JP4800251B2 - Method for producing calcium silicate thermal insulation - Google Patents

Method for producing calcium silicate thermal insulation Download PDF

Info

Publication number
JP4800251B2
JP4800251B2 JP2007086658A JP2007086658A JP4800251B2 JP 4800251 B2 JP4800251 B2 JP 4800251B2 JP 2007086658 A JP2007086658 A JP 2007086658A JP 2007086658 A JP2007086658 A JP 2007086658A JP 4800251 B2 JP4800251 B2 JP 4800251B2
Authority
JP
Japan
Prior art keywords
calcium silicate
heat insulating
insulating material
density
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007086658A
Other languages
Japanese (ja)
Other versions
JP2008239458A (en
Inventor
俊之 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&A Material Corp
Original Assignee
A&A Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&A Material Corp filed Critical A&A Material Corp
Priority to JP2007086658A priority Critical patent/JP4800251B2/en
Publication of JP2008239458A publication Critical patent/JP2008239458A/en
Application granted granted Critical
Publication of JP4800251B2 publication Critical patent/JP4800251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/38Preparing or treating the raw materials individually or as batches, e.g. mixing with fuel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures

Description

本発明は、けい酸カルシウム保温材の製造方法に関するものである。   The present invention relates to a method for producing a calcium silicate heat insulating material.

けい酸カルシウム材とは、マトリックスがけい酸カルシウム水和物(トバモライト、ゾノトライト等)で形成された材料であり、石灰質原料とけい酸質原料とを主原料とし、必要に応じてその他の原料とともに湿式または乾式で混合し、成形し、オートクレーブ養生してけい酸カルシウム水和物を生成させることにより硬化させる方法、あるいは原料を混合して得た原料スラリーをオートクレーブ養生してけい酸カルシウム水和物を合成し、脱水成形した後乾燥して硬化させる方法等により製造されている。けい酸カルシウム材は断熱性能を有していることから、保温材として広く使用されてきた材料であり、その断熱性能を高めるため、酸化チタン等の熱遮蔽性能を有する添加物を含有させる技術も行われてきた(特許文献1)。しかし、この方法によって得られたけい酸カルシウム材の断熱性能は、けい酸カルシウム自体が有している断熱性能に、熱遮蔽性能を有する添加物の効果が上積みされるにすぎない。   Calcium silicate material is a material whose matrix is formed of calcium silicate hydrate (tobermorite, zonotlite, etc.), mainly composed of calcareous raw material and silicate raw material, and wet with other raw materials as necessary Alternatively, dry mixing, molding and curing by autoclave curing to produce calcium silicate hydrate, or autoclave curing of raw material slurry obtained by mixing raw materials to produce calcium silicate hydrate It is manufactured by a method of synthesis, dehydration molding, drying and curing, and the like. Calcium silicate material is a material that has been widely used as a heat insulating material because it has heat insulation performance, and in order to increase its heat insulation performance, there is also a technology that includes an additive having heat shielding performance such as titanium oxide. (Patent Document 1). However, the heat insulating performance of the calcium silicate material obtained by this method is merely an addition of the effect of the additive having the heat shielding performance on the heat insulating performance of the calcium silicate itself.

また、けい酸カルシウム保温材については、使用済みとなった保温材を加圧圧縮し、減容する技術が開示されている(特許文献2)。しかし、特許文献2に開示されている技術は、保温材を減容処理して体積を減少させて廃棄処理するための技術であり、保温材としての断熱性能を高める技術については、開示も示唆もなされていない。
特開昭62−143854号公報 特開平11−123369号公報
Moreover, about calcium silicate heat insulating material, the technique of compressing and compressing the used heat insulating material is disclosed (patent document 2). However, the technique disclosed in Patent Document 2 is a technique for reducing the volume of the heat insulating material to reduce the volume and disposing of the heat insulating material, and the technique for improving the heat insulating performance as the heat insulating material is also disclosed. It has not been done.
Japanese Patent Laid-Open No. 62-143854 JP-A-11-123369

本発明の目的は、けい酸カルシウム保温材の断熱性能を、特殊な設備を用いずに更に向上させるための、けい酸カルシウム保温材の製造方法を提供することにある。   An object of the present invention is to provide a method for producing a calcium silicate heat insulating material for further improving the heat insulating performance of the calcium silicate heat insulating material without using special equipment.

本発明の第1の発明は、
(1)密度が0.1〜0.2g/cm3のけい酸カルシウム成形体を準備する工程と、
(2)前記けい酸カルシウム成形体を乾燥状態とし、密度が0.3〜0.4g/cm3となるように圧縮成形する工程と
を有することを特徴とするけい酸カルシウム保温材の製造方法である。
本発明の第2の発明は、前記けい酸カルシウム保温材が、金属酸化物および/または炭化けい素を60質量%以下の割合で含有することを特徴とする前記第1の発明に記載のけい酸カルシウム保温材の製造方法である。
本発明の第3の発明は、前記金属酸化物および炭化けい素の平均粒径が1〜20μmであることを特徴とする前記第2の発明に記載のけい酸カルシウム保温材の製造方法である。
本発明の第4の発明は、前記金属酸化物が、酸化チタン粉末、酸化鉄、酸化亜鉛および酸化ジルコニウム粉末から選択された少なくとも1種であることを特徴とする前記第2または第3の発明に記載のけい酸カルシウム保温材の製造方法である。
The first invention of the present invention is:
(1) preparing a calcium silicate molded body having a density of 0.1 to 0.2 g / cm 3 ;
(2) A method for producing a calcium silicate heat insulating material, characterized by comprising a step of compression-molding the calcium silicate molded body into a dry state and a density of 0.3 to 0.4 g / cm 3. It is.
According to a second aspect of the present invention, in the silica according to the first aspect, the calcium silicate heat insulating material contains a metal oxide and / or silicon carbide in a proportion of 60% by mass or less. It is a manufacturing method of a calcium acid heat insulating material.
A third invention of the present invention is the method for producing a calcium silicate heat insulating material according to the second invention, wherein the average particle diameter of the metal oxide and silicon carbide is 1 to 20 μm. .
According to a fourth aspect of the present invention, the metal oxide is at least one selected from titanium oxide powder, iron oxide, zinc oxide and zirconium oxide powder. It is a manufacturing method of the calcium silicate heat insulating material of description.

本発明の製造方法を用いれば、従来より公知のけい酸カルシウム保温材を基にして、特殊な設備を必要とせずに、断熱性能の高いけい酸カルシウム保温材を容易に製造することができる。   If the manufacturing method of this invention is used, based on the conventionally well-known calcium silicate heat insulating material, a calcium silicate heat insulating material with high heat insulation performance can be easily manufactured, without requiring special equipment.

以下、本発明の特徴およびそれによる作用効果について、実施の形態によって更に詳しく説明する。   Hereinafter, the features of the present invention and the operational effects thereof will be described in more detail with reference to embodiments.

本発明の製造方法における(1)工程は、密度が0.1〜0.2g/cm3のけい酸カルシウム成形体を準備する工程である。
密度が0.1〜0.2g/cm3のけい酸カルシウム成形体は、以下のような方法で製造することができる。すなわち、主原料として石灰質原料(消石灰、生石灰等)とけい酸質原料(珪石粉末等の結晶質シリカ、けいそう土等の非晶質シリカ)を用い、マトリックスがトバモライトである場合は、原料のCaO/SiO2モル比(以下、C/Sと記す)を0.6〜0.9に調整し、また、マトリックスがゾノトライトである場合は、C/Sを0.9〜1.1に調整し、必要に応じて繊維原料(木質パルプ、ガラス繊維等)を添加した後湿式混合し、トバモライトの場合は約180℃、ゾノトライトの場合は約200℃の飽和水蒸気下でオートクレーブ養生し、所望のけい酸カルシウム水和物(トバモライト、ゾノトライト等)を生成させ、加圧脱水して成形し、乾燥して硬化させる。加圧脱水するときの圧力は、原料の粒度等によっても異なるが、密度が0.2g/cm3のけい酸カルシウム材の場合でおおむね0.5〜2.0MPa、密度が0.1g/cm3のけい酸カルシウム材の場合でおおむね0.05〜0.2MPaである。
なお本発明でいう密度は、JIS A 9510「無機多孔質保温材」に準拠して測定された値である。
Step (1) in the production method of the present invention is a step of preparing a calcium silicate molded body having a density of 0.1 to 0.2 g / cm 3 .
A calcium silicate molded body having a density of 0.1 to 0.2 g / cm 3 can be produced by the following method. That is, when a calcareous raw material (slaked lime, quicklime, etc.) and a siliceous raw material (crystalline silica such as silica powder, amorphous silica such as diatomaceous earth) are used as the main raw material and the matrix is tobermorite, the raw material CaO / SiO 2 molar ratio (hereinafter referred to as C / S) is adjusted to 0.6 to 0.9, and when the matrix is zonotolite, C / S is adjusted to 0.9 to 1.1. If necessary, add fiber raw materials (wood pulp, glass fiber, etc.) and then wet-mix. Autoclave under saturated steam at about 180 ° C for tobermorite and about 200 ° C for zonotlite. Calcium acid hydrate (tobermorite, zonotrite, etc.) is produced, pressure dehydrated, shaped, dried and cured. The pressure when dehydrating under pressure varies depending on the particle size of the raw material, but in the case of a calcium silicate material having a density of 0.2 g / cm 3 , the pressure is generally 0.5 to 2.0 MPa, and the density is 0.1 g / cm. In the case of 3 calcium silicate materials, it is generally 0.05 to 0.2 MPa.
In addition, the density as used in the field of this invention is the value measured based on JISA9510 "inorganic porous heat insulating material."

また、原料を混合した後加圧成形し、次いでオートクレーブ養生を行い硬化させることにより、密度が0.1〜0.2g/cm3のけい酸カルシウム材を製造してもよい。 Alternatively, a calcium silicate material having a density of 0.1 to 0.2 g / cm 3 may be manufactured by mixing the raw materials and then performing pressure molding, followed by curing by autoclave curing.

けい酸カルシウム成形体の密度が0.2g/cm3を上回ると、本発明を適用しても、けい酸カルシウム保温材の断熱性能があまり向上しない。また、密度が0.1g/cm3を下回ると、成形不良が生じハンドリングができないという問題を生ずるので好ましくない。さらに好ましいけい酸カルシウム成形体の上記密度範囲は、0.13〜0.18g/cm3である。 When the density of the calcium silicate molded body exceeds 0.2 g / cm 3 , the heat insulation performance of the calcium silicate heat insulating material is not significantly improved even when the present invention is applied. On the other hand, when the density is less than 0.1 g / cm 3 , it is not preferable because it causes a problem that molding failure occurs and handling cannot be performed. Further, the above density range of the preferable calcium silicate molded body is 0.13 to 0.18 g / cm 3 .

なお、(1)工程では、密度が0.1〜0.2g/cm3のけい酸カルシウム成形体であれば、前記のように各種出発原料を用いて製造する必要はなく、けい酸カルシウム成形体の廃材等を用いることもできる。 In the step (1), if the calcium silicate molded body has a density of 0.1 to 0.2 g / cm 3 , it is not necessary to manufacture using various starting materials as described above. Body waste and the like can also be used.

(1)工程で得られるけい酸カルシウム成形体の形状は、最終製品であるけい酸カルシウム保温材の形状にほぼ近い状態であることが望ましい。   It is desirable that the shape of the calcium silicate molded body obtained in the step (1) is substantially close to the shape of the calcium silicate heat insulating material that is the final product.

本発明の製造方法における(2)工程は、(1)工程で得られたけい酸カルシウム成形体を乾燥状態とし、密度が0.3〜0.4g/cm3となるように圧縮成形する工程である。
本発明でいう乾燥状態とは、けい酸カルシウム成形体に含まれる水分含量が10質量%以下である状態を意味し、好ましい水分含量は5質量%以下である。該水分含量は、けい酸カルシウム成形体の105℃で24時間乾燥前後の質量から、下式で算出することができる。
水分含量={(けい酸カルシウム成形体の乾燥前の質量−けい酸カルシウム成形体の乾燥後の質量)/(けい酸カルシウム成形体の乾燥後の質量)} × 100 (%)
The step (2) in the production method of the present invention is a step in which the calcium silicate molded body obtained in the step (1) is dried and compression molded so that the density is 0.3 to 0.4 g / cm 3. It is.
The dry state as used in the field of this invention means the state whose water content contained in a calcium-silicate molded object is 10 mass% or less, and a preferable water content is 5 mass% or less. The moisture content can be calculated from the mass of the calcium silicate molded body before and after drying at 105 ° C. for 24 hours by the following equation.
Water content = {(mass before drying of calcium silicate molded body−mass after drying of calcium silicate molded body) / (mass after drying of calcium silicate molded body)} × 100 (%)

乾燥状態のけい酸カルシウム成形体は、密度が0.3〜0.4g/cm3となるように圧縮成形され、本発明のけい酸カルシウム保温材が得られる。圧縮成形後の密度が0.3g/cm3を下回ると、断熱性能の向上効果が発現せず、また強度増加も不十分であるという問題を生ずる。また、密度が0.4g/cm3を上回ると密度増加による固体伝熱増大の影響が大きくなり、低温域から高温域にかけて熱伝導率が増大してしまうという問題を生ずるので好ましくない。さらに好ましい圧縮成形後の上記密度範囲は、0.33〜0.38g/cm3である。圧縮成形は、公知の方法を適宜採用して行えばよい。 The dry calcium silicate compact is compression molded to a density of 0.3 to 0.4 g / cm 3 to obtain the calcium silicate heat insulating material of the present invention. When the density after compression molding is less than 0.3 g / cm 3 , the effect of improving the heat insulation performance is not exhibited, and the problem is that the increase in strength is insufficient. On the other hand, if the density exceeds 0.4 g / cm 3 , the influence of the increase in solid heat transfer due to the increase in density becomes large, and the problem that the thermal conductivity increases from the low temperature range to the high temperature range is not preferable. More preferably, the density range after compression molding is 0.33 to 0.38 g / cm 3 . The compression molding may be performed by appropriately adopting a known method.

また本発明の好適な形態は、前記けい酸カルシウム保温材が、金属酸化物および/または炭化けい素(以下、添加材という)を60質量%以下の割合で含有する形態であり、これら添加材の配合により、断熱性能を相乗的に高めることができる。該添加材のけい酸カルシウム保温材中の好ましい添加量は、20〜40質量%である。該添加量が20質量%以上であることにより、けい酸カルシウム保温材の断熱性能がさらに向上する。また40質量%以下であることにより、けい酸カルシウム保温材の成形性およびハンドリング性を減じることがない。   In a preferred embodiment of the present invention, the calcium silicate heat insulating material contains a metal oxide and / or silicon carbide (hereinafter referred to as an additive) in a proportion of 60% by mass or less. Insulation performance can be increased synergistically. The preferable addition amount in the calcium silicate heat insulating material of this additive is 20-40 mass%. When the added amount is 20% by mass or more, the heat insulation performance of the calcium silicate heat insulating material is further improved. Moreover, the moldability and handling property of a calcium silicate heat insulating material are not reduced by being 40 mass% or less.

金属酸化物としては、酸化チタン(チタニア)粉末、酸化鉄、酸化亜鉛、酸化ジルコニウム(ジルコニア)粉末またはこれらの混合物が、断熱性能向上性の観点から好ましい。
また、上記添加材は、平均粒径が1〜20μmであることがとくに好ましい。この平均粒径の範囲内であると、けい酸カルシウム保温材の断熱性能を一層向上させることができる。該平均粒径が1μm以上であることにより、赤外線の反射効果が高まり、熱線の反射性が向上し、20μm以下であることにより、けい酸カルシウム保温材中の添加材の存在が密となり、熱線の反射性が高まるという効果を奏する。さらに好ましい上記平均粒径は、5〜15μmである。平均粒径は、市販されている測定機器、例えば(株)島津製作所製商品名SALD−2000により測定できる。
As the metal oxide, titanium oxide (titania) powder, iron oxide, zinc oxide, zirconium oxide (zirconia) powder or a mixture thereof is preferable from the viewpoint of heat insulation performance improvement.
Moreover, it is particularly preferable that the additive has an average particle diameter of 1 to 20 μm. Within the range of the average particle diameter, the heat insulating performance of the calcium silicate heat insulating material can be further improved. When the average particle size is 1 μm or more, the effect of reflecting infrared rays is enhanced and the reflectivity of heat rays is improved. When the average particle size is 20 μm or less, the presence of the additive in the calcium silicate heat insulating material becomes dense, and heat rays There is an effect that the reflectivity of is increased. The average particle size is more preferably 5 to 15 μm. The average particle diameter can be measured with a commercially available measuring instrument, for example, trade name SALD-2000 manufactured by Shimadzu Corporation.

以下、本発明を実施例および比較例によりさらに説明するが、本発明は下記例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example further demonstrate this invention, this invention is not restrict | limited to the following example.

(実施例1)
(1)工程
粉末珪石及び消石灰をC/S=1.0に調整し、固形分に対して12質量倍の水に分散し撹拌下200℃−8時間のオートクレーブ養生を行って、ゾノトライトからなるけい酸カルシウムスラリーを得た。次いで得られたけい酸カルシウム固形分100質量部に対し、パルプ繊維5質量部を混合し、プレス脱水成形し板状としたのち乾燥し、密度が0.15g/cm3の成形体を得た。
(2)工程
続いて、該成形体を120℃で24時間乾燥し、水分含量を2.0質量%に調整し、圧縮成形を行い、密度が0.35g/cm3のけい酸カルシウム保温材を得た。該保温材のサイズは、縦600mm、横300mm、厚さ50mmの板状であった。
得られたけい酸カルシウム保温材の曲げ強度および熱伝導率を測定した。曲げ強度はJIS A 9510に基づき、熱伝導率はJIS A 1412に基づき測定した。結果を表1に示す。
Example 1
(1) Process It adjusts powder silica and slaked lime to C / S = 1.0, disperses in 12 mass times water with respect to solid content, performs autoclave curing at 200 ° C. for 8 hours with stirring, and consists of zonotlite. A calcium silicate slurry was obtained. Next, 5 parts by mass of pulp fiber was mixed with 100 parts by mass of the solid content of calcium silicate, press dehydrated to form a plate, and then dried to obtain a molded body having a density of 0.15 g / cm 3 . .
(2) Step Subsequently, the compact is dried at 120 ° C. for 24 hours, the moisture content is adjusted to 2.0 mass%, compression molding is performed, and the calcium silicate heat insulating material having a density of 0.35 g / cm 3. Got. The size of the heat insulating material was a plate shape having a length of 600 mm, a width of 300 mm, and a thickness of 50 mm.
The bending strength and thermal conductivity of the obtained calcium silicate heat insulating material were measured. The bending strength was measured based on JIS A 9510, and the thermal conductivity was measured based on JIS A 1412. The results are shown in Table 1.

(比較例1)
実施例1の(1)工程で得られた成形体(従来法で得られた保温材)の曲げ強度および熱伝導率を測定した。結果を表1に示す。
(Comparative Example 1)
The bending strength and thermal conductivity of the molded body obtained in the step (1) of Example 1 (the heat insulating material obtained by the conventional method) were measured. The results are shown in Table 1.

(比較例2)
実施例1において、(2)工程の圧縮成形後の密度が0.45g/cm3であるけい酸カルシウム保温材としたこと以外は、実施例1を繰り返した。結果を表1に示す。
(Comparative Example 2)
In Example 1, Example 1 was repeated except that the calcium silicate heat insulating material having a density after compression molding in the step (2) was 0.45 g / cm 3 . The results are shown in Table 1.

(比較例3)
実施例1において、(1)工程で得た成形体の密度を0.25g/cm3としたこと以外は、実施例1を繰り返した。結果を表1に示す。
(Comparative Example 3)
In Example 1, Example 1 was repeated except that the density of the molded product obtained in the step (1) was 0.25 g / cm 3 . The results are shown in Table 1.

(比較例4)
実施例1において、(2)工程での水分含量を150質量%とした以外は、実施例1を繰り返した。結果を表1に示す。
(Comparative Example 4)
In Example 1, Example 1 was repeated except that the water content in step (2) was 150% by mass. The results are shown in Table 1.

Figure 0004800251
Figure 0004800251

(実施例2)
(1)工程
粉末珪石及び消石灰をC/S=1.0に調整し、固形分に対して12質量倍の水に分散し撹拌下200℃−8時間のオートクレーブ養生を行って、ゾノトライトからなるけい酸カルシウムスラリーを得た。次いで得られたけい酸カルシウム固形分100質量部に対し、平均粒径5μmのルチル型酸化チタン35質量部及びパルプ繊維5質量部を混合し、プレス脱水成形し板状としたのち乾燥し、密度が0.15g/cm3の成形体を得た。
(2)工程
続いて、該成形体を120℃で24時間乾燥し、水分含量を2.0質量%に調整し、圧縮成形を行い、密度が0.35g/cm3のけい酸カルシウム保温材を得た。該保温材のサイズは、縦600mm、横300mm、厚さ50mmの板状であった。
得られたけい酸カルシウム保温材の曲げ強度および熱伝導率を測定した。曲げ強度はJIS A 9510に基づき、熱伝導率はJIS A 1412に基づき測定した。結果を表2に示す。
(Example 2)
(1) Process It adjusts powder silica and slaked lime to C / S = 1.0, disperses in 12 mass times water with respect to solid content, performs autoclave curing at 200 ° C. for 8 hours with stirring, and consists of zonotlite. A calcium silicate slurry was obtained. Next, with respect to 100 parts by mass of the obtained calcium silicate solid content, 35 parts by mass of rutile titanium oxide having an average particle size of 5 μm and 5 parts by mass of pulp fibers were mixed, press dehydrated to form a plate, and then dried, Of 0.15 g / cm 3 was obtained.
(2) Step Subsequently, the compact is dried at 120 ° C. for 24 hours, the moisture content is adjusted to 2.0 mass%, compression molding is performed, and the calcium silicate heat insulating material having a density of 0.35 g / cm 3. Got. The size of the heat insulating material was a plate shape having a length of 600 mm, a width of 300 mm, and a thickness of 50 mm.
The bending strength and thermal conductivity of the obtained calcium silicate heat insulating material were measured. The bending strength was measured based on JIS A 9510, and the thermal conductivity was measured based on JIS A 1412. The results are shown in Table 2.

(比較例5)
実施例2の(1)工程で得られた成形体(従来法で得られた保温材)の曲げ強度および熱伝導率を測定した。結果を表2に示す。
(Comparative Example 5)
The bending strength and thermal conductivity of the molded body (the heat insulating material obtained by the conventional method) obtained in the step (1) of Example 2 were measured. The results are shown in Table 2.

Figure 0004800251
Figure 0004800251

実施例1では、作製されたけい酸カルシウム保温材の曲げ強度が市販製品と同等以上であり、実用上十分な強度を有するとともに、優れた熱伝導率を示し、保温材として有用であることが分かる。
実施例1に対し、比較例1では、従来法に従って成形したものであるため曲げ強度および熱伝導率が実施例の数値に比べ悪化している。
比較例2では、(2)工程の圧縮成形後の密度が0.45g/cm3であり、本発明の範囲外であるので、熱伝導率が実施例の数値に比べ悪化している。
比較例3では、(1)工程で得た成形体の密度を0.25g/cm3とし、本発明の範囲外であるので、熱伝導率が実施例の数値に比べ悪化している。
比較例4では、(2)工程での圧縮成形前の成形体の水分含量を150質量%とし、非乾燥状態のまま圧縮成形を行ったので、熱伝導率が実施例の数値に比べ悪化している。
実施例2では、作製されたけい酸カルシウム保温材の曲げ強度が市販製品と同等以上であり、実用上十分な強度を有するとともに、優れた熱伝導率を示し、保温材として有用であることが分かる。なお、実施例2では添加材として酸化チタンを配合しているため、一層優れた断熱性能が認められる。
実施例2に対し、比較例5では、従来法に従って成形したものであるため曲げ強度および熱伝導率が実施例の数値に比べ悪化している。
In Example 1, the produced calcium silicate heat insulating material has a bending strength equal to or higher than that of a commercially available product, has a practically sufficient strength, exhibits excellent thermal conductivity, and is useful as a heat insulating material. I understand.
In contrast to Example 1, since Comparative Example 1 was molded according to the conventional method, the bending strength and thermal conductivity were deteriorated compared to the values of the Example.
In Comparative Example 2, the density after compression molding in the step (2) is 0.45 g / cm 3, which is outside the range of the present invention, and thus the thermal conductivity is worse than the numerical value of the example.
In Comparative Example 3, the density of the molded body obtained in the step (1) was set to 0.25 g / cm 3 , which is outside the range of the present invention, so the thermal conductivity is worse than the numerical value of the example.
In Comparative Example 4, since the moisture content of the molded body before compression molding in the step (2) was 150% by mass and compression molding was performed in a non-dry state, the thermal conductivity was worse than the numerical values of the examples. ing.
In Example 2, the produced calcium silicate heat insulating material has a bending strength equal to or higher than that of a commercially available product, has a practically sufficient strength, exhibits excellent thermal conductivity, and is useful as a heat insulating material. I understand. In Example 2, since titanium oxide is blended as an additive, a further excellent heat insulating performance is recognized.
In contrast to Example 2, since Comparative Example 5 was molded according to the conventional method, the bending strength and thermal conductivity were deteriorated compared to the values of the Example.

本発明の製造方法を用いれば、従来より公知のけい酸カルシウム保温材を基にして、特殊な設備を必要とせずに、断熱性能の高いけい酸カルシウム保温材を容易に製造することができる。とくに本発明では、(1)工程におけるけい酸カルシウム成形体の密度条件を満たせば、出発材料としてけい酸カルシウム成形体の廃材等を用いることができ、リサイクル面、環境面等にも有利である。   If the manufacturing method of this invention is used, based on the conventionally well-known calcium silicate heat insulating material, a calcium silicate heat insulating material with high heat insulation performance can be easily manufactured, without requiring special equipment. Particularly in the present invention, if the density condition of the calcium silicate compact in the step (1) is satisfied, the waste material of the calcium silicate compact can be used as a starting material, which is advantageous in terms of recycling and environment. .

Claims (4)

(1)密度が0.1〜0.2g/cm3のけい酸カルシウム成形体を準備する工程と、
(2)前記けい酸カルシウム成形体を乾燥状態とし、密度が0.3〜0.4g/cm3となるように圧縮成形する工程と
を有することを特徴とするけい酸カルシウム保温材の製造方法。
(1) preparing a calcium silicate molded body having a density of 0.1 to 0.2 g / cm 3 ;
(2) A method for producing a calcium silicate heat insulating material, characterized by comprising a step of compression-molding the calcium silicate molded body into a dry state and a density of 0.3 to 0.4 g / cm 3. .
前記けい酸カルシウム保温材が、金属酸化物および/または炭化けい素を60質量%以下の割合で含有することを特徴とする請求項1に記載のけい酸カルシウム保温材の製造方法。   The said calcium silicate heat insulating material contains a metal oxide and / or silicon carbide in the ratio of 60 mass% or less, The manufacturing method of the calcium silicate heat insulating material of Claim 1 characterized by the above-mentioned. 前記金属酸化物および炭化けい素の平均粒径が1〜20μmであることを特徴とする請求項2に記載のけい酸カルシウム保温材の製造方法。   3. The method for producing a calcium silicate heat insulating material according to claim 2, wherein the metal oxide and silicon carbide have an average particle diameter of 1 to 20 μm. 前記金属酸化物が、酸化チタン粉末、酸化鉄、酸化亜鉛および酸化ジルコニウム粉末から選択された少なくとも1種であることを特徴とする請求項2または3に記載のけい酸カルシウム保温材の製造方法。   The method for producing a calcium silicate heat insulating material according to claim 2 or 3, wherein the metal oxide is at least one selected from titanium oxide powder, iron oxide, zinc oxide, and zirconium oxide powder.
JP2007086658A 2007-03-29 2007-03-29 Method for producing calcium silicate thermal insulation Active JP4800251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007086658A JP4800251B2 (en) 2007-03-29 2007-03-29 Method for producing calcium silicate thermal insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007086658A JP4800251B2 (en) 2007-03-29 2007-03-29 Method for producing calcium silicate thermal insulation

Publications (2)

Publication Number Publication Date
JP2008239458A JP2008239458A (en) 2008-10-09
JP4800251B2 true JP4800251B2 (en) 2011-10-26

Family

ID=39911235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086658A Active JP4800251B2 (en) 2007-03-29 2007-03-29 Method for producing calcium silicate thermal insulation

Country Status (1)

Country Link
JP (1) JP4800251B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5680352B2 (en) * 2010-08-16 2015-03-04 旭化成ケミカルズ株式会社 Insulation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627022B2 (en) * 1985-12-17 1994-04-13 日本インシュレーション株式会社 Method for producing calcium silicate-based compact
JP3874506B2 (en) * 1997-10-21 2007-01-31 株式会社エーアンドエーマテリアル Volume reduction processing apparatus for heat insulation and cold waste materials and method of using the volume reduction processing apparatus

Also Published As

Publication number Publication date
JP2008239458A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
CN1022403C (en) Lightweight insulating boards and process for manufacturing same
JP4842871B2 (en) Method for producing calcium silicate thermal insulation
US4447380A (en) Expanded inorganic aggregate bonded with calcium silicate hydrate as thermal insulation
JP5190399B2 (en) Method for producing calcium silicate plate
JP5871685B2 (en) Calcium silicate molded body and method for producing the same
JP4800251B2 (en) Method for producing calcium silicate thermal insulation
JP7429508B2 (en) How to manufacture insulation panels
JP5436405B2 (en) Composition for heat insulating material and molded body for heat insulating material
JPH11322395A (en) Fiber-reinforced cement molding and its production
JP5425326B2 (en) Molded body for heat insulating material and manufacturing method thereof
JP2013224235A (en) Composition for heat insulating material, molding for heat insulating material, and method for manufacturing them
JP5214849B2 (en) Wooden plasterboard
Wang et al. Investigation of the adaptability of paper sludge with wood fiber in cement-based insulation mortar
JP2011213510A (en) Fiber-reinforced calcium silicate board
KR102028095B1 (en) Composition for manufacturing coffee brick and manufacturing method of coffee brick using the same
JP2006001794A (en) Moisture absorbing/releasing building material and method for producing the same
JP4127749B2 (en) Calcium silicate material for inner wall material or ceiling material and method for producing the same
JP5469502B2 (en) Method for producing calcium silicate material
JP6052981B2 (en) Calcium silicate molded body and method for producing the same
JP4092227B2 (en) Carbonated cured body
JP2006056747A (en) Porous formed body and its production method
JP2016222489A (en) Lightweight calcium silicate plate and method of producing the same
JP4676827B2 (en) Porous molded body and method for producing the same
JPS62113747A (en) Manufacture of calcium silicate formed body
JP2005097859A (en) Far-infrared radiation radiative inorganic building material and method of manufacturing far infrared radiation radiative inorganic building material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4800251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250