01 to 1.0%, Cu: more than 0.5% and 3.0% or less, balance Fe and unavoidable impurities, excellent cutting It is a steel for die casting molds that can achieve heat crack resistance as a mold.
また、これら本発明のダイカスト金型用鋼について、Feの一部をB:0.003%以下で置換したものであり、あるいは、硬さを35HRC以下に調質したものである。 Further, in these die casting steels of the present invention, part of Fe is replaced with B: 0.003% or less, or the hardness is tempered to 35 HRC or less.
そして、以上の本発明のダイカスト金型用鋼を用いて製作したダイカスト金型であれば、十分な耐ヒートクラック性を達成することができる。 And if it is the die-casting die manufactured using the steel for die-casting die | dyes of the above this invention, sufficient heat crack resistance can be achieved.
本発明によれば、焼入れ焼戻しにより調質済みの鋼を用いて試作用や少量生産用等のダイカスト金型を製作することができ、かつ得られた金型はダイカストに使用中にAl等の被加工材からの熱で表面硬化して耐ヒートクラック性が良好となるので、窒化等の特別な処理を施さなくてもよく、金型製作のリードタイムと生産コストを節減することができる。また、合金元素量が少なく、熱伝導率が良いため、Al等の被加工材からの熱を速やかに拡散させることができ、金型の温度が高くなり過ぎるのを防げるので、耐焼付き性も良好である。 According to the present invention, it is possible to produce a die casting mold for trial production or small production using a steel tempered by quenching and tempering, and the obtained mold is made of Al or the like during use in die casting. Since the surface is hardened by heat from the work material and the heat crack resistance is improved, it is not necessary to perform a special treatment such as nitriding, and the lead time and production cost of mold production can be reduced. In addition, since the amount of alloying elements is small and the thermal conductivity is good, the heat from the work material such as Al can be diffused quickly, and the mold temperature can be prevented from becoming too high, so the seizure resistance is also improved. It is good.
本発明の特徴は、ダイカスト金型への適用に最適かつ、その製作リードタイムをも短縮可能な金型用鋼および金型を見いだしたところにある。 The feature of the present invention lies in finding a mold steel and a mold which are most suitable for application to a die casting mold and can shorten the production lead time.
これらの課題を達成するためには、介在物による靭性低下を抑制し、かつ硬さを高くして高温強度を高める事でヒートクラックの発生および進展を遅くする必要がある。しかし、靭性低下を抑えるべくMnSといった介在物を低減したり、硬さを高くしたりすると被削性が低下してしまうため、本発明者は基地の被削性を向上させて、快削性元素の添加を必要最低限に抑えても優れた被削性を維持でき、さらに型を作成したあとに特別な処理を施すことなく硬さを上昇させる手段を考えた。 In order to achieve these problems, it is necessary to slow down the generation and progress of heat cracks by suppressing toughness reduction due to inclusions and increasing the hardness and increasing the high-temperature strength. However, if the inclusion such as MnS is reduced or the hardness is increased in order to suppress the decrease in toughness, the machinability deteriorates. We considered a means to maintain excellent machinability even if the addition of elements was kept to a minimum, and to increase the hardness without applying any special treatment after the mold was created.
つまり、焼入れにより上部ベイナイト組織を生成させ、かつ焼戻しにてCr,MoまたはW,V炭化物を析出・凝集させて、強度を付与すると共に適度の脆化を起こさせることにより、基地に良好な被削性を与えることである。さらに金型が完成し、ダイカスト金型として使用中に、Al等の被加工材からの熱が加わることで金型キャビティ面表層部もしくは金型全体が時効硬化して良好な耐ヒートクラック性を得ることであって、本発明者は、これら作用を達成できる成分について鋭意研究を行った結果、本発明に到達したのである。以下、本発明鋼の成分限定の理由について述べる。 In other words, by forming an upper bainite structure by quenching and precipitating and agglomerating Cr, Mo or W, V carbides by tempering to give strength and moderate embrittlement, a good coverage can be applied to the base. It is to give machinability. Furthermore, when the mold is completed and used as a die-casting mold, heat from the work material such as Al is applied, so that the surface of the mold cavity surface or the entire mold is age-hardened and has good heat crack resistance. The present inventor has reached the present invention as a result of intensive studies on components capable of achieving these actions. Hereinafter, the reason for limiting the components of the steel of the present invention will be described.
Cは、本発明鋼の焼入れ組織を被切削性の良好な上部ベイナイト組織に保ち、かつ焼戻しにおけるCr,MoまたはW,V炭化物の析出による強化をもたらすために必要な基本的添加元素である。多過ぎると基地をマルテンサイト組織化し、過度の炭化物を形成して硬さの上昇を招き、被削性を低下させるので0.1%未満とし、低過ぎるとフェライトの生成を招くので0.02%以上とする。好ましくは0.04%以上0.08%以下である。 C is a basic additive element necessary for maintaining the hardened structure of the steel of the present invention in an upper bainite structure having good machinability and providing strengthening by precipitation of Cr, Mo or W, V carbides during tempering. If the amount is too large, the base is martensite-organized, and excessive carbides are formed, resulting in an increase in hardness and reducing the machinability. Therefore, if the amount is too low, ferrite is formed. % Or more. Preferably they are 0.04% or more and 0.08% or less.
Siは、製鋼時の脱酸剤であるとともに被削性を高める元素であるが、多過ぎるとフェライトの生成をまねくので1.0%以下とする。 Si is a deoxidizer during steelmaking and is an element that enhances machinability, but if it is too much, it will lead to the formation of ferrite, so 1.0% or less.
Mnは、焼入性を高め、フェライトの生成を抑制し、適度の焼入れ焼戻し硬さを得る効果がある。また、非金属介在物MnSとして存在し、被削性の向上に大きな効果がある。この効果を得るため0.1%以上の添加が必要だが、多過ぎるとベイナイト組織を過度に微細化させ、また基地の粘さを上げて被削性を低下させるので3.0%以下とする。さらに好ましくは0.3%以上である。 Mn has the effect of improving hardenability, suppressing the formation of ferrite, and obtaining appropriate quenching and tempering hardness. Moreover, it exists as nonmetallic inclusion MnS and has a great effect in improving machinability. In order to obtain this effect, addition of 0.1% or more is necessary. However, if too much, the bainite structure is excessively refined, and the viscosity of the base is increased to lower the machinability. . More preferably, it is 0.3% or more.
Sは、非金属介在物MnSとして存在し、被削性の向上に大きな効果がある。この効果を得るため0.01%以上の添加が必要だが、多量に含有すると細長く伸びたMnSが多く存在する組織となり、上述のごとくヒートクラックの起点になり易く、さらに靭性の低下によりクラックが進展してしまう。このため、耐ヒートクラック性を著しく低下させてしまい、窒化処理などの表面処理による改善効果も得られなくなってしまうので、0.05%以下に限定する。 S exists as a non-metallic inclusion MnS and has a great effect on improving machinability. In order to obtain this effect, addition of 0.01% or more is necessary, but if it is contained in a large amount, it becomes a structure in which a large amount of elongated MnS is present, tends to be a starting point of heat cracks as described above, and further cracks develop due to a decrease in toughness. Resulting in. For this reason, the heat cracking resistance is remarkably lowered, and the improvement effect by the surface treatment such as nitriding treatment cannot be obtained.
Niは、焼入性を高め、フェライトの生成を抑制する元素である。多過ぎるとベイナイト組織を過度に微細化させ、基地の粘さを上げて被削性を低下させるので2.0%以下とする。さらに好ましくは1.0%以下である。 Ni is an element that enhances hardenability and suppresses the formation of ferrite. If the amount is too large, the bainite structure is excessively refined, the base viscosity is increased, and the machinability is lowered. More preferably, it is 1.0% or less.
Crは、焼戻しにより微細炭化物を析出・凝集させて強度を付与するために、また窒化処理を行なう場合には、それによる適度の硬化をも得るために添加される。本効果を得るためには1.0%以上が必要であるが、多過ぎるとベイナイト組織を微細化させ基地の粘さを上げて被削性を低下させ、また窒化処理を施す場合に過度に硬化して窒化層の靭性を悪化し、耐ヒートクラック性を低下させるので3.0%以下とした。 Cr is added for precipitating and agglomerating fine carbides by tempering to give strength, and when nitriding is performed, it is added to obtain appropriate hardening. In order to obtain this effect, 1.0% or more is necessary. However, when the amount is too large, the bainite structure is refined to increase the viscosity of the base, and the machinability is decreased. Since it hardens and deteriorates the toughness of the nitrided layer and lowers the heat crack resistance, it is set to 3.0% or less.
MoおよびWは、焼戻しにより微細炭化物を析出・凝集させて強度を付与し、軟化抵抗を向上させるために単独または複合で添加される。本用途の場合、多量の添加は不要で、多過ぎると被削性や延性の低下を招くので、(Mo+1/2W)で2.0%以下とした。なお、上記の効果を得るに好ましくは0.03%以上である。 Mo and W are added singly or in combination to give strength by precipitating and agglomerating fine carbides by tempering and to improve softening resistance. In the case of this application, a large amount of addition is unnecessary, and if it is too much, machinability and ductility are reduced, so (Mo + 1 / 2W) was set to 2.0% or less. In order to obtain the above effect, the content is preferably 0.03% or more.
Vは、焼戻し軟化抵抗を高めるとともに結晶粒の粗大化を抑制し、靭性向上に寄与する。この効果を得るためには0.01%以上を必要とするが、多過ぎると被削性や延性の低下を招くので1.0%以下とした。さらに好ましくは0.5%以下である。 V increases resistance to temper softening and suppresses coarsening of crystal grains, thereby contributing to improvement of toughness. In order to obtain this effect, 0.01% or more is required. However, if it is too much, machinability and ductility are lowered, so 1.0% or less was set. More preferably, it is 0.5% or less.
Cuは、本発明にとっての重要な添加元素であり、金型として使用中にAl等の被加工材からの熱が加わることによりFe−Cu固溶体やCu粒子を析出させ、良好な耐ヒートクラック性を得るために必要な硬さを付与するために添加される。多過ぎるとベイナイト組織を微細化させ被削性が低下し、また熱間加工性を低下させるので3.0%以下とし、低過ぎると上記の効果が得られないので0.5%より多くする。より好ましくは、1.0%〜2.0%である。 Cu is an important additive element for the present invention. When heat is applied from a workpiece such as Al during use as a mold, Fe-Cu solid solution and Cu particles are precipitated, and good heat crack resistance. It is added to give the hardness necessary to obtain If the amount is too large, the bainite structure is refined and the machinability is lowered, and the hot workability is lowered. Therefore, the amount is set to 3.0% or less. . More preferably, it is 1.0% to 2.0%.
Pは、その含有にて焼戻し脆化により適度に靭性を低下させ、被削性を改善することが可能である。この効果を得るために0.005%以上を含有せしめ、好ましくは0.01%以上を添加するが、多過ぎると著しく靭性や延性を悪化させ、耐ヒートクラック性を低下させるので0.05%以下とする。 When P is contained, it is possible to moderately reduce toughness by temper embrittlement and improve machinability. To obtain this effect , 0 . 005% or more is added, and preferably 0.01% or more is added, but if it is too much, the toughness and ductility are remarkably deteriorated and the heat crack resistance is lowered, so the content is made 0.05% or less.
以下、本発明を構成するその他の有効な成分元素について述べる。
Bは、焼入性を高め、また窒素と結びつき窒化硼素となる事によって耐ヒートクラック性を向上させるために必要な硬さを付与する元素であり、必要に応じて添加する。しかし、その含有量が多過ぎると溶接割れが起こりやすくなるため、0.003%以下とする。
Hereinafter, other effective component elements constituting the present invention will be described.
B is an element that increases the hardenability and gives the hardness necessary to improve heat crack resistance by binding to nitrogen and forming boron nitride, and is added as necessary. However, if the content is too large, weld cracking tends to occur, so the content is made 0.003% or less.
なお、Ca,Te,Zr,Se,Ce,Pb,Bi,Sn,Sbは、何れも被削性を付与するための元素であり、必要に応じてこれらのうちの1種あるいは2種以上を添加してもよい。多過ぎると靭性を低下させるので、それぞれCa:0.01%以下、Te:0.2%以下、Zr:0.2%以下、Se:0.05%以下、Ce:0.1%以下、Pb:0.2%以下、Bi:0.2%以下、Sn:0.05%以下、Sb:0.05%以下が好ましい。 Note that Ca, Te, Zr, Se, Ce, Pb, Bi, Sn, and Sb are all elements for imparting machinability, and one or more of these may be added as necessary. It may be added. If the amount is too large, the toughness is reduced, so that Ca: 0.01% or less, Te: 0.2% or less, Zr: 0.2% or less, Se: 0.05% or less, Ce: 0.1% or less, Pb: 0.2% or less, Bi: 0.2% or less, Sn: 0.05% or less, Sb: 0.05% or less are preferable.
以上が本発明鋼の成分の限定理由であるが、本発明鋼を用いてダイカスト金型を製作する際は、基地に更なる被削性を付与するために35HRC以下に調質することが好ましい。これにおいては焼入れ後の焼戻しにてその硬さの付与が可能である。そして、その優れた被削性と金型としての十分な硬さを得るに好ましくは30HRC以上である。 The above is the reason for limiting the components of the steel of the present invention, but when producing a die-casting mold using the steel of the present invention, it is preferable to temper to 35 HRC or less in order to give further machinability to the base. . In this, the hardness can be imparted by tempering after quenching. And it is preferably 30 HRC or more to obtain the excellent machinability and sufficient hardness as a mold.
表1に本発明鋼および比較鋼の化学成分を示す。比較鋼Hはダイカスト金型として一般的に使用されているJIS SKD61である。 Table 1 shows chemical components of the steels of the present invention and comparative steels. The comparative steel H is JIS SKD61 generally used as a die casting mold.
これらの本発明鋼および比較鋼を焼入れ後、低温(400℃)焼戻しによって調質し、評価試料のダイカスト金型用鋼とした。なお、本発明鋼は全て上部ベイナイト組織になっていることを確認しており、被削性が良好な組織である。そして、これらの評価試料を切削加工してなるダイカスト金型にあっては、その使用中の状態を想定しての、さらに480℃で2時間の時効処理を行った試料の硬さの変化を表2に示す。 These inventive steels and comparative steels were quenched and tempered by tempering at a low temperature (400 ° C.) to obtain die cast steels for evaluation samples. It is confirmed that all the steels of the present invention have an upper bainite structure, and the structure has good machinability. And in the die-casting die formed by cutting these evaluation samples, the change in the hardness of the sample subjected to aging treatment at 480 ° C. for 2 hours, assuming the state in use. Table 2 shows.
本発明鋼A,B,CおよびDは、調質後の鋼素材状態では被削性に優れる一方で、それより製造された金型としての使用中には充分な時効硬化量が得られており、中でもCu量が好ましい範囲である本発明鋼B,CおよびDはその硬化量が大きい。 The steels A, B, C and D of the present invention are excellent in machinability in the steel material state after tempering, while a sufficient age hardening amount is obtained during use as a mold produced therefrom. In particular, the steels B, C and D of the present invention, in which the amount of Cu is preferable, have a large amount of hardening.
一方、C量が本発明の範囲よりも多い比較鋼G,Hでは、焼入性が良過ぎ、かつ炭素量が多いので焼入硬さが高くなり、低温焼戻しでは30〜35HRCの範囲に調質できないため、このままでは被削性が悪い。また、高温焼戻しによって30〜35HRCの範囲に調質したとしても、その場合は、調質中に時効硬化に寄与する元素もほとんど全てが析出してしまうため、その後の金型としての使用中には時効硬化性が失われる。そして、Cu量が本発明の範囲よりも少ない比較鋼EおよびFは、金型としての使用中に時効硬化がほとんど生じず、耐ヒートクラック性に充分な硬さが得られていない。 On the other hand, in the comparative steels G and H having a C amount larger than the range of the present invention, the hardenability is too good and the carbon amount is large, so that the quenching hardness is high, and the low temperature tempering is adjusted to a range of 30 to 35 HRC. Since the quality cannot be achieved, the machinability is poor as it is. In addition, even if the temperature is tempered in the range of 30 to 35 HRC by high temperature tempering, almost all elements contributing to age hardening are precipitated during tempering. Loses age hardening. The comparative steels E and F having a Cu content less than the range of the present invention hardly undergo age hardening during use as a mold and do not have sufficient hardness for heat crack resistance.
次に、表1の本発明鋼B,Cおよび比較鋼Hを32HRCと37HRCに調質した試料の、600℃での高温引張試験から得られた0.2%耐力値および室温(23±2℃)での引張試験から得られた絞り値と、さらに37HRCに調質した試料の熱伝導率とを表3に示す。ここで、本発明鋼B,Cにあっては、その32HRCの硬さは、金型として使用中の初期状態を想定したものであり、37HRCの硬さは、使用中に硬さが向上した状態を想定したものである。比較鋼Hにあっては、金型として使用中の硬さ向上は期待できないが、本発明の効果を示す上で、敢えて同2種の硬さ試料を準備している。 Next, 0.2% proof stress value and room temperature (23 ± 2) obtained from a high temperature tensile test at 600 ° C. of samples obtained by refining the inventive steels B and C and the comparative steel H in Table 1 to 32HRC and 37HRC. Table 3 shows the drawing value obtained from the tensile test at [° C.] and the thermal conductivity of the sample tempered to 37 HRC. Here, in the present invention steels B and C, the hardness of 32HRC assumes an initial state in use as a mold, and the hardness of 37HRC has improved in use. It assumes a state. In the comparative steel H, the improvement in hardness during use as a mold cannot be expected, but the two types of hardness samples are prepared in order to show the effect of the present invention.
SKD61である比較鋼Hは、その硬さが高くなると、それに従って耐力値は向上し、そして絞り値は低下するものであるところ、本発明鋼B,Cは、いずれの硬さ状態であっても、37HRCの比較鋼Hよりも高温強度が高く、32HRCの比較鋼Hよりも室温延性が大きいことから、優れた耐ヒートクラック性を示すことがわかる。また、合金元素量が少ない本発明鋼B,Cは、比較鋼Hと比べて熱伝導率が高く、優れた耐焼付き性を有する事もわかる。 When the hardness of the comparative steel H, which is SKD61, is increased, the proof stress value is improved and the squeezing value is decreased accordingly. The steels B and C of the present invention are in any hardness state. However, since the high temperature strength is higher than that of the comparative steel H of 37HRC and the room temperature ductility is higher than that of the comparative steel H of 32HRC, it can be seen that excellent heat crack resistance is exhibited. It can also be seen that the inventive steels B and C having a small amount of alloy elements have higher thermal conductivity than the comparative steel H and have excellent seizure resistance.
次に、本発明鋼BおよびCを32HRCと37HRCに調質した試料を、室温で2mmUノッチシャルピー衝撃試験した結果を表4に示す。なお、この場合においても、2種の硬さを準備する理由は、実施例2の通りである。 Next, Table 4 shows the results of a 2 mm U-notch Charpy impact test on samples prepared by tempering steels B and C of the present invention to 32 HRC and 37 HRC at room temperature. In this case as well, the reason for preparing two types of hardness is as in Example 2.
本発明鋼は、いずれの硬さ状態の時であっても、60J/cm2前後の高いシャルピー衝撃値を示しており、金型使用初期の状態(32HRC)でも、使用中に時効硬化(37HRCに硬度上昇)しても、十分な靭性を有することがわかる。 The steel of the present invention shows a high Charpy impact value of around 60 J / cm 2 even in any hardness state, and is age-hardened (37 HRC) during use even in the initial state of use of the mold (32 HRC). Even if the hardness is increased), it can be seen that it has sufficient toughness.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005086850A JP4811637B2 (en) | 2005-03-24 | 2005-03-24 | Steel for die casting mold and die casting mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005086850A JP4811637B2 (en) | 2005-03-24 | 2005-03-24 | Steel for die casting mold and die casting mold |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006265652A JP2006265652A (en) | 2006-10-05 |
JP4811637B2 true JP4811637B2 (en) | 2011-11-09 |
Family
ID=37201915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005086850A Expired - Fee Related JP4811637B2 (en) | 2005-03-24 | 2005-03-24 | Steel for die casting mold and die casting mold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4811637B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111136217B (en) * | 2020-03-05 | 2021-09-21 | 无锡灵通新材料有限公司 | Casting process of generator impeller |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5376118A (en) * | 1976-12-17 | 1978-07-06 | Hitachi Metals Ltd | Prehardened metal mold steel for molding plastic |
JP3401915B2 (en) * | 1994-06-27 | 2003-04-28 | 大同特殊鋼株式会社 | Steel for plastic molds with excellent machinability and weldability |
JPH08164465A (en) * | 1994-12-12 | 1996-06-25 | Daido Steel Co Ltd | Steel for die of die casting in small quantity production |
JP4432012B2 (en) * | 2000-10-16 | 2010-03-17 | 日立金属株式会社 | Die-casting mold manufacturing method and die-casting mold |
-
2005
- 2005-03-24 JP JP2005086850A patent/JP4811637B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006265652A (en) | 2006-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5143531B2 (en) | Cold mold steel and molds | |
WO2019080457A1 (en) | Nitrogen-containing microalloying spring steel and preparation method therefor | |
JP2007197784A (en) | Alloy steel | |
JP5929963B2 (en) | Hardening method of steel | |
WO2008032816A1 (en) | Hot-working tool steel having excellent stiffness and high-temperature strength and method for production thereof | |
JP5464214B2 (en) | Ultra-high strength stainless steel alloy strip, method of manufacturing the same, and method of using the strip to manufacture a golf club head | |
JP2020070457A (en) | Hot work tool steel having excellent thermal conductivity | |
WO2007123164A1 (en) | Piston ring material for internal combustion engine | |
JP3738003B2 (en) | Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same | |
JP2021017623A (en) | Tool steel for hot work, excellent in thermal conductivity | |
JP6911606B2 (en) | Nitriding parts and nitriding method | |
JP2020026567A (en) | Hot stamp die steel, hot stamp die and method for producing the same | |
JP6477904B2 (en) | Crankshaft rough profile, nitrided crankshaft, and method of manufacturing the same | |
JP2005023375A (en) | High hardness steel having excellent cold workability, heat resistance and wear resistance | |
JP6156670B2 (en) | Hot tool and manufacturing method thereof | |
JP4432012B2 (en) | Die-casting mold manufacturing method and die-casting mold | |
JP5445345B2 (en) | Steel bar for steering rack bar and manufacturing method thereof | |
JP2018119177A (en) | Hot tool steel excellent in thermal conductivity | |
JP5212772B2 (en) | Hot work tool steel with excellent toughness and high temperature strength | |
TW200538559A (en) | The crank shaft excellent in bending fatigue strength | |
KR20020001933A (en) | A low alloyed high speed tool steel for hot and warm working having good toughness and high strength and manufacture method thereof | |
JP4811637B2 (en) | Steel for die casting mold and die casting mold | |
JP2001158937A (en) | Tool steel for hot working, method for producing same and method for producing tool for hot working | |
JP2020029608A (en) | Steel for carbonitriding | |
JP2007162138A (en) | Steel sheet for nitriding treatment and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091027 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110617 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110707 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110728 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110810 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4811637 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140902 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |