JP4805677B2 - Process for the production of glycine-concentrated sodium chloride crystals with improved flowability - Google Patents

Process for the production of glycine-concentrated sodium chloride crystals with improved flowability Download PDF

Info

Publication number
JP4805677B2
JP4805677B2 JP2005513078A JP2005513078A JP4805677B2 JP 4805677 B2 JP4805677 B2 JP 4805677B2 JP 2005513078 A JP2005513078 A JP 2005513078A JP 2005513078 A JP2005513078 A JP 2005513078A JP 4805677 B2 JP4805677 B2 JP 4805677B2
Authority
JP
Japan
Prior art keywords
glycine
salt
saturated brine
crystals
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005513078A
Other languages
Japanese (ja)
Other versions
JP2007527834A (en
Inventor
ダスティダー,パーササラシ
クマー ゴシュ,プッシュピト
バラーブ,アマー
ラメシュバイ トリベディ,ダーシャク
プラマニック,アミタバ
ナイル ゴパ クマー,ベラユダン
Original Assignee
カウンシル オブ サイエンティフィク アンド インダストリアル リサーチ
ヒンドゥスタン リーバ リミティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カウンシル オブ サイエンティフィク アンド インダストリアル リサーチ, ヒンドゥスタン リーバ リミティド filed Critical カウンシル オブ サイエンティフィク アンド インダストリアル リサーチ
Publication of JP2007527834A publication Critical patent/JP2007527834A/en
Application granted granted Critical
Publication of JP4805677B2 publication Critical patent/JP4805677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • C01D3/06Preparation by working up brines; seawater or spent lyes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/26Preventing the absorption of moisture or caking of the crystals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Seasonings (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Description

技術分野
本発明は、塩水から、菱形12面体形状グリシン濃縮、自由流動性塩を生産する単純、経済的、及び効率的な循環方法に関連する。
TECHNICAL FIELD The present invention relates to a simple, economical and efficient circulation method for producing rhombohedral dodecahedral glycine concentrate, free-flowing salt from salt water.

背景及び従来技術
結晶化における注目、及び結晶の形状及び構造を変える様々な方法には長い歴史があり、何故なら、結晶固体状物質の非常に広い範囲の物理的及び化学的特性が、それらの結晶形態及びサイズによって決定されるからである。物質の新しい結晶形態を生成するために結晶化法を変更にするために払われて来た努力は、様々な理由のために多くの重要な物質に対して続けられている。その理由とは、例えば、粒子状物質の大量取扱特性の改善、既存の物質よりも強く又は耐久性のある物質の生産、光学キラリティなどが向上した物理特性を有する物質の生産、長期保存期間を有する物質の生産、より良い流動特性を有する結晶質物質の生産である。
Background and Prior Art Attention in crystallization and the various ways of changing the shape and structure of crystals have a long history because the very wide range of physical and chemical properties of crystalline solid materials This is because it is determined by the crystal form and size. Efforts that have been made to change the crystallization method to produce new crystalline forms of materials continue for many important materials for various reasons. Reasons include, for example, improvement of mass handling characteristics of particulate substances, production of substances that are stronger or more durable than existing substances, production of substances having improved physical properties such as optical chirality, and long-term storage period. Production of substances having better flow characteristics.

結晶質物質の形状(即ち「くせ」)又は結晶格子(即ち「形態」)を変える常用の方法は;(1)添加剤を使用すること(Weissbuchら., Science 253:637, 1991;Addadiら., Topics in Stereochem. 16:1, 1986;Addadiら., Angew. Chem. Int. Ed. Engl. 24:466, 1985;及び Addadiら., Nature 296:21;1982);(2)結晶化溶質を溶かすために使用される結晶化溶媒を変えること(気相からの結晶化など);(3)結晶化溶質の過飽和を変えること;(4)蒸発の速度を変えることが挙げられる。   Conventional methods for changing the shape (ie “feature”) or crystal lattice (ie “morphology”) of crystalline materials are; (1) using additives (Weissbuch et al., Science 253: 637, 1991; Addadi et al. , Topics in Stereochem. 16: 1, 1986; Addadi et al., Angew. Chem. Int. Ed. Engl. 24: 466, 1985; and Addadi et al., Nature 296: 21; 1982); (2) crystallization Examples include changing the crystallization solvent used to dissolve the solute (such as crystallization from the gas phase); (3) changing the supersaturation of the crystallization solute; and (4) changing the rate of evaporation.

塩は、本質的に食事性成分であるものは除いて、様々な工業化学物質、即ち、炭酸ナトリウム(ソーダ灰)、水酸化ナトリウム(カセイソーダ)、及び塩素の製造のための基本的原材料である。加えて、塩は、織物、乳業、染色、食品、肥料、紙及び医薬産業で使用される。食塩など水溶性無機塩の粘結は保存上の共通する問題である。粘結は、結晶を一緒に固める固体内結晶質橋の形成が理由で、かかる塩の内で生ずると考えられている。結晶の表層上の水を最少量蒸発させることは、長期保存期間に渡り、内部結晶橋の形成及びその結果の粘着につながる。当然のことながら、粘結は、自由流動性を下げ、塩を食事性成分として使用することにおいて直接的に負の影響を与え且つ保存上の問題を高めることとなる。塩橋の形成に加えて、結晶粒子の形状は、物質の流動特性に直接的に影響を与えている。より大きな内部結晶表層領域が接触し、それは立方体の形体にあるので、流動特性に対して負の影響を有する。明らかに、内部結晶表層接触領域は、球状又はほぼ球状の結晶質の場合は非常に少なくなり、それによりその流動性が向上する。   Salt is the basic raw material for the production of various industrial chemicals, except sodium carbonate (soda ash), sodium hydroxide (caustic soda), and chlorine, except those that are essentially dietary ingredients. . In addition, salt is used in the textile, dairy, dyeing, food, fertilizer, paper and pharmaceutical industries. The caking of water-soluble inorganic salts such as salt is a common problem in storage. It is believed that caking occurs within such salts because of the formation of a solid internal crystalline bridge that solidifies the crystals together. Evaporating the minimum amount of water on the surface of the crystal leads to the formation of internal crystal bridges and the resulting sticking over long storage periods. Of course, caking reduces free flow, directly negatively affects the use of salt as a dietary ingredient, and increases storage problems. In addition to the formation of salt bridges, the shape of the crystal particles directly affects the flow properties of the material. The larger internal crystal surface area is in contact and has a negative effect on the flow properties because it is in the form of a cube. Obviously, the inner crystal surface contact area is much less in the case of a spherical or nearly spherical crystalline, thereby improving its fluidity.

従来技術(R. Kern, 1953, Compt. Rend., 23b, 830)において、過飽和は、塩の結晶特性の変更について規定の効果を有することが示されている。高過飽和において、塩結晶は8面体((111)面心)形状結晶として、その通常の立方体((100)面心)形体の代わりに成長する。しかし、これらの条件は、塩の変更が加えられた結晶の生産において実際使用にあたり非常に極端であり使用できない。   In the prior art (R. Kern, 1953, Compt. Rend., 23b, 830), supersaturation has been shown to have a defined effect on changing the crystal properties of the salt. At high supersaturation, salt crystals grow as octahedral ((111) face centered) shape crystals instead of their normal cubic ((100) face centered) shape. However, these conditions are very extreme in practical use in the production of crystals with salt changes and cannot be used.

従来技術において、1783年以来、尿素は塩結晶を3面体から12面体へ変更することが知られている(J. B. L. Rome de I'lsle 1783, Crystallographie, 第2版 Paris)。   In the prior art, urea has been known since 1783 to change salt crystals from trihedral to dodecahedron (J. B. L. Rome de I'lsle 1783, Crystallographie, 2nd edition Paris).

従来技術(N. V. Koninklijke Nederlandsche Zoutindustre, 1954による英国特許第752,582号)において、少量の(重量で4ppm)フェロシアン化カリウムが非常によく塩の粘結を防ぐことが主張されている。フェロシアン化カリウムの抗粘結剤としての有効性のもっともらしい説明とは、くせ変更剤は結晶内粘結橋を生じて樹状になり故にもろくなることである。それは、塩が広範囲に渡り分散されなければならない場合の適用、例えば冬の除氷適用などにおいての適用を発見したが、シアン化合物の毒性の可能性により、食事成分として使用することはできない。   In the prior art (UK Patent No. 752,582 by N. V. Koninklijke Nederlandsche Zoutindustre, 1954) it is claimed that a small amount (4 ppm by weight) of potassium ferrocyanide very well prevents salt caking. A plausible explanation for the effectiveness of potassium ferrocyanide as an anti-caking agent is that the habit modifiers form intra-crystalline caking bridges that become dendritic and therefore brittle. It has found application in cases where salt must be dispersed over a wide range, such as winter deicing applications, but cannot be used as a dietary ingredient due to the potential toxicity of cyanide.

従来技術(L. Phoenix, British Chemical Engineering, Vol-11, 1966, 34)において、様々なくせ変更剤の長いリスト及びそれらの抗粘結剤としての有効性が報じられている。このリストは、様々な金属イオンのシアン化物塩、塩化カドミウム、塩化鉛、カリウムシリコ−タングスキン、アンモニアトリアセトアミド、ビクタミドなどが挙げられる。これらの剤は低濃度で立方体(100)に由来するNaCl結晶質形態のくせを樹状(100)及び8面体(111)形態へ変更する。しかし、これらの添加剤はどれも、当該添加剤の毒性及び他の実際上の問題が理由で、食品としてのNaCl中で使用されない。   In the prior art (L. Phoenix, British Chemical Engineering, Vol-11, 1966, 34), a long list of various faux modifiers and their effectiveness as anti-caking agents are reported. This list includes cyanide salts of various metal ions, cadmium chloride, lead chloride, potassium silico-tongue skin, ammonia triacetamide, victamide and the like. These agents, at low concentrations, change the habit of the NaCl crystalline form derived from the cube (100) to the dendritic (100) and octahedral (111) forms. However, none of these additives are used in NaCl as a food because of the toxicity and other practical issues of the additive.

従来技術(Scrutton, A. New Sci. Group, Imp. Chem. Ind. PLC, Runcorn, UK. Symposium Papers-Institution of Chemical Engineers, North Western Branch (1985), (3, Cryst. Habit), 3.1-3.13.)において、NaOHは、蒸発結晶機中のNaClのくせ変更剤としても働くことができ8面体(111)形状のNaCl結晶をもたらすことが示されている。明らかに、両結晶化技術(即ち、蒸発結晶化)及びNaOHくせ変更剤の崩壊性は、食事適用のための変更が加えられたNaCl結晶を生成するための方法を開発する可能性を何ら提案しない。   Conventional Technology (Scrutton, A. New Sci. Group, Imp. Chem. Ind. PLC, Runcorn, UK. Symposium Papers-Institution of Chemical Engineers, North Western Branch (1985), (3, Cryst. Habit), 3.1-3.13 .), It has been shown that NaOH can also act as a habit modifier for NaCl in an evaporative crystallizer, resulting in octahedral (111) shaped NaCl crystals. Clearly, both crystallization techniques (ie, evaporative crystallization) and the disintegrating nature of the NaOH habit modifier suggest no possibility of developing a method to produce NaCl crystals with modifications for dietary applications. do not do.

従来技術(Sasaki, Shigeko; Yokota, Masaaki; Kubota, Noriaki. Iwate Univ., Morioka, Japan. Nippon Kaisui Gakkaishi(2001), 55(5), 340-342.)において、pH2.72に調節して結晶化した場合、クエン酸の存在下でNaCl結晶の8面体{111}面が現れたことが記載されている。新しい面は、クエン酸の天然のpH(=0.75)では決して確認されなかった。しかし、クエン酸は良好な健康ケア特性を有すが、この方法の不利点は、pH調整の必要性及び8面体結晶のみが獲得されることであり、それは、本発明の12面体結晶に比べて天然での球状ではない。   In the prior art (Sasaki, Shigeko; Yokota, Masaaki; Kubota, Noriaki. Iwate Univ., Morioka, Japan. Nippon Kaisui Gakkaishi (2001), 55 (5), 340-342.), The crystal is adjusted to pH 2.72. It is described that an octahedral {111} face of NaCl crystal appeared in the presence of citric acid. A new surface was never confirmed at the natural pH of citric acid (= 0.75). However, although citric acid has good health care properties, the disadvantages of this method are the need for pH adjustment and the acquisition of only octahedral crystals, compared to the dodecahedron crystals of the present invention. It is not spherical in nature.

従来技術(Fenimore, Charles P. ; Thrailkill, Arthun. J. Am. Chem. Soc.1949, 71, 2714)において、水性NaCl溶液中のグリシン、ピリジン、ベタイン、及びβ−アラニンは成長するNaClの結晶のくせに変更を加える;第一に菱形12面体の形成を生じ、他は8面体を与えることが記載されている。この従来技術の主な欠点とは、グリシンにより菱形12面体が獲得されても、グリシンの要求される初期濃度が、飽和塩水中10%と高いことである。さらに、結晶化方法の過程において、グリシン濃度は増加し続け且つ大量のグリシンが、グリシンの飽和限界に至った後に、塩と共に沈殿しうる。このことは、方法を不経済にし且つ塩を許容不可能にする。従来技術は、この弱点を指摘しないばかりか溶液を何ら記載していない。理論考察(A. Julg and B. Deprick, J. Cryst. Growth., 1993, 62, 587; B. Deprick-Cote, J. Langlet, J. Caillet, J. Berges, E. Kassab and R. Constanciel, Theor. Chim. Acta., 1992, 82, 435)は、グリシンの両性形態がNaClの(110)面上で吸収され、それによって、この面を(100)面に比べて一層ゆっくりと成長させ、菱形12面体結晶の形成をもたらすことを示唆する。グリシンは、くせ変更剤として一層魅力的であり、何故ならそれは、(110)面が菱形12面体(即ち、ほぼ球状)形状のNaCl結晶を生じる成長を手伝うからである。   In the prior art (Fenimore, Charles P .; Thrailkill, Arthun. J. Am. Chem. Soc. 1949, 71, 2714), glycine, pyridine, betaine, and β-alanine in an aqueous NaCl solution grow NaCl crystals. It is described that a change is made to the habit; first it results in the formation of a rhomboid dodecahedron and the other gives an octahedron. The main drawback of this prior art is that the required initial concentration of glycine is as high as 10% in saturated brine even if rhombus dodecahedrons are obtained with glycine. Furthermore, in the course of the crystallization process, the glycine concentration continues to increase and large amounts of glycine can precipitate with the salt after reaching the saturation limit of glycine. This makes the process uneconomical and salt unacceptable. The prior art does not point out this weakness and does not describe any solution. Theoretical considerations (A. Julg and B. Deprick, J. Cryst. Growth., 1993, 62, 587; B. Deprick-Cote, J. Langlet, J. Caillet, J. Berges, E. Kassab and R. Constanciel, Theor. Chim. Acta., 1992, 82, 435) shows that the amphoteric form of glycine is absorbed on the (110) face of NaCl, thereby growing this face more slowly than the (100) face, This suggests the formation of rhombohedral dodecahedron crystals. Glycine is more attractive as a habit modifier because it helps the growth of the (110) face to produce rhomboid dodecahedron (ie, nearly spherical) shaped NaCl crystals.

Ullmann百科事典(2002)によれば、グリシンは、リフレッシュ、甘味性を有し、そして筋及びエビにおいて豊富に存在すると報じられている。これらの製品の重要な風味成分であると考えられている。それはビネガー、ピクルス、及びマヨネーズの添加剤として使用される場合、酸味を下げ且つ甘さの感触をそれらの芳香とする。従来技術[Pillsbury Comp., US3510310, 1970及びC. Colburn, Am. Soft Drink J. 126(1971)]において、グリシンは特別な防腐効果を示すことも報じられている[A. G. Castellani, Appl. Microbiol. 1(1953)195. Nisshin Flour Milling, JP 7319945, 1973(G.Ogawa, K. Taguchi); Chem. Abstr. 81(1974)76689z. Nippon Kayaku, JP-Kokai81109580, 1981;chem. Abstr. 95(1981)202313b]。上記従来技術は、グリシンが有害ではないことを明らかに示しているのみならず、それは実際に所定の食品に対して有利な効果を与えうることを示す。本発明において、かかる食品とは、塩が使用され且つ添加剤としてグリシンを0.5〜1.0%含むものであろう。   According to the Ullmann Encyclopedia (2002), glycine is reported to be refreshing, sweet, and abundant in muscle and shrimp. It is considered to be an important flavor component of these products. When used as an additive in vinegar, pickles, and mayonnaise, it reduces acidity and makes sweetness their fragrance. In the prior art [Pillsbury Comp., US3510310, 1970 and C. Colburn, Am. Soft Drink J. 126 (1971)], it has also been reported that glycine exhibits a special antiseptic effect [AG Castellani, Appl. Microbiol. 1 (1953) 195.Nisshin Flour Milling, JP 7319945, 1973 (G.Ogawa, K. Taguchi); Chem. Abstr. 81 (1974) 76689z. Nippon Kayaku, JP-Kokai81109580, 1981; chem. Abstr. 95 (1981 ) 202313b]. The above prior art not only clearly shows that glycine is not harmful, but it shows that it can actually have an advantageous effect on a given food. In the context of the present invention, such foods will contain salt and contain 0.5-1.0% glycine as an additive.

本発明の目的は、塩水から菱形12面体形状グリシン濃縮、自由流動性塩を生産する簡単、経済的及び有効な循環方法を開発することである。   The object of the present invention is to develop a simple, economical and effective circulation method for producing rhombus dodecahedral glycine concentrate, free-flowing salt from salt water.

本発明の更に他の目的は、塩水が全ての考えられる源から使用されて良い方法を開発することである。   Yet another object of the present invention is to develop a process in which brine can be used from all possible sources.

本発明の尚も他の目的は、コスト上有効にするために、乾燥が室温で行われる方法を開発することである。   Yet another object of the present invention is to develop a process in which drying is performed at room temperature in order to be cost effective.

本発明の更に他の目的は、共に結晶化されたグリシンは大半が、飽和塩水を伴う洗浄によって、塩から除去されて良い方法を開発することである。   Yet another object of the present invention is to develop a process in which most of the glycine crystallized together can be removed from the salt by washing with saturated brine.

本発明の尚も他の目的は、従来技術で明らかになった塩の結晶くせ変更剤としてのグリシンの使用の問題を解決すること及びグリシンをくせ変更剤として使用することでNaClのほぼ球状(菱形12面体)結晶を生じさせる実用的な方法を供することである。   Still another object of the present invention is to solve the problem of the use of glycine as a salt crystallizing modifier as revealed in the prior art, and to use the glycine as a modifier for the almost spherical ( Rhombus dodecahedron) is to provide a practical method for producing crystals.

他の目的は、グリシンは人工及び天然の塩水中へ必要量迄溶かすことができ、太陽光線を利用した塩生産の間の所望のくせの変更を生ずることができることを示すことである。   Another object is to show that glycine can be dissolved in artificial and natural salt water to the required amount and can produce the desired habit changes during salt production using sunlight.

本発明の他の目的は、結晶くせの変更が、蒸発の間の塩水の温度が40℃未満である場合に最も良く行われ、それは太陽光線を利用した塩生産のために理想的に適合することを示すことである。   Another object of the present invention is best done when the crystal habit modification is best done when the salt water temperature during evaporation is below 40 ° C., which is ideally suited for salt production using solar radiation. It is to show that.

更に他の目的は、蒸発方法の間に塩と同時に結晶化される過剰量のグリシンを除去する簡単な方法を考えることである。   Yet another object is to consider a simple method for removing excess glycine which is crystallized with the salt during the evaporation process.

他の目的は、グリシンのくせ変更特性は、他の溶解した塩を含む実際の塩水系で維持されることを示すことである。   Another objective is to show that the habit-changing properties of glycine are maintained in an actual saline system containing other dissolved salts.

他の目的は、グリシンを飽和塩水中に塩のロスを伴わずに溶かすためにくせが変更された塩結晶を洗浄するための飽和塩水を使用することである。   Another object is to use saturated brine to wash salt crystals that have been modified to dissolve glycine in saturated brine without loss of salt.

他の目的は、上記5に記載のとおり、直接再利用のために、必要濃度のグリシンを伴い飽和塩水を獲得するような態様でくせが変更された塩の洗浄のために使用される飽和塩水の量を調整することである。   Another object is to use saturated brine as described in 5 above, for washing salt that has been modified in a manner such that it obtains saturated brine with the required concentration of glycine for direct reuse. Is to adjust the amount.

他の目的は、くせが変更された塩を上記5に記載のように飽和塩水で洗浄する間、塩の結晶形態に変更がないことを示すことである。   Another object is to show that there is no change in the crystalline form of the salt while washing the salt with altered habits with saturated brine as described in 5 above.

他の目的は、獲得される塩が、グリシンを使用せずに類似する条件下で生産した塩と比較した場合、優れた流動特性を有することを示すことである。   Another object is to show that the obtained salt has excellent flow properties when compared to salts produced under similar conditions without the use of glycine.

更に他の目的は、くせが変更された塩中0.5〜1.0%のグリシンを供することであり、ここでグリシンは、微量栄養素、芳香剤又は防腐剤として有利な効果を有することが報じられている。   Yet another object is to provide 0.5-1.0% glycine in a salt with a modified habit, where glycine has an advantageous effect as a micronutrient, fragrance or preservative. It has been reported.

他の目的は、くせが変更された塩の洗浄後に獲得したグリシン含有飽和塩水からくせが変更された塩を生産することである。   Another object is to produce a salt-modified salt from glycine-containing saturated saline obtained after washing the salt-modified salt.

他の目的は、方法を実際上有用にするために、グリシン強化塩を獲得するために所望な程度以外はグリシンのロスをなくすことである。   Another objective is to eliminate glycine loss except to the extent desired to obtain a glycine fortified salt in order to make the method useful in practice.

本発明の概要
本発明は、塩水から、菱形12面体形状グリシン濃縮、自由流動性塩を生産する、単純、経済的及び効率的な循環方法に関連し、当該方法は、約10〜25%の範囲の濃度のグリシンを飽和塩水へ加え、グリシンを含有する当該飽和塩水を蒸発させて、グリシンの高含有率を有する結晶を、母液を伴い、獲得し、当該結晶を飽和塩水で洗浄して0.5〜1.0%の範囲のグリシン高含有率を有する菱形12面体形状グリシン濃縮塩及び洗浄した塩水を獲得し、当該母液を当該洗浄した塩水と組み合わせて生成する塩水を獲得し、当該生成塩水を太陽光線による蒸発に委ね、そして(iii)〜(v)の階段を繰り返して、菱形12面体形状グリシン濃縮塩を塩水から、グリシン濃度が0.5〜1.0%の範囲を伴い獲得することを含んで成る。
SUMMARY OF THE INVENTION The present invention relates to a simple, economical and efficient circulation method for producing rhombohedral dodecahedral glycine concentrate, free-flowing salt from salt water, the method comprising about 10-25% A range of concentrations of glycine is added to saturated brine, the saturated brine containing glycine is evaporated, and crystals with a high content of glycine are obtained with the mother liquor, and the crystals are washed with saturated brine to 0 Obtaining rhombohedral dodecahedron-shaped glycine concentrated salt having a high glycine content in the range of 5 to 1.0% and washed salt water, obtaining salt water produced by combining the mother liquor with the washed salt water, Entrust salt water to evaporation by sunlight and repeat steps (iii) to (v) to obtain rhombohedral dodecahedron glycine concentrated salt from salt water with glycine concentration ranging from 0.5 to 1.0% To do Comprising.

本発明の詳細な説明
従って本発明は、塩水から、菱形12面体形状グリシン濃縮、自由流動性塩を生産する、単純、経済的且つ効率的な循環方法に関連し、当該方法は、10〜25%の範囲の濃度のグリシンを飽和塩水へ加え、当該グリシンを含有する飽和塩水を蒸発させて、グリシンの高含有率を有する結晶を、母液を伴い、獲得し、当該結晶を飽和塩水で洗浄して0.5〜1.0%の範囲のグリシン含有率を有する菱形12面体形状グリシン濃縮塩及び洗浄した塩水を獲得し、当該母液を当該洗浄した塩水と組み合わせて生成する塩水を獲得し、当該生成塩水を太陽光線による蒸発に委ね、そして(iii)〜(v)の階段を繰り返して、菱形12面体形状グリシン濃縮塩を塩水から、グリシン濃度が0.5〜1.0%の範囲を伴い獲得することを含んで成る。
DETAILED DESCRIPTION OF THE INVENTION The present invention therefore relates to a simple, economical and efficient circulation method for producing rhombohedral dodecahedral glycine concentrate, free-flowing salt from salt water, the method comprising 10-25 % Glycine is added to saturated brine, the saturated brine containing the glycine is evaporated, crystals with a high content of glycine are obtained with the mother liquor, and the crystals are washed with saturated brine Obtaining a rhombohedral dodecahedron-shaped glycine concentrated salt having a glycine content in the range of 0.5 to 1.0% and a washed salt water, obtaining a salt water produced by combining the mother liquor with the washed salt water, and The generated salt water is left to evaporate with sunlight, and the steps of (iii) to (v) are repeated, and the rhombohedral dodecahedron-shaped glycine concentrated salt is from salt water with a glycine concentration in the range of 0.5 to 1.0%. Acquisition Comprising.

本発明の1つの実施態様において、塩水から、菱形12面体形状グリシン濃縮、自由流動性塩を生産する、単純、経済的、及び効率的な循環方法に関連し、当該方法は:
・約10〜25%の範囲の濃度のグリシンを飽和塩水へ加え、
・グリシンを含有する当該飽和塩水を蒸発させて、グリシンの高含有率を有する結晶を母液を伴い獲得し、
・当該結晶を飽和塩水で洗浄して0.5〜1.0%の範囲のグリシン含有率を有する菱形12面体形状グリシン濃縮塩及び洗浄した塩水を獲得し、
・当該母液を当該洗浄した塩水と組み合わせて生成する塩水を獲得し、
・当該生成塩水を太陽光線による蒸発に委ね、そして
・(iii)〜(v)の階段を繰り返して、菱形12面体形状グリシン濃縮塩を塩水から、グリシン濃度が0.5〜1.0%の範囲を伴い獲得する、
段階を含んで成る。
In one embodiment of the present invention, a simple, economical and efficient circulation method for producing rhombohedral dodecahedral glycine concentrate, free-flowing salt from salt water, the method includes:
Add glycine at a concentration in the range of about 10-25% to saturated brine,
Evaporating the saturated brine containing glycine to obtain crystals with a high content of glycine with mother liquor,
Washing the crystals with saturated brine to obtain a rhombohedral dodecahedral glycine concentrated salt having a glycine content in the range of 0.5-1.0% and the washed brine,
・ Acquire salt water produced by combining the mother liquor with the washed salt water,
-Entrust the produced salt water to evaporation by sunlight, and-Repeat steps (iii) to (v) to obtain rhombohedral dodecahedron-shaped glycine-concentrated salt from salt water with a glycine concentration of 0.5-1.0%. Earn with a range,
Comprising steps.

本発明の尚、他の実施態様において、塩水は、合成塩水、天然塩水の例えば、海の塩水、心土の塩水及び湖の塩水を含んで成る群から選択される。   In still other embodiments of the present invention, the brine is selected from the group comprising synthetic brine, natural brine, such as sea brine, subsoil brine, and lake brine.

本発明の更に他の実施態様において、蒸発は20〜40℃の範囲の温度及び一層好適に周囲条件下での太陽光線による蒸発で行われる。   In yet another embodiment of the invention, the evaporation is carried out at a temperature in the range of 20-40 ° C. and more preferably by evaporation with sunlight under ambient conditions.

本発明の更に他の実施態様において、飽和塩水中のグリシンの初期濃度は22〜25%(w/v)の範囲に維持されている。   In yet another embodiment of the invention, the initial concentration of glycine in saturated brine is maintained in the range of 22-25% (w / v).

本発明の更に他の実施態様において、共に結晶化されたグリシンは主に塩から、飽和塩水で洗浄することによって除去される。   In yet another embodiment of the invention, glycine crystallized together is removed primarily from the salt by washing with saturated brine.

本発明の更に他の実施態様において、洗浄のために使用される飽和塩水の体積は、塩水のグリシン含量が洗浄後に22〜25%になるようなものである。   In yet another embodiment of the invention, the volume of saturated brine used for washing is such that the glycine content of the brine is 22-25% after washing.

本発明の更に他の実施態様において、洗浄物は、直接太陽光線による蒸発に委ねられて、一回再度くせが変更された塩を生産するか、あるいは塩調製後に残る母液と組合わされて太陽光による蒸発に委ねられて良い。   In yet another embodiment of the present invention, the washed product is subjected to evaporation by direct sunlight to produce salt once again with a habit modification, or combined with mother liquor remaining after salt preparation to produce sunlight. It can be left to evaporation.

本発明の更に他の実施態様において、飽和塩水による塩の洗浄は、くせが変更された塩の形態学に対する有害な効果を何ら有さない。   In yet another embodiment of the invention, washing the salt with saturated brine has no detrimental effect on the morphology of the salt with altered habit.

本発明の更に他の実施態様において、くせが変更された塩は、そのほぼ球状の形状が理由で改善された流動特性を有する。   In yet another embodiment of the present invention, the salt modified salt has improved flow properties because of its substantially spherical shape.

本発明の更に他の実施態様において、くせが変更された塩は、プラスチックの表層へ結合する傾向がより少ない。   In yet another embodiment of the invention, the salt with a modified habit is less prone to bond to the surface of the plastic.

本発明の更に他の実施態様において、グリシン利用効率は95〜100%の範囲である。   In yet another embodiment of the present invention, the glycine utilization efficiency is in the range of 95-100%.

本発明の更に他の実施態様において、塩中のグリシンは、グリシンの特性に対する従来技術で報じられているように、香料、防腐剤及び微量栄養素として働くことができる。   In yet another embodiment of the present invention, the glycine in the salt can serve as a perfume, preservative and micronutrient as reported in the prior art for the properties of glycine.

本発明の更に他の実施態様において、グリシンがくせ変更剤である更なる機能をし、改善された流動特性を有するほぼ球状の結晶を生産するグリシン量増加塩を生産するための方法が報じられている。グリシンは、実用性のために本発明の方法においてリサイクルされる。本発明は、合成及び天然の塩水からの塩生産のために適用可能であり、そして特に太陽光による塩生産のために適切である。   In yet another embodiment of the present invention, a method is reported for producing an increased amount of glycine salt that performs the additional function of glycine being a habit modifier and produces substantially spherical crystals with improved flow characteristics. ing. Glycine is recycled in the process of the present invention for utility. The present invention is applicable for salt production from synthetic and natural salt water and is particularly suitable for salt production by sunlight.

本発明は、グリシン微量栄養素に富んだNaClのほぼ球状の結晶を生成するための方法においてグリシンをリサイクルするための方法に関連する。本発明の方法は、通常の立方体形体の代わりに、優れた自由流動特性を有する菱形12面体結晶を生産するためにグリシン(結晶くせ変更剤)の存在下周囲条件下で、商業上入手可能な塩結晶の再結晶化を取扱う。グリシンくせ変更剤は、連続的に再利用されしかも、微量栄養素としてはたらく塩において0.5〜1.0%(w/v)のグリシンを維持する。この方法は、純粋な塩水溶液に適用されて良く又は海の塩水及び心土の塩水など天然塩水系に適用可能でさえもある。   The present invention relates to a method for recycling glycine in a method for producing nearly spherical crystals of NaCl rich in glycine micronutrients. The method of the present invention is commercially available under ambient conditions in the presence of glycine (crystallizing modifier) to produce rhomboid dodecahedron crystals with excellent free-flowing properties instead of the normal cubic shape. Handles recrystallization of salt crystals. The glycine habit modifier is continuously reused and maintains 0.5-1.0% (w / v) glycine in the salt that serves as a micronutrient. This method may be applied to pure saline solutions or even applicable to natural saline systems such as sea brines and subsoil brines.

本発明は、グリシンの結晶くせ変更特性を使用することにおける明らかな問題、即ち、有効なくせを変更のために高濃度のグリシンの必要性の問題及び従来技術においては報じられていないが、本発明の過程において明らかとなった結晶化された塩における高濃度のグリシンの問題を取り除くことに努める。従来技術で報じられたような方法は、実際には、グリシンを高レベルで使用する観点においてそしてまた塩の風味及び適合性に影響を与えうるくせが変更された塩中のグリシンの量が非常に多すぎる観点からも報じられている。本発明の主となる進歩性は:実質的な量のグリシンが蒸発段階の間に失われることの具体化、(ii)グリシンを、くせが変更された塩結晶から飽和塩水を使用することで、塩のロスを何ら伴わず且つ当該塩結晶の所望の形態を維持できうることの具体化、(iii)塩を洗浄する後に獲得される塩水はグリシンを所望の量で含み且つ従って太陽光線による蒸発により直接くせが変更された塩を、更なるグリシンを何ら必要とせず獲得することができることである。更なる進歩性は、グリシンを塩水中で添加剤として使用することに由来する2つの利点、即ち、塩がほぼ球形状なことが理由により自由流動特性を与える結晶くせが変更された特性及び塩中その香料、防腐剤及び微量栄養素としての潜在的使用の発生である。   The present invention does not report the obvious problem in using the crystal habit-changing properties of glycine, i.e., the need for high concentrations of glycine to change the effective hull and the prior art. Efforts will be made to eliminate the problem of high concentrations of glycine in the crystallized salt that was revealed during the process. Methods such as reported in the prior art are actually very effective in terms of the use of glycine at high levels and also in the amount of glycine in the salt that has been altered in the habit which can affect the flavor and compatibility of the salt. It is reported from too many viewpoints. The main inventive step of the present invention is: realization that a substantial amount of glycine is lost during the evaporation phase, (ii) using glycine from saturated salt water with a modified habit crystal Embodiment of the ability to maintain the desired form of the salt crystals without any loss of salt, (iii) the salt water obtained after washing the salt contains the desired amount of glycine and thus by sunlight The salt directly altered by evaporation can be obtained without the need for any further glycine. Further inventiveness comes from two advantages derived from the use of glycine as an additive in salt water: a crystal habit with altered free-flow properties and a salt because the salt is almost spherical. It is the occurrence of potential use as a perfume, preservative and micronutrient.

本発明の1つの実施態様において、くせが変更された塩の生産のために使用した塩水は、塩を溶かすことによって獲得した合成塩水又は天然起源の塩水例えば、海の塩水、心土の塩水及び湖の塩水を溶かすことのいずれかによって合成されて良い。   In one embodiment of the present invention, the brine used for the production of the salt with altered habit is a synthetic brine obtained by dissolving the salt or a brine of natural origin, such as sea brine, subsoil brine and It can be synthesized either by dissolving the lake brine.

本発明の他の実施態様において、グリシンは、結晶化の始まりから塩結晶の12面体形態を確保するために飽和塩水へ22〜25%(w/v)の濃度で加えられている。   In another embodiment of the invention, glycine is added to saturated brine at a concentration of 22-25% (w / v) to ensure a dodecahedron form of the salt crystals from the beginning of crystallization.

本発明の他の実施態様において、塩水の温度は40℃未満に維持され且つ蒸発は周囲条件下で行われた。   In another embodiment of the invention, the brine temperature was maintained below 40 ° C. and evaporation was performed under ambient conditions.

本発明の他の実施態様において、使用した飽和塩水の体積は、100〜500mlの範囲であり且つ塩水は10〜20%の元の体積へ蒸発させられている。   In another embodiment of the invention, the volume of saturated brine used is in the range of 100-500 ml and the brine is evaporated to an original volume of 10-20%.

本発明の更に他の実施態様において、母液はデカンテーションされ且つ結晶化された塩は、グリシンを含有しない新鮮飽和塩水で洗浄されている。   In yet another embodiment of the present invention, the mother liquor is decanted and the crystallized salt is washed with fresh saturated brine containing no glycine.

本発明の更に他の実施態様において、洗浄のために使用した飽和塩水の体積は、洗浄中のグリシン含量が、塩結晶化由来の母液を洗浄中へ添加後、本来の22〜25%(w/v)へ回復させられるような体積である。   In yet another embodiment of the present invention, the volume of saturated brine used for washing is such that the glycine content during washing is 22-25% (w) of the original 22% after addition of the mother liquor from salt crystallization during washing. / V).

本発明の更に他の実施態様において、塩はそのくせが変更された形態を、新鮮飽和塩水での洗浄後に維持している。   In yet another embodiment of the present invention, the salt maintains its altered form after washing with fresh saturated brine.

本発明の更に他の実施態様において、くせが変更された塩は、本来同一の条件下での結晶化方法の間にグリシンを伴わずに生産した塩よりも明らかに一層自由に流動する性質である。   In yet another embodiment of the invention, the salt with a modified habit is clearly more free flowing than the salt produced without glycine during the crystallization process under essentially the same conditions. is there.

本発明の更に他の実施態様において、塩中のグリシン残留率は0.5〜1.0%w/wの範囲である。   In yet another embodiment of the invention, the glycine residue in the salt ranges from 0.5 to 1.0% w / w.

本発明の更に他の実施態様において、グリシン利用効率は95〜100%である。   In yet another embodiment of the present invention, the glycine utilization efficiency is 95-100%.

以下の例は説明のために与えられており且つ本発明の範囲を限定するように構築されてはいない。   The following examples are given by way of illustration and are not constructed to limit the scope of the invention.

実施例1
過剰量の商業上入手可能なNaClを150mlの蒸留水に加え、そしてこの混合物を室温で0.5時間に渡り撹拌した。次いで、固体/液体混合物をろ過して100mlのかかるろ過した塩水を結晶化のために、研究室において周囲条件下でオープンブレーカー中で維持した。90%の蒸発後、生ずる結晶をろ過によって収穫しそして流動床型の乾燥機中で乾燥させる。顕微鏡観察により結晶が立方体形態であったと確認した。
Example 1
Excess commercially available NaCl was added to 150 ml distilled water and the mixture was stirred at room temperature for 0.5 hour. The solid / liquid mixture was then filtered and 100 ml of such filtered brine was maintained in an open breaker under ambient conditions in the laboratory for crystallization. After 90% evaporation, the resulting crystals are harvested by filtration and dried in a fluid bed dryer. Microscopic observation confirmed that the crystals were in cubic form.

実施例2
飽和塩水を上記実施例1のようにして調製した。10gの商業上入手可能なグリシンを100mlの塩水へ加えて室温で撹拌した。飽和塩水中10%(w/v)グリシンを含む生成溶液を上記実施例1と同じ条件下で蒸発させ、そして結晶をろ過によって単離して流動床型の乾燥機中で乾燥させた。獲得された結晶は主に立方体及び18面体形態であった。
Example 2
Saturated brine was prepared as in Example 1 above. 10 g of commercially available glycine was added to 100 ml brine and stirred at room temperature. The resulting solution containing 10% (w / v) glycine in saturated brine was evaporated under the same conditions as in Example 1 above, and the crystals were isolated by filtration and dried in a fluid bed dryer. Acquired crystals were mainly in cubic and octahedral forms.

実施例3
実施例2の実験を、10%の初期グリシン濃度の代わりに15%により繰り返して、NaClの結晶は主に18面体形状であった。いくつかのグリシン結晶をも確認した。
Example 3
The experiment of Example 2 was repeated with 15% instead of an initial glycine concentration of 10%, and the NaCl crystals were predominantly octahedral in shape. Some glycine crystals were also confirmed.

実施例4
実施例2の実験を、10%の初期グリシン濃度の代わりに5%により繰り返して、NaClの結晶は主に12面体形状であった。有意な量のグリシン結晶もNaClと共結晶化されることが発見された。塩結晶の流動特性は上記実施例1の塩と比べて定性的であり、そして前者は、明らかに一層自由流動性であることが発見された。この塩はまた、それを保存したプラスチック容器の表層へ付着する傾向が非常に少なかった。
Example 4
The experiment of Example 2 is repeated by 25% instead of 10% initial glycine concentrations, crystallization of NaCl was mainly dodecahedron shape. It has been discovered that significant amounts of glycine crystals are also co-crystallized with NaCl. The flow characteristics of the salt crystals are qualitative compared to the salt of Example 1 above, and the former was found to be clearly more free flowing. This salt also had very little tendency to adhere to the surface of the plastic container in which it was stored.

実施例5
蒸発を周囲条件下の代わりに50℃で行ったことを除けば、実施例4の実験を繰り返した。生ずる塩結晶は、立方体形態のものと実施例1に記載のものと類似する形状であることが発見された。グリシン結晶が塩においても存在した。
Example 5
The experiment of Example 4 was repeated except that the evaporation was performed at 50 ° C. instead of ambient conditions. The resulting salt crystals were found to have a shape similar to that of the cubic form and that described in Example 1. Glycine crystals were also present in the salt.

実施例6
実施例4で獲得した結晶を上記実施例1において調製した90mlの飽和塩水で洗浄した。洗浄後、生ずる結晶を実施例1に記載のようにして単離して乾燥させた。かかる結晶の観察により、塩の結晶は菱形12面体形態を維持したが、グリシン結晶の大部分は消えたことが明らかになった。定量的検定技術を使用する塩のIR分析により、そのグリシン含有率が0.83%(w/w)であることが示された。
Example 6
The crystals obtained in Example 4 were washed with 90 ml of saturated brine prepared in Example 1 above. After washing, the resulting crystals were isolated and dried as described in Example 1. Observation of such crystals revealed that the salt crystals maintained the rhombohedral dodecahedron form, but most of the glycine crystals disappeared. IR analysis of the salt using a quantitative assay technique showed that its glycine content was 0.83% (w / w).

実施例7
実施例4で獲得した母液を実施例6の洗浄物と組み合わせ、そして周囲条件下で蒸発のために放置した。次いで結晶を収穫して乾燥させた。塩結晶は菱形12面体形状であり且つ有意な量のグリシン結晶を実施例4に記載の塩と同一の態様で含んだ。母液及び洗浄物の再利用の過程を7回繰り返し、そして各回ごとに塩結晶は菱形に12面体形状であり、0.5〜1.0グリシン含量を伴うことが発見された。
Example 7
The mother liquor obtained in Example 4 was combined with the wash from Example 6 and left to evaporate under ambient conditions. The crystals were then harvested and dried. The salt crystals were rhombohedral dodecahedron and contained a significant amount of glycine crystals in the same manner as the salt described in Example 4. It was discovered that the process of recycling the mother liquor and wash was repeated 7 times, and each time the salt crystals were rhomboid dodecahedron with 0.5-1.0 glycine content.

実施例8
実施例4の実験を、純粋な塩水の代わりに500mlの心土塩水により繰り返した。塩水の比重は1.208kg/Lであった。塩水を、比重1.239kg/Lまで蒸発させた。塩の生ずる結晶は、有意な量の共結晶化したグリシン結晶を伴う菱形12面体形状であった。塩を新鮮1.208kg/L心土塩水で洗浄し且つ結晶形態が維持され、他方もグリシン結晶は大部分が消えていたことが発見された。
Example 8
The experiment of Example 4 was repeated with 500 ml of subsoil brine instead of pure brine. The specific gravity of the salt water was 1.208 kg / L. Brine was evaporated to a specific gravity of 1.239 kg / L. The crystals from which the salt was formed were rhombohedral dodecahedron shapes with a significant amount of co-crystallized glycine crystals. It was discovered that the salt was washed with fresh 1.208 kg / L subsoil and maintained in crystalline form while the glycine crystals were largely lost.

本発明の主たる利点は:
1.結晶のほぼ球状の性質が理由で改善された流動特性を有するグリシン濃縮塩を生じさせる方法、
2.結晶くせ変更剤としての許容される添加剤の使用、
3.天然の塩水中ほどの不純物の多さにおいて、流動特性の改善をもたらす結晶くせ変更に対する有害な効果を有さない、方法の汎用性、
4.太陽光線による蒸発による塩の生産への適用可能性、
5.実用性のためにグリシンのほぼ定量的再利用、
である。
The main advantages of the present invention are:
1. A method for producing a glycine concentrated salt having improved flow properties because of the nearly spherical nature of the crystals,
2. Use of acceptable additives as crystal habit modifiers,
3. The versatility of the method, which has no detrimental effects on crystal habit modification, resulting in improved flow properties, with as many impurities as natural salt water,
4). Applicability to the production of salt by evaporation from sunlight,
5. Almost quantitative reuse of glycine for practicality,
It is.

Claims (11)

塩水から、菱形12面体形状グリシン濃縮、自由流動性塩を生産するための、単純、経済的、及び効率的な循環方法であって、当該方法は:
(i)10〜25%(w/v)の範囲の濃度のグリシンを飽和塩水へ加え、
(ii)グリシンを含有する飽和塩水を蒸発させて、グリシンの高含有率を有する結晶を、母液を伴い、獲得し、
(iii)当該結晶を飽和塩水で洗浄して、0.5〜1.0%(w/v)の範囲でグリシン含有率を有する菱形12面体形状グリシン濃縮塩及び洗浄した飽和塩水を獲得し、
(iv)当該母液を当該洗浄した飽和塩水と組み合わせて生成飽和塩水を獲得し、
(v)当該生成飽和塩水を太陽光線による蒸発へ委ね、そして
(vi)(iii)〜(v)の段階を繰り返して菱形12面体形状グリシン濃縮塩を飽和塩水から、0.5〜1.0%(w/v)の範囲のグリシン濃度を伴い獲得する、
段階を含んで成る方法。
A simple, economical and efficient circulation method for producing rhombohedral dodecahedral glycine concentrate, free-flowing salt from salt water, the method comprising:
(i) adding a concentration of glycine in the range of 10-25% (w / v) to saturated brine;
(ii) evaporating saturated brine containing glycine to obtain crystals with a high content of glycine, with mother liquor,
(iii) washing the crystals with saturated brine to obtain a rhombohedral dodecahedral glycine concentrated salt having a glycine content in the range of 0.5-1.0% (w / v) and washed saturated brine,
(iv) the mother liquor won generating saturated brine in combination with saturated brine and the washed,
(v) entrust the generated saturated brine to evaporation by solar radiation, and
(vi) Repeat steps (iii)-(v) to obtain rhombohedral dodecahedral glycine concentrated salt from saturated brine with a glycine concentration in the range of 0.5-1.0% (w / v).
A method comprising steps.
前記飽和塩水が、合成塩水及び天然塩水から成る群から選択される、請求項1に記載の方法。The method of claim 1, wherein the saturated brine is selected from the group consisting of synthetic brine and natural brine. 前記蒸発を20〜40℃の範囲にて行う、請求項1に記載の方法。  The method according to claim 1, wherein the evaporation is performed in a range of 20 to 40 ° C. 飽和塩水におけるグリシンの初期濃度を22〜25%(w/v)の範囲に維持する、請求項1に記載の方法。  The method of claim 1, wherein the initial concentration of glycine in saturated brine is maintained in the range of 22-25% (w / v). 共結晶化したグリシンを、前記塩から飽和塩水で洗浄することによって大部分除去できる、請求項1に記載の方法。  The method of claim 1, wherein the co-crystallized glycine can be largely removed from the salt by washing with saturated brine. 洗浄のために使用した飽和塩水の体積を、当該飽和塩水のグリシン含有率が洗浄後22〜25%(w/v)になるように選ぶ、請求項1に記載の方法。The method according to claim 1, wherein the volume of saturated brine used for washing is selected so that the glycine content of the saturated brine is 22-25% (w / v) after washing. 前記洗浄した飽和塩水を直接、太陽光線による蒸発に委ね、塩調製後に一回再度、形状を変更した塩を生産するかあるいは残留母液と組み合わせ、次いで太陽光による蒸発に委ねる、請求項1に記載の方法。The washed saturated salt water is directly subjected to evaporation by sunlight, and once the salt is prepared, the salt having a changed shape is produced once again or combined with a residual mother liquor, and then subjected to evaporation by sunlight. the method of. 前記塩を飽和塩水で洗浄することが、形状を変更した塩の形態に対して、洗浄後に、形状を変更した塩の形態を維持できないとの有害な効果を有さない、請求項1に記載の方法。  2. Washing the salt with saturated brine does not have the detrimental effect of not being able to maintain the modified salt form after washing with respect to the modified salt form. the method of. 前記の形状を変更した塩が、ほぼ球形状であるために改善した流動特性を有する、請求項1に記載の方法。  The method of claim 1, wherein the salt having a modified shape has improved flow characteristics due to being substantially spherical. グリシン利用効率が95〜100%の範囲である、請求項1に記載の方法。The method of claim 1, wherein the glycine recycling efficiency is in the range of 95-100%. 前記塩中でグリシンは、香料、防腐剤及び微量栄養素として働くことができる、請求項1に記載の方法。  The method of claim 1, wherein glycine in the salt can act as a flavor, preservative and micronutrient.
JP2005513078A 2003-12-24 2003-12-24 Process for the production of glycine-concentrated sodium chloride crystals with improved flowability Expired - Fee Related JP4805677B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2003/006237 WO2005066075A1 (en) 2003-12-24 2003-12-24 Process for production of glycine enriched sodium chloride crystals with improved flow

Publications (2)

Publication Number Publication Date
JP2007527834A JP2007527834A (en) 2007-10-04
JP4805677B2 true JP4805677B2 (en) 2011-11-02

Family

ID=34746632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005513078A Expired - Fee Related JP4805677B2 (en) 2003-12-24 2003-12-24 Process for the production of glycine-concentrated sodium chloride crystals with improved flowability

Country Status (9)

Country Link
JP (1) JP4805677B2 (en)
CN (1) CN1972869B (en)
BR (1) BR0318682B1 (en)
CA (1) CA2551051C (en)
DE (1) DE10394353B4 (en)
GB (1) GB2440138B (en)
IL (1) IL176542A (en)
MX (1) MXPA06007390A (en)
WO (1) WO2005066075A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087645A1 (en) * 2008-01-07 2009-07-16 Council Of Scientific & Industrial Research Free flowing 100 - 500 mm size spherical crystals of common salt and process for preparation thereof
GB0807919D0 (en) 2008-05-01 2008-06-04 Moorlodge Biotech Ventures Ltd
WO2010002712A2 (en) 2008-06-30 2010-01-07 3M Innovative Properties Company Method of crystallization
US9808030B2 (en) 2011-02-11 2017-11-07 Grain Processing Corporation Salt composition
CN103373735A (en) * 2012-04-27 2013-10-30 北京美华盛工程技术有限公司 Method for producing food-grade sodium chloride and potassium chloride salt with anti-blocking property
US20160058060A1 (en) * 2013-04-10 2016-03-03 Smart Salt Inc Food salt product
US10881123B2 (en) * 2017-10-27 2021-01-05 Frito-Lay North America, Inc. Crystal morphology for sodium reduction
CN111302362B (en) * 2020-04-03 2021-05-07 天津科技大学 Large-particle spherical salt and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1142064A (en) * 1997-07-28 1999-02-16 Akou Kasei Kk Common salt composition having high mineral content
JP2002534992A (en) * 1999-01-27 2002-10-22 イルポ タピオ マキ,ユハニ Physiological edible salt products
JP2002325554A (en) * 2001-04-27 2002-11-12 Kissei Pharmaceut Co Ltd Liquid seasoning

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3856922A (en) * 1973-11-06 1974-12-24 R Bragdon Process for preparing substantially non-caking sodium chloride
JP2001061417A (en) * 1999-08-25 2001-03-13 Sanei Gen Ffi Inc Powdery substance-containing composition
KR100427012B1 (en) * 2000-01-12 2004-04-30 오성은 a manufacturing process of a pure salt
MXPA03001426A (en) * 2000-08-14 2003-06-06 Unilever Nv Granulation process.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1142064A (en) * 1997-07-28 1999-02-16 Akou Kasei Kk Common salt composition having high mineral content
JP2002534992A (en) * 1999-01-27 2002-10-22 イルポ タピオ マキ,ユハニ Physiological edible salt products
JP2002325554A (en) * 2001-04-27 2002-11-12 Kissei Pharmaceut Co Ltd Liquid seasoning

Also Published As

Publication number Publication date
CN1972869B (en) 2011-03-30
GB2440138A (en) 2008-01-23
DE10394353T5 (en) 2006-11-23
CA2551051C (en) 2011-08-02
WO2005066075A1 (en) 2005-07-21
CA2551051A1 (en) 2005-07-21
CN1972869A (en) 2007-05-30
DE10394353B4 (en) 2014-09-11
MXPA06007390A (en) 2007-03-23
IL176542A (en) 2010-12-30
GB0612958D0 (en) 2006-08-30
BR0318682A (en) 2006-12-12
GB2440138B (en) 2009-04-08
AU2003288642A1 (en) 2005-08-12
BR0318682B1 (en) 2013-07-16
IL176542A0 (en) 2006-10-05
JP2007527834A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
FI111126B (en) Salt product and process for its preparation
US7208189B2 (en) Low sodium salt of botanic origin
JP4805677B2 (en) Process for the production of glycine-concentrated sodium chloride crystals with improved flowability
US7220435B2 (en) Process for the production of glycine enriched NaCI crystals with improved flow
US2054624A (en) Curing salt mass
RU2235065C2 (en) Method for producing potassium sulfate from potash and sodium sulfate
AU2003288642B2 (en) Process for the production of glycine enriched sodium chloride crystals with improved flow
WO2005062720A2 (en) PROCESS FOR PRODUCTION OF GLYCINE ENRICHED NaCl CRYSTALS WITH IMPROVED FLOW
JPH0576309A (en) Saline taste agent powder
EP2928322B1 (en) Method for making mineral salt and mineral salt product
Davidson et al. Salt crystals-science behind the magic
JPH02265456A (en) Table salt composition
CA1064676A (en) Process for modifying the appearance of crystalline sodium chloride
JP2007061052A (en) Method for treating raw sea urchin
JP4842649B2 (en) How to make fertilizer from jellyfish
KR20060034258A (en) Composition of low sodium chloride compound and preparation method thereof
JP2006238720A (en) Low moisture-absorbing powdery bittern
EP4378891A1 (en) A method for producing carnallite and a carnallite product
CA1071841A (en) Process for modifying the appearance of crystalline sodium chloride
KR100874703B1 (en) The composition and the method of a new bioactive and low sodium salt
JP2005314141A (en) Octahedron sodium chloride and method for producing the same
JPS60152498A (en) Method for crystallizing l-aspartyl-l-phenylalanine or lower alkyl ester thereof
JPH1142064A (en) Common salt composition having high mineral content
JPS5921372A (en) Compound seasoning composition
JPH10179082A (en) Edible salt

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100126

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101005

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees