JP4803674B2 - モリブデン若しくはタングステン粒子又は該粒子からなる薄膜及びその製造方法 - Google Patents

モリブデン若しくはタングステン粒子又は該粒子からなる薄膜及びその製造方法 Download PDF

Info

Publication number
JP4803674B2
JP4803674B2 JP2007045750A JP2007045750A JP4803674B2 JP 4803674 B2 JP4803674 B2 JP 4803674B2 JP 2007045750 A JP2007045750 A JP 2007045750A JP 2007045750 A JP2007045750 A JP 2007045750A JP 4803674 B2 JP4803674 B2 JP 4803674B2
Authority
JP
Japan
Prior art keywords
particles
molybdenum
thin film
tungsten
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007045750A
Other languages
English (en)
Other versions
JP2008208418A (ja
Inventor
禎樹 清水
毅 佐々木
ダビデ マリオッティ
直人 越崎
和夫 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007045750A priority Critical patent/JP4803674B2/ja
Priority to US12/036,336 priority patent/US8084127B2/en
Publication of JP2008208418A publication Critical patent/JP2008208418A/ja
Application granted granted Critical
Publication of JP4803674B2 publication Critical patent/JP4803674B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Description

本発明は、周期表上でVI族に属するモリブデン及びタングステンの安定した面心立方格子構造を有するモリブデン若しくはタングステン粒子又は該粒子からなる薄膜及びその製造方法に関する
周期表上でVI族に属するモリブデンやタングステンは電極材料などとして賞用されている高融点材料であり、その結晶構造は、アモルファス、体心立方格子(body-centered cubic:bcc)構造、六方細密充填(hexagonal close-packed:hcp)構造、面心立方格子(face centered cubic: fcc)構造の四種類が知られている。これらの結晶構造の中で熱力学的に安定な構造はbcc構造である。これに対して、hcpやfcc構造は熱力学的に準安定構造であり、bcc構造のモリブデン及びタングステンを高温高圧処理すると、bcc→hcp→fccの順で相変態・合成される(非特許文献1及び2参照)。
これに対して、サイズが数ナノメートルレベルのクラスターを扱うクラスターサイエンスの分野では、表面エネルギーの観点から安定な結晶構造が議論されている。
大きさが4nm以上のクラスターでは、bcc構造またはbcc構造が僅かに歪んだA15 構造が安定であるが、サイズを4nm未満まで小さくすると、表面エネルギーの低下による表面安定化が駆動力となりfcc構造が出現する。これらは、アルゴンガスで0.1mbar以下の圧力に調整されたチャンバー内でモリブデン板をスパッタリングして合成された例が報告されている(非特許文献3参照)。
fcc構造を有する元素では、結晶学的に5回対称を有するナノ粒子が生成することが知られている。例えば、金、銀、銅、ゲルマニウム、シリコンなど、その熱力学的安定構造がfcc構造である元素では、それらの塊を蒸発凝縮させる過程で生成したナノ粒子中に、10面体や20面体などの5回対称を有するナノ微粒子が多く観察されている(非特許文献4参照)。これは、5回対称物質の基本構造がfcc構造であることに起因する。fcc構造を有する5つのユニットが、1本の軸(5回対称軸)を中心に配列することで5回対称構造を形成している。
最近では、金、銀、銅の10面体が、5回対称軸に沿って一次元方向に成長したナノロッドの合成も報告されている(非特許文献5〜7参照)。
これに対して、周期表上VI族に属するモリブデン及びタングステンは、上述したように熱力学的安定構造がbcc構造であるため、現在までには5回対称物質の生成は報告されていない。
J.Phys.:Condens Matter 17, 1049-1057,(2005) Physical Review B, 52, 9121-9124 (1994) Appl. Phys. Lett, 86, 113113 (2005) Encyclopedia of Nanoscience and Nanotechnology, Volume X, 1-22 (2003) Physical Review B, 61, 4968-4874 (2000) J. Mater. Chem, 12, 1765-1770 (2002) Nano Lettrers, 3, 955-960 (2003)
5回対称構造を有する微粒子は、通常原料固体(主にロッド状)を蒸発・凝縮させる方法、またはコロイド合成による方法で合成されている。これらの合成法は、熱力学的安定構造がfcc構造である物質(元素)の5回対称微粒子の合成には適している。
しかしながら、モリブデンやタングステンのような、fcc構造が熱力学的準安定構造である物質の合成には適しておらず、これらの5回対称物質が合成されたとの報告はなされていない。
本発明は、上記の問題点に鑑みてなされたものであり、周期表上でVI族に属するモリブデン及びタングステンの安定した面心立方格子構造を有するモリブデン若しくはタングステン粒子又は該粒子からなる薄膜及びその製造方法を提供することを課題とする。
本願発明は、面心立方格子(fcc)結晶構造をもつ粒子であり、熱力学的に安定又は準安定である大径の粒子構造を備えているモリブデン若しくはタングステン粒子又は該粒子からなる薄膜を提供する。本願発明のfcc構造のモリブデン及びタングステン微粒子には、個々の粒子が、球状のものと星型の断面形状を有する5回対称微粒子が含まれる。
すなわち本願発明は、面心立方格子(fcc)結晶構造であり、かつ5回対称粒子構造を備えたモリブデン若しくはタングステン粒子又は該粒子からなる薄膜を提供する。
前記モリブデン若しくはタングステン粒子の平均粒子径は50nm以上の粒子であり、後述の図に示すように、平均粒子径を100nm以上、さらには200nm以上とすることができる。
本願発明のモリブデン若しくはタングステン粒子又は該粒子からなる薄膜の特徴の一つとして、個々の粒子が星型の断面形状を備えている5回対称粒子であって、5回対称軸の方位<110>に沿って一軸方向に成長した粒子を備えたモリブデン若しくはタングステン粒子又は該粒子からなる薄膜を提供することができる。
さらに、モリブデン若しくはタングステン粒子又は該粒子からなる薄膜は、個々の粒子が星型の断面形状を備えている5回対称粒子であって、前記5回対称軸から側方に星型に成長した構造を備えているモリブデン若しくはタングステン粒子又は該粒子からなる薄膜を提供することができる。
また、前記突出部の中心に双晶面{111}を備えているモリブデン若しくはタングステン粒子又は該粒子からなる薄膜を提供することができる。前記5回対称微粒子は、5回対称軸に沿った一次元方向へ成長していると共に、側面に向かって5つの特定方向への成長もしている。大きさは数百nmに達しており、今まで合成されたfcc構造のモリブデンよりも大きな結晶粒である。本発明では、これらの粒子を基板上に堆積させた薄膜を作製することができる。
全体に亘って内径が均一である1又は複数の細管内に薄膜形成用の原料であるモリブデン又はタングステンを設置し、該細管に不活性ガスを導入すると共に高周波電圧を印加して細管内部に高周波プラズマを発生させ、細管内部のプラズマガスの流速及び高温のプラズマガス温度を高温に維持しながら前記原料を加熱・蒸発させ、蒸発した材料を細管から噴出させて基板上に照射し、前記プラズマガスにより基板を加熱すると共に、照射した材料を大気圧下で基板上に、個々の粒子が面心立方格子(fcc)結晶構造をもつモリブデン若しくはタングステン粒子又は該粒子からなる薄膜の製造方法を提供する。すなわち、大気中、常圧下でfcc構造のモリブデン及びタングステン微粒子を作製し、fcc構造のモリブデン若しくはタングステン微粒子及び薄膜を提供することができる。
モリブデンやタングステンの5回対称粒子合成のためには、非平衡物質の生成に有利な環境を有する合成法が適していると考えられる。この点でプラズマを利用した方法は、比較的容易に非平衡環境を提供できる合成手段である。
中でもサイズがマイクロメートルオーダーのマイクロプラズマは小サイズであるため、原料のプラズマ中での滞留時間が短く、物質が熱力学的安定構造へと変態する以前の構造、すなわち準安定構造をそのまま凍結させることが可能である。したがってマイクロプラズマを利用した方法は、モリブデンやタングステンなどの物質のfcc構造(準安定構造)の合成には最適である。
本発明者らは、これまでに開発してきたマイクロプラズマ法(特願2006-225695参照)を利用することにより、大気中・常圧下で、fcc構造を有するモリブデン及びタングステンの5回対称粒子を作製し、かつ該粒子で構成された薄膜を作製することができる。
また、モリブデン若しくはタングステン粒子又は該粒子からなる薄膜の製造条件を任意に設定することにより、次のモリブデン若しくはタングステン粒子又は該粒子からなる薄膜を作製することができる。すなわち、面心立方格子(fcc)結晶構造であり5回対称粒子構造を備えた粒子と該粒子からなる薄膜、前記粒子の平均粒子径が50nm以上の粒子と該粒子からなる薄膜、個々の粒子が球状又は星型の断面形状を備えている粒子と該粒子からなる薄膜、前記個々の粒子が星型の断面形状を備えている5回対称粒子であって5回対称軸の方位<110>に沿って一軸方向に成長した粒子と該粒子からなる薄膜、前記個々の粒子が星型の断面形状を備えている5回対称粒子であって前記5回対称軸から側方に星型に成長した構造を備えている粒子と該粒子からなる薄膜、前記突出部の中心に双晶面{111}を備えている粒子と該粒子からなる薄膜を作製することが可能である。本願発明はこれらを全て包含するものである。
本願発明のマイクロプラズマ法によるモリブデン若しくはタングステン粒子又は該粒子からなる薄膜の作製方法は、さらに次の手法がある。これらの手法を任意に選択及び調整して作製することも可能である。
具体的には、細管に不活性ガスと共に水素ガスを導入して高温のプラズマガスを発生させる方法、高周波印加電極を細管又は細管出口近傍の領域まで配置しプラズマガスの温度を高温に維持する方法、基板上に形成する原料として金属又は合金製ワイヤーを用いる方法、1又は複数の細管内に薄膜形成用の原料を設置し該細管に不活性ガスを導入すると共に高周波電圧を印加して細管内部に高周波プラズマを発生させ、細管内部のプラズマガスの流速及び高温のプラズマガス温度を高温に維持しながら前記原料を加熱・蒸発させ蒸発した材料を細管から噴出させて基板上に照射すると共に前記プラズマガスにより基板を加熱し、さらに前記細管とは別の細管を用いて反応性ガスを基板に側面から照射することにより基板上に堆積する材料を反応性ガスにより反応させて前記材料の化合物を形成する方法、基板と蒸発した材料を基板上に照射するプラズマ発生用細管とを相対移動させ堆積させる膜の厚さ並びに物質及び面積を制御する方法、基板に対し蒸発した材料を基板上に照射するプラズマ発生用細管を多数個整列させ、これらを相対移動させると共に、堆積させる膜の厚さ、物質及び面積を制御し、大面積薄膜形成を行う方法を適用することができる。本願発明はこれらを全て包含する。
従来の方法で得られているモリブデンやタングステンのfcc構造体は、大きさが数nmのクラスターであり、得られる量も微量であった。
これに対して本願発明は、上記の通り、大きさが数百nmの粒子として又は薄膜として得ることができるため、今までは困難であったfcc構造のモリブデン及びタングステンの物性測定などが可能であるという優れた効果を有する。
以下図面を参照して、本願発明の実施の形態を説明する。なお、以下に示す説明は、理解を容易にするためのものであり、これらの実施の形態の説明によって本発明を制限するものではない。すなわち、本発明の技術思想に基づく変形及び他の実施条件等は、当然本発明含まれる。
図1は、本実施の形態に係る装置の模式図である。プラズマ源は、アルミナ製細管1、細管内にガスを供給するための管2、プラズマ発生及び維持のための高周波印加電極3、堆積材料の原料となる金属のワイヤー4とを備えている。符号5は基板、符号6は位置調整機構付基板固定器、符号7は高周波電源、符号8は高周波整合器をそれぞれ示す。
細管1は、ここではアルミナ細管を使用しているが本発明はこれに限定されない。絶縁性の細管であれば本発明を実施することは可能である。細管のサイズは、内径数十ミクロンから数ミリのものまで可能であるが、本発明を大気中で行う場合は、安定なプラズマ発生が可能な2mm以下が好ましい。言うまでもなく、本システムを真空容器内に設置し、同様に実施することも可能である。図1に示されている内装された原料ワイヤー4は、一端は電極を設置した領域まで挿入し、他端は金属管(ガス供給管)内壁に固定するのが望ましい。
以下に、前述したプラズマ発生装置を用いてモリブデン、タングステンのfcc構造粒子ないし薄膜を作製する手順を説明する。
粒子を堆積させる基板5をプラズマ発生用細管1の下流に設置する。その際、細管1噴出口と基板5表面との距離は、マイクロメーター付基板固定器6にて正確に制御する。fcc微粒子を効率よく合成するためには、この距離は数mm以内が好ましいが、プラズマの発生条件によっては、より長距離が好ましい場合もある。
次に、アルミナ細管内に水素/アルゴン混合ガスを供給し、450MHzの高周波を電極3に印加する。その後、アルミナ管1外壁に接続された導線を介して高電圧を瞬間的に印加して、プラズマを発生させる。これは、高電圧印加により管内で瞬間的に火花を発生させ、プラズマを着火する効果をもたらす。
ただし、高電圧印加無しでも、高周波を印加させた状態で数十秒待機すると、プラズマは自然に発生する。高電圧印加による火花放電が、原料ワイヤー4および細管1噴出口下流に設置した基板へダメージを与える場合は、後者の手法による発生が好ましい。
また、高周波の周波数は、細管1内でプラズマの発生を誘起、維持させることが可能であれば、他の周波数であっても良い。また細管1内に供給するガスも、他種の不活性ガスや混合ガスでよい場合もあり、原料金属ワイヤー4を蒸発させることが可能なガスであれば何でも良い。
一旦プラズマを発生させれば、高周波印加を持続させることでプラズマを維持することができる。プラズマ発生中、細管内に挿入された原料ワイヤー4は、プラズマからの熱伝導や高周波による誘導加熱により、その表面から徐々に蒸発し、プラズマ中で活性化される。これらの活性種は、基板5表面に到達後、基板5上での粒子成長ないし薄膜堆積に寄与する。
以下に具体的な結果の例を示す。以下に示す結果は次のような条件で作製されたものに関する。内径800ミクロンのアルミナ細管に、直径200ミクロンのモリブデンワイヤーを図1のように挿入しておき、4%水素ガスを混入させたアルゴンガスを1000ccmの流量で供給した。そして、20〜25Wの高周波を印加してプラズマを発生させ、アルミナ細管から噴出させたプラズマを、噴出口から1mm下流に設置したタングステン基板上に30分間照射した。
図2(a)は、プラズマで照射された全領域の走査型電子顕微鏡写真である。直径1mm程の領域に照射痕が見られる。この照射領域を高倍率観察すると、図2(b)に観られるような星型粒子が生成していた。このような星型粒子は、照射された全領域にわたって、図2(c)にみられるように密に生成していた。つまり照射領域は、星型粒子で構成された薄膜であることが分かる。
この粒子を基板から剥がし、透過型電子顕微鏡観察用グリッド上に分散させた多くの粒子から得られた電子線回折パターンを図3に示す。このパターンをベースに算出した粒子の結晶面間隔値(d値)は、fcc構造のモリブデンのd値(JCPDS No. 88-2331)と一致した。したがって、これらの粒子はfcc構造のモリブデンであることが分かる。
この星型粒子が5回対称であることは、一つの星型粒子(図4のa)の真上からの電子線解析により明らかである(図4のb)。この回折パターンは、5つのfcc構造で構成される、いわゆる5回対称の多重双晶から得られる典型的なものである。
この電子線回折パターンのより詳細な解析では、星型を構成する5本の各枝の中心に双晶面{111}が存在していることが明らかになった。この結果から、合成された星型粒子は図4のcに示したような5つのfcc構造体で構成されていると結論付けられる。
この星型粒子を横方向からの観察結果を図5に示す。図5のaは走査型電子顕微鏡像を、図5のbは透過型電子顕微鏡像を示す。これらの観察結果から、この粒子が一軸方向に成長しているのが分かる。また、直上からの観察では枝のように見えた5つの面は、粒子が一軸方向に成長したのに伴い、側面方向へ成長しているのが分かる。
粒子の横方向から解析した電子線回折パターンを図5のcに示す。この解析結果から、この粒子は5回対称軸の方位<110>に沿って成長していることが分かる。
以上の構造解析により明らかになったモリブデン星型粒子の模式図を図6に示す。本手法では、このような形状を有したfcc構造を基本とする5回対称モリブデン粒子を合成することが可能である。モリブデンでは5回対称粒子の合成の例は過去にみられず、初めて合成された物質である。また、一軸成長および横方向への成長により、そのサイズは数百ナノメートルに達しており、基板上にも薄膜として合成されるため、現在までには達成されていないfcc構造モリブデンの物性測定などが可能となってくる。タングステンの場合も、上述の手法で同様の構造を作製することが可能である。
また、上記の実施例ではタングステン基板を用いて合成したが、他種の金属基板や非導電性基板の上にも同様の構造体を作製することが可能である。図8は、アルミナ基板上に作製された5回対称モリブデン粒子の走査型電子顕微鏡写真である。
本手法で得られるモリブデンやタングステンのfcc構造粒子は、上述のような5回対称粒子に止まらない。ガス流量を制御することによって、fcc構造を保持しながら球状又はその他の形状に変化させることも可能である。
図7は、ガス流量500ccm、他は上記と同様の条件で合成されたモリブデン薄膜である。構成粒子は球状であるが、その結晶構造はfcc構造である。上記については、モリブデンについて説明したが、VI族金属であるタングステンでも同様な結果が得られたことを確認した。
本願発明は、上記の通り、面心立方格子(fcc)結晶構造をもつ粒子であり、熱力学的に安定又は準安定である大径の粒子構造を備えているモリブデン若しくはタングステン粒子又は該粒子からなる薄膜、及び面心立方格子(fcc)結晶構造であり、かつ5回対称粒子構造を備えたモリブデン若しくはタングステン粒子又は該粒子からなる薄膜を得ることができ、その大きさが数百nmの粒子として又は薄膜として得ることができるため、モリブデン若しくはタングステンの物性測定などに利用できる。
本発明を実施するための大気圧マイクロプラズマ薄膜作製装置の一例を示す概観図である。 基板上に作製されたfcc構造を有する5回対称モリブデン粒子の走査型電子顕微鏡写真を示す図である(a: プラズマで照射された領域全体の写真、b:照射領域の高倍率観察写真、c:中倍率観察写真)。 複数の5回対称モリブデン粒子から得られた電子線回折パターンを示す図である。 a:真上方向から観察した5回対称モリブデン粒子の透過型電子顕微鏡写真、b:aに対応した電子線回折パターン、c:5つのfcc構造ユニットで構成されている5回対称モリブデン粒子の説明図である。 5回対称モリブデン粒子の横方向からの観察写真(a:走査型電子顕微鏡観察写真、b:透過型電子顕微鏡観察写真、c:bに対応する電子線回折パターン)である。 5回対称モリブデン粒子の構造模式図である。 アルミナ基板上に成長した5回対称モリブデン粒子である。 球状のfcc構造モリブデン粒子で構成された薄膜の走査型電子顕微鏡写真である。
符号の説明
1.絶縁性細管
2.ガス供給管
3.コイル
4.原料金属ワイヤー
5.基板
6.位置調整機構付基板固定器
7.高周波電源
8.高周波整合器

Claims (5)

  1. 面心立方格子(fcc)結晶構造をもつ粒子であり、熱力学的に安定又は準安定である大径の粒子構造を備え、平均粒子径が50nm以上の粒子であって、該粒子は5回対称粒子構造を備えていることを特徴とするモリブデン若しくはタングステン粒子又は該粒子からなる薄膜。
  2. 個々の粒子が星型の断面形状を備えている5回対称粒子であって、5回対称軸の方位<110>に沿って一軸方向に成長した粒子を備えていることを特徴とする請求項1記載のモリブデン若しくはタングステン粒子又は該粒子からなる薄膜。
  3. 個々の粒子が星型の断面形状を備えている5回対称粒子であって、前記5回対称軸から側方に星型に成長した構造を備えていることを特徴とする請求項2記載のモリブデン若しくはタングステン粒子又は該粒子からなる薄膜。
  4. 前記突出部の中心に双晶面{111}を備えていることを特徴とする請求項3記載のモリブデン若しくはタングステン粒子又は該粒子からなる薄膜。
  5. 全体に亘って内径が均一である1又は複数の細管内に薄膜形成用の原料であるモリブデン又はタングステンを設置し、該細管に不活性ガスを導入すると共に高周波電圧を印加して細管内部に高周波プラズマを発生させ、細管内部のプラズマガスの流速及びプラズマガス温度を高温に維持しながら前記原料を加熱・蒸発させ、蒸発した材料を細管から噴出させて基板上に照射し、前記プラズマガスにより基板を加熱すると共に、照射した材料を大気圧下で基板上に形成することを特徴とする請求項1〜4のいずれか一項に記載のモリブデン若しくはタングステン粒子又は該粒子からなる薄膜の製造方法。
JP2007045750A 2007-02-26 2007-02-26 モリブデン若しくはタングステン粒子又は該粒子からなる薄膜及びその製造方法 Expired - Fee Related JP4803674B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007045750A JP4803674B2 (ja) 2007-02-26 2007-02-26 モリブデン若しくはタングステン粒子又は該粒子からなる薄膜及びその製造方法
US12/036,336 US8084127B2 (en) 2007-02-26 2008-02-25 Molybdenum or tungsten particles, thin film formed from said particles, and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007045750A JP4803674B2 (ja) 2007-02-26 2007-02-26 モリブデン若しくはタングステン粒子又は該粒子からなる薄膜及びその製造方法

Publications (2)

Publication Number Publication Date
JP2008208418A JP2008208418A (ja) 2008-09-11
JP4803674B2 true JP4803674B2 (ja) 2011-10-26

Family

ID=39716241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007045750A Expired - Fee Related JP4803674B2 (ja) 2007-02-26 2007-02-26 モリブデン若しくはタングステン粒子又は該粒子からなる薄膜及びその製造方法

Country Status (2)

Country Link
US (1) US8084127B2 (ja)
JP (1) JP4803674B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8512437B2 (en) * 2008-03-04 2013-08-20 National Institute Of Advanced Industrial Science And Technology Method of producing inorganic nanoparticles in atmosphere and device therefor
JP2012041581A (ja) 2010-08-17 2012-03-01 Sony Corp コアシェル型微粒子及びこれを用いた機能デバイス
CN102242347A (zh) * 2011-06-29 2011-11-16 北京理工大学 一种用于发热体的钨管的制备方法
WO2017171730A1 (en) * 2016-03-29 2017-10-05 Intel Corporation Magnetic and spin logic devices based on jahn-teller materials

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4769932B2 (ja) * 2004-03-19 2011-09-07 独立行政法人産業技術総合研究所 微小なドットを備えた基板

Also Published As

Publication number Publication date
US20080206552A1 (en) 2008-08-28
US8084127B2 (en) 2011-12-27
JP2008208418A (ja) 2008-09-11

Similar Documents

Publication Publication Date Title
Fan et al. Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach
US8101526B2 (en) Method of making diamond nanopillars
Hong et al. Room-temperature, texture-controlled growth of ZnO thin films and their application for growing aligned ZnO nanowire arrays
Shimizu et al. Fabrication of spherical carbon via UHF inductively coupled microplasma CVD
US20040009115A1 (en) Selective area growth of aligned carbon nanotubes on a modified catalytic surface
JP4803674B2 (ja) モリブデン若しくはタングステン粒子又は該粒子からなる薄膜及びその製造方法
Amin et al. A facile approach to synthesize single-crystalline rutile TiO2 one-dimensional nanostructures
EP1544168A1 (en) Method for producing nanoparticles
Clausing et al. Electron microscopy of the growth features and crystal structures of filament assisted CVD diamond films
Ekthammathat et al. Characterization of ZnO flowers of hexagonal prisms with planar and hexagonal pyramid tips grown on Zn substrates by a hydrothermal process
JP2006069817A (ja) 炭素元素からなる線状構造物質の形成体及び形成方法
Sedov et al. Laser-assisted formation of high-quality polycrystalline diamond membranes
US10961123B2 (en) Apparatus and method for synthesizing vertically aligned carbon nanotubes
Yoo et al. Epitaxially aligned submillimeter-scale silver nanoplates grown by simple vapor transport
WO2004106595A1 (ja) レーザーアブレーション法による極平坦微結晶ダイヤモンド薄膜の作製方法
JP2004263318A (ja) 銅ナノロッド若しくはナノワイヤーの製造方法
Komatsu New type of BN nanoparticles and films prepared by synergetic deposition processes using laser and plasma: the nanostructures, properties and growth mechanisms
EP2241534A2 (en) Method for manufacturing bismuth single crystal nonowires
Bhaumik et al. Direct conversion of carbon nanofibers into diamond nanofibers using nanosecond pulsed laser annealing
JP3711384B2 (ja) カーボンナノチューブ集合体配列膜及びその製造方法
Wang et al. Morphology of Si nanowires fabricated by laser ablation using gold catalysts
Hamidinezhad et al. Au-Catalyzed Silicon Nanoneedles Synthesized from Pure Silane Gas at Various RF Powers on Silicon Substrate by VHF-PECVD
Shimizu et al. Dense growth of multiply-twinned star-shaped molybdenum particles by atmospheric H 2/Ar microplasma jet
WO2019030890A1 (ja) カーボンナノホーン集合体の製造部材及び製造装置
JP2005262373A (ja) マイクロ・ナノ突起構造体及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees