JP2006056747A - Porous formed body and its production method - Google Patents

Porous formed body and its production method Download PDF

Info

Publication number
JP2006056747A
JP2006056747A JP2004240611A JP2004240611A JP2006056747A JP 2006056747 A JP2006056747 A JP 2006056747A JP 2004240611 A JP2004240611 A JP 2004240611A JP 2004240611 A JP2004240611 A JP 2004240611A JP 2006056747 A JP2006056747 A JP 2006056747A
Authority
JP
Japan
Prior art keywords
molded body
porous molded
ammonia
raw material
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004240611A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kuranari
利幸 倉成
Mitsuharu Osawa
光春 大澤
Tsuneji Morohoshi
常志 諸星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&A Material Corp
Original Assignee
A&A Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&A Material Corp filed Critical A&A Material Corp
Priority to JP2004240611A priority Critical patent/JP2006056747A/en
Publication of JP2006056747A publication Critical patent/JP2006056747A/en
Pending legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous formed body capable of hardening without needing heat, and having excellent heat or water resistance as well as high strength. <P>SOLUTION: This porous formed body is produced by forming and hardening a raw material containing amorphous silica, a reinforcing fiber and a filler in the presence of ammonia without heating. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高強度で耐熱性に優れ、建材、断熱材として有用な多孔質成形体に関する。   The present invention relates to a porous molded body having high strength and excellent heat resistance and useful as a building material and a heat insulating material.

断熱性に優れた多孔質成形体としては、珪素及び/又はアルミニウム元素の高分散酸化物を基材とする微細多孔質体(特許文献1)、2〜4.5(SiO2;M2O)モル比の二酸化ケイ素(SiO2)とアルカリ金属酸化物(M2O)からなるケイ酸アルカリ金属発泡粒子に基づく成形体(特許文献2)及び膨張したバーミキュライトを30〜70重量%、無機結合剤を15〜40重量%、赤外線不透明剤を0〜20重量%、微孔質物質を15〜50重量%、強化繊維の重量に対してB23最高で2重量%及びアルカリ金属酸化物最高で2重量%を含有する強化繊維を0.5〜8重量%を含有する断熱成形体(特許文献3)が知られている。しかしこれらの成形体は、熱伝導率が低く断熱性には優れているが、高温で焼成を行わなければならず、製造におけるエネルギーコストを要する。また得られた材料は脆いため、加工性が十分ではなく、粉っぽいので粉塵を発生させやすいという問題がある。さらに、この材料は耐水性を有していないので、吸水すると亀裂を生じてしまう。従って、断熱材として使用した場合、結露した水分を吸水して亀裂を生じ、断熱性が大幅に低下するという問題もある。 As a porous molded body excellent in heat insulation, a fine porous body based on a highly dispersed oxide of silicon and / or aluminum element (Patent Document 1), 2 to 4.5 (SiO 2 ; M 2 O) ) Molded body based on alkali metal silicate foam particles composed of silicon dioxide (SiO 2 ) and alkali metal oxide (M 2 O) in molar ratio (Patent Document 2) and expanded vermiculite in an amount of 30 to 70% by weight, inorganic bond 15 to 40% by weight of the agent, 0 to 20% by weight of the infrared opaque agent, 15 to 50% by weight of the microporous material, up to 2% by weight of B 2 O 3 with respect to the weight of the reinforcing fiber, and alkali metal oxide A heat insulating molded body containing 0.5 to 8% by weight of reinforcing fiber containing 2% by weight at maximum (Patent Document 3) is known. However, these molded articles have low thermal conductivity and excellent heat insulation properties, but must be fired at a high temperature and require energy costs in production. Moreover, since the obtained material is brittle, there is a problem that the processability is not sufficient and it is powdery, so that dust is easily generated. Furthermore, since this material does not have water resistance, it will crack when absorbed. Therefore, when used as a heat insulating material, there is a problem that the condensed moisture is absorbed and cracks are generated, and the heat insulating property is greatly reduced.

また、非晶質珪酸にアンモニアを介在させた多孔質成形体としては、高純度シリカガラス質発泡体(特許文献4)及び耐熱性シリカ質発泡体(特許文献5)があるが、いずれもシリカ(ガラス)質発泡体であり、高温で発泡させる必要がある。   In addition, examples of the porous molded body in which ammonia is interposed in amorphous silicic acid include a high-purity silica glassy foam (Patent Document 4) and a heat-resistant siliceous foam (Patent Document 5), both of which are silica. It is a (glass) foam and needs to be foamed at a high temperature.

インターネット上の(非特許文献1)には、パーライトのような非晶質シリカ系材料の粉体に水酸化ナトリウムなどのアルカリの水溶液を混合し、百数十℃の熱プレスで加圧成形する技術が開示されているが、加熱温度は特許文献1及び2よりも低いものの、加熱を必要とすること、また、水酸化ナトリウムを使用すると得られた多孔質成形体を高温で加熱した場合に、加熱収縮が大きくなるなど耐熱性能にも問題がある。
特開平7−10651号公報 特開平7−69752号公報 特表2000−513693号公報 特開平5−345636号公報 特開平7−144934号公報 北海道立工業試験場技術情報Vol.24,No.2,p.6
On the Internet (Non-Patent Document 1), an amorphous silica-based material powder such as pearlite is mixed with an aqueous solution of an alkali such as sodium hydroxide, and pressure-molded with a hot press at hundreds of degrees Celsius. Although the technology is disclosed, although the heating temperature is lower than those of Patent Documents 1 and 2, heating is required, and when the porous molded body obtained using sodium hydroxide is heated at a high temperature There are also problems with heat resistance such as heat shrinkage.
Japanese Patent Laid-Open No. 7-10651 Japanese Patent Laid-Open No. 7-69752 JP 2000-513693 A JP-A-5-345636 Japanese Patent Laid-Open No. 7-144934 Hokkaido Industrial Experiment Station Technical Information Vol. 24, no. 2, p. 6

本発明の課題は、加熱を必要とせずに硬化させることができ、高強度で耐熱性にも優れた多孔質成形体を提供することにある。   An object of the present invention is to provide a porous molded body that can be cured without requiring heating, and has high strength and excellent heat resistance.

そこで本発明者は、種々検討した結果、全く意外にも非晶質珪酸、補強繊維及び充填材を含有する原料を用いてアンモニアの存在下に加熱することなく硬化させるだけで、高強度で耐熱性および耐水性に優れる多孔質成形体が得られることを見出し、本発明を完成した。   Therefore, as a result of various studies, the present inventor has surprisingly achieved high strength and heat resistance simply by using a raw material containing amorphous silicic acid, reinforcing fibers, and a filler, and curing without heating in the presence of ammonia. The present invention has been completed by finding that a porous molded body having excellent properties and water resistance can be obtained.

すなわち、本発明は、非晶質珪酸、補強繊維及び充填材を含有する原料を成形し硬化させてなる多孔質成形体であって、アンモニアの存在下加熱することなく硬化させてなることを特徴とする多孔質成形体及びその製造法を提供するものである。   That is, the present invention is a porous molded body obtained by molding and curing a raw material containing amorphous silicic acid, reinforcing fibers and a filler, and is cured without heating in the presence of ammonia. And a method for producing the same.

本発明の多孔質成形体は、加熱を必要とせずに硬化させることができるので製造におけるエネルギーコストを低く抑えることができ、高強度で耐熱性および耐水性に優れているので断熱材や建材に適している。   Since the porous molded body of the present invention can be cured without the need for heating, the energy cost in production can be kept low, and since it has high strength and excellent heat resistance and water resistance, it can be used as a heat insulating material or a building material. Is suitable.

本発明の多孔質成形体の原料は、非晶質珪酸、補強繊維及び充填材を含む。ここで非晶質珪酸は、多孔質成形体としてのマトリックスを形成するための原料であり、非晶質珪酸の形態を有しているものであれば特に限定されない。例えば沈殿法により得られる含水珪酸やホワイトカーボン、ゲル法により得られるシリカゲルやゲル状シリカ、燃焼法により得られる乾式シリカが好適である。また、フライアッシュやシリカヒュームも使用可能である。   The raw material of the porous molded body of the present invention includes amorphous silicic acid, reinforcing fibers, and a filler. Here, amorphous silicic acid is a raw material for forming a matrix as a porous molded body, and is not particularly limited as long as it has a form of amorphous silicic acid. For example, hydrous silicic acid and white carbon obtained by a precipitation method, silica gel and gel silica obtained by a gel method, and dry silica obtained by a combustion method are suitable. Fly ash and silica fume can also be used.

非晶質珪酸の粒度等も特に限定はされないが、粒度の細かいものを使用すると、高強度の多孔質成形体を得やすい。例えば、一次粒子の平均粒子径2〜50nm、特に2〜10nmであり、この一次粒子が凝集して二次粒子を形成している微粒子状の非晶質珪酸が特に好ましい。   The particle size and the like of the amorphous silicic acid are not particularly limited, but when a fine particle size is used, a high-strength porous molded body can be easily obtained. For example, fine particles of amorphous silicic acid having an average primary particle diameter of 2 to 50 nm, particularly 2 to 10 nm, and primary particles aggregated to form secondary particles are particularly preferable.

非晶質珪酸が原料全体に占める比率は、熱伝導率及び強度発現性の点から乾燥状態での質量比として、30〜80%、さらに断熱材として使用する場合は35〜75%が好ましく、建材として使用する場合は40〜60%が好ましい。   The ratio of amorphous silicic acid to the whole raw material is preferably 30 to 80% as a mass ratio in a dry state from the viewpoint of thermal conductivity and strength development, and more preferably 35 to 75% when used as a heat insulating material, When used as a building material, 40 to 60% is preferable.

補強繊維は、主として多孔質成形体の強度を向上させるために使用する原料であり、建材用、断熱材用として従来から使用されている繊維を使用することができる。例えば、セルロースパルプ等の木質繊維、PAN(ポリアクリルニトリル)繊維、PVA(ポリビニルアルコール)繊維、PP(ポリプロピレン)繊維等の合成有機繊維;ガラス繊維;必要に応じてカーボン繊維やセラミック繊維等を用いることができる。   The reinforcing fiber is a raw material mainly used for improving the strength of the porous molded body, and fibers conventionally used for building materials and heat insulating materials can be used. For example, wood fiber such as cellulose pulp, PAN (polyacrylonitrile) fiber, PVA (polyvinyl alcohol) fiber, synthetic organic fiber such as PP (polypropylene) fiber; glass fiber; carbon fiber or ceramic fiber is used as necessary be able to.

補強繊維が原料全体に占める比率は、強度発現性及び製造時の成形性の点から乾燥状態での質量比として、1〜20%、さらに5〜15%が好ましい。   The ratio of the reinforcing fibers to the whole raw material is preferably 1 to 20%, and more preferably 5 to 15% as a mass ratio in a dry state from the viewpoint of strength development and moldability during production.

充填材は、得られる多孔質成形体に用途によって必要とされる性能を向上させるために使用する原料であり、断熱材を主たる用途として使用する場合の充填材としては、熱遮蔽剤(TiO2、FeTiO3、ZrO2、ZrSiO2、Fe23、MnO2等の金属酸化物およびSiC)が好適である。一方、一般建材を主たる用途として使用する場合の充填材としては、ワラストナイト、マイカ等の加熱収縮率を低減させる骨材、炭酸カルシウム、ドロマイト、石膏等の耐火性能を向上させるための骨材が好適である。 A filler is a raw material used in order to improve the performance required by the use for the obtained porous molded body, and as a filler in the case of using a heat insulating material as a main use, a heat shielding agent (TiO 2 FeTiO 3 , ZrO 2 , ZrSiO 2 , Fe 2 O 3 , MnO 2 and other metal oxides and SiC) are preferred. On the other hand, as a filler when using general building materials as the main application, aggregates for reducing the heat shrinkage rate of wollastonite, mica, etc., aggregates for improving the fire resistance performance of calcium carbonate, dolomite, gypsum, etc. Is preferred.

充填材が原料全体に占める比率は、熱伝導率及び強度発現性の点から乾燥状態での質量比として、5〜50%、さらに断熱材として使用する場合は20〜40%が好ましく、建材として使用する場合は10〜20%が好ましい。   The ratio of the filler to the whole raw material is preferably 5 to 50% as a mass ratio in a dry state from the viewpoint of thermal conductivity and strength development, and more preferably 20 to 40% when used as a heat insulating material. When using, 10 to 20% is preferable.

上記必須原料の他に、例えば、本発明になる多孔質成形体の廃材、切断残材、研磨粉等の粉末を原料として再利用してもよい。但し、原料全体に占める量は、乾燥状態での質量比率で50%以下がよい。50%を上回ると得られる多孔質成形体の強度が不十分となることがある。   In addition to the essential raw materials, for example, waste materials of the porous molded body according to the present invention, residual cutting materials, and powders such as abrasive powders may be reused as raw materials. However, the amount of the whole raw material is preferably 50% or less in terms of mass ratio in a dry state. If it exceeds 50%, the strength of the resulting porous molded body may be insufficient.

本発明の多孔質成形体は、上記原料を成形し、アンモニアの存在下に加熱することなく硬化させて得られる点に特徴がある。原料を硬化させるだけであれば、水酸化ナトリウムや水酸化リチウムを介在させることによっても可能であるが、これらを使用すると、ナトリウムやリチウムが多孔質成形体中に残存し、加熱されたときの収縮率が大きくなり耐熱性が低下する。アンモニアを使用した場合には、このような現象が生じない。   The porous molded body of the present invention is characterized in that it is obtained by molding the above raw material and curing it without heating in the presence of ammonia. If only the raw material is cured, it is possible to intervene sodium hydroxide or lithium hydroxide, but when these are used, sodium and lithium remain in the porous molded body and are heated. Shrinkage rate increases and heat resistance decreases. Such a phenomenon does not occur when ammonia is used.

アンモニアは溶液として原料に添加するのが好ましい。
アンモニアの添加量は、非晶質珪酸に対する質量比率で、非晶質珪酸/アンモニア=99.5/0.5〜50/50、さらに99.5/0.5〜70/30が好ましい。アンモニアの比率が上記を下回ると、非晶質珪酸を十分に硬化することができず、多孔質成形体としての十分な性能を得ることができない。アンモニアの比率が上記を上回ると、未反応のアンモニアが多孔質成形体中に残存して悪臭を発生させるので好ましくない。但し、成形体の物性上は特に問題はない。
アンモニア溶液の濃度は、特に限定されるものではないが、濃度が高い場合は劇物に該当するので、水又はアルコールで5〜30%に希釈して使用するのが好ましい。
Ammonia is preferably added to the raw material as a solution.
The addition amount of ammonia is a mass ratio with respect to amorphous silicic acid, and amorphous silicic acid / ammonia = 99.5 / 0.5 to 50/50, more preferably 99.5 / 0.5 to 70/30. If the ratio of ammonia is below the above, amorphous silicic acid cannot be sufficiently cured, and sufficient performance as a porous molded body cannot be obtained. An ammonia ratio exceeding the above is not preferable because unreacted ammonia remains in the porous molded body and generates malodor. However, there is no particular problem on the physical properties of the molded body.
The concentration of the ammonia solution is not particularly limited, but when the concentration is high, it corresponds to a deleterious substance. Therefore, it is preferably diluted to 5 to 30% with water or alcohol.

原料へのアンモニア溶液の添加は、原料を混合しながら添加してもよく、最初に原料を混合してからアンモニア溶液を添加し再度混合してもよい。また、成形方法として抄造法を使用する場合には、原料に水を加えて混合した原料スラリーを薄膜に抄造し、メーキング(成形)ロール上に所定厚さとなるまで巻き取ってメーキングロールから取り出すので、メーキングロールに巻き取る前に薄膜にアンモニア溶液を散布するのがよい。   The ammonia solution may be added to the raw material while mixing the raw materials, or the ammonia solution may be added and mixed again after first mixing the raw materials. In addition, when using the papermaking method as a forming method, the raw material slurry mixed with water added to the raw material is made into a thin film, wound up on a making (forming) roll until it reaches a predetermined thickness, and taken out from the making roll. It is better to spray the ammonia solution on the thin film before winding it on the making roll.

成形方法は特に限定されるものではなく、モールドプレス法、抄造法(上記)、押し出し成形法等の公知の方法を使用すればよい。
成形後、特に加熱等は必要とせず、室温で放置しておくだけで硬化させることができる。モールドプレス法や押し出し成形法等のあまり水を必要としない成形方法の場合には、成形を終了した時点で製品としての最低限の強度を得ることができる。抄造法等の多量の水を必要とする成形方法の場合には、成形後脱水を行うことにより製品としての最低限の強度を得ることができる。また、養生時間を設ければ、さらに強度を上昇させることができるし、特に養生時間を設けなくとも、成形工程以降の工程を実施している間も強度は上昇する。ここで加熱等は必要とせず、とは、特別な加熱をしないという意味であり、通常の、抄造法などの製造法で成形する場合に行う生産効率の向上を目的とした原料スラリー(原料を水と混合したもの)の加温や、硬化後に行う出荷時の含水率を調整するための加熱乾燥処理等は含まれる。従って、本発明における硬化温度は、5〜40℃、特に10〜30℃が好ましい。
The molding method is not particularly limited, and a known method such as a mold pressing method, a papermaking method (above), or an extrusion molding method may be used.
After molding, no particular heating or the like is required, and it can be cured by simply leaving it at room temperature. In the case of a molding method that does not require much water, such as a mold press method or an extrusion molding method, the minimum strength as a product can be obtained when the molding is completed. In the case of a molding method that requires a large amount of water, such as a papermaking method, the minimum strength as a product can be obtained by performing dehydration after molding. In addition, if a curing time is provided, the strength can be further increased, and the strength is also increased during the steps after the molding step without particularly providing the curing time. Here, heating or the like is not necessary, which means that no special heating is performed, and a raw material slurry (raw material is used for the purpose of improving the production efficiency when forming by a normal manufacturing method such as a papermaking method. Heating and water drying treatment for adjusting the moisture content at the time of shipment performed after curing. Therefore, the curing temperature in the present invention is preferably 5 to 40 ° C, particularly 10 to 30 ° C.

硬化させた多孔質成形体は、含水率を一定状態とし、残存したアンモニア、水分、有機溶剤(アルコール)を除去するために乾燥する。乾燥方法は特に制限されるものではないが、通常は105℃程度の加熱乾燥を用いる。なお、加熱乾燥によりアンモニアが除去されると、多孔質成形体の強度はそれ以上上昇しない。   The cured porous molded body is dried in order to keep the moisture content constant and to remove residual ammonia, moisture and organic solvent (alcohol). The drying method is not particularly limited, but usually heat drying at about 105 ° C. is used. In addition, when ammonia is removed by heat drying, the strength of the porous molded body does not increase any more.

得られる多孔質成形体は、多孔質であって軽量であるにもかかわらず、優れた強度を有する。断熱材として使用する場合には、好ましい密度は250〜400kg/m3であり、曲げ強さは20〜50N/cm2である。また、建材として使用する場合には、好ましい密度は650〜750kg/m3であり、曲げ強さは10〜15N/mm2である。また、加熱収縮が少ない。また優れた断熱性も有する。 The resulting porous molded body has excellent strength despite being porous and lightweight. When used as a heat insulating material, the preferred density is 250 to 400 kg / m 3 and the bending strength is 20 to 50 N / cm 2 . Moreover, when using as a building material, a preferable density is 650-750 kg / m < 3 > and bending strength is 10-15 N / mm < 2 >. Moreover, there is little heat shrinkage. It also has excellent heat insulation.

次に実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these Examples.

実施例1〜7及び比較例1〜4
表1及び2記載の原料を秤量し、ヘンシェルミキサーで1500rpmにて3分間乾式混合した。次いで、濃度30%のアンモニア水をヘンシェルミキサー内に散布し、さらに1分間混合した。混合を完了した原料をモールドに投入して1.5〜2.5MPaのプレス圧で加圧成形し、所定の養生条件にて養生硬化して多孔質成形体を製造した。
Examples 1-7 and Comparative Examples 1-4
The raw materials listed in Tables 1 and 2 were weighed and dry mixed with a Henschel mixer at 1500 rpm for 3 minutes. Next, 30% ammonia water was sprayed into the Henschel mixer and mixed for another 1 minute. The mixed raw material was put into a mold, pressure-molded with a press pressure of 1.5 to 2.5 MPa, and cured and cured under predetermined curing conditions to produce a porous molded body.

得られた多孔質成形体の密度、曲げ強さ、熱伝導率及び線収縮率を測定した。
(密度)JIS A 9510の6.6項に基づく。
(曲げ強さ)JIS A 9510の6.7項に基づく。
(熱伝導率)JIS R 2616の熱線法(3.5項の装置、4.2項の試験片、5.3項の操作)に基づく。
(線収縮率)JIS A 9510の6.9項に基づく。
The density, bending strength, thermal conductivity, and linear shrinkage rate of the obtained porous molded body were measured.
(Density) Based on 6.6 of JIS A 9510.
(Bending strength) Based on 6.7 of JIS A 9510.
(Thermal conductivity) Based on the hot wire method of JIS R 2616 (equipment in section 3.5, test piece in section 4.2, operation in section 5.3).
(Linear shrinkage) Based on 6.9 of JIS A 9510.

Figure 2006056747
Figure 2006056747

Figure 2006056747
Figure 2006056747

表1及び表2より、実施例1〜7多孔質成形体は、加熱することなく硬化したにもかかわらず、優れた硬度を有し、優れた熱伝導率を有し、かつ熱収縮が小さく、断熱材として有用である。一方、水酸化アルカリを用いた比較例1〜3は、強度は発現するが、加熱収縮が大きく、断熱材としての適用は困難である。   From Table 1 and Table 2, Examples 1-7 porous molded bodies have excellent hardness, excellent thermal conductivity, and small thermal shrinkage, despite being cured without heating. It is useful as a heat insulating material. On the other hand, Comparative Examples 1 to 3 using an alkali hydroxide exhibit strength but have large heat shrinkage and are difficult to apply as a heat insulating material.

実施例8〜14
表3記載の原料を用い表中に記載の条件以外は、実施例1〜7と同様にして多孔質成形体を製造した。得られた成形体の密度及び曲げ強さを実施例1〜7と同様にして測定した。また寸法変化率は、JIS A 5430の5.8項により測定した。
Examples 8-14
Using the raw materials described in Table 3, porous molded bodies were produced in the same manner as in Examples 1 to 7 except for the conditions described in the table. The density and bending strength of the obtained molded body were measured in the same manner as in Examples 1-7. The dimensional change rate was measured according to 5.8 of JIS A 5430.

Figure 2006056747
Figure 2006056747

表3より、実施例8〜14の多孔質成形体は、優れた曲げ強さを有し、かつ寸法変化率が小さく、内装材等の一般建材として有用である。   From Table 3, the porous molded bodies of Examples 8 to 14 have excellent bending strength and a small dimensional change rate, and are useful as general building materials such as interior materials.

実施例1〜14に対して、水滴を滴下して吸水させることによる亀裂発生の有無を目視観察したが、いずれの実施例についても、亀裂の発生は認められなかった。   Although the presence or absence of the generation | occurrence | production of the crack by dropping a water drop and making it absorb water was visually observed with respect to Examples 1-14, generation | occurrence | production of the crack was not recognized about any Example.

Claims (5)

非晶質珪酸、補強繊維及び充填材を含有する原料を成形し硬化させてなる多孔質成形体であって、アンモニアの存在下加熱することなく硬化させてなることを特徴とする多孔質成形体。   A porous molded body obtained by molding and curing a raw material containing amorphous silicic acid, a reinforcing fiber, and a filler, which is cured without heating in the presence of ammonia. . アンモニアが、アンモニア水である請求項1記載の多孔質成形体。   The porous molded body according to claim 1, wherein the ammonia is aqueous ammonia. 硬化温度が5〜40℃である請求項1又は2記載の多孔質成形体。   The porous molded body according to claim 1 or 2, wherein the curing temperature is 5 to 40 ° C. 非晶質珪酸、補強繊維、充填材及びアンモニアを含有するスラリーを、脱水成形し、加熱することなく硬化させることを特徴とする多孔質成形体の製造方法。   A method for producing a porous molded body comprising dehydrating and curing a slurry containing amorphous silicic acid, reinforcing fibers, a filler, and ammonia without heating. 硬化温度が5〜40℃である請求項4記載の多孔質成形体の製造方法。   The manufacturing method of the porous molded object of Claim 4 whose curing temperature is 5-40 degreeC.
JP2004240611A 2004-08-20 2004-08-20 Porous formed body and its production method Pending JP2006056747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004240611A JP2006056747A (en) 2004-08-20 2004-08-20 Porous formed body and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004240611A JP2006056747A (en) 2004-08-20 2004-08-20 Porous formed body and its production method

Publications (1)

Publication Number Publication Date
JP2006056747A true JP2006056747A (en) 2006-03-02

Family

ID=36104533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004240611A Pending JP2006056747A (en) 2004-08-20 2004-08-20 Porous formed body and its production method

Country Status (1)

Country Link
JP (1) JP2006056747A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170136524A (en) * 2015-04-10 2017-12-11 에보니크 데구사 게엠베하 Method of manufacturing molded insulating member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145652A (en) * 1982-02-24 1983-08-30 三菱化学株式会社 Calcium silicate formed body
JPS59156986A (en) * 1983-02-17 1984-09-06 デグ−サ・アクチエンゲゼルシヤフト Manufacture of heat insulative formed body without binder
JPS62113745A (en) * 1985-11-12 1987-05-25 前川 嘉治 Manufacture of calcium silicate formed body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145652A (en) * 1982-02-24 1983-08-30 三菱化学株式会社 Calcium silicate formed body
JPS59156986A (en) * 1983-02-17 1984-09-06 デグ−サ・アクチエンゲゼルシヤフト Manufacture of heat insulative formed body without binder
JPS62113745A (en) * 1985-11-12 1987-05-25 前川 嘉治 Manufacture of calcium silicate formed body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170136524A (en) * 2015-04-10 2017-12-11 에보니크 데구사 게엠베하 Method of manufacturing molded insulating member
JP2018518436A (en) * 2015-04-10 2018-07-12 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Method for producing a heat-insulated molded body
KR102524944B1 (en) 2015-04-10 2023-04-25 에보니크 오퍼레이션즈 게엠베하 Manufacturing method of molded insulation member

Similar Documents

Publication Publication Date Title
KR101608497B1 (en) Thermal insulation and method of producing the same
TWI403490B (en) Thermal insulating material and method for manufacturing the same
JP2684518B2 (en) Method for producing fine porous body having heat insulating property
JP5066766B2 (en) Geopolymer high-strength cured product containing calcined kaolin as active filler and method for producing the same
JP5591514B2 (en) Insulating material and manufacturing method thereof
JP2016539909A (en) Silicic acid mixtures and their use as insulation
JP5871685B2 (en) Calcium silicate molded body and method for producing the same
JP2013512172A5 (en)
WO2014081277A1 (en) Volcano ash solid geopolymer composite and a method of producing the same
JP4842871B2 (en) Method for producing calcium silicate thermal insulation
JP5190399B2 (en) Method for producing calcium silicate plate
WO2014091665A1 (en) Insulation material and method of manufacturing same
KR101519864B1 (en) Sound absorbing and adiabatic material having lightweight fireproof using expandable graphite and manufacturing method of the same
KR101243377B1 (en) Eco-board having improved mechanical property and water-proof and method of preparing the same
JP2018146098A (en) Manufacturing method of heat insulating material
KR20110125913A (en) Bricks for interior containing stone sludge and methods for preparing thereof
JP2006056747A (en) Porous formed body and its production method
JP2001226166A (en) Calcium silicate formed plate
JP4676827B2 (en) Porous molded body and method for producing the same
KR101552212B1 (en) Lec building material reducing hazardous substance and controlling humidity
CN110204210B (en) Glass wool thermal insulation material, preparation process and application
JP2022148720A (en) Method for manufacturing calcium silicate molding
KR102024689B1 (en) Manufacturing method of buildingmaterials using silica gel
Lee et al. Fabrication of humidity control ceramics from drinking-water treatment sludge and Onggi soil
JP2008239458A (en) Manufacturing method of calcium silicate heat insulating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A977 Report on retrieval

Effective date: 20090909

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

A131 Notification of reasons for refusal

Effective date: 20100518

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100716

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405