JPH049597A - Aluminum fin material for heat exchanger and manufacture thereof - Google Patents

Aluminum fin material for heat exchanger and manufacture thereof

Info

Publication number
JPH049597A
JPH049597A JP10934190A JP10934190A JPH049597A JP H049597 A JPH049597 A JP H049597A JP 10934190 A JP10934190 A JP 10934190A JP 10934190 A JP10934190 A JP 10934190A JP H049597 A JPH049597 A JP H049597A
Authority
JP
Japan
Prior art keywords
film
aluminum
oxide film
heat exchanger
fin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10934190A
Other languages
Japanese (ja)
Other versions
JP2579234B2 (en
Inventor
Masahiro Kurata
正裕 倉田
Michio Kobayashi
美智男 小林
Nobuyoshi Sasaki
佐々木 延義
Ikuo Obara
小原 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP2109341A priority Critical patent/JP2579234B2/en
Publication of JPH049597A publication Critical patent/JPH049597A/en
Application granted granted Critical
Publication of JP2579234B2 publication Critical patent/JP2579234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve adhesion of a paint film and prevent cracks and separation of the paint film due to processing by forming an oxidized film with a specific thickness on a material for use in fins by effecting AC electrolysis in an alkaline aqueous solution. CONSTITUTION:An aluminum or aluminum alloy is subjected to AC electrolysis in an alkaline aqueous solution at pH 9-3, temperatures 35-85 deg.C, current density 4-50A/dm<2>, and quantity of electricity exceeding 80C/dm<2> to form an oxidized film with a thickness of 500-5,000Angstrom . Either or both anti-correction film and hydrophilic film are applied to the oxidized film thus formed. Since the oxidized film has a large pore diameter and a large number of branches, a strong adhesion is achieved between a paint film and an aluminum plate when an organic substance such as coating resin etc., or an inorganic substance such as water glass etc., is applied to the oxidized film. The oxidized film is flexible and hence cracks or separation is not formed therein, so that cracks or separation is not caused by processing in the resins or inorganic paint films applied to the surface of the oxidized film.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、家庭用、業務用及びカーエアコン等のコンデ
ンサー(凝縮器)、エバポlノーター等に使用する熱交
換器用フィンに使用するアルミニウムフィン材に関する
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to aluminum fins used for heat exchanger fins used in condensers (condensers) for household, commercial and car air conditioners, evaporator noters, etc. Regarding materials.

アルミニウム又はアルミニウム合金材に樹脂又は水ガラ
ス等の無機皮膜を塗装・焼付けた本発明によるアルミニ
ウムフィン材は、絞り加工又はしニ゛き加工によりフィ
ンを成形し、脱脂洗浄(プレス油の除去)、組み立て(
銅バイブ挿入、拡管)により熱交換器フィンとして使用
する際、アルミニウム又はアルミニウム合金材と塗膜と
の密@性に優れ、耐食性及び耐薬品性(耐溶剤性、耐ア
ルカリ薬品性)が高く、しかも生産性の高い(短時間処
理、安価)熱交換器用アルミニウムフィン材及びその製
造方法を提供するものである。
The aluminum fin material of the present invention, which is made by coating and baking an inorganic film such as resin or water glass on aluminum or an aluminum alloy material, is formed into a fin by drawing or annealing, degreasing and cleaning (removal of press oil), assembly(
When used as a heat exchanger fin by inserting a copper vibrator or expanding the tube, it has excellent adhesion between the aluminum or aluminum alloy material and the coating film, and has high corrosion resistance and chemical resistance (solvent resistance, alkali chemical resistance), Furthermore, the present invention provides an aluminum fin material for a heat exchanger with high productivity (short processing time, low cost) and a method for manufacturing the same.

[従来の技術] 家庭用、業務用を問わずエアコン、クーラー等のエバポ
レーター、コンデンサー等の熱交換器には、加工性、放
熱性に優れ、また軽量かつ耐食性の良好なアルミニウム
フィン材が使われている。
[Conventional technology] Aluminum fin materials are used in heat exchangers such as evaporators and condensers for air conditioners and coolers, whether for home or commercial use, because they have excellent workability and heat dissipation, and are lightweight and have good corrosion resistance. ing.

近年においては熱交換器の小型化、省エネルギー化に伴
い熱効率をアップするために複雑な形状に加工し、単位
重量あたりの表面積を増やしたり、冷房運転時の空気中
水分のフィン表面への結露及びそれに伴う通風抵抗の増
加を防止するためにアルミニウムフィン表面を親水化処
理(樹脂コーティング等)することが行なわれており、
また耐食性を更に向上させるために耐食性塗膜をコーテ
ィングするといった処理を施しでいる。
In recent years, as heat exchangers have become smaller and more energy efficient, they have been processed into complex shapes to increase thermal efficiency, increasing the surface area per unit weight, and reducing condensation of moisture in the air on the fin surfaces during cooling operation. In order to prevent the increase in ventilation resistance associated with this, the aluminum fin surface is subjected to hydrophilic treatment (resin coating, etc.).
In addition, in order to further improve corrosion resistance, a treatment such as coating with a corrosion-resistant paint film is applied.

これらの塗装処理は成形加工した材料を塗装するポスト
コートと、成形加工前に塗装処理を行ない、塗装済のア
ルミニウム板を成形加工するプレコートがあるが、複雑
な形状に成形した後での塗装は極めて困難であり、板の
段隅での塗装するプレコートが好ましいことは言うまで
もない。
These coating treatments include post-coating, which involves painting the molded material, and pre-coating, which involves painting the pre-painted aluminum plate before forming it, but painting after forming it into a complex shape is difficult. Needless to say, it is extremely difficult to apply a pre-coat to the step corners of the board.

しかし、コート済のアルミニウム板は一般に次のごとき
フィンへの成形工程を経なければならない。
However, coated aluminum plates generally must undergo the following process of forming into fins.

成形(絞り加工またはしごき加工)−切断−銅パイプ挿
入−銅バイブ拡管−説脂一乾燥一製品 ここで行なわれる成形は、絞り加工又はしごき加工によ
り行なわれるが、深絞り又は苛酷な成形加工であって、
通常フィン材の加工率(扱厚減少率)は50%以上とな
る。
Forming (drawing or ironing) - Cutting - Copper pipe insertion - Copper vibrator expansion - Degreasing - Drying - Product The forming performed here is done by drawing or ironing, but deep drawing or harsh forming is not enough. There it is,
Normally, the processing rate (handling thickness reduction rate) of fin material is 50% or more.

そのため、アルミニウム板と塗膜の密着性が不充分であ
ると塗膜にキレツを生じたり、塗膜の剥離が発生する。
Therefore, if the adhesion between the aluminum plate and the coating film is insufficient, the coating film may crack or peel.

このような状態では熱交換器冷房運転時の結露等により
、塗膜欠陥部に白錆、孔食が発生し易(、また銅バイブ
と直接に接触することによる電食も起こし易い。
Under such conditions, white rust and pitting corrosion are likely to occur in the defective areas of the coating film due to condensation during cooling operation of the heat exchanger (and electrolytic corrosion is also likely to occur due to direct contact with the copper vibrator).

また、熱交換器成形においてはプレス油が使われるので
、成形後脱脂洗浄が必要である。脱脂には通常、]、1
.1−)リクロルユクン、■1.2−トリクロルエチレ
ン等の有機溶剤、アルカリケイ酸塩等のアルカリ脱脂剤
、ノニオンあるいはアニオン性活性剤水溶液に浸漬及び
/または蒸気浴による洗浄が行なわれている5このとき
Furthermore, since press oil is used in heat exchanger molding, degreasing and cleaning is required after molding. For degreasing, ], 1
.. 1-) Lichloryukun, ■1.2-Organic solvents such as trichlorethylene, alkaline degreasers such as alkali silicate, nonionic or anionic activator Aqueous solutions are immersed in the solution and/or cleaning is performed in a steam bath5. When.

アルミニウム板と塗膜の密着性が不充分であると脱脂剤
がアルミニウム板と塗膜の接着面に入り込み、フィン、
剥離等の不良を起こしたり、脱脂剤が最終製品において
も残るために異臭の発生といった不都合を生じる。
If the adhesion between the aluminum plate and the paint film is insufficient, the degreaser will get into the adhesive surface between the aluminum plate and the paint film, causing damage to the fins,
This causes problems such as peeling and other problems, and the degreasing agent remains in the final product, causing unpleasant odors.

一方、熱交換器は使用中、ホコリ、空気中を漂っている
油分、汚れ等が付着し。目詰まり、細菌・黴の繁殖、熱
交換性能の低下等が起こる。そのため、数年に1回〜年
に数回程度の割合でアルカリ性洗浄剤でフィン表面を洗
うことが行なわれる場合がある。この場合もアルミニウ
ム表面と塗膜の密着性が悪いと、洗浄液がアルミニウム
と塗膜の接着欠陥部に接触し、アルミニウムと反応し、
消画、腐食、フィン、塗膜剥離を生じる(このような欠
陥はポストコート、プレコートを問わず生じる)。
On the other hand, during use, heat exchangers become contaminated with dust, oil floating in the air, dirt, etc. This can lead to clogging, the growth of bacteria and mold, and a decrease in heat exchange performance. Therefore, the fin surface may be washed with an alkaline detergent once every few years to several times a year. In this case too, if the adhesion between the aluminum surface and the paint film is poor, the cleaning solution will come into contact with the adhesion defects between the aluminum and the paint film and react with the aluminum.
Image erasure, corrosion, fins, and paint peeling occur (such defects occur regardless of post-coat or pre-coat).

このような不都合を無くすためにアルミニウム板と塗膜
の密着性を高めることを目的として、従来広のようなア
ルミニウム板の塗装下地表面処理が行なわれてしくる。
In order to eliminate such inconveniences and to improve the adhesion between the aluminum plate and the coating film, conventional coating substrate surface treatments have been carried out on the aluminum plate.

例えば、特公昭60−13428 (特開昭57−19
381)又は特開昭59−215564においてはアル
ミニウム表面を硫酸、し中う酸、リン酸等の液中で陽極
酸化処理する。
For example, JP 60-13428 (JP 57-19
381) or in JP-A-59-215564, the aluminum surface is anodized in a solution such as sulfuric acid, ceric acid, or phosphoric acid.

このような酸性液中で形成された陽極酸化皮膜は緻密で
確かにそれ自体の耐食性は高く、封孔処理を行なわない
場合は細孔中への樹脂の拡散−同化によるアンカー効果
か期待でき、塗膜密着性が向上する。
The anodic oxide film formed in such an acidic solution is dense and certainly has high corrosion resistance, and if no sealing treatment is performed, an anchoring effect can be expected due to the diffusion and assimilation of the resin into the pores. Improves paint film adhesion.

しかし、このような酸性液中で生成した陽極酸化皮膜は
緻密であるが故に固く、深絞り、しごき加]ニのような
苛酷な成形を行なうとクラックが生し易く、腐食、塗膜
・剥離の原因となる。また、1食性を満足させるには数
μ以上の皮膜厚さが必要で、この膜厚とするためには数
分〜10数分の長時間の処理時間を必要とし、生産性が
低い欠点がある。更に、薬剤価格が高くコストアップを
招く等数多くの問題点を包蔵している。
However, the anodic oxide film formed in such an acidic solution is dense and hard, and is prone to cracking when subjected to severe forming processes such as deep drawing and ironing, resulting in corrosion, paint film peeling, etc. It causes In addition, a film thickness of several micrometers or more is required to satisfy the monophagous property, and to achieve this film thickness, a long processing time of several minutes to several tens of minutes is required, which has the disadvantage of low productivity. be. Furthermore, there are many problems, such as high drug prices, leading to increased costs.

また、特開昭59−211578及び特開昭58−48
676においてはアルミニウム表面上を脱塩水あるいは
、p )(= 9〜I2の塩基性水溶液等で処理し、ア
ルミニウム表面に水和酸化皮膜(ベーマイト皮膜)を形
成させることが提案されている。
Also, JP-A-59-211578 and JP-A-58-48
No. 676 proposes treating the aluminum surface with demineralized water or a basic aqueous solution of p ) (= 9 to I2) to form a hydrated oxide film (boehmite film) on the aluminum surface.

この水和酸化皮膜は針状結晶で、結晶間の隙間に樹脂が
侵入することによりアンカー効果を発揮し、塗膜密着性
が向上する。
This hydrated oxide film has needle-like crystals, and when the resin penetrates into the gaps between the crystals, it exerts an anchoring effect and improves coating adhesion.

しかし、この方法でも充分な耐食性を有する皮膜厚を得
るためには、厚いベーマイト皮膜が必要で数分〜JO数
分の処理時間を必要とし、生産性が悪い。また、塗膜が
厚く、固いために深触り、しごき加工のような笥酷な成
形を行なうとクラックを生し、腐食、塗膜剥離の原因と
なる。
However, even with this method, in order to obtain a film thickness with sufficient corrosion resistance, a thick boehmite film is required, and a processing time of several minutes to JO is required, resulting in poor productivity. In addition, since the coating film is thick and hard, if it is touched deeply or subjected to severe shaping such as ironing, cracks may occur, causing corrosion and peeling of the coating film.

また、持分8t¥53−48177、特開昭54−29
45においてはアルミニウム板表面をアルカノケイ酸塩
水渚液、あるいは1種類窓−1の有機タイ酸化合物を添
加したアルカリケイM塩溶液で処理することが提案され
ている。
In addition, equity 8t ¥53-48177, JP-A-54-29
In No. 45, it is proposed to treat the surface of an aluminum plate with an alkanosilicate aqueous solution or an alkali silicate M salt solution to which an organic Thai acid compound of type 1 is added.

この場合、ケイ酸塩化合物によりアルミニウム表面が覆
われることにより耐食性が向上するが、生成したケイ酸
塩イと合物は脆いので成形加工によりキレツ、剥離を生
じ、腐食起点となると共に塗膜剥離の原因となるためプ
レコートとしては極めて使用困難である。
In this case, corrosion resistance is improved by covering the aluminum surface with a silicate compound, but the formed silicate compound is brittle, so it cracks and peels during the forming process, becoming a starting point for corrosion and causing paint film to peel off. This makes it extremely difficult to use as a precoat.

更に特公昭60−13429においては、アルミニウム
を酸系処理液(クロム酸、クロム酸塩、重クロム酸塩、
クロム酸・リン酸、チタン酸塩、タンニン酸−チタン酸
塩)に、数秒〜20分程度浸漬する7 このような処理によりアルミニウム表面にクロム酸、リ
ン酸クロム等の耐食性皮膜が形成されるので1ttt、
性が向−トするが、この場合もシゴキ率50%以上とい
った苛酷な成形を行なうと−F記皮膜にクラックが入り
、腐食起点となったり、塗膜剥離の原因となる。
Furthermore, in Japanese Patent Publication No. 60-13429, aluminum was treated with acid-based treatment solutions (chromic acid, chromate, dichromate,
Chromic acid/phosphoric acid, titanate, tannic acid-titanate) for a few seconds to 20 minutes.7 This process forms a corrosion-resistant film of chromic acid, chromium phosphate, etc. on the aluminum surface. 1ttt,
However, in this case too, if severe molding is performed with an ironing rate of 50% or more, cracks will appear in the -F film, which may become a starting point for corrosion or cause peeling of the paint film.

また、化成型クロメートの使用に際しては、化成処理後
水洗を必要とするたぬに、クロムを含んだ多量の廃水が
出るため能力の大きな廃液処理設備が必要で多額の費用
を要し、取扱い上も注意を要する等、公害、安全性、コ
ストの点で不利である。
In addition, when using chemically formed chromate, a large amount of wastewater containing chromium is generated, which requires washing with water after chemical treatment, so wastewater treatment equipment with large capacity is required, which requires a large amount of money and is difficult to handle. It is disadvantageous in terms of pollution, safety, and cost, as it requires special care.

[発明が解決しようとする課題] 本発明は、生産性の高いプレコート用のアルミニウムフ
ィン材の開発を目的とし、 ■ 下地と塗膜との密着性が高く、50%以上の絞り又
は50%以上のしごき加工を行なっても、塗装した塗膜
にキレツ、剥離等の不良を起こさず、加工成形後も高い
耐食性を維持できる塗装下地を得ること、 ■ 下地と塗膜との富青竹が高く、プレス成形後の脱脂
洗浄においても塗膜にフクレ、剥離等をψしない塗装下
地を得ること、 ■ 下地と塗膜との密着性が高く、アルカリ性溶液によ
り洗浄、浸漬しても塗膜剥離、フクレ腐食等を起こさな
い塗装下地を得ること■ 処理時間が短時間で済み、生
産性の高い塗装下地を得ること ■ 毒性が低く、安全・hが高く、廃液処理等の点で低
公害性の塗装下地製造法を得ること、■ 使用薬剤コス
トが低く、低コストの塗装下地製造法を得ること、 の目標を掲げて研究を行ない、本発明を完成した。
[Problems to be Solved by the Invention] The purpose of the present invention is to develop an aluminum fin material for pre-coating with high productivity. ■ High adhesion between the base and the coating film, and a reduction of 50% or more or 50% or more. To obtain a coating base that does not cause defects such as cracking or peeling in the painted coating even when subjected to rolling processing, and maintains high corrosion resistance even after processing and forming. To obtain a coating base that does not cause blistering or peeling of the paint film even after degreasing and cleaning after press molding.■ The adhesion between the base and the paint film is high, and the paint film does not peel or peel even when washed or immersed in an alkaline solution. To obtain a coating base that does not cause corrosion, etc. ■ To obtain a coating base that requires short processing time and is highly productive ■ A coating that is low in toxicity, high in safety and h, and low pollution in terms of waste liquid treatment, etc. The present invention was completed after conducting research with the following goals: (1) Obtaining a method for manufacturing a coating base that uses low chemicals and is low in cost.

[課題を解決するための手段〕 本発明は、アルカリ性水溶液中にて交流電解処理により
膜厚500〜5000人の酸化皮膜が形成されているこ
とを特徴とする熱交換器用アルミニウムフィン用材を提
供するものであり、またこの熱交換器用アルミニウム用
材は、アルミニウム又はアルミニウム合金材を、pH9
〜13.浴温35〜85℃のアルカリ性水溶液中で、電
流密度4〜50 A / d m ”にて、電気量が8
0C/dm2を越え、酸化皮膜厚さ5000人となる時
間、交流電解処理を行なうことを特徴とする熱交換器用
アルミニウムフィン用材の製造方法によって得られ、こ
の得られたアルミニウムフィン用材の酸化皮膜上に耐食
性皮膜あるいは親水性皮膜、又はまず耐食性皮膜を設け
その上に親水性皮膜を設けた熱交換器用アルミニウムフ
ィン材を提供する。
[Means for Solving the Problems] The present invention provides an aluminum fin material for a heat exchanger, characterized in that an oxide film with a thickness of 500 to 5,000 is formed by alternating current electrolysis treatment in an alkaline aqueous solution. This aluminum material for heat exchanger is made of aluminum or aluminum alloy material at a pH of 9.
~13. In an alkaline aqueous solution with a bath temperature of 35 to 85 °C, at a current density of 4 to 50 A/d m'', the amount of electricity is 8
Obtained by a method for producing an aluminum fin material for a heat exchanger, which is characterized by performing alternating current electrolytic treatment for a period of time exceeding 0 C/dm2 and an oxide film thickness of 5,000 g, and on the oxide film of the obtained aluminum fin material. Provided is an aluminum fin material for a heat exchanger in which a corrosion-resistant film or a hydrophilic film is provided, or a corrosion-resistant film is first provided and a hydrophilic film is provided thereon.

本発明によるアルカリ交流電解で得られる酸化皮膜は、
ボア径が大きく (直径約200人、通常の硫酸陽極酸
化皮膜では約50人程度)、多数の枝分かれ構造を有し
ている。そのため、塗料樹脂等の有機物あるいは水ガラ
ス等の無機物を塗布した場合、これらの物質がボアの内
部まで侵入し易いので、高いアンカー効果が得られ、塗
膜とアルミニウム板との間で強い密着性が得られる。
The oxide film obtained by alkaline AC electrolysis according to the present invention is
It has a large bore diameter (approximately 200 diameter diameter, about 50 diameter for normal sulfuric acid anodized coating) and has a large number of branched structures. Therefore, when organic substances such as paint resin or inorganic substances such as water glass are applied, these substances easily penetrate into the bore, resulting in a high anchoring effect and strong adhesion between the coating film and the aluminum plate. is obtained.

本発明において酸化皮膜の膜厚が500〜5000人と
薄いこと、また枝分かれを有する細孔11!造となって
いる結果、該酸化皮膜は柔軟性に富み、50%以上の絞
りあるいは50%以上のしごき加工等を行なっても該酸
化皮膜にクラック剥離等を生ぜず、その結果その表面に
塗布した樹脂、無機塗膜等にクラック、剥離が生じない
ようになる。
In the present invention, the thickness of the oxide film is 500 to 5000 times thinner, and the pores 11 have branching! As a result of its structure, the oxide film is highly flexible and does not crack or peel off even if it is drawn by more than 50% or ironed by more than 50%, and as a result, the oxide film is not coated on the surface. This prevents cracks and peeling from occurring in resins, inorganic coatings, etc.

しかし、膜厚が500Å以下ではボアの長さが短いため
、充分なアンカー効果が得られず、密着性が劣ることに
なる。
However, if the film thickness is less than 500 Å, the length of the bore is short, so a sufficient anchoring effect cannot be obtained, resulting in poor adhesion.

また、5000人を越えると塗膜密着性は5000人の
場合と比較して特に向上しないばかりか、厚膜化に伴い
酸化皮膜の柔軟性が減少し、成形加工時にクラックを生
し易くなるのでムダである6 アルカリ性水溶液のアルカリ源としては、特に限定はし
ないが、リン酸ナトリウム、リン酸カリウム、ビロリン
酸ナトリウム、ビロリン酸カリウム、リン酸+水酸化ナ
トリウムといったリン酸塩を含むものが好ましい。リン
酸塩を含有する液の場合は、ボア径が大きくなり易いの
で、特に高い密着性が得られる。他に炭酸ナトリウム等
のアルカリ又はアルカリ土類炭酸塩、水酸化ナトリウム
等のアルカリ又はアルカリ土類水酸化物の水出液、もし
くはこれらのうちの2種以上の混合物であっても良い。
In addition, if the number of workers exceeds 5,000, not only will the adhesion of the coating not improve significantly compared to when the number of workers is 5,000, but the flexibility of the oxide film will decrease as the film becomes thicker, making it more likely to cause cracks during molding. 6. It's wasteful The alkaline source for the alkaline aqueous solution is not particularly limited, but those containing phosphates such as sodium phosphate, potassium phosphate, sodium birophosphate, potassium birophosphate, and phosphoric acid + sodium hydroxide are preferred. In the case of a liquid containing phosphate, the bore diameter tends to be large, so particularly high adhesion can be obtained. In addition, alkali or alkaline earth carbonates such as sodium carbonate, aqueous solutions of alkali or alkaline earth hydroxides such as sodium hydroxide, or a mixture of two or more of these may also be used.

また、アルミニウム表面との液濡れ性及び脱脂性を良く
するために界面活性剤を含んでいても良しX+ 電解液のpHは9〜13.好ましくはpHl0〜12で
ある。
In addition, a surfactant may be included in order to improve wettability with the aluminum surface and degreasing property. Preferably the pH is 0 to 12.

p Hが9未満では脱脂性が劣り、特に酸性ではアルミ
ニウム板表面の圧延油、圧延中に形成された酸化皮膜の
溶解除去が出来ない7また、浴電圧が上昇して不均一な
電解(焼け)が起こり易く設備費用もかかる。pHが1
3を越えると生成した酸化皮膜の溶解性が強すぎて、密
着性に優れた多孔性皮膜が形成されなくなる。
If the pH is less than 9, the degreasing properties will be poor, and if the pH is particularly acidic, it will not be possible to dissolve and remove the rolling oil on the surface of the aluminum plate and the oxide film formed during rolling. ) is likely to occur and equipment costs are high. pH is 1
If it exceeds 3, the solubility of the generated oxide film will be too strong, and a porous film with excellent adhesion will not be formed.

浴温は35〜85℃の範囲、好ましくは60〜80℃の
範囲が良い。浴温か35℃未満では、脱脂、洗浄効果が
不充分で処理に時間がかかる。
The bath temperature is preferably in the range of 35 to 85°C, preferably in the range of 60 to 80°C. If the bath temperature is less than 35°C, the degreasing and cleaning effects will be insufficient and the treatment will take a long time.

方、浴温か85℃を越えると1解性が強すぎて必要な厚
みの陽極酸化皮膜が得られ難く、密着性に優れた多孔性
皮膜が形成されなくなる。
On the other hand, if the bath temperature exceeds 85° C., monolysis is too strong, making it difficult to obtain an anodic oxide film of the required thickness, and a porous film with excellent adhesion cannot be formed.

交流電解時の電流密度は4〜50 A / d m ’
好ましくは5〜30 A / d m ”が良い。
The current density during AC electrolysis is 4-50 A/d m'
Preferably it is 5 to 30 A/dm''.

電流密度が4 A / d m ”未満では電解時に発
生する気泡の量が不充分で1表面洗浄効果が劣りまた密
着性に優れた多孔性酸化皮膜の生成が不充分で好ましく
ない、電流密度50A/dm2を越えると電解電圧が高
くなりすぎ、漏電等の生産上の不具合を起こし易く、反
応熱による電解ムラ(焼け)が発生し易く、設備費用も
かさも。
If the current density is less than 4 A/d m'', the amount of bubbles generated during electrolysis will be insufficient, the surface cleaning effect will be poor, and the formation of a porous oxide film with excellent adhesion will be insufficient, which is undesirable. If it exceeds /dm2, the electrolysis voltage becomes too high, which tends to cause production problems such as electric leakage, and uneven electrolysis (burning) due to reaction heat, which increases equipment costs.

電気!(総電気量)は80c/dm”を越える電気量と
する必要がある。
electricity! (total amount of electricity) needs to exceed 80 c/dm''.

電気量が80 c / d m 2と同じか、それ以下
では多孔性酸化皮膜が薄く、その上に形成させる塗膜と
の密着性が不充分で、また洗浄作用も劣る。
When the amount of electricity is equal to or less than 80 c/d m 2 , the porous oxide film is thin, the adhesion to the coating film formed thereon is insufficient, and the cleaning action is also poor.

更に細かく見ると、極性がプラスの時の電気量(アノー
ド電気量とする)は40c/dm2を越える範囲が好ま
しい。アノード電気量が40C/dm”と同しか又はそ
れ以下では、多孔性酸化皮膜の成長が不充分で、洗浄作
用も充分に行なわれない6 極性がマイナスの時の電気量(カソード電気量とする)
は40c/dm”lJ上が好ましい。カソード電気量が
40 c / d m 2未満では洗浄作用が不充分で
ある。
Looking more closely, the amount of electricity when the polarity is positive (referred to as the amount of electricity at the anode) is preferably in a range exceeding 40 c/dm2. If the amount of electricity at the anode is equal to or less than 40C/dm, the growth of the porous oxide film will be insufficient and the cleaning action will not be sufficient.6 The amount of electricity when the polarity is negative (referred to as the amount of cathode electricity )
is preferably 40 c/dm"lJ or more. If the cathode electricity amount is less than 40 c/dm2, the cleaning action will be insufficient.

電流波形は交流波形であればよく、正弦波交流、矩形波
、台形波、三角波等でよく、またアノード電気量とカソ
ード電気量が異なっていても良い。
The current waveform may be an alternating current waveform, such as a sine wave alternating current, a rectangular wave, a trapezoidal wave, a triangular wave, etc., and the amount of electricity at the anode and the amount of electricity at the cathode may be different.

電解時間は必要電気量と電流密度の関係から設定すれば
良い。高電流密度であれば短時間の処理で済む。
The electrolysis time may be set based on the relationship between the required amount of electricity and the current density. If the current density is high, the process can be done in a short time.

5182等の厚い自然酸化皮膜の形成されるアルミニウ
ム合金に対しては、あらかじめ酸性溶液等で自然酸化皮
膜を除去した後に電解処理を行なうようにすると、電解
液寿命の延長及び電解による多孔性皮膜形成において均
一性が増すので効果的である。
For aluminum alloys such as 5182, which have a thick natural oxide film, it is recommended to remove the natural oxide film with an acid solution before electrolytic treatment, which will extend the life of the electrolyte and form a porous film due to electrolysis. This is effective because it increases uniformity.

電解前の清浄化処理は必要に応じて行なっても良い。例
えば、圧延油等が極めて多量に存在する場合は、トリク
ロルエタン等の溶剤洗浄、苛性ソーダ水溶液等のアルカ
リ性渚液による浸漬洗浄等が有効である。
Cleaning treatment before electrolysis may be performed as necessary. For example, if a very large amount of rolling oil is present, cleaning with a solvent such as trichloroethane or immersion cleaning with an alkaline solution such as an aqueous solution of caustic soda is effective.

本発明に使用する耐食性皮膜としては、ポリアクリル酸
、ポリメタクリル酸、ポリアクリルa誘導体、ポリメタ
クリル酸誘導体、ウレタン樹脂ウレタン樹脂誘導体、エ
ポキシ樹脂、エポキシ樹脂誘導体、ポリアミド、ポリア
ミド誘導体等のいずれか、またはこれらのうちの2種以
上の共重合体又は混合物でよく、更に3価クロム、6価
クロム、 S i 02)ケイ酸塩、ジルコニウム塩等
を含んでいても良い。
As the corrosion-resistant coating used in the present invention, any one of polyacrylic acid, polymethacrylic acid, polyacrylic a derivative, polymethacrylic acid derivative, urethane resin urethane resin derivative, epoxy resin, epoxy resin derivative, polyamide, polyamide derivative, etc. Alternatively, it may be a copolymer or a mixture of two or more of these, and may further contain trivalent chromium, hexavalent chromium, S i 02) silicate, zirconium salt, etc.

例えば、特開昭61−101798に開示されているよ
うなアクリル共重合体メラミン樹脂、特開平1−174
438に開示されているようなアクリル樹脂、特開昭6
3−168473に開示されているような6価クロムと
ポリアクリルアミドの混合物等がある。
For example, acrylic copolymer melamine resin as disclosed in JP-A-61-101798, JP-A-1-174
438, an acrylic resin as disclosed in JP-A No. 6
Examples include a mixture of hexavalent chromium and polyacrylamide as disclosed in No. 3-168473.

塗膜厚は5 g / m ”以下が良い、5g/m2を
越えると熱伝導性が低下するので好ましくない。
The coating thickness is preferably 5 g/m2 or less; if it exceeds 5 g/m2, the thermal conductivity decreases, which is not preferable.

焼付は温度は塗布する塗料により適宜選択すればよいが
1通常80〜320℃の範囲のものが選ばれる6 焼付は時間も塗料により適宜選択すれば良いが、生産性
を考慮して5〜300秒程度になる塗料を選択すること
が好ましい。
The temperature for baking can be selected as appropriate depending on the paint to be applied.1 Normally, a temperature in the range of 80 to 320°C is selected.6 The baking time can also be selected as appropriate depending on the paint, but in consideration of productivity, It is preferable to select a paint that lasts about seconds.

塗装方法は浸漬、ロールコータ−等のいずれても良い。The coating method may be dipping, roll coater, or the like.

本発明に使用する親水性皮膜としては、ケイ酸塩、ポリ
アクリル酸誘導体、ポリアミド誘導体。
The hydrophilic film used in the present invention includes silicates, polyacrylic acid derivatives, and polyamide derivatives.

セルロース誘導体等があり、限定するわけではないが1
例えばポリビニルアルコール及びポリビニルアルコール
誘導体等のいずれか、またはこれらのうちの2種以上の
共重合体又は混合物でよく、またポリオキシエチレン誘
導体、ソルビタン誘導体、ショ糖脂肪酸エステル、硫酸
エステル、スルホン酸エステル、リン酸エステル等の界
面活性剤のIN!又は2J4以上を含んでいても良い。
Examples include cellulose derivatives, but are not limited to 1
For example, any one of polyvinyl alcohol and polyvinyl alcohol derivatives, or a copolymer or mixture of two or more of these may be used, and polyoxyethylene derivatives, sorbitan derivatives, sucrose fatty acid esters, sulfuric acid esters, sulfonic acid esters, IN of surfactants such as phosphate esters! Or it may contain 2J4 or more.

例えば、特開平!−201487に開示されているよう
な、重合度が1000〜+ 0000の範囲にあるポリ
アクリル酸、ポリメタクリル酸あるいはこれらの混合物
や、特開昭61−8598に開示されでいるようなスチ
レン−マレイン酸共重合体、ポリアクリルアミド、ブチ
レン−マレイン酸共重合体、ポリアクリル酸あるいはこ
7Lらの塩の1種又は2神以上の水溶性有機高分子とケ
イ酸塩化合物の混合物、特公昭53−48177に開示
されているようなS IO2/ M 20 (M =L
i、Na、に、Ca等)比が1以上のアルカリケイ酸塩
皮膜、特開平1−299877に開示されているような
ポリビニルアルコール、ポリアミド樹脂、尿素樹脂混合
物、特開昭61−101798に例示されでいるような
セルロース誘導体等がある。
For example, Tokukaihei! -201487, polyacrylic acid, polymethacrylic acid, or a mixture thereof having a degree of polymerization in the range of 1000 to +0000, and styrene-maleic acid as disclosed in JP-A-61-8598. Mixture of one or more water-soluble organic polymers and silicate compounds of acid copolymer, polyacrylamide, butylene-maleic acid copolymer, polyacrylic acid or salts thereof, JP-B-1973- S IO2/M 20 (M = L
i, Na, Ca, etc.) ratio of 1 or more, a polyvinyl alcohol, polyamide resin, urea resin mixture as disclosed in JP-A-1-299877, exemplified in JP-A-61-101798 There are cellulose derivatives, etc.

界面活性剤としては、特開昭64−61239に例示さ
れているような、疎水基部分の分子量か400以下のリ
ン酸エステル系界面活性剤、特開昭f″J−,3−30
4067に開示されているようなHL B値8〜20の
非イオン性界面活性剤等がある。
Examples of the surfactant include phosphate ester surfactants whose hydrophobic group has a molecular weight of 400 or less, as exemplified in JP-A No. 64-61239, JP-A No. 64-61239, JP-A-64-61239;
Examples include nonionic surfactants having an HL B value of 8 to 20 as disclosed in Japanese Patent No. 4067.

親水竹皮膜厚は01〜5 g / m 2が良い。The thickness of the hydrophilic bamboo film is preferably 01 to 5 g/m2.

0.1g/m2未満では親水性が不充分で、5g/ m
 2を越えると熱伝導性が低下するので、好ましくない
If it is less than 0.1 g/m2, hydrophilicity is insufficient, and 5 g/m2
If it exceeds 2, the thermal conductivity decreases, which is not preferable.

焼(”fけ温度は塗布する塗料により適宜選択すればよ
いが通常150〜300℃の範囲から選べば良い。15
0℃未満では焼付けが不充分になり易(、〜方300℃
を越えると親水基が破壊されるので親水性が低下する。
Baking ("Fade temperature" can be selected appropriately depending on the paint to be applied, but it is usually selected from the range of 150 to 300 degrees Celsius.15
Below 0°C, baking tends to be insufficient (up to 300°C).
If it exceeds this amount, the hydrophilic groups are destroyed, resulting in a decrease in hydrophilicity.

焼付は時間も塗料により適宜選択すればよいが、生産性
を考慮して5〜300秒程度の範囲になるものを選ぶこ
とが好ましい。
The baking time may be appropriately selected depending on the paint, but it is preferable to select a baking time in the range of about 5 to 300 seconds in consideration of productivity.

界面活性剤添加量は樹脂固型分に対して0〜50%、好
ましくは0〜20%程度が良い。50%を越えると、塗
料の硬化が妨げられる。
The amount of surfactant added is preferably about 0 to 50%, preferably about 0 to 20%, based on the resin solid content. If it exceeds 50%, curing of the paint will be hindered.

塗装方法は、浸漬、ロールコータ−等のいずれでも良い
、 また、上記の耐食皮膜、親木性皮膜には防黴剤、防腐剤
、消臭剤のうちの1種又は2種以−Fを含んでいてもよ
い。
The coating method may be dipping, roll coater, etc. In addition, the above corrosion-resistant film and wood-friendly film may be coated with one or more of fungicides, preservatives, and deodorants. May contain.

防黴剤としては特開昭58−102073に例示されで
いるよりなTBZ、2−(2−フリル)−3−(5−ニ
トロ−2−フリル)−アクリル酸アミド、5.6−チト
ラクロロイソフタロニトリル、N−ジメチル−N゛−フ
ェノール−(N フルオロジクロロメヂルチオンーアク
リル酸スルファミド等がある。
As antifungal agents, TBZ, 2-(2-furyl)-3-(5-nitro-2-furyl)-acrylic acid amide, and 5,6-titrachloro are exemplified in JP-A-58-102073. Examples include isophthalonitrile, N-dimethyl-N-phenol-(N-fluorodichloromethylthione-acrylic acid sulfamide), and the like.

防腐剤としては特開昭62−129695に例示されて
いるような安息香酸又はその塩類、ソルビン酸、または
その塩類、サリチル酸又はその塩類等がある。
Examples of preservatives include benzoic acid or its salts, sorbic acid or its salts, and salicylic acid or its salts, as exemplified in JP-A-62-129695.

消臭剤としては特開昭61−129694に例示されで
いるような過炭酸ナトリウム、過酸化カルシウム、ペン
イルパーオキサイド等がある。
Examples of deodorants include sodium percarbonate, calcium peroxide, penyl peroxide, etc., as exemplified in JP-A No. 61-129694.

添加量は各々50%以下がよく、50%を越えると成膜
が妨げられるので不適当である。
The amount of each added is preferably 50% or less, and if it exceeds 50%, film formation will be hindered, which is inappropriate.

[作 用] 本発明は35〜85℃のアルカリ性溶液中で交流を用い
て電解処理を行なうことによって、アルミニウム(イの
表面が脱脂、洗浄されると共に、塗膜別層性に優れた多
孔性酸化皮膜が形成される6以下、本発明の詳細な説明
する。
[Function] The present invention degreases and cleans the surface of aluminum (A) by electrolytically treating it in an alkaline solution at 35 to 85°C using alternating current, and also forms a porous film with excellent layer properties. The present invention will be described in detail below at step 6, when the oxide film is formed.

(1)  アルカリ性i=はそれ自体脱脂性を有してい
る。史に交流波形による電解処理が同特に行なわれるの
で、より強い洗浄作用が働く5 すなわち、アノード反応時には酸素ガスが発生するので
アルミニウム表面に付着している圧延油等の有機物が酸
化除去され、強い脱脂、洗浄性を発揮する。また、カソ
ード洗浄時には水素気泡が発生し、気泡の膨張による機
械的洗浄作用が働き、通常の脱脂において認められるス
マットが付着しにくく、強力な洗浄作用が発現される。
(1) Alkaline i= itself has degreasing properties. Historically, electrolytic treatment using an AC waveform has been used in the same way, which has a stronger cleaning action5.In other words, since oxygen gas is generated during the anode reaction, organic substances such as rolling oil adhering to the aluminum surface are oxidized and removed, resulting in a stronger cleaning action. Demonstrates degreasing and cleaning properties. Further, during cathode cleaning, hydrogen bubbles are generated, and the expansion of the bubbles acts as a mechanical cleaning action, making it difficult for smut to adhere, which is the case in normal degreasing, and thus exhibiting a strong cleaning action.

このアノード反応とカソード反応が交流であるため上記
の作用が交互に働くため洗浄作用は極めて強力なものと
なる。
Since this anode reaction and cathode reaction are alternating current, the above-mentioned effects work alternately, making the cleaning effect extremely strong.

以上の各作用の相乗効果により強力な脱脂、洗浄効果が
発揮され、短時間で塗膜密着性に悪影響を惇えるアルミ
ニウム板表面の圧延油、スマ・ソト等を除去すると同時
に清浄、均一な表面を有する多孔性酸化皮膜が形成され
る。
The synergistic effect of each of the above actions produces a powerful degreasing and cleaning effect, and in a short period of time removes rolling oil, sludge, etc. from the aluminum plate surface that can adversely affect paint film adhesion, and at the same time creates a clean and uniform surface. A porous oxide film is formed.

これに対し、−射的な酸性浴での直流電解では1時間と
共に浴電圧が急激に上昇し、高速処理に必要な高電流密
度の電解が困難になる。また酸化皮膜が枝分かれ構造を
とらないため、皮膜がアルカリ性浴からの酸化皮膜に比
して柔軟性に欠けることとなる。
On the other hand, in direct current electrolysis in an irradiated acidic bath, the bath voltage rises rapidly after one hour, making it difficult to conduct electrolysis at the high current density required for high-speed processing. Furthermore, since the oxide film does not have a branched structure, the film lacks flexibility compared to an oxide film from an alkaline bath.

酸性水溶液を用いた場合は、バリヤー型の酸化皮膜が厚
くなり易く、高電流密度で短時間処理しようとすると、
アルカリ性水渚液に比べ、5倍以上の高電圧が必要とな
る。また、このような液中で無理に高電圧を掛けると、
“焼は−と称される不均一な反応C部分的な電気抵抗不
均一に基づく電流の集中に伴う発熱による出画)が起こ
り易く、外観を損なうばかりか塗膜密着性も劣り、スパ
ークの発生等安全性の点においても問題が多い。また、
酸性水溶液では通常酸濃度は10%以上、pH=1〜2
以下で、廃液処理、薬液取扱い上の点でも不和である。
When using an acidic aqueous solution, the barrier type oxide film tends to become thicker, and if you try to process it at high current density for a short time,
A voltage five times higher than that required for alkaline water is required. Also, if you forcefully apply a high voltage in such a liquid,
A non-uniform reaction (called "burning") is likely to occur due to heat generation due to concentration of current due to localized non-uniform electrical resistance, which not only impairs the appearance but also causes poor paint film adhesion and sparks. There are also many problems in terms of safety such as occurrence.
In acidic aqueous solutions, the acid concentration is usually 10% or more, pH = 1 to 2.
Below, there are also conflicts in terms of waste liquid treatment and chemical solution handling.

■ 高温、高電流密度の電解であるため反応時間を短く
できる。
■ Reaction time can be shortened due to high temperature and high current density electrolysis.

通常の陽極酸化処理は35℃未満で行なわれる場合が多
く、硫#陽極酸化では20℃以下の場合が多い、これに
対して本誌は35〜85°Cの高温で交流電解するもの
であり、高電流密度での電解が可能となり、高速の化学
反応がおこる。すなわち、電解液温度が高いために液抵
抗が小さ(、電流密度を高い値に設定できるので、酸化
皮膜生成速度が大きい。
Normal anodization is often carried out at temperatures below 35°C, while sulfur # anodizing is often carried out at temperatures below 20°C.In contrast, this paper uses alternating current electrolysis at a high temperature of 35 to 85°C. Electrolysis at high current densities becomes possible, allowing high-speed chemical reactions to occur. That is, because the electrolyte temperature is high, the liquid resistance is low (and the current density can be set to a high value, so the oxide film formation rate is high).

■ 酸化皮膜の特性 アルカリ性溶液中での交流電流によって生成する酸化皮
膜は、−射的な酸性水溶液中での直流電解により陽極酸
化して形成させた酸化皮膜に比べると、この電解液のエ
ツチング性が大きいために非常に多孔性でボア径が大き
く、また交流電解であるために枝分かれ構造を有したも
のとなる。
■ Characteristics of oxide film The oxide film formed by alternating current in an alkaline solution has a higher etching property than the oxide film formed by anodic oxidation by direct current electrolysis in an acidic aqueous solution. Because of its large diameter, it is extremely porous and has a large bore diameter, and because it uses AC electrolysis, it has a branched structure.

酸化皮膜がこのような構造を有するため、その上に耐食
性皮膜又は親水性皮膜を設けた場合には、酸化皮膜自体
の有する柔軟性、その形状に由来するアンカー効果と相
まって、絞り加工父はしごき加工のごとき高い加工度を
行なっても塗装した塗膜に亀裂又は剥fi等による耐食
性の不良を起こさないアルミニウムフィン用材が得られ
る。
Because the oxide film has such a structure, when a corrosion-resistant film or a hydrophilic film is provided on top of it, the flexibility of the oxide film itself and the anchor effect derived from its shape make it difficult to draw. It is possible to obtain an aluminum fin material that does not cause defects in corrosion resistance due to cracks or peeling of the painted film even when subjected to a high degree of processing.

■ 酸化皮膜厚さ 本発明のアルミニウムフィン用材は酸化皮膜の厚さを5
00〜5000人としているため、薄いために電解時間
が短く生産性が高く維持できること、薄いため柔軟性を
有しており、フィン材の加工度を高くしても亀裂がおき
にくい性質を有していること、なおこの一般より薄い厚
さの酸化皮膜でありながら、アンカー効果によると思わ
れる塗膜との高い接着性が得られる。
■ Oxide film thickness The aluminum fin material of the present invention has an oxide film thickness of 5
00 to 5,000 people, it is thin so that electrolysis time is short and productivity can be maintained at a high level, and because it is thin, it is flexible and does not easily crack even if the fin material is processed at a high degree. Furthermore, although this oxide film is thinner than usual, high adhesion with the paint film is obtained, which is thought to be due to the anchor effect.

[実施例1 (試験法) ■ 耐溶剤性試験 試験片を74℃の1.1.l−トリクロルエタンに】0
分間浸漬した後、室温で1時間乾燥した。この試験片の
外観観察及びゴバン目密着試験を(iなった。ゴバン目
密石試験は1mm間隔てカットして作ったloXIO個
の升[1にセロテープ(セキス1425mm幅)を貼っ
た後引きノ11がし、塗膜が残存するH目の例数を数え
た。
[Example 1 (Test method) ■ Solvent resistance test A test piece was subjected to 1.1. To l-trichloroethane】0
After being immersed for a minute, it was dried at room temperature for 1 hour. The appearance of this test piece was observed and the adhesion test was conducted. 11, and the number of H cases where the coating film remained was counted.

■ 耐アルカリクリーナー性試験 試験片を■の方法でトリクロルエタンで洗浄、乾燥する
6次にアルミフィンクリルナ−(正相工業製・アルミフ
ィンクリーナーW5倍希釈液、pH=12〜13)に1
0分間浸漬(室温)した後、流水で15分間洗浄を1サ
イクルとし、合計10サイクル処理した後、外観観察と
■の方法でのゴバン目密着試験を行なった。
■ Alkali cleaner resistance test The test piece was washed with trichloroethane and dried according to method (■). Next, it was diluted with Aluminum Fin Cleaner (manufactured by Seiso Kogyo, Aluminum Fin Cleaner W 5 times diluted solution, pH = 12-13).
After being immersed for 0 minutes (at room temperature) and then washed with running water for 15 minutes (one cycle) for a total of 10 cycles, the external appearance was observed and a goblin adhesion test was conducted using the method (2).

■ 成形性試験 塗装後の試験片をフィンプレス機(日高精機製)でしご
き加工率(板厚減少率)が50%以上となるように、フ
ィンピッチ25mm、カラーハイド2mmのフィンに成
形し、フィン表面及びカラー内外面の塗膜付着状態をS
EM観察した。塗膜付着面fii100%を0.100
%未7@80%以上を△、80%未満50%以上をム、
50%未満をXとして評f曲した。
■ Formability test The painted test piece was formed into fins with a fin pitch of 25 mm and a colored hide of 2 mm using a fin press machine (manufactured by Hidaka Seiki) so that the ironing rate (thickness reduction rate) was 50% or more. , the state of coating film adhesion on the fin surface and the inner and outer surfaces of the collar
Observed by EM. Paint film adhesion surface fii100% is 0.100
% not 7 @ 80% or more △, less than 80% 50% or more,
Less than 50% was rated as "X".

■ 耐食性試験 ■で成形したフィンに9.8mmφの銅バイブを通した
後、銅バイブを拡管し、モデル熱交換器を作成した。こ
のモデル熱交換器を■の方法で脱脂、洗浄した後、SS
T試験(35℃、N a CQ濃度=5%、200h、
JIS−22371−1988)を行ない、腐食面積に
より評価した。
■ Corrosion Resistance Test After passing a 9.8 mmφ copper vibrator through the fins formed in ■, the copper vibrator was expanded to create a model heat exchanger. After degreasing and cleaning this model heat exchanger using method ■,
T test (35°C, N a CQ concentration = 5%, 200 h,
JIS-22371-1988) and evaluated based on the corrosion area.

(実施例1、比較例1) JIS  Al2O2−1(24(0,115mmt)
に表1に示すような条件でアルカリ交流電解(正弦波、
2%−ビロリン酸ナトリウム水洛液、周波数50Hz、
NaOHでp H調整)した。
(Example 1, Comparative Example 1) JIS Al2O2-1 (24 (0,115 mmt)
Alkaline AC electrolysis (sine wave,
2%-sodium birophosphate aqueous solution, frequency 50Hz,
(pH adjusted with NaOH).

水洗、乾燥後、各表面処理板にアクリル樹脂(神東塗料
社製 ニスビアA 1.、−50 B )を塗布(塗膜
量=1g/m”)L、290℃で焼付けて試験片とし、
各種試験をした。結果を表1に示す。
After washing with water and drying, acrylic resin (Nisvia A 1., -50 B manufactured by Shinto Toyo Co., Ltd.) was applied to each surface-treated board (coating amount = 1 g/m") and baked at 290°C to prepare a test piece.
I did various tests. The results are shown in Table 1.

(以下余白) (実施例2) JIS  A1200−H24(0,1]5mmL1に
表2に示すような条件でアルカリ交流電解(正弦波、2
%−ビロリン酸ナトリウム水溶液、周波数50t1z、
pt−1=10.5)した。
(Margin below) (Example 2) Alkaline AC electrolysis (sine wave, 2
%-sodium birophosphate aqueous solution, frequency 50t1z,
pt-1=10.5).

水洗、乾燥後、各表面処理板にアクリル樹脂と3102
の混合物(日本ペイント社製 ガーファルコート131
)を塗布しく塗膜量=0.3g/m”)、250℃で焼
付け、試験片とし、各種試験をした。結果を表2に示す
After washing with water and drying, each surface treatment board is coated with acrylic resin and 3102.
(Nippon Paint Co., Ltd. Garfal Coat 131)
) was coated (coating amount = 0.3 g/m'') and baked at 250°C to prepare test pieces, which were subjected to various tests. The results are shown in Table 2.

(比較例2) JIS  A1200−H24(0,l15mmt)を
苛性エツチング(10%−水酸化ナトリウム水溶液、4
0℃、2分)、水洗、デスマット(30%−硝酸、室温
、1分)、水洗した後、直流電解処理(20%−硫酸、
20℃、電流密度=1. 5A/dm”、5分、膜厚=
20000人)した。
(Comparative Example 2) JIS A1200-H24 (0.15 mmt) was caustic etched (10% aqueous sodium hydroxide solution, 4
0°C, 2 minutes), water washing, desmutting (30% nitric acid, room temperature, 1 minute), and after washing with water, DC electrolysis treatment (20% sulfuric acid,
20°C, current density = 1. 5A/dm", 5 minutes, film thickness =
20,000 people).

この表面処理板に実施例2と同様の塗装を行ない、同じ
試験を行なった。結果を表2に示す6(比較例3) JIS   A1200−H24(0,ll5mm’)
を有i溶剤洗浄(1,]、]l−トリクロルエタン70
℃、5分)した後、リン酸クロメート処理(Cr量=3
0mg/m21した。
This surface-treated board was coated in the same manner as in Example 2, and the same tests were conducted. The results are shown in Table 2 6 (Comparative Example 3) JIS A1200-H24 (0,ll5mm')
Solvent cleaning (1,],]l-trichloroethane 70
℃, 5 minutes), then phosphoric acid chromate treatment (Cr amount = 3
0 mg/m21.

この表面処理板に実施例2と同様の塗装を行ない、試験
した。結果を表2に示す。
This surface-treated board was coated in the same manner as in Example 2 and tested. The results are shown in Table 2.

(比較例4) JIS  A1200−H24(0,115mm’)を
脱脂(アルカリ系脱脂剤に浸漬、70℃、pH13,5
,60秒)、水洗後、クロム酸クロメート処理(CrW
k= ] 000mg7m ) した後、実施例2と同
様の塗装を行ない、試験した。
(Comparative Example 4) JIS A1200-H24 (0.115 mm') was degreased (immersed in alkaline degreaser, 70°C, pH 13.5
, 60 seconds), after washing with water, chromate treatment (CrW
k=] 000mg7m) After that, the same coating as in Example 2 was performed and tested.

結果を表2に示す。The results are shown in Table 2.

(以下余白) (実施例3.比較例5) 、JIS  Al2O2−H24(0,115mm’1
に表1に示すような条件でアルカリ交流電解(2%−ピ
ロリン酸ナトリウム水溶液1周波数50Hz、液温70
℃、pH=l O,5)L?二。
(Margins below) (Example 3. Comparative Example 5), JIS Al2O2-H24 (0,115mm'1
Alkaline AC electrolysis (2% sodium pyrophosphate aqueous solution 1 frequency 50Hz, liquid temperature 70Hz) was carried out under the conditions shown in Table 1.
℃, pH=l O, 5) L? two.

水洗、乾燥後、各表面処理板にセルロース樹脂(三井東
圧社製・ソリタイトW[−1−101に界面活性剤(リ
ン酸エステル系〕を樹脂固型分に対して3%及びメラミ
ン硬化剤(三井東圧社製、サイメル272)を樹脂固型
分に対して30%添加した混合物を塗布(塗膜量= l
 g/m” )L。
After washing with water and drying, each surface-treated board was coated with cellulose resin (manufactured by Mitsui Toatsu Co., Ltd., Solitite W [-1-101), a surfactant (phosphate ester type) in an amount of 3% based on the resin solid content, and a melamine curing agent. (Cymel 272 manufactured by Mitsui Toatsu Co., Ltd.) was added to the resin solid content in an amount of 30% (coating amount = l).
g/m”)L.

220℃で焼付け、試験片とした。結果を表3に示す。It was baked at 220°C and used as a test piece. The results are shown in Table 3.

(以下余白) (実施例4) JIS  Al20O−824(0,115mm’)に
表2に示すような条件でアルカリ交流電解(正弦波、2
%−ビロリン酸ナトリウム水溶液、周波数50 )1 
z 、 p H= ] 0 、5、液温70℃)した。
(Left below) (Example 4) Alkaline alternating current electrolysis (sine wave, 2
%-sodium birophosphate aqueous solution, frequency 50) 1
z, pH= ] 0, 5, liquid temperature 70°C).

水洗乾燥後、各表面処理板にCr ”、 Cr ”51
02及びアクリル樹脂混合物(日本ペイント社製NRC
−300ンを塗布(塗膜厚=IU)し、100℃で乾燥
し、更にその上に親水性アクノル樹脂(三井東圧社製:
XCE、−1847)と界面活性剤(第−工業製薬製 
ノイゲンET120)の混合物を塗布(塗膜量=)g/
m’)し、270℃で焼付けた。結果を表4に示す。
After washing with water and drying, each surface treated board was coated with Cr”, Cr”51
02 and acrylic resin mixture (NRC manufactured by Nippon Paint Co., Ltd.
-300 ml (coating film thickness = IU), dried at 100°C, and then applied hydrophilic Acnol resin (manufactured by Mitsui Toatsu Co., Ltd.) on top of it.
XCE, -1847) and surfactant (Dai-Kogyo Seiyaku Co., Ltd.)
Apply a mixture of Neugen ET120 (coating amount =) g/
m') and baked at 270°C. The results are shown in Table 4.

(比較例6) 、I I S  A 1200−H24([1,115
mm t>を脱脂(アルカリ系脱脂剤に浸漬、70℃、
pH13,5,60秒)、水洗後、実施例4と同様の塗
装を行ない試験片とした。
(Comparative Example 6), IISA 1200-H24 ([1,115
mm t> degreased (soaked in alkaline degreaser, 70°C,
After washing with water, the same coating as in Example 4 was applied to prepare a test piece.

結果を表4に示す。The results are shown in Table 4.

r発明の効果」 このように、アルカリ性水渚液中で交流電解処理するこ
とにより形成された酸化皮膜は、表面が清浄であり、ま
た非常に多孔質でしかも枝分かれ構造を何するため、塗
膜との密着性が著しく改善され、しかも柔軟性に冨むた
め50%以上といった苛酷な絞り成形又はしごき成形を
行なっても割れ、塗膜剥離を生じないため、加工後も強
固な塗膜密着性を維持できることとなる。
Effects of the Invention As described above, the oxide film formed by AC electrolysis treatment in alkaline water has a clean surface and is very porous and has a branched structure, which makes it difficult to coat the coating. The adhesion with the paint has been significantly improved, and since it is highly flexible, it will not crack or peel off the paint even when subjected to severe drawing or ironing of 50% or more, resulting in strong paint film adhesion even after processing. This means that it can be maintained.

また、脱脂洗浄と多孔性酸化皮膜の生成が同一槽で同一
の電解処理により同時に行なわれ、しかもその電解時間
が短いため、従来よりも作業時間が短縮され、生産性が
向上すると共に、設備コストも安価となる。更に、化成
処理と異なりクロム水溶液のような人体に有害な物質を
使用しないので操業面及び保全上大きな利点となる。
In addition, degreasing and the generation of a porous oxide film are performed simultaneously in the same tank through the same electrolytic treatment, and because the electrolytic time is short, work time is shorter than before, productivity is improved, and equipment costs are reduced. It will also be cheaper. Furthermore, unlike chemical conversion treatment, it does not use substances harmful to the human body, such as a chromium aqueous solution, which is a great advantage in terms of operation and maintenance.

Claims (6)

【特許請求の範囲】[Claims] (1)アルカリ性水溶液中にて交流電解処理により膜厚
500〜5000Åの酸化皮膜が形成されていることを
特徴とする熱交換器用アルミニウムフィン用材。
(1) An aluminum fin material for a heat exchanger, characterized in that an oxide film with a thickness of 500 to 5000 Å is formed by alternating current electrolysis treatment in an alkaline aqueous solution.
(2)特許請求の範囲第1項の熱交換器用アルミニウム
フィン用材の酸化皮膜上に耐食性皮膜が設けられている
熱交換器用アルミニウムフィン材。
(2) An aluminum fin material for a heat exchanger, wherein a corrosion-resistant film is provided on the oxide film of the aluminum fin material for a heat exchanger according to claim 1.
(3)特許請求の範囲第1項の熱交換器用アルミニウム
フィン用材の酸化皮膜上に親水性皮膜が設けられている
熱交換器用アルミニウムフィン材。
(3) An aluminum fin material for a heat exchanger, wherein a hydrophilic film is provided on the oxide film of the aluminum fin material for a heat exchanger according to claim 1.
(4)特許請求の範囲第1項の熱交換器用アルミニウム
フィン用材の酸化皮膜上に耐食性皮膜を設け、更にその
表面に親水性皮膜が設けられている熱交換器用アルミニ
ウムフィン材。
(4) An aluminum fin material for a heat exchanger, which has a corrosion-resistant film on the oxide film of the aluminum fin material for a heat exchanger according to claim 1, and further has a hydrophilic film on its surface.
(5)アルミニウム又はアルミニウム合金材を、pH9
〜13、浴温35〜85℃のアルカリ性水溶液中で、電
流密度4〜50A/dm^2にて、電気量が80c/d
m^2を越え、酸化皮膜厚さ5000Å以下となる時間
、交流電解処理を行なうことを特徴とする熱交換器用ア
ルミニウムフィン用材の製造方法。
(5) Aluminum or aluminum alloy material at pH 9
~13, In an alkaline aqueous solution with a bath temperature of 35 to 85°C, the amount of electricity is 80 c/d at a current density of 4 to 50 A/dm^2.
A method for producing an aluminum fin material for a heat exchanger, characterized by performing AC electrolytic treatment for a time such that the oxide film thickness exceeds m^2 and the oxide film thickness becomes 5000 Å or less.
(6)アノード電気量が40c/dm^2を越え、かつ
カソード電気量が40c/dm^2以上で、酸化皮膜厚
が5000Å以下となるような時間、交流電解を行なう
特許請求の範囲第5項の熱交換器用アルミニウムフィン
材の製造方法。
(6) AC electrolysis is carried out for a time such that the anode electrical quantity exceeds 40 c/dm^2, the cathode electrical quantity exceeds 40 c/dm^2, and the oxide film thickness becomes 5000 Å or less. Method for manufacturing aluminum fin material for heat exchangers in Section 1.
JP2109341A 1990-04-25 1990-04-25 Aluminum fin material for heat exchanger and method for producing the same Expired - Lifetime JP2579234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2109341A JP2579234B2 (en) 1990-04-25 1990-04-25 Aluminum fin material for heat exchanger and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2109341A JP2579234B2 (en) 1990-04-25 1990-04-25 Aluminum fin material for heat exchanger and method for producing the same

Publications (2)

Publication Number Publication Date
JPH049597A true JPH049597A (en) 1992-01-14
JP2579234B2 JP2579234B2 (en) 1997-02-05

Family

ID=14507770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2109341A Expired - Lifetime JP2579234B2 (en) 1990-04-25 1990-04-25 Aluminum fin material for heat exchanger and method for producing the same

Country Status (1)

Country Link
JP (1) JP2579234B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001519482A (en) * 1997-10-13 2001-10-23 アルキャン・インターナショナル・リミテッド Coated aluminum products
JP2008530362A (en) * 2005-02-15 2008-08-07 ユナイテッド ステイツ オブ アメリカ アズ レプレゼンテッド バイ ザ セクレタリー オブ ザ ネイビー エト アル. Method for sealing pores of anodized aluminum phosphate
JP2009228064A (en) * 2008-03-24 2009-10-08 Furukawa-Sky Aluminum Corp Aluminum material and method of manufacturing the same
JP2010000679A (en) * 2008-06-20 2010-01-07 Furukawa-Sky Aluminum Corp Aluminum material and its manufacturing method
WO2013118870A1 (en) * 2012-02-12 2013-08-15 古河スカイ株式会社 Surface treated aluminum material, method for producing same, and resin-coated surface treated aluminum material
WO2015050166A1 (en) * 2013-10-03 2015-04-09 古河電気工業株式会社 Aluminum-resin composite, insulated aluminum wire, flat cable and processes for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425502A (en) * 1977-07-29 1979-02-26 Kayaba Ind Co Ltd Multiplex pump apparatus
JPS5536718A (en) * 1978-09-06 1980-03-14 Hitachi Ltd Level display unit
JPS574716A (en) * 1980-06-12 1982-01-11 Matsushita Electric Works Ltd Mold for pressure forming
JPH01174438A (en) * 1987-12-29 1989-07-11 Kobe Steel Ltd Aluminum fin material for heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425502A (en) * 1977-07-29 1979-02-26 Kayaba Ind Co Ltd Multiplex pump apparatus
JPS5536718A (en) * 1978-09-06 1980-03-14 Hitachi Ltd Level display unit
JPS574716A (en) * 1980-06-12 1982-01-11 Matsushita Electric Works Ltd Mold for pressure forming
JPH01174438A (en) * 1987-12-29 1989-07-11 Kobe Steel Ltd Aluminum fin material for heat exchanger

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001519482A (en) * 1997-10-13 2001-10-23 アルキャン・インターナショナル・リミテッド Coated aluminum products
JP2008530362A (en) * 2005-02-15 2008-08-07 ユナイテッド ステイツ オブ アメリカ アズ レプレゼンテッド バイ ザ セクレタリー オブ ザ ネイビー エト アル. Method for sealing pores of anodized aluminum phosphate
JP4805280B2 (en) * 2005-02-15 2011-11-02 ユナイテッド ステイツ オブ アメリカ アズ レプレゼンテッド バイ ザ セクレタリー オブ ザ ネイビー エト アル. Method for sealing pores of anodized aluminum phosphate
JP2009228064A (en) * 2008-03-24 2009-10-08 Furukawa-Sky Aluminum Corp Aluminum material and method of manufacturing the same
JP2010000679A (en) * 2008-06-20 2010-01-07 Furukawa-Sky Aluminum Corp Aluminum material and its manufacturing method
WO2013118870A1 (en) * 2012-02-12 2013-08-15 古河スカイ株式会社 Surface treated aluminum material, method for producing same, and resin-coated surface treated aluminum material
CN104114752A (en) * 2012-02-12 2014-10-22 株式会社Uacj Surface treated aluminum material, method for producing same, and resin-coated surface treated aluminum material
WO2015050166A1 (en) * 2013-10-03 2015-04-09 古河電気工業株式会社 Aluminum-resin composite, insulated aluminum wire, flat cable and processes for producing same
JP2015071258A (en) * 2013-10-03 2015-04-16 古河電気工業株式会社 Aluminum resin composite, aluminum insulation electric wire and flat cable, and production method thereof
US11114216B2 (en) 2013-10-03 2021-09-07 Furukawa Electric Co., Ltd. Aluminum-resin composite, insulated aluminum wire, flat cable and processes for producing the same

Also Published As

Publication number Publication date
JP2579234B2 (en) 1997-02-05

Similar Documents

Publication Publication Date Title
US6183570B1 (en) Surface treatment process of metallic material and metallic material obtained thereby
US4184926A (en) Anti-corrosive coating on magnesium and its alloys
US20110114497A1 (en) Method for surface treatment of magnesium or magnesium alloy by anodization
CN110318083A (en) A kind of aluminium alloy compound oxidation film manufacturing process
CN109183113A (en) A kind of processing method of aluminium alloy anode oxide
CN107326357A (en) A kind of passivation process of galvanized steel plain sheet
JP4668063B2 (en) Resin-coated aluminum plate and method for producing the same
JPH04356694A (en) Heat exchanger aluminum fin material and manufacture thereof
JPH09226052A (en) Thermoplastic resin-coated aluminum alloy sheet and method and apparatus for its production
JPH049597A (en) Aluminum fin material for heat exchanger and manufacture thereof
JPH0559591A (en) Surface treatment of high-temperature worked body of aluminum alloy
KR20020011874A (en) Hydrophilicizing treatment for metal surface
JPH0759755B2 (en) Method for manufacturing A-l alloy coated plate for automobiles having excellent system rust resistance
CN107841741B (en) A kind of aluminum substrate surface biological processing oxidation technology
JPH1161433A (en) Aluminum coating material
JP3506826B2 (en) Aluminum material and manufacturing method thereof
EP1230445A1 (en) A sealant composition
JPH0154439B2 (en)
JPH0413894A (en) Aluminum alloy material to be coated for automobile and its production
JPH03229895A (en) Aluminum alloy sheet to be coated for can lid and its production
JP5086688B2 (en) Method for producing surface-treated aluminum
US20220090269A1 (en) Continuous surface treatment for coils made of aluminum alloys sheets
JPH0765234B2 (en) Pretreatment method for aluminum plate before painting
JP5173185B2 (en) Method for producing surface-treated aluminum material
JPS59143091A (en) Manufacture of copper foil having superior rust preventing power