JP4805280B2 - Method for sealing pores of anodized aluminum phosphate - Google Patents

Method for sealing pores of anodized aluminum phosphate Download PDF

Info

Publication number
JP4805280B2
JP4805280B2 JP2007555079A JP2007555079A JP4805280B2 JP 4805280 B2 JP4805280 B2 JP 4805280B2 JP 2007555079 A JP2007555079 A JP 2007555079A JP 2007555079 A JP2007555079 A JP 2007555079A JP 4805280 B2 JP4805280 B2 JP 4805280B2
Authority
JP
Japan
Prior art keywords
grams
range
water
alkali metal
processing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007555079A
Other languages
Japanese (ja)
Other versions
JP2008530362A (en
Inventor
クレイグ エイ. マッツドルフ
ウィリアム シー. ジュニア ニッカーソン
エリン エヌ. ベック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United States, Represented By Secretary Of Navy et Al AS
Original Assignee
United States, Represented By Secretary Of Navy et Al AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United States, Represented By Secretary Of Navy et Al AS filed Critical United States, Represented By Secretary Of Navy et Al AS
Publication of JP2008530362A publication Critical patent/JP2008530362A/en
Application granted granted Critical
Publication of JP4805280B2 publication Critical patent/JP4805280B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • C25D11/246Chemical after-treatment for sealing layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Glass Compositions (AREA)
  • Sealing Material Composition (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Lubricants (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

Process of seal coating phosphoric acid anodized aluminum and aluminum alloys to improve the corrosion resistance and maintain the adhesive bonding properties. The process comprises post-treating phosphoric acid anodized aluminum and its alloys with an acidic aqueous solution comprising, per liter of acidic solution, from about 0.01 to 22 grams of a water soluble trivalent chromium compound, about 0.01 to 12 grams of an alkali metal hexafluorozirconate, about 0.0 to 12 grams of at least one alkali metal tetrafluorosilicate and/or an alkali metal hexafluoroborate, from about 0.001 to 10 grams of at least one water soluble divalent zinc compound and from 0.0 to 10 grams of a water soluble thickener and/or water soluble surfactant.

Description

(政府関係であることの陳述)
本発明はアメリカ合衆国政府の職員によってなされたものであり、それはアメリカ合衆国政府によって政府目的で製造または使用され、その製品またはその使用のためのいかなるロイヤリティの支払いも発生しない。
(Statement of government relations)
The present invention was made by a United States government employee, which is manufactured or used for governmental purposes by the United States government and does not incur any royalty payments for the product or its use.

本発明はリン酸陽極処理されたアルミニウム及びその合金上に薄膜または被膜を形成させるための処理方法に関する。前記被膜系にはリン酸陽極酸化アルミニウム、追加の後処理または封孔被膜、好適には粘着結合プライマーまたは他の追加被膜を含む。リン酸陽極酸化アルミニウム被膜は非常に多孔性に富み、そのため耐蝕性が劣る性質がある。しかし、この被膜は優れた接着性を有する。従って、この陽極酸化被膜は、接着性を妨害しないよう耐蝕性を高める後処理または封孔被膜を施すことにより有用になりうる。本発明の性能・特徴により、リン酸陽極酸化被膜を、現在実用化されていない無塗装に対する用途、腐蝕しやすく痛みやすいクロム酸陽極酸化アルミニウム及びFPLエッチング(いずれもクロム酸を含む)を代替する用途、非クロム酸系の結合プライマーの使用へ置き換えた全ての接着結合への用途、及び他の陽極酸化被膜と比較して被膜の消耗や重量を減少させることができる一般的な用途に使用できる。   The present invention relates to a processing method for forming a thin film or coating on phosphoric acid anodized aluminum and its alloys. The coating system includes anodized aluminum phosphate, an additional post-treatment or sealing coating, preferably an adhesive-bonded primer or other additional coating. Phosphoric acid anodized aluminum coating is very porous and therefore has poor corrosion resistance. However, this coating has excellent adhesion. Thus, the anodized film can be useful by applying a post-treatment or sealing film that enhances corrosion resistance so as not to interfere with adhesion. Due to the performance and features of the present invention, phosphoric acid anodized film is used for unpainted applications that are not currently in practical use, chromic acid anodized aluminum and FPL etching (both containing chromic acid) that are easily corroded Can be used for applications, all adhesive bonding applications replaced with the use of non-chromic binding primers, and general applications that can reduce coating wear and weight compared to other anodized coatings .

本発明はリン酸陽極酸化アルミニウムの耐蝕性を維持改善する処理方法に関する。特に、本発明は、リン酸陽極酸化アルミニウム及び陽極酸化アルミニウム合金の封孔処理方法に関する。3価クロム後処理(TCP)処理方法には、有効量の少なくとも1の水溶性3価クロム化合物、六フッ化ジルコン酸アルカリ金属塩、少なくとも1の四フッ化ホウ酸アルカリ金属塩及び/または六フッ化ケイ酸塩、少なくとも1の2価亜鉛化合物、及び有効量の水溶性濃化剤及び/または水溶性界面活性剤を含有する酸性水溶液を含む。   The present invention relates to a treatment method for maintaining and improving the corrosion resistance of anodized aluminum phosphate. In particular, the present invention relates to a sealing treatment method for anodized aluminum phosphate and an anodized aluminum alloy. The trivalent chromium post-treatment (TCP) treatment method includes an effective amount of at least one water-soluble trivalent chromium compound, alkali metal hexafluoride zirconate, at least one alkali metal tetrafluoroborate and / or six. An acidic aqueous solution containing a fluorosilicate, at least one divalent zinc compound, and an effective amount of a water-soluble thickener and / or a water-soluble surfactant.

陽極酸化アルミニウムは通常、多様な封孔過程及び組成物を用いる処理方法により、陽極酸化後に封孔されるかまたは後処理される。現状の陽極酸化アルミニウムに適用される高性能な後処理方法または封孔剤は、6価クロムを用いた化学処理に基づくものである。6価クロムは猛毒であり発がん性を有することが知られている。そのため、これらの保護膜形成に用いられる溶液及び被膜自体は有毒である。しかし、この薄膜または被膜は接着性がよく、陽極酸化アルミニウムの耐蝕性が向上する。典型的には、封孔被膜は昇温して陽極酸化被膜上に形成するものであり、通常は浸漬または噴霧処理方法により付着させる。軍事目的または商業目的の仕様で後処理が必要となる場合があり、それぞれにおいて施される被膜が異なりうる。すなわち、アルミニウムの化成被膜の場合のように、全ての陽極酸化アルミニウムに対して唯一の「後処理」の仕様しか存在しない訳ではない。   Anodized aluminum is typically sealed or post-treated after anodization by a variety of sealing processes and processing methods using compositions. The high-performance post-processing method or sealant applied to the current anodized aluminum is based on chemical treatment using hexavalent chromium. Hexavalent chromium is extremely toxic and is known to have carcinogenicity. Therefore, the solution used for forming these protective films and the coating itself are toxic. However, this thin film or coating has good adhesion and improves the corrosion resistance of anodized aluminum. Typically, the sealing film is formed on the anodized film by raising the temperature, and is usually applied by a dipping or spraying method. Post-treatment may be required for military or commercial specifications, and the coating applied in each may be different. That is, as in the case of an aluminum conversion coating, there is not only one “post-treatment” specification for all anodized aluminum.

また、環境法、行政命令及び地方安全衛生(OSH)規制により、軍事的及び商業的利用者は6価クロムを使用しない処理法を探索している。陽極酸化アルミニウムの場合、陽極酸化薄膜及び基板金属は比較的に無害である。但し6価クロム処理がさらに要求される場合には、これらの被膜は有毒になる。陽極酸化アルミニウムの被膜に用いられる他の組成物には6価クロムを含まないものも存在するが、これらの技術的性能は6価クロムを用いた被膜よりも劣っている。さらに、6価クロムの使用は規制が厳しくなるに従い、より高価なものになりつつある。将来、EPA(経済連携協定)により制約が課せられると高コストのため入手不可能になりうる。このように、現存する6価クロム処理は、優れた耐蝕性及び塗料のようなコーティングとの接着結合性を低コストで提供する点で技術的性能がぬきんでている一方、ライフサイクルコスト、環境面及びOSHの観点からは、6価クロム被膜は人間及び環境の両者に有害である。   Also, due to environmental laws, administrative orders and local health and safety (OSH) regulations, military and commercial users are exploring treatment methods that do not use hexavalent chromium. In the case of anodized aluminum, the anodized film and substrate metal are relatively harmless. However, if further hexavalent chromium treatment is required, these coatings become toxic. Although other compositions used for anodized aluminum coatings do not contain hexavalent chromium, their technical performance is inferior to coatings using hexavalent chromium. Furthermore, the use of hexavalent chromium is becoming more expensive as regulations become stricter. If restrictions are imposed by EPA (Economic Partnership Agreement) in the future, it may become unavailable due to high costs. In this way, the existing hexavalent chromium treatment has excellent technical performance in terms of providing excellent corrosion resistance and adhesive bondability with a coating such as a paint at a low cost. And from the OSH perspective, hexavalent chromium coatings are harmful to both humans and the environment.

接着結合に関しては、リン酸陽極酸化はクロム酸陽極酸化の代替技術として導入された。リン酸陽極酸化被膜は優れた接着結合性能を提供するが、アルミニウム層の腐蝕を十分防ぐことはできない。通常であれば陽極酸化封孔剤を他の種々の陽極酸化被膜に適用して耐蝕性能を向上させるが、リン酸陽極酸化被膜の場合は、接着結合性能が著しく低下するために一般には適用しない。その結果、リン酸陽極酸化被膜の耐蝕処理はクロム酸結合プライマーまたは汎用プライマーによってなされることとなる。リン酸陽極酸化被膜は柱状構造でかつ多孔性であるという特徴を有し、このために接着結合性能が向上する。しかし、柱状、多孔質の構造は同時に腐蝕性も向上させるため、特にリン酸陽極酸化被膜では防蝕が困難となる。例えば、軍用機に広く用いられるリン酸陽極酸化した「ハニカム」構造のコア材料は、保護被膜に傷がつくと使用中にすぐ腐蝕するため、陽極酸化被膜の接着結合性能に悪影響を与えないような耐蝕封孔剤が有用となりうる。   With regard to adhesive bonding, phosphoric acid anodization has been introduced as an alternative to chromic acid anodization. Phosphoric acid anodic oxide coating provides excellent adhesive bonding performance, but cannot sufficiently prevent corrosion of the aluminum layer. Normally, anodizing sealant is applied to various other anodic oxide coatings to improve the corrosion resistance, but in the case of phosphoric acid anodic oxide coatings, it is not generally applied because adhesive bond performance is significantly reduced. . As a result, the corrosion resistance treatment of the phosphoric acid anodized film is performed by a chromic acid binding primer or a general-purpose primer. The phosphoric acid anodized film has a columnar structure and is porous, which improves the adhesive bonding performance. However, since the columnar and porous structures simultaneously improve the corrosivity, it is difficult to prevent corrosion, particularly with a phosphoric acid anodized film. For example, a phosphoric acid-anodized “honeycomb” structure core material widely used in military aircraft will corrode immediately during use if the protective coating is damaged, so that the adhesive bond performance of the anodized coating will not be adversely affected. Corrosion resistant sealants can be useful.

本発明は室温またはそれ以上の温度、すなわち約93℃(華氏200度)以下の温度におけるリン酸陽極酸化アルミニウム及びその合金の後処理または封孔処理方法に関する。より具体的には、本発明は耐蝕性を向上させ、塗装接着等の接着結合性を維持するための、リン酸陽極酸化アルミニウム及びその合金の後処理方法に関する。本発明の3価クロム後処理(TCP)組成物は、約pH2.5〜5.5、好ましくは2.5〜4.5、3.4〜4.0の酸性水溶液を含み、前記酸性水溶液1リットルあたりに約0.01〜22グラムの水溶性3価クロム組成物、約0.01〜12グラムの六フッ化ジルコン酸アルカリ金属塩、約0.0〜12または0.001〜12グラムの四フッ化ホウ酸アルカリ金属塩、六フッ化ケイ酸アルカリ金属塩、種々の組合せまたは任意の割合の混合物から選択される少なくとも1のフッ素化合物、0.001〜10グラムの水溶性2価亜鉛化合物、0〜10グラム、好適には0〜2グラムの少なくとも1の水溶性濃化剤、0〜10グラム、好適には0〜2.0グラムの少なくとも1の水溶性の非イオン性、カチオン性、アニオン性界面活性剤または保湿剤を含む。   The present invention relates to a post-treatment or sealing treatment method for anodized aluminum phosphate and its alloys at room temperature or higher, ie, about 93 ° C. (200 ° F.) or less. More specifically, the present invention relates to a post-treatment method for anodized aluminum phosphate and alloys thereof for improving corrosion resistance and maintaining adhesive bondability such as paint adhesion. The trivalent chromium post-treatment (TCP) composition of the present invention comprises an acidic aqueous solution having a pH of about 2.5 to 5.5, preferably 2.5 to 4.5, 3.4 to 4.0. About 0.01-22 grams of water-soluble trivalent chromium composition per liter, about 0.01-12 grams of alkali metal hexafluoride zirconate, about 0.0-12 or 0.001-12 grams At least one fluorine compound selected from the group consisting of alkali metal tetrafluoroborate, alkali metal hexafluorosilicate, various combinations or mixtures in any proportion, 0.001-10 grams of water-soluble divalent zinc Compound, 0-10 grams, preferably 0-2 grams of at least one water-soluble thickener, 0-10 grams, preferably 0-2.0 grams of at least one water-soluble nonionic, cation And anionic surfactant The other includes a humectant.

このように本発明は、リン酸陽極酸化アルミニウム及びその合金の接着性を維持し耐蝕性を向上させるための処理に用いる、3価クロム化合物、六フッ化ジルコン酸アルカリ金属塩、四フッ化ホウ酸塩及び/または六フッ化ケイ酸塩を含む酸性水溶液を提供する。   Thus, the present invention provides a trivalent chromium compound, an alkali metal hexafluoride zirconate, a boron tetrafluoride used in a treatment for maintaining the adhesion of anodized aluminum phosphate and its alloys and improving the corrosion resistance. An acidic aqueous solution comprising an acid salt and / or hexafluorosilicate is provided.

本発明の別の目的は、リン酸陽極酸化アルミニウム及びその合金を封孔するための、有効量の3価クロム塩及び六フッ化ジルコン酸塩を含む約2.5〜5.5の範囲のpHを有する安定な酸性水溶液を提供することである。   Another object of the present invention is to provide an effective amount of trivalent chromium salt and hexafluorozirconate in the range of about 2.5 to 5.5 for sealing aluminum phosphate anodized aluminum and its alloys. It is to provide a stable acidic aqueous solution having a pH.

さらに本発明は、室温以上の温度において、リン酸陽極酸化アルミニウム及びその合金を封孔処理するための約3.7〜4.0の範囲のpHを有する安定な酸性水溶液であって、3価クロム塩及び六フッ化ジルコン酸塩を含み、実質的に6価クロムを含まない酸性水溶液を提供する。   Furthermore, the present invention provides a stable acidic aqueous solution having a pH in the range of about 3.7 to 4.0 for sealing pores of anodized aluminum phosphate and its alloys at temperatures above room temperature. An acidic aqueous solution containing chromium salt and hexafluorozirconate and substantially free of hexavalent chromium is provided.

本発明のこれら及び他の目的物は、添付の図1〜9(写真)と共に詳細な説明を参照することによって明確になるであろう。   These and other objects of the present invention will become apparent by reference to the detailed description taken in conjunction with the accompanying FIGS.

より具体的には、本発明は、約2.5〜5.5の範囲のpH、好適には約2.5〜4.5または3.7〜4.0の範囲のpHを有する酸性水溶液を用いてリン酸陽極酸化アルミニウム及びその合金を封孔し、陽極酸化アルミニウムの接着結合性を維持し、耐蝕性を向上させるための処理方法に関する。前記処理方法は、約0.01〜22グラム、好適には約4.0〜8.0グラム、例えば6グラムの少なくとも1の水溶性3価クロム組成物、約0.01〜12グラム、好適には6.0〜12グラム、例えば8.0グラムの少なくとも1の六フッ化ジルコン酸アルカリ金属塩、約0.0〜12または約0.001〜12グラムの、好適には約0.12〜1.2グラム、例えば0.24〜0.36グラムの少なくとも1の四フッ化ホウ酸アルカリ金属塩、六フッ化ケイ酸アルカリ金属塩及び種々の組合せまたは任意の割合の混合物から選択される少なくとも1のフッ素化合物、及び0.001〜10グラム、好適には0.1〜5.0グラムまたは1.0〜2.0グラムの硫酸亜鉛等の少なくとも1の水溶性2価亜鉛化合物を含む酸性水溶液を用いることを含む。   More specifically, the present invention relates to an acidic aqueous solution having a pH in the range of about 2.5 to 5.5, preferably a pH in the range of about 2.5 to 4.5 or 3.7 to 4.0. The present invention relates to a treatment method for sealing anodized aluminum phosphate and an alloy thereof using, to maintain the adhesive bondability of the anodized aluminum and to improve the corrosion resistance. The treatment method is about 0.01-22 grams, preferably about 4.0-8.0 grams, such as 6 grams of at least one water-soluble trivalent chromium composition, about 0.01-12 grams, preferably 6.0 to 12 grams, such as 8.0 grams of at least one alkali metal hexafluoride zirconate salt, about 0.0 to 12 or about 0.001 to 12 grams, preferably about 0.12 Selected from -1.2 grams, such as 0.24-0.36 grams of at least one alkali metal tetrafluoroborate, alkali metal hexafluorosilicate, and various combinations or mixtures of any proportions At least one fluorine compound and at least one water-soluble divalent zinc compound such as 0.001 to 10 grams, preferably 0.1 to 5.0 grams or 1.0 to 2.0 grams zinc sulfate. Using acidic aqueous solution Including that.

ある特定の処理において、リン酸陽極酸化されるアルミニウムの物理的特性(例えば陽極酸化層の物理的サイズ等)によっては、溶液に濃化剤を添加して溶液の蒸発を低下させ、噴霧及び塗布工程中における至適な薄膜の形成を補助する場合もある。これはまた塗装の接着性を低下させる粉末を形成しにくくする。さらに、濃化剤の添加は、大面積への適用において適切な薄膜形成を補助し、前段階からの処理方法中に基板上に残存する洗浄水の希釈効果を和らげる働きがある。この添加物により、すじの無い、色見のよい耐蝕性の薄膜が得られる。水溶性濃化剤としてはセルロース化合物等が知られ、1リットルの水溶液あたり約0.0から10グラム、好適には0.0〜20グラム、より好適には0.5〜1.5グラムの範囲、例えば1.0グラムの量を酸性水溶液中に存在させてもよい。陽極酸化アルミニウムの特徴によっては、有効量の少なくとも1の水溶性界面活性剤または保湿剤を、酸性水溶液1リットルあたり約0.0〜10グラム、好適には0.0〜2.0グラム、より好適には0.5〜1.5グラムの範囲、例えば1.0グラムの量を酸性水溶液に添加してもよい。これらの水溶性界面活性剤または保湿剤は公知であり、非イオン性、カチオン性、アニオン性界面活性剤からなる群から選択される。   In certain treatments, depending on the physical properties of the anodized aluminum phosphate (eg, the physical size of the anodized layer, etc.), a thickener may be added to the solution to reduce solution evaporation, spraying and coating In some cases, the formation of an optimum thin film during the process is assisted. This also makes it difficult to form powders that reduce paint adhesion. Furthermore, the addition of the thickening agent helps to form an appropriate thin film in application to a large area, and has a function of reducing the dilution effect of the cleaning water remaining on the substrate during the processing method from the previous stage. With this additive, a corrosion-resistant thin film having no streaks and good color can be obtained. Cellulose compounds are known as water-soluble thickeners, and about 0.0 to 10 grams, preferably 0.0 to 20 grams, more preferably 0.5 to 1.5 grams per liter of aqueous solution. A range, for example an amount of 1.0 grams, may be present in the acidic aqueous solution. Depending on the characteristics of the anodized aluminum, an effective amount of at least one water-soluble surfactant or humectant is about 0.0-10 grams, preferably 0.0-2.0 grams per liter of acidic aqueous solution. Suitably an amount in the range of 0.5 to 1.5 grams, for example 1.0 grams, may be added to the acidic aqueous solution. These water-soluble surfactants or humectants are known and are selected from the group consisting of nonionic, cationic and anionic surfactants.

3価クロムは水溶性の3価クロム化合物として、好適には3価クロム塩として添加される。具体的には、本発明の酸性水溶液を調製する際に、クロム塩を溶液に添加して、原子価がプラス3価である水溶状態のクロムとなるようにすることが好都合である。例えば、好適なクロム化合物としては、Cr(SO、(NH)Cr(SO、KCr(SO及びこれらの化合物の任意の混合物または組合せの形で溶液中に調製することができる。アルミニウム基材は、リン酸陽極酸化アルミニウムまたは重量比60%以上のアルミニウムを含む陽極酸化アルミニウム合金のいずれかである。好適な3価クロムの濃度は、1リットルの水溶液あたり約4.0〜8.0グラムの範囲または6.0グラムである。3価クロム化合物がこれらの好適な範囲で存在すると特に良好な結果が得られることが分かっている。金属フッ化ジルコン酸塩の酸性溶液への好適な添加量は、溶液1リットルあたり約6.0〜10グラムの範囲または8.0グラムである。 Trivalent chromium is added as a water-soluble trivalent chromium compound, preferably as a trivalent chromium salt. Specifically, when preparing the acidic aqueous solution of the present invention, it is advantageous to add a chromium salt to the solution so that it becomes chromium in an aqueous state having a valence of +3. For example, suitable chromium compounds include Cr 2 (SO 4 ) 3 , (NH 4 ) Cr (SO 4 ) 2 , KCr 2 (SO 4 ) 2 and any mixtures or combinations of these compounds in solution. Can be prepared. The aluminum substrate is either phosphoric acid anodized aluminum or an anodized aluminum alloy containing 60% or more by weight of aluminum. Suitable trivalent chromium concentrations range from about 4.0 to 8.0 grams or 6.0 grams per liter of aqueous solution. It has been found that particularly good results are obtained when the trivalent chromium compound is present in these preferred ranges. The preferred amount of addition of metal fluoride zirconate to the acidic solution is in the range of about 6.0 to 10 grams or 8.0 grams per liter of solution.

リン酸陽極酸化アルミニウムの処理または封孔は、室温付近の低温または約93.3℃以下の温度で実施することができる。加熱器具が不要になる点で、室温での処理が望ましい。封孔被膜は当業者に公知の風乾、例えばオーブン乾燥、強制風乾、赤外線ランプへの露出等で行ってもよい。本発明の趣旨において、リン酸陽極酸化アルミニウム及び陽極酸化アルミニウム合金という用語には、当業者に公知の方法によりリン酸陽極酸化されたアルミニウム及びその合金が含まれる。   The treatment or sealing of the phosphoric acid anodized aluminum can be performed at a low temperature around room temperature or a temperature of about 93.3 ° C. or lower. Treatment at room temperature is desirable in that a heating tool is not required. The sealing coating may be performed by air drying known to those skilled in the art, for example, oven drying, forced air drying, exposure to an infrared lamp, or the like. For the purposes of the present invention, the terms phosphoric acid anodized aluminum and anodized aluminum alloy include aluminum and its alloys phosphoric acid anodized by methods known to those skilled in the art.

いくつかの処理では、四フッ化ホウ酸アルカリ金属塩及び/または六フッ化ケイ酸塩が、当該化合物の溶解度の上限以内で1リットルあたり0.001グラムの低濃度の量において酸性溶液に添加される。例えば、フッ化ジルコン酸塩の重量を基準として、約50重量%のフッ化ケイ酸塩が添加される。換言すれば、1リットルあたり8.0グラムのフッ化ジルコン酸塩、1リットルあたり約4.0グラムのフッ化ケイ酸塩が当該溶液に添加される。例えば、変法としては、フッ化ジルコン酸塩の重量を基準として約0.01〜100重量%のフッ化ホウ酸塩を添加する。好適には、フッ化ジルコン酸塩塩の重量を基準として約1〜10重量%、例えば約3重量%のフッ化ホウ酸塩を添加する。具体例としては、1リットルあたり約8.0グラムのフッ化ホウ酸カリウム塩、1リットルあたり約6.0グラムの塩基性硫酸クロム(III)、1リットルあたり約0.1〜5.0グラムの2価硫酸亜鉛、及び1リットル中約0.12〜1.2グラムの四フッ化ホウ酸カリウム塩及び/または六フッ化ケイ酸塩を含む。フッ化ホウ酸塩及び/または六フッ化ケイ酸塩のような安定剤添加により、pHが約2.5〜5.5の間に維持され溶液が安定化するという重要な結果が得られる。しかし、pHを約2.5〜5.5以下の範囲、例えば約3.25〜3.5に維持するために、前処理液に有効量の希釈酸または塩基を添加してpHを微調節する必要が生じる場合もありうる。   In some treatments, alkali metal tetrafluoroborate and / or hexafluorosilicate is added to the acidic solution in a low concentration of 0.001 grams per liter within the upper limit of solubility of the compound. Is done. For example, about 50% by weight of fluorinated silicate is added based on the weight of fluorinated zirconate. In other words, 8.0 grams of fluorinated zirconate per liter and about 4.0 grams of fluorinated silicate per liter are added to the solution. For example, as a variant, about 0.01 to 100% by weight of fluorinated borate is added based on the weight of the fluorinated zirconate. Preferably, about 1 to 10% by weight, for example about 3% by weight, of fluorinated borate is added based on the weight of the fluorinated zirconate salt. Specific examples include about 8.0 grams of potassium fluoborate per liter, about 6.0 grams of basic chromium (III) sulfate per liter, and about 0.1 to 5.0 grams per liter. Of divalent zinc sulfate and about 0.12 to 1.2 grams of potassium tetrafluoroborate and / or hexafluorosilicate in one liter. The addition of stabilizers such as fluorinated borate and / or hexafluorosilicate has the important result that the pH is maintained between about 2.5 and 5.5 and the solution is stabilized. However, in order to maintain the pH in the range of about 2.5 to 5.5 or less, for example, about 3.25 to 3.5, an effective amount of diluted acid or base is added to the pretreatment liquid to finely adjust the pH. It may be necessary to do this.

前記組成物または酸性溶液には、2価亜鉛化合物を含まない組成物と比較しリン酸陽極酸化被膜の耐蝕性をさらに向上させるために、亜鉛化合物を含めてもよい。当該溶液中の成分は水中で混合され、それ以上の化学的操作をせずに使用できる。0.001〜10グラムの範囲内の必要な濃度において水中に溶解させ、溶液中で他の化合物と共存できる化合物であればいかなる2価亜鉛でも供給できる。特に好適な成分としては、例えば、酢酸亜鉛、テルル化亜鉛、テトラフルオロホウ酸亜鉛、モリブデン酸亜鉛、六フッ化ケイ酸亜鉛、硫酸亜鉛等、及びそれらの任意の割合での組合せが挙げられる。   The composition or the acidic solution may contain a zinc compound in order to further improve the corrosion resistance of the phosphoric acid anodized film as compared with a composition not containing a divalent zinc compound. The components in the solution are mixed in water and can be used without further chemical manipulation. Any divalent zinc can be supplied as long as it is dissolved in water at the required concentration within the range of 0.001 to 10 grams and can coexist with other compounds in solution. Particularly suitable components include, for example, zinc acetate, zinc telluride, zinc tetrafluoroborate, zinc molybdate, zinc hexafluorosilicate, zinc sulfate, and the like, and combinations at any ratio thereof.

以下の実施例は、本発明の安定な封孔被膜溶液、並びにリン酸陽極酸化アルミニウム及びその合金の耐蝕性を向上させつつ接着特性を維持するための、当該溶液の使用を示すものである。   The following examples demonstrate the use of the stable sealing coating solution of the present invention and the solution to maintain adhesion properties while improving the corrosion resistance of the phosphoric acid anodized aluminum and its alloys.

<実施例1>TCP5PZ2
溶液1リットルあたり約3.0グラムの塩基性硫酸クロム(III)、約4.0グラムの六フッ化ジルコン酸カリウム塩及び約1.0グラムの硫酸亜鉛を含む、リン酸陽極酸化アルミニウム及びアルミニウム合金の後処理に用い、耐蝕有色被膜を形成させる約3.45〜4.0の範囲のpHを有する安定酸性水溶液。
<Example 1> TCP5PZ2
Anodized aluminum phosphate and aluminum containing about 3.0 grams of basic chromium (III) sulfate, about 4.0 grams of potassium hexafluorozirconate and about 1.0 grams of zinc sulfate per liter of solution A stable acidic aqueous solution having a pH in the range of about 3.45 to 4.0 used for the post-treatment of the alloy to form a corrosion-resistant colored coating.

<実施例2>TCP5B3
溶液1リットルあたり約3.0グラムの塩基性硫酸クロム(III)、約4.0グラムの六フッ化ジルコン酸カリウム塩及び約0.12グラムの四フッ化ホウ酸亜鉛塩を含む、リン酸陽極酸化アルミニウム及びアルミニウム合金の後処理に用い、耐蝕被膜を形成させる安定酸性水溶液。
<Example 2> TCP5B3
Phosphoric acid comprising about 3.0 grams of basic chromium (III) sulfate, about 4.0 grams of hexafluorozirconate potassium salt and about 0.12 grams of zinc tetrafluoroborate per liter of solution A stable acidic aqueous solution used for post-treatment of anodized aluminum and aluminum alloys to form a corrosion-resistant coating.

<実施例3>TCP5B3Z4
溶液1リットルあたり約3.0グラムの塩基性硫酸クロム(III)、約4.0グラムの六フッ化ジルコン酸カリウム塩、約0.12グラムの四フッ化ホウ酸亜鉛塩及び約2.0グラムの硫酸亜鉛を含む、リン酸陽極酸化アルミニウム及びアルミニウム合金の後処理に用い、耐蝕有色被膜を形成させる安定酸性水溶液。
<Example 3> TCP5B3Z4
About 3.0 grams of basic chromium (III) sulfate per liter of solution, about 4.0 grams of potassium hexafluorozirconate, about 0.12 grams of zinc tetrafluoroborate and about 2.0 A stable acidic aqueous solution containing gram zinc sulfate for post-treatment of aluminum phosphate anodized aluminum and aluminum alloys to form a corrosion resistant colored coating.

表1に、リン酸陽極酸化アルミニウム合金の後処理に用いる本発明の3実施例の腐蝕性評価を、実施例2の被膜組成物と比較して示す。実施例3(TCP5B3Z4)及び実施例1(TCP5PZ2)は平均してより高い評価を示した。   Table 1 shows the corrosion evaluation of the three examples of the present invention used for the post-treatment of the phosphoric acid anodized aluminum alloy in comparison with the coating composition of Example 2. Example 3 (TCP5B3Z4) and Example 1 (TCP5PZ2) showed higher ratings on average.

表1 ASTM B117塩水噴霧による1000時間暴露後の、封孔剤処理済2024−T3アルミニウム合金リン酸陽極酸化物の耐蝕性

Figure 0004805280
Table 1 Corrosion resistance of sealant-treated 2024-T3 aluminum alloy phosphoric acid anodic oxide after 1000 hours exposure by ASTM B117 salt spray.
Figure 0004805280

<実施例4>
1リットルあたり3.0グラムの塩基性硫酸クロム(III)、1リットルあたり4.0グラムの六フッ化ジルコン酸カリウム塩を脱イオン水に添加した。希釈水酸化カリウムまたは希硫酸を用い、pH3.25〜3.60の状態で14日間維持した。14日後、pH3.90±0.05に調製し一晩静置した。溶液を使用に供した。
<Example 4>
3.0 grams of basic chromium (III) sulfate per liter and 4.0 grams of potassium hexafluorozirconate per liter were added to deionized water. Diluted potassium hydroxide or dilute sulfuric acid was used and maintained at pH 3.25-3.60 for 14 days. After 14 days, the pH was adjusted to 3.90 ± 0.05 and allowed to stand overnight. The solution was put to use.

<実施例5>
1リットル中3.0グラムの塩基性硫酸クロム(III)、同4.0グラムの六フッ化ジルコン酸カリウム塩、同0.12グラムの四フッ化ホウ酸カリウム塩を脱イオン水に添加した。溶液を10日程度またはpHが3.75〜4.00の間に上昇するまで保持した。溶液を使用に供した。
<Example 5>
3.0 grams of basic chromium (III) sulfate in 1 liter, 4.0 grams of hexafluorozirconate potassium salt, and 0.12 grams of potassium tetrafluoroborate were added to deionized water. . The solution was held for about 10 days or until the pH rose between 3.75 and 4.00. The solution was put to use.

<実施例6>
実施例4において、最初の混合中に1リットルあたり1.0グラムの硫酸亜鉛を添加した。溶液を使用に供した。
<Example 6>
In Example 4, 1.0 gram of zinc sulfate per liter was added during the initial mixing. The solution was put to use.

<実施例7>
実施例4において、最初の混合中に1リットルあたり2.0グラムの硫酸亜鉛を添加した。溶液を使用に供した。
<Example 7>
In Example 4, 2.0 grams of zinc sulfate per liter was added during the initial mixing. The solution was put to use.

<実施例8>
以下のように、リン酸陽極酸化アルミニウムの後処理を行い、被膜を形成させた。全体を通じ、ASTM D3933「構造接着結合(リン酸陽極酸化)のためのアルミニウム表面処理標準手順」によるリン酸陽極酸化処理方法に従った。7.6cm×25.4cm×0.8cm(3インチ×10インチ×0.32インチ)のアルミニウム合金パネルをリン酸陽極酸化処理方法にて陽極酸化した直後に、脱イオン水で2回パネルを洗浄した。水洗直後、実施例6または実施例7のいずれかの溶液に常温で10分間、パネルを浸漬した。浸漬の直後、脱イオン水で2回洗浄した。パネルを常温で風乾した後、ASTM B 117に従い中性塩水噴霧法に供した。被検パネルは試験負荷中15℃の棚に保持した。無封孔リン酸陽極酸化(PAA)パネルを参照として、被検被覆物に併置し試験した。
<Example 8>
As described below, post-treatment of aluminum phosphate anodized was performed to form a film. Throughout, the phosphoric acid anodizing method according to ASTM D3933 “Standard procedure for aluminum surface treatment for structural adhesive bonding (phosphoric acid anodizing)” was followed. Immediately after anodizing the aluminum alloy panel of 7.6 cm × 25.4 cm × 0.8 cm (3 inch × 10 inch × 0.32 inch) by the phosphoric acid anodizing method, the panel was washed twice with deionized water. Washed. Immediately after washing with water, the panel was immersed in the solution of either Example 6 or Example 7 at room temperature for 10 minutes. Immediately after soaking, it was washed twice with deionized water. The panel was air-dried at room temperature and then subjected to a neutral salt spray method according to ASTM B 117. The test panel was held on a shelf at 15 ° C. during the test load. A non-sealed phosphoric acid anodic oxidation (PAA) panel was used as a reference to be placed on the test coating and tested.

図2及び図3(写真)に、実施例5及び実施例6の組成物による特性を示す。図1(写真)に、ASTM B 117中性塩水噴霧法による暴露後の無封孔PAAパネルを示す。図2及び図3の後処理により、図1の後処理を行わないものと比較して耐蝕性が向上した。   FIG. 2 and FIG. 3 (photographs) show the characteristics of the compositions of Example 5 and Example 6. FIG. 1 (photo) shows an unsealed PAA panel after exposure by the ASTM B 117 neutral salt spray method. The post-treatment of FIGS. 2 and 3 improved the corrosion resistance compared to the case where the post-treatment of FIG. 1 was not performed.

<実施例9>
被検物を実施例8と同様に陽極酸化させた。本実施例においては、実施例5及び実施例7の組成物(溶液)を37.8℃(華氏100°)に加熱し、パネルを合計10分間浸漬した。図4及び図5(写真)に、ASTM B 117中性塩水噴霧法に1000時間暴露後の腐蝕特性を示す。実施例7の組成物では、実施例5の組成物と比較して耐蝕性が明らかに向上していた。
<Example 9>
The specimen was anodized in the same manner as in Example 8. In this example, the compositions (solutions) of Example 5 and Example 7 were heated to 37.8 ° C. (100 ° F.), and the panel was immersed for a total of 10 minutes. 4 and 5 (photographs) show the corrosion characteristics after 1000 hours exposure to the ASTM B 117 neutral salt spray method. In the composition of Example 7, the corrosion resistance was clearly improved as compared with the composition of Example 5.

<実施例10>
被検物を実施例8と同様に陽極酸化させた。本実施例においては、実施例5及び実施例7の組成物(溶液)を23.8℃(華氏75°)の室温条件に維持し、パネルを合計40分間浸漬した。図6及び図7(写真)に、ASTM B 117中性塩水噴霧法による1000時間暴露後の耐蝕特性を示す。
<Example 10>
The specimen was anodized in the same manner as in Example 8. In this example, the compositions (solutions) of Example 5 and Example 7 were maintained at room temperature of 23.8 ° C. (75 ° F.), and the panel was immersed for a total of 40 minutes. FIG. 6 and FIG. 7 (photographs) show the corrosion resistance after 1000 hours exposure by ASTM B 117 neutral salt spray method.

<実施例11>
被検物を実施例8と同様に陽極酸化させた。本実施例においては、実施例5及び実施例6の組成物(溶液)を65.6℃(華氏150°)に加熱し、パネルを合計5分間浸漬した。図6及び図7(写真)に、ASTM B 117中性塩水噴霧法による1000時間暴露後の耐蝕特性を示す。表2に、ASTM D 1654による数値評価に基づく、各実施例の耐蝕性能の結果を比較して示す。ASTM評価法上の最良スコアは10であり、これは被検パネルに腐蝕がほとんど存在しないことを意味する。評価が1まで下がるときは、パネル表面のほぼ100%が腐蝕したことを表す。表2のデータから、リン酸陽極酸化アルミニウム及びその合金の後処理または封孔において、本発明の処理方法は従来法に比べて明らかに向上している。
<Example 11>
The specimen was anodized in the same manner as in Example 8. In this example, the compositions (solutions) of Example 5 and Example 6 were heated to 65.6 ° C. (150 ° F.), and the panel was immersed for a total of 5 minutes. FIG. 6 and FIG. 7 (photographs) show the corrosion resistance after 1000 hours exposure by ASTM B 117 neutral salt spray method. Table 2 shows a comparison of the results of the corrosion resistance performance of each example based on numerical evaluation according to ASTM D 1654. The best score on the ASTM evaluation method is 10, which means that there is almost no corrosion on the test panel. When the evaluation drops to 1, it indicates that almost 100% of the panel surface has been corroded. From the data in Table 2, the treatment method of the present invention is clearly improved as compared with the conventional method in the post-treatment or sealing of phosphoric acid anodized aluminum and its alloys.

表2 前記組成物(溶液)及び本発明の処理方法により処理されたパネルの腐蝕数値評価はASTM D 1654に基づき、最高10(無腐蝕)から後処理のない最低1(完全腐蝕)の評価値に渡る。評価値は、各条件における評価パネル3枚の平均値を掲載してある。

Figure 0004805280
Table 2 Corrosion numerical evaluation of the composition (solution) and the panel treated by the treatment method of the present invention is based on ASTM D 1654, with an evaluation value from a maximum of 10 (no corrosion) to a minimum of 1 (complete corrosion) without post-treatment. Cross over. The evaluation value includes the average value of three evaluation panels under each condition.
Figure 0004805280

本発明の目的においては、水溶性界面活性剤または保湿剤を、1リットル中約0〜10グラム、好適には約0.5〜1.5グラムの範囲で3価クロム溶液に添加することができる。前記界面活性剤を水溶液に添加すると、処理組成物の広がりを防止する表面張力が低下してぬれ性が向上し、被覆表面の被膜が均一になる。界面活性剤としては非イオン性、アニオン性及びカチオン性界面活性剤からなる群から選択される少なくとも1の水溶性組成物が挙げられる。必要な濃度において溶解しうる公知の水溶性界面活性剤としては、モノカルボキシイミドアゾリン、アルキル硫酸ナトリウム塩(DUPONOL(登録商標))、トリデシロキシポリ(アルキルエノキシエタノール)エトキシ化またはプロポキシ化アルキルフェノール(IGEPAL(登録商標))、アルキルスルホンアミド、硫酸アルカリール、パルミチックアルカノールアミド(CENTROL(登録商標))、オクチルフェニルポリエトキシエタノール(TRITON(登録商標))、ソルビタンモノパルミテート(SPAN(登録商標))、ドデシルフェニルポリエチレングリコールエーテル(例えばTERGITROL(登録商標))、アルキルピロリドン、ポリアルコキシ化脂肪酸エステル、アルキルベンゼンスルホン酸及びこれらの混合物が挙げられる。他の公知の水溶性界面活性剤としては、アルキルフェノールアルキルオキシレート、好適にはノニルフェノールエフィルオキシレートであって、フェニル環に少なくとも1のスルホン酸置換基及び脂肪族アミンを伴うエチレンオキシド付加物を有する種々のアニオン性界面活性剤が挙げられる。他の公知の水溶性界面活性剤は、「界面活性剤及び界面活性作用系」(第3版カーク・オスマー化学大事典、ジョン・ワイリー&サンズ社出版)に示されている。   For the purposes of the present invention, a water-soluble surfactant or humectant may be added to the trivalent chromium solution in the range of about 0-10 grams per liter, preferably about 0.5-1.5 grams. it can. When the surfactant is added to the aqueous solution, the surface tension that prevents the treatment composition from spreading is reduced, wettability is improved, and the coating on the coated surface becomes uniform. Surfactants include at least one water-soluble composition selected from the group consisting of nonionic, anionic and cationic surfactants. Known water-soluble surfactants that can be dissolved at the required concentrations include monocarboximidoazoline, alkyl sulfate sodium salt (DUPONOL®), tridecyloxypoly (alkylenoxyethanol) ethoxylated or propoxylated alkylphenols. (IGEPAL (registered trademark)), alkylsulfonamide, alkaryl sulfate, palmitic alkanolamide (CENTROL (registered trademark)), octylphenyl polyethoxyethanol (TRITON (registered trademark)), sorbitan monopalmitate (SPAN (registered trademark)) )), Dodecylphenyl polyethylene glycol ether (eg, TERGITOL®), alkylpyrrolidone, polyalkoxylated fatty acid ester, alkylbenzenesulfonic acid and Mixtures of al and the like. Other known water-soluble surfactants include alkylphenol alkyl oxylates, preferably nonylphenol effyl oxylates, which have an ethylene oxide adduct with at least one sulfonic acid substituent and an aliphatic amine on the phenyl ring. The anionic surfactant of these is mentioned. Other known water-soluble surfactants are shown in "Surfactants and Surfactant Action Systems" (3rd edition Kirk Osmer Chemical Dictionary, published by John Wiley & Sons).

表面積が広いために浸漬できない場合や、垂直面に噴霧する場合には、表面における水溶液との接触条件を維持するために濃化剤を添加する。使用する濃化剤としては水溶性無機及び有機濃化剤が公知であり、例えば3価クロム溶液に対して有効量(酸性溶液1リットルあたり0〜10グラム、好適には0.5〜1.5グラムの範囲)を添加できる。好適な濃化剤の具体例としては、セルロース化合物、例えばヒドロキシプロピルセルロース(クルセル等)、エチルセロース、ヒドロキシエチルセルロース、ヒドロキシメチルセルロース、メチルセルロース及びこれらの混合物が挙げられる。次いで好適な濃化剤としては、コロイド状シリカ、ベントナイト等の粘土、でんぷん、アラビアガム、トラガカントゴム、寒天及び種々の組合せ等の水溶性無機濃化剤が挙げられる。   When the surface cannot be immersed due to a large surface area or when spraying on a vertical surface, a thickener is added to maintain the contact condition with the aqueous solution on the surface. As the thickener to be used, water-soluble inorganic and organic thickeners are known. For example, an effective amount with respect to a trivalent chromium solution (0 to 10 grams per liter of acidic solution, preferably 0.5 to 1. In the range of 5 grams). Specific examples of suitable thickening agents include cellulose compounds such as hydroxypropyl cellulose (crucelle, etc.), ethyl cellulose, hydroxyethyl cellulose, hydroxymethyl cellulose, methyl cellulose, and mixtures thereof. Suitable thickeners then include water soluble inorganic thickeners such as colloidal silica, bentonite and other clays, starch, gum arabic, gum tragacanth, agar and various combinations.

通常のリン酸陽極酸化法により表面処理した後、前記溶液を浸漬、噴霧または塗布により適用できる。前記溶液は65℃まで加温可能であり、浸漬によりリン酸陽極酸化非膜の耐蝕性をさらに向上させるのが最適である。液温及び溶液濃度により、溶液滞留時間を約1〜60分で調整できる。滞留後、残存溶液を基板から叩き落とすか、または脱イオン水で十分に洗い流す。良好な性能を発揮させるための、積層した薄膜への追加的な化学的操作は必要ない。しかし、強力な酸化溶液を用いると薄膜の耐蝕性が向上しうる。さらに耐蝕性が向上するのは、薄膜中において3価クロムから6価クロムが生じるためであると推定される。水溶性封孔組成物は、浸漬タンクの代替として設計された噴霧タンクから噴霧してもよい。そうすれば実際の化合物量は約3780リットル(1000ガロン)から約114〜189リットル(30〜50ガロン)に減少する。   After the surface treatment by a normal phosphoric acid anodizing method, the solution can be applied by dipping, spraying or coating. The solution can be heated up to 65 ° C., and it is optimal to further improve the corrosion resistance of the phosphoric acid anodized non-film by dipping. Depending on the liquid temperature and the solution concentration, the solution residence time can be adjusted in about 1 to 60 minutes. After residence, the remaining solution is tapped off the substrate or washed thoroughly with deionized water. No additional chemical manipulation of the laminated film is necessary to achieve good performance. However, the use of a strong oxidizing solution can improve the corrosion resistance of the thin film. It is presumed that the corrosion resistance is further improved because hexavalent chromium is generated from trivalent chromium in the thin film. The water-soluble sealing composition may be sprayed from a spray tank designed as an alternative to a dip tank. This reduces the actual amount of compound from about 3780 liters (1000 gallons) to about 114-189 liters (30-50 gallons).

本発明の他の特徴は、この保護封孔被膜により、リン酸陽極酸化アルミニウムの耐蝕性が、硫酸、クロム酸、ホウ酸−硫酸または他の公知の組成物による陽極酸化物の封孔と同等またはそれ以上となることである。この可能性はこれまで存在せず、従来リン酸陽極酸化を使用できなかった腐食性の環境においても、それが応用できるという新たな潜在的用途を提供するものである。リン酸陽極酸化アルミニウムは、被覆重量が典型的には他の被覆の10分の1〜50分の1である点で非常に有利である。これは顕著な構造用アルミニウム合金の軽量化及び金属疲労の低減をもたらす。さらに、本発明により、クロム酸陽極酸化に代替する接着結合品として現在導入されているリン酸陽極酸化被覆の特性を向上させることができる可能性が生じる。従来、後処理されないままのリン酸陽極酸化被覆は、耐蝕性は劣るが接着特性は優れていると言われていた。しかしながら本発明は、陽極酸化アルミニウムの耐蝕性を向上させる一方で、当該被覆の接着結合強度を維持するものである。本発明における用語「溶解性」及び「水溶性」とは、少なくとも本明細書記載の濃度で、本発明の溶液に使用された化合物を含有できるだけの水溶性を意味する。   Another feature of the present invention is that this protective sealing coating allows the corrosion resistance of phosphoric acid anodized aluminum to be comparable to that of anodic oxides with sulfuric acid, chromic acid, boric acid-sulfuric acid or other known compositions. Or more. This possibility does not exist so far and provides a new potential application where it can be applied in corrosive environments where phosphoric acid anodization could not previously be used. Phosphoric anodized aluminum is very advantageous in that the coating weight is typically 1/10 to 1/50 that of other coatings. This results in significant structural aluminum alloy weight reduction and reduced metal fatigue. In addition, the present invention creates the possibility of improving the properties of the phosphoric acid anodizing coating currently introduced as an adhesive bond substitute for chromic acid anodizing. Conventionally, it has been said that phosphoric acid anodized coatings that have not been post-treated have poor corrosion resistance but excellent adhesive properties. However, the present invention improves the corrosion resistance of anodized aluminum while maintaining the adhesive bond strength of the coating. The terms “solubility” and “water solubility” in the present invention mean water solubility sufficient to contain the compound used in the solution of the present invention at least at the concentrations described herein.

本発明は多くの具体的な実施例により記載されているが、下記請求項において特定される本発明の範囲を逸脱することなく、他の変形や修正なすことができることは明らかである。   While the invention has been described in terms of many specific embodiments, it will be apparent that other variations and modifications may be made without departing from the scope of the invention as defined in the following claims.

ASTM−B117塩水噴霧試験により24時間(1日)暴露させた、後処理なしのリン酸陽極酸化アルミニウム2024−T3の写真である。It is the photograph of the phosphoric acid anodized aluminum 2024-T3 without the post-processing exposed by the ASTM-B117 salt spray test for 24 hours (1 day). ASTM−B117塩水噴霧試験により96時間(4日)暴露させた後の、実施例5の組成物で後処理(約23.9℃、10分浸漬)したリン酸陽極酸化アルミニウム2024−T3の写真である。Photograph of anodized aluminum phosphate 2024-T3 post-treated with the composition of Example 5 (soaked at about 23.9 ° C. for 10 minutes) after 96 hours (4 days) exposure by the ASTM-B117 salt spray test It is. ASTM−B117塩水噴霧試験により96時間(4日)暴露させた後の、実施例6の組成物で後処理(約23.9℃、10分浸漬)したリン酸陽極酸化アルミニウム2024−T3の写真である。Photograph of aluminum phosphate anodized aluminum 2024-T3 post-treated with the composition of Example 6 (soaked at about 23.9 ° C. for 10 minutes) after being exposed to ASTM-B117 salt spray test for 96 hours (4 days) It is. ASTM−B117塩水噴霧試験により1000時間(42日)暴露させた後の、実施例5の組成物で後処理(約37.8℃、10分浸漬)したリン酸陽極酸化アルミニウム2024−T3の写真である。Photograph of anodized aluminum phosphate 2024-T3 post-treated with the composition of Example 5 (soaked at about 37.8 ° C. for 10 minutes) after 1000 hours (42 days) exposure by ASTM-B117 salt spray test It is. ASTM−B117塩水噴霧試験により1000時間(42日)暴露させた後の、実施例7の組成物で後処理(約37.8℃、10分浸漬)したリン酸陽極酸化アルミニウム2024−T3の写真である。Photograph of aluminum phosphate anodized aluminum 2024-T3 post-treated with the composition of Example 7 (soaked at about 37.8 ° C. for 10 minutes) after 1000 hours (42 days) exposure by ASTM-B117 salt spray test It is. ASTM−B117塩水噴霧試験により1000時間(42日)暴露させた後の、実施例5の組成物で後処理(約23.9℃、40分浸漬)したリン酸陽極酸化アルミニウム2024−T3の写真である。Photograph of anodized aluminum phosphate 2024-T3 post-treated with the composition of Example 5 (soaked at about 23.9 ° C. for 40 minutes) after 1000 hours (42 days) exposure by ASTM-B117 salt spray test It is. ASTM−B117塩水噴霧試験により1000時間(42日)暴露させた後の、実施例7の組成物で後処理(約23.9℃、40分浸漬)したリン酸陽極酸化アルミニウム2024−T3の写真である。Photograph of anodized aluminum phosphate 2024-T3 post-treated with the composition of Example 7 (approx. 23.9 ° C., 40 minutes immersion) after 1000 hours (42 days) exposure by ASTM-B117 salt spray test It is. ASTM−B117塩水噴霧試験により1000時間(42日)暴露させた後の、実施例5の組成物で後処理(約65.6℃、5分浸漬)したリン酸陽極酸化アルミニウム2024−T3の写真である。Photograph of anodized aluminum phosphate 2024-T3 post-treated with the composition of Example 5 (immersion at about 65.6 ° C. for 5 minutes) after 1000 hours (42 days) exposure by ASTM-B117 salt spray test It is. ASTM−B117塩水噴霧試験により1000時間(42日)暴露させた後の、実施例6の組成物で後処理(約65.6℃、5分浸漬)したリン酸陽極酸化アルミニウム2024−T3の写真である。Photograph of anodized aluminum phosphate 2024-T3 post-treated with the composition of Example 6 (soaked at about 65.6 ° C. for 5 minutes) after 1000 hours (42 days) exposure by ASTM-B117 salt spray test It is.

Claims (15)

リン酸陽極酸化アルミニウム及びリン酸陽極酸化アルミニウム合金の封孔処理方法であって、
溶液1リットルあたり0.01〜22グラムの3価クロム化合物、
.0〜12グラムの範囲の四フッ化ホウ酸アルカリ金属塩、六フッ化ケイ酸アルカリ金属塩及びこれらの混合物の群から選択される少なくとも1のフッ素化合物、
0.01〜12グラムの範囲の六フッ化ジルコン酸アルカリ金属塩、
.001〜10グラムの範囲の少なくとも1の2価亜鉛化合物、
0.0〜10グラムの範囲の少なくとも1の水溶性濃化剤、並びに
0.0〜10グラムの少なくとも1の水溶性界面活性剤
を含む2.5〜5.5のpHの範囲の酸性水溶液でリン酸陽極酸化アルミニウム及びリン酸陽極酸化アルミニウム合金を処理し、耐蝕性を向上させ接着結合強度を維持する処理方法。
A method for sealing pores of phosphoric acid anodized aluminum and phosphoric acid anodized aluminum alloy,
0 Ri per l of solution. 01-22 grams of trivalent chromium compound,
0 . At least one fluorine compound selected from the group of alkali metal tetrafluoroborate, alkali metal hexafluorosilicate and mixtures thereof in the range of 0-12 grams;
Alkali metal hexafluoride zirconate in the range of 0.01-12 grams;
0 . At least one divalent zinc compound in the range of 001-10 grams;
0.0 to 1 0, at least one water-soluble thickening agent in the range of grams, and 0.0 to 1 0 contains at least one water-soluble surfactant of gram-free 2. A treatment method of treating phosphoric acid anodized aluminum and aluminum phosphate anodized alloy with an acidic aqueous solution having a pH of 5 to 5.5 to improve corrosion resistance and maintain adhesive bond strength.
前記2価亜鉛化合物が、溶液1リットルあたり0.1〜2.0グラムの範囲である、請求項1の処理方法。  The processing method according to claim 1, wherein the divalent zinc compound is in the range of 0.1 to 2.0 grams per liter of the solution. 前記酸性水溶液のpHが3.7〜4.0の範囲であり前記酸性水溶液の温度が室温付近から93.3℃の範囲である、請求項1の処理方法。PH of the acidic aqueous solution is 3 . The processing method according to claim 1, which is in the range of 7 to 4.0, and the temperature of the acidic aqueous solution is in the range of from about room temperature to 93.3 ° C. 前記3価クロム化合物が4.0〜8.0グラムの範囲の水溶性化合物であり、前記六フッ化ジルコン酸アルカリ金属塩が6.0〜10グラムの範囲の水溶性化合物であり、前記フッ素化合物が0.12〜1.2グラムの範囲の水溶性化合物である、請求項1の処理方法。The trivalent chromium compound is 4 . A water-soluble compound in the range of 0 to 8.0 grams, wherein the alkali metal hexafluorozirconate is 6 . 0-10 g water-soluble compounds ranging, the fluorine compound is 0. The processing method of claim 1, which is a water-soluble compound in the range of 12 to 1.2 grams. 前記水溶性濃化剤が0.5〜1.5グラムの範囲であり、前記水溶性界面活性剤が0.5〜1.5グラムの範囲である、請求項1の処理方法。The water-soluble thickener is 0 . In the range of 5 to 1.5 grams and the water-soluble surfactant is 0 . The processing method of claim 1, which is in the range of 5 to 1.5 grams. 前記フッ素化合物が前記酸性水溶液中に0.24〜0.36グラム存在し、前記リン酸陽極酸化アルミニウム又は前記リン酸陽極酸化アルミニウム合金がその後に93.3℃以下の温度で水洗される、請求項1の処理方法。The fluorine compound is dissolved in the acidic aqueous solution by 0.1 . 24 to 0.36 Gram exist, the phosphoric acid anodized Kaa aluminum or the phosphate anodized aluminum alloy is washed with subsequently 93.3 ° C. below the temperature, processing method according to claim 1. 前記水溶性濃化剤が前記酸性水溶液1リットルあたり0.5〜1.5グラムの範囲の量で存在するセルロース化合物である、請求項1の処理方法。 0 Ri per the water-soluble thickening agent is the acidic aqueous solution liter. The processing method of claim 1, wherein the cellulose compound is present in an amount ranging from 5 to 1.5 grams. 前記3価クロム塩が硫酸クロムである、請求項1の処理方法。  The processing method according to claim 1, wherein the trivalent chromium salt is chromium sulfate. 前記六フッ化ジルコン酸アルカリ金属塩が六フッ化ジルコン酸カリウム塩である、請求項1の処理方法。  The processing method according to claim 1, wherein the alkali metal hexafluoride zirconate is potassium hexafluorozirconate. 前記3価クロム塩が4.0〜8.0グラムの範囲の硫酸クロムであり、前記六フッ化ジルコン酸アルカリ金属塩が6.0〜10グラムの範囲の六フッ化ジルコン酸カリウム塩であり、前記四フッ化ホウ酸アルカリ金属塩が0.24〜0.36グラムの範囲である、請求項1の処理方法。The trivalent chromium salt is 4 . Chromium sulfate in the range of 0 to 8.0 grams, wherein the alkali metal hexafluoride zirconate is 6 . 0 to 10 grams of potassium hexafluorozirconate, wherein the alkali metal tetrafluoroborate is 0 . The processing method of claim 1, which is in the range of 24-0.36 grams. 前記2価亜鉛化合物が酢酸亜鉛及び硫酸亜鉛の少なくとも1である、請求項1の処理方法。  The processing method according to claim 1, wherein the divalent zinc compound is at least one of zinc acetate and zinc sulfate. 前記水溶性界面活性剤が水溶性非イオン性、アニオン性、カチオン性からなる群から選択される、請求項1の処理方法。  The processing method according to claim 1, wherein the water-soluble surfactant is selected from the group consisting of water-soluble nonionic, anionic and cationic. 前記硫酸亜鉛が0.1〜5.0グラムの範囲の量において水溶液中に存在する、請求項11の処理方法。The zinc sulfate is 0 . 12. A process according to claim 11 present in the aqueous solution in an amount ranging from 1 to 5.0 grams. 前記3価クロム化合物が4.0〜8.0グラムの範囲の量において水溶液中に存在し、四フッ化ホウ酸アルカリ金属塩と六フッ化ケイ酸アルカリ金属塩の前記混合物が0.001〜12グラムの範囲の量において前記水溶液中に存在する、請求項1の処理方法。The trivalent chromium compound is 4 . Present in an aqueous solution in an amount ranging from 0 to 8.0 grams, wherein the mixture of alkali metal tetrafluoroborate and alkali metal hexafluorosilicate is . The processing method of claim 1, wherein the treatment method is present in the aqueous solution in an amount ranging from 001 to 12 grams. 請求項1の封孔処理方法により被覆されたリン酸陽極酸化アルミニウム及びリン酸陽極酸化アルミニウム合金。An anodized aluminum phosphate and an anodized aluminum phosphate alloy coated by the sealing treatment method according to claim 1.
JP2007555079A 2005-02-15 2005-11-14 Method for sealing pores of anodized aluminum phosphate Expired - Fee Related JP4805280B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/058,533 2005-02-15
US11/058,533 US20060191599A1 (en) 2005-02-15 2005-02-15 Process for sealing phosphoric acid anodized aluminums
PCT/US2005/041425 WO2006088520A2 (en) 2005-02-15 2005-11-14 Process for sealing phosphoric acid anodized aluminums

Publications (2)

Publication Number Publication Date
JP2008530362A JP2008530362A (en) 2008-08-07
JP4805280B2 true JP4805280B2 (en) 2011-11-02

Family

ID=36916892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007555079A Expired - Fee Related JP4805280B2 (en) 2005-02-15 2005-11-14 Method for sealing pores of anodized aluminum phosphate

Country Status (14)

Country Link
US (1) US20060191599A1 (en)
EP (1) EP1853750B1 (en)
JP (1) JP4805280B2 (en)
KR (1) KR101215772B1 (en)
CN (1) CN101146929B (en)
AT (1) ATE506469T1 (en)
AU (1) AU2005327547A1 (en)
BR (1) BRPI0519983A2 (en)
CA (1) CA2598390A1 (en)
DE (1) DE602005027616D1 (en)
DK (1) DK1853750T3 (en)
ES (1) ES2365403T3 (en)
MX (1) MX2007009800A (en)
WO (1) WO2006088520A2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7452454B2 (en) * 2001-10-02 2008-11-18 Henkel Kgaa Anodized coating over aluminum and aluminum alloy coated substrates
CN101384751B (en) * 2006-02-14 2013-01-02 汉高股份及两合公司 Composition and processes of a dry-in-place trivalent chromium corrosion-resistant coating for use on metal surfaces
CA2651393C (en) * 2006-05-10 2016-11-01 Henkel Ag & Co. Kgaa Improved trivalent chromium-containing composition for use in corrosion resistant coatings on metal surfaces
JP5288216B2 (en) * 2009-02-27 2013-09-11 日立オートモティブシステムズ株式会社 Disc brake
US8273190B2 (en) 2009-05-29 2012-09-25 Bulk Chemicals, Inc. Method for making and using chromium III salts
US8425692B2 (en) 2010-05-27 2013-04-23 Bulk Chemicals, Inc. Process and composition for treating metal surfaces
US9187839B2 (en) 2010-10-07 2015-11-17 Michael Sheehy Process for the manufacture of sealed anodized aluminum components
WO2012061872A1 (en) * 2010-11-08 2012-05-18 Mezurx Pty Ltd Sample analyser
CN102817059B (en) * 2012-08-18 2015-05-20 佛山金兰铝厂有限公司 Novel hole sealing tank liquid for aluminum alloy oxidation section and sealing method by using the same
ITMI20122229A1 (en) * 2012-12-21 2014-06-22 Campagnolo Srl BICYCLE COMPONENT INCLUDING AN ALUMINUM BODY AND A COMPOSITE BODY, AND METHOD OF MANUFACTURING SUCH A COMPONENT
US10156016B2 (en) 2013-03-15 2018-12-18 Henkel Ag & Co. Kgaa Trivalent chromium-containing composition for aluminum and aluminum alloys
JPWO2017199865A1 (en) * 2016-05-17 2019-03-14 Nok株式会社 Method for preventing corrosion of aluminum-based member surfaces
RU2758664C1 (en) * 2018-01-30 2021-11-01 Прк-Десото Интернэшнл, Инк. Systems and methods for processing metal substrate
KR102500400B1 (en) * 2018-03-29 2023-02-15 니혼 파커라이징 가부시키가이샤 Surface treatment agent, aluminum or aluminum alloy material having surface treatment film, and manufacturing method thereof
JP7118402B2 (en) * 2018-04-26 2022-08-16 奥野製薬工業株式会社 Sealing treatment liquid for anodized film of aluminum alloy, concentrated liquid and sealing treatment method
US11155928B2 (en) * 2019-12-19 2021-10-26 The United States Of America As Represented By The Secretary Of The Navy Electrolytic process for deposition of chemical conversion coatings
FR3106838B1 (en) * 2020-01-31 2022-01-14 Safran Aircraft Engines ALUMINUM ALLOY CLOGGING PROCESS
FR3106837B1 (en) * 2020-01-31 2023-05-12 Safran Aerosystems SURFACE TREATMENT PROCESS FOR ALUMINUM-BASED PARTS
FR3140382A1 (en) 2022-10-04 2024-04-05 Safran Landing Systems PROCESS FOR POST-ANODIZATION SEALING OF ALUMINUM AND ALUMINUM ALLOYS WITHOUT USING CHROME

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122300A (en) * 1989-10-06 1991-05-24 Johoku Riken Kogyo:Kk Surface treatment of aluminum alloy
JPH049597A (en) * 1990-04-25 1992-01-14 Sky Alum Co Ltd Aluminum fin material for heat exchanger and manufacture thereof
JP2001152392A (en) * 1999-11-24 2001-06-05 Toyama Prefecture Alkali resistant aluminum oxide composite film and producing method therefor
US6511532B2 (en) * 2000-10-31 2003-01-28 The United States Of America As Represented By The Secretary Of The Navy Post-treatment for anodized aluminum
US6663700B1 (en) * 2000-10-31 2003-12-16 The United States Of America As Represented By The Secretary Of The Navy Post-treatment for metal coated substrates
US6669764B1 (en) * 2000-10-31 2003-12-30 The United States Of America As Represented By The Secretary Of The Navy Pretreatment for aluminum and aluminum alloys

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES452499A1 (en) * 1976-10-05 1978-04-01 Brugarolas Sa Process for sealing anodic oxidation layers on aluminium surfaces and its alloys
US4467028A (en) * 1982-07-12 1984-08-21 Polychrome Corporation Acid interlayered planographic printing plate
US4786336A (en) * 1985-03-08 1988-11-22 Amchem Products, Inc. Low temperature seal for anodized aluminum surfaces
US5374347A (en) * 1993-09-27 1994-12-20 The United States Of America As Represented By The Secretary Of The Navy Trivalent chromium solutions for sealing anodized aluminum
US5304257A (en) * 1993-09-27 1994-04-19 The United States Of America As Represented By The Secretary Of The Navy Trivalent chromium conversion coatings for aluminum
GB9422952D0 (en) * 1994-11-14 1995-01-04 Secr Defence Corrosion inhibitor
US7018486B2 (en) * 2002-05-13 2006-03-28 United Technologies Corporation Corrosion resistant trivalent chromium phosphated chemical conversion coatings

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122300A (en) * 1989-10-06 1991-05-24 Johoku Riken Kogyo:Kk Surface treatment of aluminum alloy
JPH049597A (en) * 1990-04-25 1992-01-14 Sky Alum Co Ltd Aluminum fin material for heat exchanger and manufacture thereof
JP2001152392A (en) * 1999-11-24 2001-06-05 Toyama Prefecture Alkali resistant aluminum oxide composite film and producing method therefor
US6511532B2 (en) * 2000-10-31 2003-01-28 The United States Of America As Represented By The Secretary Of The Navy Post-treatment for anodized aluminum
US6663700B1 (en) * 2000-10-31 2003-12-16 The United States Of America As Represented By The Secretary Of The Navy Post-treatment for metal coated substrates
US6669764B1 (en) * 2000-10-31 2003-12-30 The United States Of America As Represented By The Secretary Of The Navy Pretreatment for aluminum and aluminum alloys

Also Published As

Publication number Publication date
CA2598390A1 (en) 2006-08-24
EP1853750A4 (en) 2009-04-29
KR101215772B1 (en) 2013-01-10
WO2006088520A3 (en) 2007-01-18
MX2007009800A (en) 2007-09-27
WO2006088520A2 (en) 2006-08-24
ES2365403T3 (en) 2011-10-04
DK1853750T3 (en) 2011-06-20
CN101146929A (en) 2008-03-19
EP1853750A2 (en) 2007-11-14
AU2005327547A1 (en) 2006-08-24
US20060191599A1 (en) 2006-08-31
JP2008530362A (en) 2008-08-07
CN101146929B (en) 2010-08-11
DE602005027616D1 (en) 2011-06-01
KR20070121674A (en) 2007-12-27
EP1853750B1 (en) 2011-04-20
ATE506469T1 (en) 2011-05-15
BRPI0519983A2 (en) 2009-08-18

Similar Documents

Publication Publication Date Title
JP4805280B2 (en) Method for sealing pores of anodized aluminum phosphate
JP4370167B2 (en) Post-processing for anodized aluminum
JP4391085B2 (en) Corrosion resistant coating for aluminum and aluminum alloys
CA2513875C (en) Pretreatment for aluminum and aluminum alloys
CA2465701C (en) Post-treatment for metal coated substrates
US6521029B1 (en) Pretreatment for aluminum and aluminum alloys
AU2016210539A1 (en) A process for the preparation of corrosion resistant sealed anodized coatings on aluminum alloy
US20100032060A1 (en) Process for preparing chromium conversion coatings for magnesium alloys
US20070099022A1 (en) Non-chromium post-treatment for aluminum coated steel
KR20070118085A (en) Process for preparing chromium conversion coatings for iron and iron alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees