JP4796534B2 - Method for manufacturing catheter tube - Google Patents

Method for manufacturing catheter tube Download PDF

Info

Publication number
JP4796534B2
JP4796534B2 JP2007109234A JP2007109234A JP4796534B2 JP 4796534 B2 JP4796534 B2 JP 4796534B2 JP 2007109234 A JP2007109234 A JP 2007109234A JP 2007109234 A JP2007109234 A JP 2007109234A JP 4796534 B2 JP4796534 B2 JP 4796534B2
Authority
JP
Japan
Prior art keywords
covering
core wire
catheter tube
forming step
reinforcing layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007109234A
Other languages
Japanese (ja)
Other versions
JP2008264104A (en
Inventor
広敏 伊藤
慎太郎 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirakawa Hewtech Corp
Original Assignee
Hirakawa Hewtech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirakawa Hewtech Corp filed Critical Hirakawa Hewtech Corp
Priority to JP2007109234A priority Critical patent/JP4796534B2/en
Publication of JP2008264104A publication Critical patent/JP2008264104A/en
Application granted granted Critical
Publication of JP4796534B2 publication Critical patent/JP4796534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)

Description

本発明は、血管内や体腔内で使用されるカテーテル用チューブの製造方法に関し、特に手元側内径よりも先端側内径が縮径されたカテーテル用チューブの製造方法に関する。   The present invention relates to a method for manufacturing a catheter tube used in a blood vessel or a body cavity, and more particularly, to a method for manufacturing a catheter tube having a distal end inner diameter reduced compared to a proximal inner diameter.

カテーテル用チューブは体内の複雑に分岐した血管内や体腔内をあらかじめ導入されているガイドワイヤーに沿って選択的に進行させる必要がある。かつ、治療用の薬剤注入或いは診断用の造影剤注入特性に優れている必要がある。このため、手元側は内外径を大きくし、剛性を高め押込み性を充分に持たせつつ薬剤や造影剤注入特性を確保し、且つ先端側は内外径を手元側よりも細く、柔軟にすることで抹消血管への到達性やガイドワイヤーへの追従性を高めている。   The catheter tube needs to be selectively advanced along a guide wire introduced in advance in a blood vessel or a body cavity branched in a complicated manner in the body. In addition, it is necessary to have excellent properties for injecting therapeutic drugs or injecting diagnostic contrast agents. For this reason, increase the inner and outer diameters on the proximal side, secure the drug and contrast agent injection characteristics while providing sufficient rigidity and pushability, and make the inner and outer diameters thinner and more flexible on the distal side than the proximal side. This improves the reachability to the peripheral blood vessels and the followability to the guide wire.

一般的に血管内で使用されるカテーテルチューブは押込性や耐キンク性向上のため、金属線や樹脂繊維等により補強されている。このようなチューブは手元側から先端側まで連通する内腔と手元側から先端側にかけて内外径が縮径することで剛性が低下するように構成されたチューブ(内腔が複数の場合はマルチルーメンチューブ)或いは手元側から先端まで連続している内層と補強層と、手元側から先端側にかけて剛性が低下するような樹脂で構成される外層が一体化されたチューブを熱間延伸加工することにより実現されてきた。   In general, a catheter tube used in a blood vessel is reinforced with a metal wire, a resin fiber, or the like in order to improve pushability and kink resistance. Such a tube has a lumen that communicates from the proximal side to the distal end side and a tube that is configured to reduce rigidity by reducing the inner and outer diameters from the proximal side to the distal end side. Tube) or a tube in which an inner layer and a reinforcing layer continuous from the proximal side to the distal end and an outer layer composed of a resin whose rigidity decreases from the proximal side to the distal end side are integrated by hot stretching. Has been realized.

従来のカテーテル用チューブとして、例えば、熱可塑性ポリアミド系樹脂であるナイロンをまず外径0.75mm、内径0.5mmのチューブ状に仮り押し出し形成し、次に、このチューブに、外径0.46mmのステンレス鋼線を挿入し、次いで150℃に加熱した内径0.56mmのダイスに通し、延伸加工を施す。この熱間延伸加工により縮径されたカテーテル用チューブがある(特許文献1)。この構成によれば、手元側の内外径よりも先端側内径の方が小さく、先端側がより柔軟なカテーテル用チューブが得られる。   As a conventional catheter tube, for example, nylon, which is a thermoplastic polyamide resin, is first temporarily extruded into a tube shape having an outer diameter of 0.75 mm and an inner diameter of 0.5 mm, and then the outer diameter is 0.46 mm. The stainless steel wire was inserted, and then passed through a die having an inner diameter of 0.56 mm heated to 150 ° C., and subjected to stretching. There is a catheter tube whose diameter is reduced by this hot drawing process (Patent Document 1). According to this configuration, a catheter tube having a smaller inner diameter on the distal end side than an inner and outer diameter on the proximal side and a more flexible distal end side can be obtained.

一方、体内に挿入される部分のカテーテルチューブは十分な強度を有するとともに、柔軟性および弾力性を有する必要があり、これを実現する従来技術として、原チューブを加熱および引張可能な延伸装置にセットし、この原チューブを加熱し、この加熱部分を熱間延伸により一次延伸し、この一次延伸後常温で二次延伸し、この二次延伸部分により前記小径部を形成し、この小径部に隣接する非加熱非延伸部分の原チューブにより前記大径部を形成した段付カテーテルがある(特許文献2)。この構成によれば、大径部とカテーテルチューブの小径部を形成するため、小径部との一体形成により分離や破断等のおそれがなくなって強度的に信頼性の高いカテーテルが得られる。   On the other hand, the catheter tube that is inserted into the body must have sufficient strength, flexibility and elasticity, and as a conventional technique for realizing this, the original tube is set in a stretching device that can be heated and pulled. The original tube is heated, the heated portion is primarily stretched by hot stretching, and after the primary stretching, the stretched portion is secondarily stretched at room temperature, and the secondary stretched portion forms the small-diameter portion and is adjacent to the small-diameter portion. There is a stepped catheter in which the large-diameter portion is formed by an original tube of a non-heated non-stretched portion (Patent Document 2). According to this configuration, since the large-diameter portion and the small-diameter portion of the catheter tube are formed, there is no risk of separation or breakage due to the integral formation with the small-diameter portion, and a highly reliable catheter can be obtained.

また、複雑に蛇行した血管への導入あるいは造影・塞栓物質を導入する操作においてはカテーテル内腔とガイドワイヤー・塞栓物質通過時の摺動抵抗や造影時の加圧によりチューブが延びてしまい著しく操作性を損なうという問題があった。軸方向の伸びを抑える従来技術として、補強材層を、粗いピッチで内層管上に素線をコイル状に巻回してから、さらにこの粗いピッチで巻回された素線と内層管とを素線でコイル状に巻回してなるカテーテルチューブがある(特許文献3)。   Also, in the operation of introducing into a complex meandering blood vessel or introducing a contrast / embolization substance, the tube is extended due to the sliding resistance when passing through the catheter lumen and the guide wire / embolization substance or pressurization during the contrast enhancement. There was a problem of impairing sex. As a conventional technique for suppressing the elongation in the axial direction, a reinforcing material layer is wound in a coil shape on an inner layer pipe at a rough pitch, and then the strand wound on this coarse pitch and the inner layer pipe are further combined. There is a catheter tube wound in a coil shape with a wire (Patent Document 3).

また、線状体により網目状に形成された剛性付与体が内層の外面に施されるか、または肉厚内に埋設され、それと中間層の間に、カテーテル用チューブに平行に設けられた軸方向に延びる金属線により形成された補強体をカテーテル用チューブ壁体の内部に埋設され一体化されているカテーテルチューブがある(特許文献4)。   Also, a shaft that is provided in parallel with the catheter tube between the intermediate layer and the outer wall of the inner layer is provided with a rigid body formed in a mesh shape by a linear body, or is embedded in the wall thickness. There is a catheter tube in which a reinforcing body formed of a metal wire extending in a direction is embedded and integrated in a catheter tube wall (Patent Document 4).

また、編組にて補強層を形成する際、編組集合体とこれと逆方向に編みこむ編素集合体の間に軸方向部材を有する構造のカテーテルチューブがある(特許文献5)。   In addition, there is a catheter tube having a structure in which an axial member is provided between a braided assembly and a braided assembly assembled in the opposite direction when the reinforcing layer is formed by braiding (Patent Document 5).

これらの構成によれば、カテーテルチューブの軸方向の伸びを抑えることができ、カテーテルチューブの操作性を改善することができる。   According to these configurations, the axial extension of the catheter tube can be suppressed, and the operability of the catheter tube can be improved.

一方、マンドレル棒上にPTFE樹脂分散液を塗布、焼き付け、焼結してから固体粒子配合PTFE樹脂分散液を塗布、焼き付け、焼結して固体粒子配合PTFE樹脂オーバーコート純PTFEチューブとし、その上層に直接又はブレード層を設けてから外側被覆層を押し出し被覆し、最後にマンドレル棒を引き抜き、内層PTFE複合カテーテルチューブを取り出すチューブの製造方法がある(特許文献6等)。この製造方法によれば、押し出し形成によらず、マンドレル棒上にPTFE樹脂分散液を塗布、焼き付け、焼結してからマンドレル棒を引き抜くことでディップ形成によりカテーテルチューブが製造できる。
特開2000−296179号公報 特開2001−299926号公報 特開2006−158878号公報 特開平3−141958号公報 特表2002−535049号公報 特開2000−51365号公報
On the other hand, a PTFE resin dispersion is applied, baked and sintered on a mandrel rod, and then a solid particle-blended PTFE resin dispersion is coated, baked and sintered to form a solid particle-blended PTFE resin overcoat pure PTFE tube. There is a method for producing a tube directly or directly after providing a blade layer and extruding the outer covering layer, finally pulling out the mandrel rod, and taking out the inner layer PTFE composite catheter tube (Patent Document 6, etc.). According to this manufacturing method, a catheter tube can be manufactured by dip formation by pulling out the mandrel bar after applying, baking, and sintering the PTFE resin dispersion on the mandrel bar, regardless of extrusion formation.
JP 2000-296179 A JP 2001-299926 A JP 2006-158878 A JP-A-3-141958 Japanese translation of PCT publication No. 2002-535049 JP 2000-51365 A

しかし、特許文献1および特許文献2のカテーテル用チューブによれば、熱間延伸加工されたカテーテル用チューブは延伸時の応力が残留し歪を持ってしまうため、ソフトチップや造影マーカーを取り付ける場合の熱溶融加工時に、残留歪が影響し溶融部近傍の内外径が太くなるため寸法精度が悪くなり、結果的に歩留まりを低下させる等の問題がある。   However, according to the catheter tubes of Patent Document 1 and Patent Document 2, the hot-stretched catheter tube retains strain due to residual stress at the time of stretching. At the time of hot melt processing, there is a problem that residual strain is affected and the inner and outer diameters in the vicinity of the melted portion become thick, so that the dimensional accuracy is deteriorated, resulting in a decrease in yield.

また、特許文献3、4、5のカテーテル用チューブによれば、金属線や樹脂繊維等による横巻き又は編組が補強層として施されているカテーテル用チューブにおいては、延伸加工を行うことにより補強層が伸ばされるため、補強層の巻きピッチ(編組の場合の格子間距離)が大きくなり、柔軟性や耐キンク性を損なうといった問題がある。   In addition, according to the catheter tube of Patent Documents 3, 4, and 5, in the catheter tube in which horizontal winding or braiding with a metal wire, resin fiber, or the like is applied as a reinforcing layer, the reinforcing layer is formed by stretching. Therefore, there is a problem in that the winding pitch of the reinforcing layer (interstitial distance in the case of braiding) is increased, and the flexibility and kink resistance are impaired.

また、特許文献6のカテーテル用チューブによれば、同一径のカテーテル用チューブは可能であるが、先端側の内外径を手元側よりも細くしたカテーテル用チューブの製造方法は何ら開示されていない。   Further, according to the catheter tube of Patent Document 6, a catheter tube having the same diameter is possible, but there is no disclosure of a catheter tube manufacturing method in which the inner and outer diameters on the distal end side are narrower than the proximal side.

従って、本発明の目的は、一体化されたチューブを延伸することなく低コストで手元側は剛性を高く、送液特性に優れ、先端側は内外径を手元側よりも細くし、柔軟で耐キンク性に優れたカテーテル用チューブの製造方法を提供すること、補強層を有するチューブの細径柔軟部においても補強層の巻きピッチ(編組の場合の格子間距離)を変えることなく柔軟性を損なわないようにしたカテーテル用チューブの製造方法を提供すること、更に軸方向の補強部材を有する前記カテーテル用チューブにより細く柔軟な先端部においても伸びを抑えて長さ方向の寸法変化が少ないカテーテル用チューブの製造方法を提供することを目的とする。   Therefore, the object of the present invention is to reduce the cost without stretching the integrated tube, to increase the rigidity on the proximal side, to have excellent liquid feeding characteristics, and to reduce the inner and outer diameters on the distal end side compared to the proximal side. Providing a method for manufacturing a catheter tube with excellent kink properties, and even in a small-diameter flexible portion of a tube having a reinforcing layer, the flexibility is impaired without changing the winding pitch of the reinforcing layer (interstitial distance in the case of braiding) The present invention provides a method for manufacturing a catheter tube, and further reduces the dimensional change in the length direction by suppressing elongation even at a thin and flexible distal end portion by the catheter tube having an axial reinforcing member. It aims at providing the manufacturing method of.

[1]本発明は、上記目的を達成するため、太径部と細径部を有する芯線を準備する芯線準備工程と、前記芯線上に合成樹脂を被覆して被覆体を形成する被覆体形成工程と、前記被覆体形成工程後に前記被覆体に埋没した前記芯線を除去する芯線除去工程と、を有し、前記被覆体形成工程は、前記芯線を所定の溶媒に前記合成樹脂を溶解又は分散したコーティング液中に浸漬し、所定の速度で引き上げることにより、前記芯線の周囲に前記合成樹脂を被覆することを特徴とするカテーテル用チューブの製造方法を提供する。
[1] In order to achieve the above object, the present invention provides a core wire preparation step of preparing a core wire having a large diameter portion and a thin diameter portion, and a covering formation for forming a covering by coating a synthetic resin on the core wire possess a step, and the coating forming step core removing step of removing the core wire buried in the covering member after the said coating formation step, dissolving or dispersing the synthetic resin the core wire in a predetermined solvent A method for producing a catheter tube is provided , wherein the synthetic resin is coated around the core wire by dipping in the coating liquid and pulling up at a predetermined speed .

[2]本発明は、上記目的を達成するため、太径部と細径部を有する芯線を準備する芯線準備工程と、前記芯線上に合成樹脂を被覆して被覆体を形成する被覆体形成工程と前記被覆体形成工程後に、前記被覆体上の少なくとも一部に、金属線、樹脂繊維、または、これらを併用した補強層を形成する補強層形成工程と、前記補強層形成工程後に、熱可塑性樹脂により、前記被覆体および前記補強層を一体に被覆する外層被覆体を形成する外層被覆体形成工程と、前記外層被覆体形成工程後に前記被覆体に埋没した前記芯線を除去する芯線除去工程と、を有し、前記被覆体形成工程は、前記芯線を所定の溶媒に前記合成樹脂を溶解又は分散したコーティング液中に浸漬し、所定の速度で引き上げることにより、前記芯線の周囲に前記合成樹脂を被覆することを特徴とするカテーテル用チューブの製造方法を提供する。
[2] In order to achieve the above object, the present invention provides a core wire preparation step of preparing a core wire having a large-diameter portion and a thin-diameter portion, and a covering formation for forming a covering by coating a synthetic resin on the core wire Step , after the covering body forming step, at least part of the covering body, forming a reinforcing layer using a metal wire, a resin fiber, or a combination of these, and after the reinforcing layer forming step, An outer layer covering body forming step for forming an outer layer covering body integrally covering the covering body and the reinforcing layer with a thermoplastic resin, and a core wire removal for removing the core wire buried in the covering body after the outer layer covering body forming step. possess a step, wherein the coating forming step is immersed in the coating liquid obtained by dissolving or dispersing the synthetic resin the core wire in a predetermined solvent, by pulling at a predetermined speed, the surrounding of the core wire Synthetic resin It is coated to provide a method of manufacturing a catheter tube according to claim.

]上記発明において、前記芯線除去工程は、前記被覆体から前記芯線を、前記芯線の前記太径部の方向へ抜去することを特徴とする上記[1]または[2]に記載のカテーテル用チューブの製造方法であってもよい。
[ 3 ] The catheter according to [1] or [2], wherein in the core wire removing step, the core wire is removed from the covering body in the direction of the large diameter portion of the core wire. It may be a manufacturing method of a tube.

]上記発明において、前記補強層形成工程は、前記被覆体の上に所定の格子間距離で金属線または樹脂繊維により編組を施すことを特徴とする上記[2]に記載のカテーテル用チューブの製造方法であってもよい。
[ 4 ] In the above invention, in the reinforcing layer forming step, the catheter tube according to the above [2], wherein the covering body is braided with metal wires or resin fibers at a predetermined interstitial distance. It may be a manufacturing method.

]上記発明において、前記補強層形成工程は、前記被覆体の上に金属線または樹脂繊維を縦沿わせながら、前記被覆体および前記金属線または樹脂繊維の上に、所定の格子間距離で金属線または樹脂繊維により編組を施すことを特徴とする上記[2]に記載のカテーテル用チューブの製造方法であってもよい。
[ 5 ] In the above invention, in the reinforcing layer forming step, a predetermined interstitial distance is formed on the covering and the metal wire or resin fiber while the metal wire or resin fiber is vertically aligned on the covering. The method for producing a catheter tube according to [2] above, wherein braiding is performed with a metal wire or resin fiber.

]上記発明において、前記外層被覆体形成工程は、前記補強層形成工程に、前記被覆体および前記補強層上に熱可塑性樹脂で形成された熱可塑性チューブおよび熱収縮性チューブを順に被せ、所定の温度で加熱して前記熱可塑性チューブを溶融一体化と共に前記熱収縮性チューブを収縮させた後、前記熱収縮性チューブを剥ぎ取ることにより除去することを特徴とする上記[2]に記載のカテーテル用チューブの製造方法であってもよい。
[ 6 ] In the above invention, in the outer layer covering body forming step, the reinforcing layer forming step is sequentially covered with a thermoplastic tube and a heat shrinkable tube formed of a thermoplastic resin on the covering body and the reinforcing layer, The method according to [2], wherein the thermoplastic tube is heated at a predetermined temperature to melt and integrate, and the heat-shrinkable tube is shrunk and then removed by peeling off the heat-shrinkable tube. The method for manufacturing a catheter tube may be used.

上記[1]、及び[]の構成によれば、手元側より先端側の内径、外径が小さくなり、手元部の押込み性、送液特性を損なうことなく先端部が柔軟になり、ガイドワイヤー追従性及び耐キンク性が向上する。更に、チューブの延伸加工を行う必要が無いため延伸による歪が無く、加工性が向上し、結果的に低コストにカテーテル用チューブの製造方法を提供できる。
[1], according to the configuration of beauty [3], the inner diameter of the distal end than the proximal side outer diameter is reduced, the pushing of the proximal portion, the distal end portion is flexible without impairing the liquid transfer property, Guide wire followability and kink resistance are improved. Furthermore, since there is no need to perform tube stretching, there is no distortion due to stretching, processability is improved, and as a result, a method for manufacturing a catheter tube can be provided at low cost.

上記[2]、[]乃至[]の構成によれば、手元側より先端側の内径、外径が小さくなり、これに伴って手元側より先端側の外径も小さくなり手元部の押込み性、送液特性を損なうことなく先端部が柔軟になり、ガイドワイヤー追従性及び耐キンク性が向上する。また、チューブの延伸加工を行う必要が無いため延伸による歪が無く、加工性が向上し、結果的に低コストとなる。また、軸方向に配置された補強部材により長さ方向の寸法変化が小さく、また、延伸により補強層の巻きピッチ(編組の場合の格子間距離)が拡大することが無いため、先端部の柔軟性及び耐キンク性に優れたカテーテル用チューブの製造方法が提供できる。 According to the configuration of [2], [ 4 ] to [ 6 ], the inner diameter and outer diameter on the distal end side are smaller than the proximal side, and accordingly, the outer diameter on the distal end side is smaller than the proximal side, and the proximal portion is reduced. The tip portion becomes flexible without impairing the pushability and liquid feeding characteristics, and the guide wire followability and kink resistance are improved. In addition, since there is no need to perform tube stretching, there is no distortion due to stretching, and the processability is improved, resulting in lower costs. In addition, since the dimensional change in the length direction is small due to the reinforcing members arranged in the axial direction, and the winding pitch of the reinforcing layer (interstitial distance in the case of braiding) does not increase due to stretching, the tip portion is flexible. The manufacturing method of the tube for catheters excellent in property and kink resistance can be provided.

本発明によれば、一体化されたチューブを延伸することなく低コストで手元側は剛性を高く、送液特性に優れ、先端側は内外径を手元側よりも細くし、柔軟で耐キンク性に優れたカテーテル用チューブの製造方法を提供すること、補強層を有するチューブの細径柔軟部においても補強層の巻きピッチ(編組の場合の格子間距離)を変えることなく柔軟性を損なわないようにしたカテーテル用チューブの製造方法を提供すること、更に軸方向の補強部材を有する前記カテーテル用チューブにより細く柔軟な先端部においても伸びを抑えて長さ方向の寸法変化が少ないカテーテル用チューブの製造方法を提供することができる。   According to the present invention, without stretching an integrated tube, the hand side has high rigidity and excellent liquid feeding characteristics, the tip side has a smaller inner and outer diameter than the hand side, and is flexible and kink resistant. To provide a superior catheter tube manufacturing method, and to prevent loss of flexibility in a thin flexible portion of a tube having a reinforcing layer without changing the winding pitch of the reinforcing layer (interstitial distance in the case of a braid) And a catheter tube having an axial reinforcing member, and the catheter tube having an axial reinforcing member suppresses elongation even at a thin and flexible distal end portion and manufactures a catheter tube with little dimensional change in the length direction. A method can be provided.

(第1の実施の形態に係るカテーテル用チューブ10の製造方法)
図1は、第1の実施の形態に係るカテーテル用チューブ10の製造方法を工程順に示す図である。
(Method for manufacturing catheter tube 10 according to the first embodiment)
FIG. 1 is a diagram illustrating a method of manufacturing a catheter tube 10 according to the first embodiment in the order of steps.

第1の実施の形態に係るカテーテル用チューブの製造方法は、太径部2aと細径部2bを有する芯線2を準備する芯線準備工程(図1(a))と、芯線2上に合成樹脂を被覆して被覆体3を形成する被覆体形成工程(図1(b))と、被覆体3を形成後に被覆体3に埋没した芯線2を除去する芯線除去工程(図1(c))とを有して構成される。   The catheter tube manufacturing method according to the first embodiment includes a core wire preparation step (FIG. 1A) for preparing a core wire 2 having a large diameter portion 2 a and a small diameter portion 2 b, and a synthetic resin on the core wire 2. Covering body forming step (FIG. 1 (b)) and core wire removing step of removing core wire 2 buried in covering body 3 after forming covering body 3 (FIG. 1 (c)) And is configured.

芯線準備工程は、芯線2を切削、研磨、研削、鍛造、割りダイスを用いた引抜き延伸等の機械的加工、または、エッチング等の化学的加工により、所定の外径を有する太径部2aと太径部2aより小さい外径を有する細径部2bがそれぞれ所定の長さを有するように縮径加工する工程、または、上記のような縮径加工が施された芯線2を購入等により準備する工程である。   The core wire preparation step is performed by machining the core wire 2 by mechanical processing such as cutting, polishing, grinding, forging, drawing or drawing using a split die, or chemical processing such as etching, and the large diameter portion 2a having a predetermined outer diameter. Preparing the core wire 2 subjected to the diameter reduction process such that the small diameter part 2b having an outer diameter smaller than the large diameter part 2a has a predetermined length or the diameter reduction process as described above by purchase or the like It is a process to do.

ここで、芯線2は、銅線、ステンレス軟線等の金属、または、ポリアミド(PA)等の樹脂ストランドが使用でき、その断面は円形に限定されず、楕円、半円、多角形等任意である。   Here, as the core wire 2, a metal such as a copper wire or a stainless steel soft wire, or a resin strand such as polyamide (PA) can be used, and its cross section is not limited to a circle, but can be an ellipse, a semicircle, a polygon, and the like. .

被覆体形成工程は、合成樹脂を所定の溶媒に所定の濃度で溶かしたコーティング液中に浸漬し、所定の速度で引き上げることにより、芯線2の周囲に合成樹脂を被覆することにより、略同一肉厚の被覆体3を形成する、すなわち、ディップ成形を行なう。   In the covering body forming step, the synthetic resin is immersed in a coating solution in a predetermined concentration at a predetermined concentration and pulled up at a predetermined speed to coat the periphery of the core wire 2 with the synthetic resin. A thick covering 3 is formed, that is, dip molding is performed.

被覆体3は、合成樹脂が使用でき、ポリアミド(PA)、ポリイミド(PI)、フッ素系樹脂が好ましい。被覆体3は、1層だけではなく2層以上の積層構造にしてもよい。また、手元側から先端側にかけてチューブの剛性が連続或いは段階的に変化するような被覆方法でも良い。   Synthetic resin can be used for the covering 3, and polyamide (PA), polyimide (PI), and fluorine resin are preferable. The covering 3 may have a laminated structure of not only one layer but also two or more layers. Further, a covering method in which the rigidity of the tube changes continuously or stepwise from the proximal side to the distal end side may be used.

芯線除去工程は、芯線2と被覆体3の端部20を所定の寸法(例えば、20mm)で切除あるいは除去して芯線2が露出する状態とした後に、延伸機に固定して芯線2の全体を延伸した後、太径部2a側から太径部2aの方向(図1のA方向)へ芯線2を引抜く工程である。   In the core wire removing step, the core wire 2 and the end portion 20 of the covering 3 are cut or removed with a predetermined dimension (for example, 20 mm) so that the core wire 2 is exposed, and then fixed to a drawing machine and fixed to the whole core wire 2. Is a step of drawing the core wire 2 from the large diameter portion 2a side to the large diameter portion 2a direction (A direction in FIG. 1).

(第1の実施の形態の効果)
第1の実施の形態に係るカテーテル用チューブの製造によれば、太径部2aを手元側とし、細径部2bを先端側とするカテーテル用チューブを製造でき、これにより、手元部の押込み性、送液特性を損なうことなく先端部が柔軟になり、ガイドワイヤー追従性及び耐キンク性が向上する。更に、チューブの延伸加工を行う必要が無いため延伸による歪が無く、加工性が向上し、結果的に低コストのカテーテル用チューブの製造が可能となる。
(Effects of the first embodiment)
According to the manufacture of the catheter tube according to the first embodiment, it is possible to manufacture a catheter tube having the large-diameter portion 2a as the proximal side and the thin-diameter portion 2b as the distal end side. The tip portion becomes flexible without impairing the liquid feeding characteristics, and the guide wire followability and kink resistance are improved. Furthermore, since there is no need to stretch the tube, there is no distortion due to stretching, the workability is improved, and as a result, a low-cost catheter tube can be manufactured.

(実施例1)
外径1.5mmの銀メッキ銅線(或いはステンレス軟線等延伸できる金属やポリアミド(PA)等の樹脂ストランドでもよい)を、長さ1800mmの太径部2aと長さ150mmでセンターレスグラインダーを用いた切削により1.2mmの外径まで縮径加工された細径部2bを有する芯線2に加工する。尚、サンドブラスト或いは割りダイスを用いた引抜き延伸、又は引張による延伸等により芯線を縮径させても良い。
Example 1
Using a silver-plated copper wire with an outer diameter of 1.5 mm (or a metal strand that can be stretched, such as a stainless soft wire, or a resin strand such as polyamide (PA)), using a centerless grinder with a large diameter portion 2a having a length of 1800 mm and a length of 150 mm The core wire 2 having the small-diameter portion 2b that has been reduced to an outer diameter of 1.2 mm by cutting. The core wire may be reduced in diameter by drawing stretching using sandblasting or split dies or stretching by tension.

この芯線2を、合成樹脂としてショア硬度55Dポリウレタン(ダウ・ケミカル日本(株)製ペレセン)をDMF(ジメチルホルムアミド)に溶かしたコーティング液中に浸漬し、引上げスピード2m/分でディップ成形し、80℃で5分間熱風乾燥することを2回繰返して、太径部2aの被覆径が1.7mm、細径部2bの被覆径が1.4mmの略同一肉厚の押出し成形体である被覆体3を得る。     This core wire 2 is dipped in a coating solution in which a Shore hardness 55D polyurethane (Pelecene made by Dow Chemical Japan Co., Ltd.) as a synthetic resin is dissolved in DMF (dimethylformamide), and dip-molded at a pulling speed of 2 m / min. Drying with hot air at 5 ° C. for 5 minutes is repeated twice, and the coated body is an extrusion molded body having substantially the same thickness, with the coating diameter of the large diameter portion 2a being 1.7 mm and the coating diameter of the small diameter portion 2b being 1.4 mm. Get 3.

次に、両端末の被覆を約20mm除去し銅線を露出させてから延伸機に固定し、芯線2の全体を延伸した後、太径部2a側から線心2を引抜き、太径部2aの長さが1600mm細径部2bの長さが100mmとなるよう切断することで所定の長さのカテーテル用チューブを製造した。   Next, about 20 mm of the coating on both ends is removed and the copper wire is exposed and fixed to a drawing machine. After the entire core wire 2 is drawn, the wire core 2 is pulled out from the large-diameter portion 2a side, and the large-diameter portion 2a The catheter tube having a predetermined length was manufactured by cutting so that the length of the narrow-diameter portion 2b was 100 mm.

(比較例1)
例えば、外径1.5mmの銅線上に、熱可塑性樹脂としてショア硬度55Dポリウレタン(ダウ・ケミカル日本(株)製ペレセン)を用い、32mm押出成形機にて成形温度200℃(ダイス温度)で約22m/分の引取スピードで押出し成形することで、被覆外径が1.7mmの成形体を得る。
(Comparative Example 1)
For example, on a copper wire with an outer diameter of 1.5 mm, a Shore hardness of 55D polyurethane (Peresen manufactured by Dow Chemical Japan Co., Ltd.) is used as a thermoplastic resin, and a molding temperature of about 200 ° C. (die temperature) is performed with a 32 mm extruder. By extrusion-molding at a take-up speed of 22 m / min, a molded body having a coating outer diameter of 1.7 mm is obtained.

各所定の位置で切断し、切断で得られた物の前記芯線の全体を延伸後引抜くことによりカテーテル用チューブになる原チューブを得た。   The raw tube which becomes a catheter tube was obtained by cutting at each predetermined position and drawing the whole of the core wire of the product obtained by cutting after drawing.

次に、内径1.4mmのダイスを温度120℃に加熱して、外径1.2mmのステンレス芯線を前記チューブに通したのちに先端200mmを引抜き、前記通常径部1600mmと前記縮径部100mmとなる位置で切断し(通常径部及び縮径部の径及び長さ寸法は任意で良い)カテーテル用チューブを得た。
(比較例2)
Next, a die having an inner diameter of 1.4 mm is heated to a temperature of 120 ° C., and a stainless steel core wire having an outer diameter of 1.2 mm is passed through the tube, and then the tip 200 mm is pulled out to obtain the normal diameter portion 1600 mm and the reduced diameter portion 100 mm. (The diameter and length of the normal diameter portion and the reduced diameter portion may be arbitrary) to obtain a catheter tube.
(Comparative Example 2)

例えば、外径1.2mmの銅線上に、熱可塑性樹脂としてショア硬度55Dポリウレタン(ダウ・ケミカル日本(株)製ペレセン)を用い、32mm押出成形機にて成形温度200℃(ダイス温度)で約22m/分の引取スピードで押出し成形することで、被覆外径が1.4mmの成形体を得る。   For example, on a copper wire having an outer diameter of 1.2 mm, a shore hardness of 55D polyurethane (Peresen manufactured by Dow Chemical Japan Co., Ltd.) is used as a thermoplastic resin, and the molding temperature is about 200 ° C. (die temperature) with a 32 mm extruder. By extruding at a take-up speed of 22 m / min, a molded body having a coating outer diameter of 1.4 mm is obtained.

所定寸法で切断し、切断で得られた物の前記芯線の全体を延伸後引抜くことによりカテーテル用チューブを得た。   The tube for catheter was obtained by cut | disconnecting by the predetermined dimension and drawing the whole said core wire of the thing obtained by cutting | disconnection after extending | stretching.

図2は、カテーテル用チューブの3点曲げ性能を測定する方法を説明するための図である。3点曲げ性能は、支点間距離15mmを速度100mm/分で20mmだけ押込むのに要する最大試験力(N)で評価し、この最大試験力を3点曲げ(N)として、小さいほど柔軟性に優れるとする。尚、試験装置としては、一般的に用いられている強度試験機、押込試験機等が使用できる。   FIG. 2 is a diagram for explaining a method of measuring the three-point bending performance of a catheter tube. Three-point bending performance is evaluated by the maximum test force (N) required to push a distance of 15 mm between fulcrums at a speed of 100 mm / min by 20 mm. The maximum test force is three-point bending (N). It is excellent in. In addition, as a test apparatus, the strength tester generally used, an indentation tester, etc. can be used.

図3は、カテーテル用チューブの座屈性能を(a)、(b)、(c)の手順で測定する方法を説明するための図である。座屈性能は、サンプル長200mmで円を作り(a)、円の直径を小さくして行き(b)、座屈する直前の直径(c)を座屈径(mm)として評価し、この座屈径(mm)が小さいほど座屈特性に優れるとする。   FIG. 3 is a diagram for explaining a method for measuring the buckling performance of a catheter tube by the procedures of (a), (b), and (c). The buckling performance was evaluated by making a circle with a sample length of 200 mm (a), reducing the diameter of the circle (b), and evaluating the diameter (c) immediately before buckling as the buckling diameter (mm). The smaller the diameter (mm), the better the buckling characteristics.

Figure 0004796534
Figure 0004796534

図4は、送液特性を測定する装置の概略を示す図である。スタンド100に支持されたカテーテル用チューブ10にシリンジ101により試験液(水)を所定の押込速度(100mm/分)で送液し、その時の最大力量をデジタルフォースゲージ102で測定することにより送液力量(N)を測定する。

FIG. 4 is a diagram showing an outline of an apparatus for measuring liquid feeding characteristics. The test solution (water) is fed to the catheter tube 10 supported by the stand 100 by a syringe 101 at a predetermined pushing speed (100 mm / min), and the maximum force at that time is measured by the digital force gauge 102 to send the solution. Measure force (N).

Figure 0004796534
Figure 0004796534

表1の比較結果から、実施例1に係るカテーテル用チューブ製造方法により製造されたカテーテル用チューブは、加熱収縮が少なく(歪が少なく)、かつ、座屈特性と柔軟性に優れた細径部を有するとともに、表2の比較結果から、細径部を有するにも係わらず、細径部を有さないものと同等の優れた送液特性を有する。   From the comparison results in Table 1, the catheter tube manufactured by the catheter tube manufacturing method according to Example 1 has a small diameter portion with little heat shrinkage (low distortion) and excellent buckling characteristics and flexibility. From the comparison results of Table 2, it has excellent liquid feeding characteristics equivalent to those having no small diameter portion, although it has a small diameter portion.

(第2の実施の形態)
図5は、第2の実施の形態に係るカテーテル用チューブ10の製造方法を工程順に示す図である。
(Second Embodiment)
FIG. 5 is a diagram showing a method of manufacturing the catheter tube 10 according to the second embodiment in the order of steps.

第2の実施の形態に係るカテーテル用チューブの製造方法は、太径部2aと細径部2bを有する芯線2を準備する芯線準備工程(図5(a))と、芯線2上に合成樹脂を被覆して被覆体3を形成する被覆体形成工程(図5(b))と、被覆体形成工程後に、被覆体3上の少なくとも一部に、金属線、樹脂繊維、または、これらを併用した補強層5を形成する補強層形成工程(図5(c))と、補強層形成工程後に、熱可塑性樹脂により、被覆体3および補強層5を一体に被覆する外層被覆体4を形成する外層被覆体形成工程(図5(d))と、外層被覆体形成工程後に被覆体3に埋没した芯線2を除去する芯線除去工程(図5(e))とを有して構成される。   The catheter tube manufacturing method according to the second embodiment includes a core wire preparation step (FIG. 5A) for preparing a core wire 2 having a large diameter portion 2 a and a small diameter portion 2 b, and a synthetic resin on the core wire 2. A covering body forming step (FIG. 5 (b)) for covering the surface and forming a covering body 3, and after the covering body forming step, at least part of the covering body 3 is made of a metal wire, a resin fiber, or a combination thereof. After the reinforcing layer forming step (FIG. 5C) for forming the reinforcing layer 5 and the reinforcing layer forming step, the outer layer covering body 4 that integrally covers the covering body 3 and the reinforcing layer 5 is formed with a thermoplastic resin. An outer layer covering body forming step (FIG. 5 (d)) and a core wire removing step (FIG. 5 (e)) for removing the core wire 2 buried in the covering body 3 after the outer layer covering body forming step are configured.

芯線準備工程、被覆体形成工程、および芯線除去工程は、第1の実施の形態の場合と同様であるので説明を省略し、以下に第1の実施の形態と異なる工程について説明する。   Since the core wire preparation step, the covering body formation step, and the core wire removal step are the same as those in the first embodiment, the description thereof will be omitted, and the steps different from those in the first embodiment will be described below.

補強層形成工程は、白金(Pt)・タングステン(W)等の金属線、樹脂繊維、または、これらの素線を併用して被覆体3上に所定の格子間距離で編組を連続で施すことにより補強層5を形成する工程である。編組は、同一方向の横巻きや右巻き・左巻き等、巻き方向を変えながら素線を巻きつけても良く、また、巻きピッチや格子間距離に特に限定はない。尚、被覆体3としてフッ素系樹脂を使用した場合は、予めケミカルエッチングにより表面を粗面化等処理する。   In the reinforcing layer forming step, a metal wire such as platinum (Pt) / tungsten (W), a resin fiber, or a combination of these strands is used to continuously braid the covering 3 with a predetermined interstitial distance. This is a step of forming the reinforcing layer 5 by the above. The braid may be wound around the wire while changing the winding direction, such as horizontal winding, right-hand winding or left-hand winding in the same direction, and the winding pitch and interstitial distance are not particularly limited. In addition, when a fluorine resin is used as the covering 3, the surface is roughened by chemical etching in advance.

外層被覆体形成工程は、被覆体3および補強層5に熱収縮チューブを被せた後に所定の温度で溶融一体化した後、熱収縮チューブを剥ぎ取り太径部2aと細径部2bの被覆径が略同一肉厚の外層被覆体4が形成された成形体を得る。   In the outer layer covering body forming step, the covering body 3 and the reinforcing layer 5 are covered with a heat shrinkable tube and then melted and integrated at a predetermined temperature, and then the heat shrinkable tube is peeled off to cover the large diameter portion 2a and the small diameter portion 2b. Obtains a molded body on which the outer layer covering 4 having substantially the same thickness is formed.

(第2の実施の形態の効果)
第2の実施の形態に係るカテーテル用チューブの製造によれば、太径部2aを手元側とし、細径部2bを先端側とするカテーテル用チューブを製造でき、これにより、手元部の押込み性、送液特性を損なうことなく先端部が柔軟になり、ガイドワイヤー追従性及び耐キンク性が向上する。また、チューブの延伸加工を行う必要が無いため延伸による歪が無く、加工性が向上し、結果的に低コストとなる。また、延伸により補強層5の巻きピッチ(編組の場合の格子間距離)が拡大することが無いため、先端部の柔軟性及び耐キンク性に優れたカテーテル用チューブの製造方法が可能となる。さらに、被覆体3上に編組を施された補強層5を有する場合は、上記の効果に加え、長さ方向の寸法変化が小さいカテーテル用チューブの製造が可能となる。
(Effect of the second embodiment)
According to the manufacture of the catheter tube according to the second embodiment, it is possible to manufacture a catheter tube having the large-diameter portion 2a as the proximal side and the thin-diameter portion 2b as the distal end side, thereby pushing the proximal portion. The tip portion becomes flexible without impairing the liquid feeding characteristics, and the guide wire followability and kink resistance are improved. In addition, since there is no need to perform tube stretching, there is no distortion due to stretching, and the processability is improved, resulting in lower costs. Further, since the winding pitch of the reinforcing layer 5 (interstitial distance in the case of a braid) does not increase due to stretching, a method for manufacturing a catheter tube excellent in flexibility and kink resistance of the distal end portion becomes possible. Further, when the reinforcing layer 5 is braided on the covering 3, in addition to the above effects, it is possible to manufacture a catheter tube with a small dimensional change in the length direction.

(実施例2)
外径0.8mmの銀メッキ銅線を、太径部2aの長さ1800mmと、片端150mmをセンターレス研磨により0.7mmの外径の細径部2bまで縮径加工して芯線2を準備する。この芯線2に、合成樹脂としてフッ素系樹脂であるPTFE(三井デュポンフロロケミカル(株)製 テフロン(登録商標))ディスパージョン液を用い(被覆体3に使用する樹脂は合成樹脂であれば特に限定しないが、フッ素系樹脂であるPTFEの他にポリアミド(PA)、ポリイミド(PI)等低摩擦材料が望ましい)液温20℃、約4m/分の引上げ速度でディップ成形し、350℃の熱風で2分間乾燥後400℃の加熱炉で2分間焼結し、太径部2aの被覆径が0.85mm、細径部2bの被覆径が0.75mmの略同一肉厚の被覆体3を有する成形体を得る。この被覆体3をケミカルエッチングにより表面を粗面化等した(被覆体3の樹脂がフッ素系樹脂で無い場合この処理は不要)後に、被覆体3上に直径0.03mmのSUS304を用い(素線は白金(Pt)・タングステン(W)等金属線や樹脂繊維でも良い)2本持ちで16打ち格子間距離0.18mmの編組を施し(補強方法は同一方向の横巻きや右巻き・左巻き等巻き方向を変えながら素線を巻きつけても良いし巻きピッチや格子間距離も特に限定しない)、熱可塑性樹脂としてナイロン(アルケマ(株)製 PEBAX)を用い(外層被覆体4も熱可塑性樹脂であれば特に限定しない。また熱可塑性樹脂にX線不透過物質を混合しても良い)た内径0.86mm外径1.11mm、のチューブ、収縮径略0.8mmの熱収縮チューブを被せた後に250℃のオーブン内で約3分溶融一体化した後に熱収縮チューブを剥ぎ取り太径部2aの被覆径が1.1mm、細径部2bの被覆径が1.0mmの略同一肉厚の成形体を得る。
(Example 2)
Core wire 2 is prepared by reducing the diameter of a silver-plated copper wire with an outer diameter of 0.8 mm to a length of 1800 mm of the large diameter portion 2 a and 150 mm at one end to a small diameter portion 2 b with an outer diameter of 0.7 mm by centerless polishing. To do. The core wire 2 is made of PTFE (Teflon (registered trademark) manufactured by Mitsui Dupont Fluorochemical Co., Ltd.), which is a fluororesin, as a synthetic resin. However, low-friction materials such as polyamide (PA) and polyimide (PI) in addition to PTFE, which is a fluororesin, are desirable) Dip-molded at a liquid temperature of 20 ° C. and a pulling rate of about 4 m / min. After drying for 2 minutes, it is sintered in a heating furnace at 400 ° C. for 2 minutes, and has a covering 3 having substantially the same thickness with a covering diameter of the large diameter portion 2a of 0.85 mm and a covering diameter of the thin diameter portion 2b of 0.75 mm. A molded body is obtained. After the surface of the covering 3 is roughened by chemical etching (this treatment is not necessary when the resin of the covering 3 is not a fluororesin), SUS304 having a diameter of 0.03 mm is used on the covering 3 (elementary). The wire may be a metal wire such as platinum (Pt) / tungsten (W) or resin fiber) and be braided with a 16-beat lattice distance of 0.18 mm (reinforcement method is horizontal winding, right-handed or left-handed in the same direction) The wire may be wound while changing the winding direction, and the winding pitch and interstitial distance are not particularly limited. Nylon (PEBAX manufactured by Arkema Co., Ltd.) is used as the thermoplastic resin (the outer cover 4 is also thermoplastic. There is no particular limitation as long as it is a resin, and a tube having an inner diameter of 0.86 mm and an outer diameter of 1.11 mm, and a heat-shrinkable tube having a contraction diameter of about 0.8 mm, which may be mixed with a thermoplastic resin and an X-ray opaque material. After melting and integrating in a 250 ° C. oven for about 3 minutes, the heat-shrinkable tube is peeled off and the coating diameter of the large diameter portion 2a is 1.1 mm and the coating diameter of the small diameter portion 2b is 1.0 mm. A thick molded body is obtained.

次に、両端部20の被覆を約20mm除去し銅線を露出させてから延伸機に固定し、芯線2の全体を延伸した後、太径部2a側から線心2を引抜き、太径部2aが1600mm、細径部2bが100mmとなるよう切断し所定のカテーテル用チューブを製造した。   Next, about 20 mm of the coating on both end portions 20 is removed to expose the copper wire, and then fixed to a drawing machine. After the entire core wire 2 is drawn, the wire core 2 is pulled out from the large diameter portion 2a side, and the large diameter portion A predetermined catheter tube was manufactured by cutting so that 2a was 1600 mm and the small diameter portion 2b was 100 mm.

(第3の実施の形態)
図6は、第3の実施の形態に係るカテーテル用チューブ10の製造方法を工程順に示す図である。
(Third embodiment)
FIG. 6 is a diagram illustrating a method of manufacturing the catheter tube 10 according to the third embodiment in the order of steps.

第3の実施の形態に係るカテーテル用チューブの製造方法は、太径部2aと細径部2bを有する芯線2を準備する芯線準備工程(図6(a))と、芯線2上に合成樹脂を被覆して被覆体3を形成する被覆体形成工程(図6(b))と、被覆体形成工程後に、被覆体3上の少なくとも一部に、金属線または樹脂繊維による補強体6を縦沿わせながら、被覆体3および補強体6の上に、所定の格子間距離で金属線または樹脂繊維により編組を施すことにより補強層5を形成する補強層形成工程(図6(c))と、補強層形成工程後に、熱可塑性樹脂により、被覆体3および補強層5を一体に被覆する外層被覆体4を形成する外層被覆体形成工程(図6(d))と、外層被覆体形成工程後に被覆体3に埋没した芯線2を除去する芯線除去工程(図6(e))とを有して構成される。   The catheter tube manufacturing method according to the third embodiment includes a core wire preparation step (FIG. 6A) for preparing a core wire 2 having a large diameter portion 2 a and a small diameter portion 2 b, and a synthetic resin on the core wire 2. A covering body forming step (FIG. 6 (b)) for covering the surface of the covering body 3 and a reinforcing body 6 made of metal wire or resin fiber are vertically disposed on at least a part of the covering body 3 after the covering body forming step. A reinforcing layer forming step (FIG. 6 (c)) in which the reinforcing layer 5 is formed on the covering 3 and the reinforcing body 6 by braiding with a metal wire or a resin fiber at a predetermined interstitial distance. After the reinforcing layer forming step, an outer layer covering body forming step (FIG. 6 (d)) for forming the outer layer covering body 4 integrally covering the covering body 3 and the reinforcing layer 5 with a thermoplastic resin, and an outer layer covering body forming step. A core wire removing step for removing the core wire 2 buried in the covering 3 later (FIG. 6). e)) and configured to have a.

芯線準備工程、被覆体形成工程、および芯線除去工程は、第2の実施の形態の場合と同様であるので説明を省略し、以下に第2の実施の形態と異なる工程について説明する。   Since the core wire preparation step, the covering body formation step, and the core wire removal step are the same as those in the second embodiment, the description thereof will be omitted, and the steps different from those in the second embodiment will be described below.

補強層形成工程は、樹脂繊維、金属線等の補強体6を縦沿わせながら、補強体6を覆うように白金(Pt)・タングステン(W)等の金属線、樹脂繊維、または、これらの素線を併用して被覆体3上に所定の格子間距離で編組を連続で施すことにより補強層5を形成する工程である。編組は、同一方向の横巻きや右巻き・左巻き等、巻き方向を変えながら素線を巻きつけても良く、また、巻きピッチや格子間距離に特に限定はない。尚、被覆体3としてフッ素系樹脂を使用した場合は、予めケミカルエッチングにより表面を粗面化等処理する。   In the reinforcing layer forming step, a metal wire such as platinum (Pt) / tungsten (W), a resin fiber, or a material such as platinum (Pt) / tungsten (W) is provided so as to cover the reinforcement body 6 while vertically extending the reinforcement body 6 such as a resin fiber or a metal wire In this step, the reinforcing layer 5 is formed by continuously braiding the covering 3 with a predetermined interstitial distance using the strands together. The braid may be wound around the wire while changing the winding direction, such as horizontal winding, right-hand winding or left-hand winding in the same direction, and the winding pitch and interstitial distance are not particularly limited. In addition, when a fluorine resin is used as the covering 3, the surface is roughened by chemical etching in advance.

外層被覆体形成工程は、被覆体3、補強層5および補強体6に熱収縮チューブを被せた後に所定の温度で溶融一体化した後、熱収縮チューブを剥ぎ取り太径部2aと細径部2bの被覆径が略同一肉厚の外層被覆体4が形成された成形体を得る。   The outer layer covering body forming step includes covering the covering body 3, the reinforcing layer 5 and the reinforcing body 6 with a heat-shrinkable tube and then fusing and integrating them at a predetermined temperature, and then peeling off the heat-shrinking tube to remove the large diameter portion 2a and the small diameter portion. A molded body is obtained in which the outer layer covering 4 having the same coating diameter 2b is formed.

(第3の実施の形態の効果)
第3の実施の形態に係るカテーテル用チューブの製造によれば、太径部2aを手元側とし、細径部2bを先端側とするカテーテル用チューブを製造でき、これにより、手元部の押込み性、送液特性を損なうことなく先端部が柔軟になり、ガイドワイヤー追従性及び耐キンク性が向上する。また、チューブの延伸加工を行う必要が無いため延伸による歪が無く、加工性が向上し、結果的に低コストとなる。また、延伸により補強層5の巻きピッチ(編組の場合の格子間距離)が拡大することが無いため、先端部の柔軟性及び耐キンク性に優れたカテーテル用チューブの製造方法が可能となる。さらに、被覆体3上に縦沿わせた補強体6と編組を施された補強層5を有するので、上記の効果に加え、軸方向に配置された補強体6により長さ方向の寸法変化が小さいカテーテル用チューブの製造方法が可能となる。
(Effect of the third embodiment)
According to the manufacture of the catheter tube according to the third embodiment, it is possible to manufacture a catheter tube having the large diameter portion 2a as the proximal side and the small diameter portion 2b as the distal end side. The tip portion becomes flexible without impairing the liquid feeding characteristics, and the guide wire followability and kink resistance are improved. In addition, since there is no need to perform tube stretching, there is no distortion due to stretching, and the processability is improved, resulting in lower costs. Further, since the winding pitch of the reinforcing layer 5 (interstitial distance in the case of a braid) does not increase due to stretching, a method for manufacturing a catheter tube excellent in flexibility and kink resistance of the distal end portion becomes possible. Furthermore, since it has the reinforcement body 6 and the braided reinforcement layer 5 which were longitudinally arranged on the covering 3, in addition to the above effects, the dimensional change in the length direction is caused by the reinforcement body 6 arranged in the axial direction. A method for manufacturing a small catheter tube is possible.

(実施例3)
外径0.8mmの銀メッキ銅線を、太径部2aの長さ1800mmと、片端150mmをセンターレス研磨により0.7mmの外径の細径部2bまで縮径加工して芯線2を準備する。この芯線2に、合成樹脂としてフッ素系樹脂であるPTFE(三井デュポンフロロケミカル(株)製 テフロン(登録商標))ディスパージョン液を用い(被覆体3に使用する樹脂は合成樹脂であれば特に限定しないが、フッ素系樹脂であるPTFEの他にポリアミド(PA)、ポリイミド(PI)等低摩擦材料が望ましい)液温20℃、約4m/分の引上げ速度でディップ成形し、350℃の熱風で2分間乾燥後400℃の加熱炉で2分間焼結し、太径部2aの被覆径が0.85mm、細径部2bの被覆径が0.75mmの略同一肉厚の被覆体3を有する成形体を得る。
(Example 3)
Core wire 2 is prepared by reducing the diameter of a silver-plated copper wire with an outer diameter of 0.8 mm to a length of 1800 mm of the large diameter portion 2 a and 150 mm at one end to a small diameter portion 2 b with an outer diameter of 0.7 mm by centerless polishing. To do. The core wire 2 is made of PTFE (Teflon (registered trademark) manufactured by Mitsui Dupont Fluorochemical Co., Ltd.), which is a fluororesin, as a synthetic resin. However, low-friction materials such as polyamide (PA) and polyimide (PI) in addition to PTFE, which is a fluororesin, are desirable) Dip-molded at a liquid temperature of 20 ° C. and a pulling rate of about 4 m / min. After drying for 2 minutes, it is sintered in a heating furnace at 400 ° C. for 2 minutes, and has a covering 3 having substantially the same thickness with a covering diameter of the large diameter portion 2a of 0.85 mm and a covering diameter of the thin diameter portion 2b of 0.75 mm. A molded body is obtained.

この被覆体3をケミカルエッチングにより表面を粗面化等した(被覆体3がフッ素系樹脂で無い場合この処理は不要)後に、被覆体3に直径略0.03mmの樹脂繊維(クラレ社ベクトラン但し軸方向補強部材はステンレス、NiTi合金等の金属やナイロン・フッ素樹脂繊維でも良い)の補強体6を縦沿わせながら、その上を覆うように直径0.03mmのSUS304を用い(素線は白金(Pt)・タングステン(W)等金属線や樹脂繊維でも良い)2本持ちで16打ち格子間距離0.18mmの編組を施して補強層5を形成し、(補強方法は同一方向の横巻きや右巻き・左巻き等巻き方向を変えながら素線を巻きつけても良いし巻きピッチや格子間距離も特に限定しない)、熱可塑性樹脂としてナイロン(アルケマ(株)製 PEBAX)を用い(外層被覆体4も熱可塑性樹脂であれば特に限定しない。また熱可塑性樹脂にX線不透過物質を混合しても良い)た内径0.86mm外径1.11mm、のチューブ、収縮径略0.8mmの熱収縮チューブを被せた後に250℃のオーブン内で約3分溶融一体化した後前記熱収縮チューブを剥ぎ取り太径部2aの被覆径が1.1mm、細径部2bの被覆径が1.0mmの略同一肉厚の成形体を得る。   After the surface of the covering 3 is roughened by chemical etching (this treatment is not necessary when the covering 3 is not a fluororesin), resin fibers (Kuraray Vectran, Inc.) having a diameter of about 0.03 mm are applied to the covering 3. The axial reinforcing member is made of SUS304 having a diameter of 0.03 mm so as to cover the reinforcing member 6 made of stainless steel, a metal such as NiTi alloy, or nylon / fluororesin fiber (longitudinal). (A metal wire such as (Pt) / tungsten (W) or a resin fiber may be used), and a reinforcing layer 5 is formed by braiding with 16 struts and a distance of 0.18 mm between lattices (the reinforcing method is horizontal winding in the same direction) The wire may be wound while changing the winding direction, such as right-handed or right-handed or left-handed, and the winding pitch and interstitial distance are not particularly limited. Nylon as a thermoplastic resin (PEBA manufactured by Arkema Co., Ltd.) (The outer layer cover 4 is not particularly limited as long as it is also a thermoplastic resin. In addition, a tube having an inner diameter of 0.86 mm and an outer diameter of 1.11 mm, which may be mixed with a thermoplastic resin) After covering with a heat shrinkable tube having a shrinkage diameter of about 0.8 mm, melting and integrating in an oven at 250 ° C. for about 3 minutes, the heat shrinkable tube is peeled off, and the coating diameter of the large diameter portion 2a is 1.1 mm, the small diameter portion A molded body having substantially the same thickness and a coating diameter of 2b of 1.0 mm is obtained.

次に、両端末の被覆を約20mm除去し銅線を露出させてから延伸機に固定し、芯線2の全体を延伸した後、太径部2a側から線心2を引抜き、太径部2aが1600mm細径部2bが100mmとなるよう切断し所定のカテーテル用チューブを製造した。   Next, about 20 mm of the coating on both ends is removed and the copper wire is exposed and fixed to a drawing machine. After the entire core wire 2 is drawn, the wire core 2 is pulled out from the large-diameter portion 2a side, and the large-diameter portion 2a Were cut so that the 1600 mm narrow diameter portion 2b was 100 mm, and a predetermined catheter tube was manufactured.

(比較例3)
外径0.8mmの銅線上に、合成樹脂としてフッ素系樹脂であるPTFE(三井デュポンフロロケミカル(株)製 テフロン(登録商標))ディスパージョン液を用い、液温20℃、約4m/分の引上げ速度でディップ成形し、350℃の熱風で2分間乾燥後400℃の加熱炉で2分間焼結することで、被覆外径が0.85mmの内層を得る。さらに、この内層表面をケミカルエッチングにより粗面化等する。
(Comparative Example 3)
On a copper wire having an outer diameter of 0.8 mm, PTFE (Teflon (registered trademark) manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) dispersion liquid, which is a fluororesin, is used as a synthetic resin, and the liquid temperature is 20 ° C., about 4 m / min. The inner layer having a coating outer diameter of 0.85 mm is obtained by dip-molding at a pulling rate, drying with hot air at 350 ° C. for 2 minutes, and sintering in a heating furnace at 400 ° C. for 2 minutes. Further, the inner layer surface is roughened by chemical etching.

この内層上に、直径0.03mmのSUS304を用い、2本持ちで16打ち格子間距離0.18mmの編組を連続で施し、熱可塑性樹脂としてナイロン(アルケマ(株)製 PEBAX)を用い、30mmの押出成形機を用いて成形温度220℃(ダイス温度)、約14m/分の引取スピードで押出し成形することで、被覆径が1.1mmの押出し成形体を得る。各所定の位置で切断し、切断で得られた物の芯線の全体を延伸した後、前記芯線を引抜くことにより所定のカテーテル用チューブ用原チューブを得た。   On this inner layer, SUS304 having a diameter of 0.03 mm was used, and a braid having a distance of 0.18 mm and 16 striking lattices was continuously applied. Nylon (PEBAX manufactured by Arkema Co., Ltd.) was used as a thermoplastic resin, and 30 mm The extrusion molding with a coating diameter of 1.1 mm is obtained by extrusion molding at a molding temperature of 220 ° C. (die temperature) and a take-up speed of about 14 m / min. After cutting at each predetermined position and extending the whole core wire of the product obtained by cutting, the core wire was pulled out to obtain a predetermined original tube for a catheter tube.

次に、外径0.7mmのステンレス芯線を前記チューブ内に挿入し、内径1.0mmの金属製ダイを温度125℃に加熱し、このダイからチューブ先端部を引き抜き、加熱延伸してカテーテル用チューブを得た。   Next, a stainless steel core wire having an outer diameter of 0.7 mm is inserted into the tube, a metal die having an inner diameter of 1.0 mm is heated to a temperature of 125 ° C., the tube tip is pulled out from the die, and heated and stretched for catheter use. A tube was obtained.

(比較例4)
外径0.7mmの銅線上に、合成樹脂としてフッ素系樹脂であるPTFE(三井デュポンフロロケミカル(株)製 テフロン(登録商標))ディスパージョン液を用い、液温20℃、約4m/分の引上げ速度でディップ成形し、350℃の熱風で2分間乾燥後400℃の加熱炉で2分間焼結することで、被覆外径が0.75mmの内層を得る。さらに、この内層表面をケミカルエッチングにより粗面化等する。
(Comparative Example 4)
On a copper wire having an outer diameter of 0.7 mm, PTFE (Teflon (registered trademark) manufactured by Mitsui DuPont Fluorochemical Co., Ltd.), which is a fluororesin, is used as a synthetic resin. The liquid temperature is 20 ° C. and about 4 m / min. The inner layer having a coating outer diameter of 0.75 mm is obtained by dip-molding at a pulling rate, drying with hot air at 350 ° C. for 2 minutes and then sintering in a heating furnace at 400 ° C. for 2 minutes. Further, the inner layer surface is roughened by chemical etching.

この内層上に、直径0.03mmのSUS304を用い、2本持ちで16打ち格子間距離0.18mmの編組を連続で施し、熱可塑性樹脂としてナイロン(アルケマ(株)製 PEBAX)を用い、30mmの押出成形機を用いて成形温度220℃(ダイス温度)、約14m/分の引取スピードで押出し成形することで、被覆径が0.99mmの押出し成形体を得る。各所定の位置で切断し、切断で得られた物の前記芯線の全体を延伸した後、前記芯線を引抜くことにより所定のカテーテル用チューブを得た。   On this inner layer, SUS304 having a diameter of 0.03 mm was used, and a braid having a distance of 0.18 mm and 16 striking lattices was continuously applied. Nylon (PEBAX manufactured by Arkema Co., Ltd.) was used as a thermoplastic resin, and 30 mm The extrusion molding with a coating diameter of 0.99 mm is obtained by extrusion molding at a molding temperature of 220 ° C. (die temperature) and a take-up speed of about 14 m / min. After cutting at each predetermined position and extending the entire core wire of the product obtained by cutting, the core wire was pulled out to obtain a predetermined catheter tube.

Figure 0004796534
Figure 0004796534

Figure 0004796534
Figure 0004796534

表3の比較結果から、実施例2および3は、座屈特性と柔軟性に優れ、かつ、加熱収縮の少ない細径部を有する。   From the comparison results in Table 3, Examples 2 and 3 have a small diameter portion that is excellent in buckling characteristics and flexibility and has little heat shrinkage.

また、表4のデータから、実施例2および3は細径部2bを有するにも係わらず、細径部2bを有さない比較例3の原チューブと同等の送液特性を有すると共に、表3のデータが示すように、延伸することで編組の格子間距離も伸ばされている比較例3と比較し、実施例2および3は座屈特性と柔軟性に優れ加熱収縮の少ない細径部2bを有するカテーテル用チューブが製造できることがわかる。   Moreover, from the data of Table 4, although Example 2 and 3 have the thin diameter part 2b, while having the liquid feeding characteristic equivalent to the original tube of the comparative example 3 which does not have the small diameter part 2b, As shown by the data in FIG. 3, compared with Comparative Example 3 in which the interstitial distance of the braid is also extended by stretching, Examples 2 and 3 are small diameter portions having excellent buckling characteristics and flexibility and less heat shrinkage. It can be seen that a catheter tube having 2b can be manufactured.

表5は、実施例3及び比較例3の各細径部の降伏強度を比較した結果である。引張試験により得られた曲線より形状が復元する強度の最大値を測定し、これをそれぞれ降伏強度とした。実施例3と比較例3は軸補強部材の有無のみの違いであるため、降伏強度の差を伸び難さとして比較検討した。




Table 5 shows the results of comparing the yield strengths of the small diameter portions of Example 3 and Comparative Example 3. The maximum value of strength at which the shape was restored from the curve obtained by the tensile test was measured, and this was taken as the yield strength. Since Example 3 and Comparative Example 3 differ only in the presence or absence of the shaft reinforcing member, the difference in yield strength was compared and examined as difficulty in elongation.




Figure 0004796534
Figure 0004796534

表5の比較結果から、軸方向の補強部材を有することを特徴とする実施例3は比較例3と比較し長さ方向に伸び難い特性を有する。また、表4の比較結果から、実施例3は細径部を有するにも係わらず、細径部を有さない比較例3の原チューブと同等の送液特性を有すると共に、座屈特性、柔軟性に優れ、加熱収縮の少ない細径部を有するカテーテル用チューブが提供できる。   From the comparison result of Table 5, Example 3 characterized by having an axial reinforcing member has a characteristic that it is difficult to extend in the length direction as compared with Comparative Example 3. Moreover, from the comparison result of Table 4, although Example 3 has a thin diameter part, it has the liquid feeding characteristic equivalent to the original tube of the comparative example 3 which does not have a thin diameter part, and buckling characteristic, A catheter tube having a small diameter portion with excellent flexibility and less heat shrinkage can be provided.

(実施例4)
図7は、実施例1の変形例を示すものである。カテーテル用チューブ10は、複数層の被覆体で構成されて製造されてもよく、図7では、第1被覆体30aと第2被覆体30bとで構成されたカテーテル用チューブ10を示す。すなわち、被覆体形成工程において、第1被覆体30aのディップ成形と第2被覆体30bのディップ成形を行なう2つの工程を有する製造方法とする。
Example 4
FIG. 7 shows a modification of the first embodiment. The catheter tube 10 may be made of a plurality of layers of coverings, and FIG. 7 shows the catheter tube 10 formed of a first covering 30a and a second covering 30b. That is, in the covering forming process, the manufacturing method includes two steps of performing dip forming of the first covering 30a and dip forming of the second covering 30b.

また、手元側から先端側にかけてチューブの剛性が連続或いは段階的に変化するような被覆方法でもよく、第1被覆体30aは手元側で厚く先端側にかけて薄く成形され、第2被覆体30bは手元側で薄く先端側にかけて厚く成形されている。すなわち、被覆体形成工程において、ディップ成形時の引き上げ速度を変化させることで上記のような被覆体の厚さ制御が可能でる。   Further, a coating method in which the rigidity of the tube changes continuously or stepwise from the proximal side to the distal end side may be employed. The first covering body 30a is thickly formed at the proximal side and thinly formed toward the distal end side, and the second covering body 30b is disposed at the proximal side. It is thinly formed on the side and thick on the tip side. That is, in the covering forming process, the thickness of the covering can be controlled by changing the pulling speed at the time of dip molding.

これにより、手元部の押込み性、ガイドワイヤー追従性等の性能向上をさらに図ることができる。   Thereby, performance improvement, such as pushing property of a hand part and guide wire followability, can further be aimed at.

(実施例5)
図8は、実施例1の別の変形例を示すものである。カテーテル用チューブ10の内腔は1つ以上あればよく、図8では、2つの内腔31a、31bがある。この内腔は縮径された芯線により形成されるが、1つ以上の芯線が縮径されていればよい。図8の例では、B−B断面では内腔31aは縮径された芯線により形成されているが、C−C断面では内腔31bは縮径されていない芯線により形成されている例を示している。すなわち、内腔31aのみが縮径されている。すなわち、内腔31a、31bに対応する芯線を芯線準備工程において準備することで上記に示したようなカテーテル用チューブ10を製造することが可能である。
(Example 5)
FIG. 8 shows another modification of the first embodiment. There may be one or more lumens of the catheter tube 10, and in FIG. 8, there are two lumens 31a and 31b. This lumen is formed by a core wire having a reduced diameter, but it is sufficient that one or more core wires have a reduced diameter. The example of FIG. 8 shows an example in which the lumen 31a is formed by a core wire having a reduced diameter in the BB cross section, whereas the lumen 31b is formed by a core wire in which the diameter is not reduced in the CC cross section. ing. That is, only the lumen 31a is reduced in diameter. That is, the catheter tube 10 as described above can be manufactured by preparing the core wires corresponding to the lumens 31a and 31b in the core wire preparation step.

(実施例6)
図9は、実施例2または3の補強層を有するカテーテル用チューブの変形例を示すもので、先端部の内径が縮径され、被覆体の硬度や外径が手元側から先端にかけて段階的に低減している構造を示す図である。
(Example 6)
FIG. 9 shows a modification of the catheter tube having the reinforcing layer of Example 2 or 3, wherein the inner diameter of the distal end portion is reduced, and the hardness and outer diameter of the covering are gradually increased from the proximal side to the distal end. It is a figure which shows the structure which is reducing.

図9(a)は、補強層形成工程において、補強体5を太径部2a上にのみ形成するか、あるいは、補強体5の一部を除去して外層被覆体4を被覆することにより編組部と非編組部を有するように製造する。   FIG. 9A shows braiding by forming the reinforcing body 5 only on the large-diameter portion 2a or covering the outer layer covering body 4 by removing a part of the reinforcing body 5 in the reinforcing layer forming step. It is manufactured to have a part and a non-braided part.

図9(b)は、実施例2または3のカテーテル用チューブ10に、外層積層体7が積層された構造のカテーテル用チューブである。すなわち、外層被覆体形成工程において、さらに太径部2a上に熱収縮チューブを被せて所定の温度で溶融一体化する工程を加える。   FIG. 9B shows a catheter tube having a structure in which the outer layer laminate 7 is laminated on the catheter tube 10 of Example 2 or 3. That is, in the outer layer covering body forming step, a step of covering the large diameter portion 2a with a heat shrinkable tube and melting and integrating at a predetermined temperature is added.

(実施例7)
図10(a)、(b)は、実施例2または3の補強層を有するカテーテル用チューブの断面を示すもので、実施例2または3の別の断面形状を示す一例である。図10(a)は、内腔形状が異型(楕円、半円等)の断面形状の例、図10(b)は、内腔形状がマルチルーメンである場合の断面形状の例である。
(Example 7)
FIGS. 10A and 10B show a cross section of the catheter tube having the reinforcing layer of Example 2 or 3, and are an example showing another cross-sectional shape of Example 2 or 3. FIG. FIG. 10A shows an example of a cross-sectional shape having a different lumen shape (ellipse, semicircle, etc.), and FIG. 10B shows an example of a cross-sectional shape when the lumen shape is multi-lumen.

すなわち、これらの内腔31c〜31hに対応する芯線を芯線準備工程において準備することで上記に示したようなカテーテル用チューブ10を製造することが可能である。   That is, the catheter tube 10 as described above can be manufactured by preparing the core wires corresponding to the lumens 31c to 31h in the core wire preparation step.

(実施例8)
図11(a)、(b)は、実施例3の補強層5に補強体6を含むカテーテル用チューブの断面を示すもので、被覆体3或いは外層被覆体4中に埋込まれている構造の例である。尚、軸方向補強部材としての補強体6は1本以上であればよい。
(Example 8)
FIGS. 11A and 11B show a cross section of a catheter tube including a reinforcing body 6 in the reinforcing layer 5 of Example 3, and are embedded in the covering 3 or the outer covering 4. It is an example. In addition, the reinforcement body 6 as an axial direction reinforcement member should just be one or more.

被覆体形成工程あるいは外層被覆体形成工程において溶融された熱可塑性樹脂中に補強体6が埋込まれように温度制御することで可能となる。   This is possible by controlling the temperature so that the reinforcing body 6 is embedded in the molten thermoplastic resin in the covering body forming step or the outer layer covering body forming step.

(実施例9)
図12(a)、(b)は、実施例3の補強層5に補強体6を含むカテーテル用チューブとその右断面(外層被覆体4は図示せず)を示すもので、補強層5と補強体6との位置関係が実施例3と異なる構成の例である。図12(a)は、補強体6が補強層5と一体化した構成、すなわち、補強層5と補強体6とを一緒に編組して形成した構成の例である。すなわち、補強層形成工程において、補強層5と補強体6とを一緒に編組することで可能となる。
Example 9
12 (a) and 12 (b) show a catheter tube including a reinforcing body 6 in the reinforcing layer 5 of Example 3 and a right cross section thereof (the outer cover 4 is not shown). In this example, the positional relationship with the reinforcing body 6 is different from that of the third embodiment. FIG. 12A shows an example of a configuration in which the reinforcing body 6 is integrated with the reinforcing layer 5, that is, a configuration in which the reinforcing layer 5 and the reinforcing body 6 are braided together. That is, it becomes possible by braiding the reinforcing layer 5 and the reinforcing body 6 together in the reinforcing layer forming step.

また、図12(b)は、補強体6が補強層5と外層被覆体4の間に位置する構成、すなわち、補強層5を被覆体3上に形成した後に補強体6を補強層5上に形成した構成の例である。すなわち、補強層形成工程において、補強層5を被覆体3上に形成し、その後に、補強体6を補強層5上に形成する工程を設けることで可能となる。   FIG. 12B shows a configuration in which the reinforcing body 6 is positioned between the reinforcing layer 5 and the outer layer covering body 4, that is, after the reinforcing layer 5 is formed on the covering body 3, the reinforcing body 6 is placed on the reinforcing layer 5. It is an example of the structure formed in. That is, in the reinforcing layer forming step, it is possible to provide the step of forming the reinforcing layer 5 on the covering 3 and then forming the reinforcing member 6 on the reinforcing layer 5.

図1は、第1の実施の形態に係るカテーテル用チューブ10の製造方法を工程順に示す図である。FIG. 1 is a diagram illustrating a method of manufacturing a catheter tube 10 according to the first embodiment in the order of steps. 図2は、カテーテル用チューブの3点曲げ性能を測定する方法を説明するための図である。FIG. 2 is a diagram for explaining a method of measuring the three-point bending performance of a catheter tube. 図3は、カテーテル用チューブの座屈性能を(a)、(b)、(c)の手順で測定する方法を説明するための図である。FIG. 3 is a diagram for explaining a method for measuring the buckling performance of a catheter tube by the procedures of (a), (b), and (c). 図4は、送液特性を測定する装置の概略を示す図である。FIG. 4 is a diagram showing an outline of an apparatus for measuring liquid feeding characteristics. 図5は、第2の実施の形態に係るカテーテル用チューブ10の製造方法を工程順に示す図である。FIG. 5 is a diagram showing a method of manufacturing the catheter tube 10 according to the second embodiment in the order of steps. 図6は、第3の実施の形態に係るカテーテル用チューブ10の製造方法を工程順に示す図である。FIG. 6 is a diagram illustrating a method of manufacturing the catheter tube 10 according to the third embodiment in the order of steps. 図7は、実施例1の変形例を示すものである。FIG. 7 shows a modification of the first embodiment. 図8は、実施例1の別の変形例を示すものである。FIG. 8 shows another modification of the first embodiment. 図9は、実施例2または3の補強層を有するカテーテル用チューブの変形例を示すもので、先端部の内径が縮径され、被覆体の硬度や外径が手元側から先端にかけて段階的に低減している構造を示す図である。FIG. 9 shows a modification of the catheter tube having the reinforcing layer of Example 2 or 3, wherein the inner diameter of the distal end portion is reduced, and the hardness and outer diameter of the covering are gradually increased from the proximal side to the distal end. It is a figure which shows the structure which is reducing. 図10(a)、(b)は、実施例2または3の補強層を有するカテーテル用チューブの断面を示すもので、実施例2または3の別の断面形状を示す一例である。FIGS. 10A and 10B show a cross section of the catheter tube having the reinforcing layer of Example 2 or 3, and are an example showing another cross-sectional shape of Example 2 or 3. FIG. 図11(a)、(b)は、実施例3の補強層5に補強体6を含むカテーテル用チューブの断面を示すもので、被覆体3或いは外層被覆体4中に埋込まれている構造の例である。FIGS. 11A and 11B show a cross section of a catheter tube including a reinforcing body 6 in the reinforcing layer 5 of Example 3, and are embedded in the covering 3 or the outer covering 4. It is an example. 図12(a)、(b)は、実施例3の補強層5に補強体6を含むカテーテル用チューブとその右断面(外層被覆体4は図示せず)を示すもので、補強層5と補強体6との位置関係が実施例3または4と異なる構成の例である。12 (a) and 12 (b) show a catheter tube including a reinforcing body 6 in the reinforcing layer 5 of Example 3 and a right cross section thereof (the outer cover 4 is not shown). In this example, the positional relationship with the reinforcing body 6 is different from that of the third or fourth embodiment.

符号の説明Explanation of symbols

2 芯線
2a 太径部
2b 細径部
3 被覆体
4 外層被覆体
5 補強層
6 補強体
7 外層積層体
10 カテーテル用チューブ
20 端部
2 Core wire 2a Large diameter part 2b Small diameter part 3 Cover body 4 Outer layer cover body 5 Reinforcement layer 6 Reinforcement body 7 Outer layer laminated body 10 Tube 20 for catheter End

Claims (6)

太径部と細径部を有する芯線を準備する芯線準備工程と、
前記芯線上に合成樹脂を被覆して被覆体を形成する被覆体形成工程と、
前記被覆体形成工程後に前記被覆体に埋没した前記芯線を除去する芯線除去工程と、を有し、
前記被覆体形成工程は、前記芯線を所定の溶媒に前記合成樹脂を溶解又は分散したコーティング液中に浸漬し、所定の速度で引き上げることにより、前記芯線の周囲に前記合成樹脂を被覆することを特徴とするカテーテル用チューブの製造方法。
A core wire preparation step of preparing a core wire having a large diameter portion and a small diameter portion;
A covering forming step of forming a covering by coating a synthetic resin on the core wire;
Have a a core removing step of removing the core wire buried in the covering member after the coating formation step,
The covering body forming step includes coating the synthetic resin around the core wire by immersing the core wire in a coating solution in which the synthetic resin is dissolved or dispersed in a predetermined solvent and pulling it up at a predetermined speed. A method for producing a catheter tube as a feature.
太径部と細径部を有する芯線を準備する芯線準備工程と、
前記芯線上に合成樹脂を被覆して被覆体を形成する被覆体形成工程と
前記被覆体形成工程後に、前記被覆体上の少なくとも一部に、金属線、樹脂繊維、または、これらを併用した補強層を形成する補強層形成工程と、
前記補強層形成工程後に、熱可塑性樹脂により、前記被覆体および前記補強層を一体に被覆する外層被覆体を形成する外層被覆体形成工程と、
前記外層被覆体形成工程後に前記被覆体に埋没した前記芯線を除去する芯線除去工程と、を有し、
前記被覆体形成工程は、前記芯線を所定の溶媒に前記合成樹脂を溶解又は分散したコーティング液中に浸漬し、所定の速度で引き上げることにより、前記芯線の周囲に前記合成樹脂を被覆することを特徴とするカテーテル用チューブの製造方法。
A core wire preparation step of preparing a core wire having a large diameter portion and a small diameter portion;
A coating forming step of forming a coating member by coating a synthetic resin on the core wire,
A reinforcing layer forming step of forming a reinforcing layer using a metal wire, a resin fiber, or a combination thereof, on at least a part of the covering after the covering forming step,
After the reinforcing layer forming step, an outer layer covering body forming step of forming an outer layer covering body integrally covering the covering body and the reinforcing layer with a thermoplastic resin;
Have a a core removing step of removing the core wire buried in the covering member after the outer cover member forming step,
The covering body forming step includes coating the synthetic resin around the core wire by immersing the core wire in a coating solution in which the synthetic resin is dissolved or dispersed in a predetermined solvent and pulling it up at a predetermined speed. A method for producing a catheter tube as a feature.
前記芯線除去工程は、前記被覆体から前記芯線を、前記芯線の前記太径部の方向へ抜去することを特徴とする請求項1または2に記載のカテーテル用チューブの製造方法。   The method for manufacturing a catheter tube according to claim 1 or 2, wherein the core wire removing step extracts the core wire from the covering body in a direction of the large diameter portion of the core wire. 前記補強層形成工程は、前記被覆体の上に所定の格子間距離で金属線または樹脂繊維により編組を施すことを特徴とする請求項2に記載のカテーテル用チューブの製造方法。   The method for producing a catheter tube according to claim 2, wherein the reinforcing layer forming step comprises braiding the covering with a metal wire or a resin fiber at a predetermined interstitial distance. 前記補強層形成工程は、前記被覆体の上に金属線または樹脂繊維を縦沿わせながら、前記被覆体および前記金属線または樹脂繊維の上に、所定の格子間距離で金属線または樹脂繊維により編組を施すことを特徴とする請求項2に記載のカテーテル用チューブの製造方法。   In the reinforcing layer forming step, a metal wire or a resin fiber is vertically aligned on the covering, and the metal wire or the resin fiber is formed on the covering and the metal wire or the resin fiber at a predetermined interstitial distance. The method for producing a catheter tube according to claim 2, wherein braiding is performed. 前記外層被覆体形成工程は、前記補強層形成工程に、前記被覆体および前記補強層上に熱可塑性樹脂で形成された熱可塑性チューブおよび熱収縮性チューブを順に被せ、所定の温度で加熱して前記熱可塑性チューブを溶融一体化と共に前記熱収縮性チューブを収縮させた後、前記熱収縮性チューブを剥ぎ取ることにより除去することを特徴とする請求項2に記載のカテーテル用チューブの製造方法。   In the outer layer covering body forming step, the reinforcing layer forming step is sequentially covered with a thermoplastic tube and a heat shrinkable tube formed of a thermoplastic resin on the covering body and the reinforcing layer, and heated at a predetermined temperature. The method for manufacturing a catheter tube according to claim 2, wherein the thermoplastic tube is removed by peeling off the heat-shrinkable tube after the heat-shrinkable tube is shrunk together with the fusion integration.
JP2007109234A 2007-04-18 2007-04-18 Method for manufacturing catheter tube Active JP4796534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007109234A JP4796534B2 (en) 2007-04-18 2007-04-18 Method for manufacturing catheter tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007109234A JP4796534B2 (en) 2007-04-18 2007-04-18 Method for manufacturing catheter tube

Publications (2)

Publication Number Publication Date
JP2008264104A JP2008264104A (en) 2008-11-06
JP4796534B2 true JP4796534B2 (en) 2011-10-19

Family

ID=40044471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007109234A Active JP4796534B2 (en) 2007-04-18 2007-04-18 Method for manufacturing catheter tube

Country Status (1)

Country Link
JP (1) JP4796534B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264428A (en) * 2008-12-26 2011-11-30 住友电木株式会社 Catheter
JP5239993B2 (en) * 2009-03-25 2013-07-17 住友ベークライト株式会社 Catheter manufacturing method
US9101733B2 (en) * 2009-09-29 2015-08-11 Biosense Webster, Inc. Catheter with biased planar deflection
JP5662074B2 (en) * 2010-07-30 2015-01-28 テルモ株式会社 catheter
JP2012110562A (en) * 2010-11-26 2012-06-14 Goodman Co Ltd Catheter manufacturing method
JP6088809B2 (en) * 2012-11-20 2017-03-01 テルモ株式会社 CATHETER TUBE MANUFACTURING METHOD, CATHETER TUBE CONTINUOUS AND CATHETER TUBE PRODUCING CORE
JP5999707B2 (en) * 2013-04-30 2016-09-28 朝日インテック株式会社 Catheter tube and catheter
US12083296B2 (en) 2018-12-10 2024-09-10 Abiomed, Inc. Kink resistant peel away sheath
CN115003259A (en) * 2020-01-29 2022-09-02 奥林巴斯株式会社 Stent delivery device and guide catheter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607862A (en) * 1983-06-27 1985-01-16 テルモ株式会社 Guide wire for catheter
US4538622A (en) * 1983-11-10 1985-09-03 Advanced Cardiovascular Systems, Inc. Guide wire for catheters
JPH06154334A (en) * 1992-11-19 1994-06-03 Dia Medical Supply Kk Catheter
JP3635965B2 (en) * 1999-02-05 2005-04-06 日立電線株式会社 Method for manufacturing catheter tube
JP3915862B2 (en) * 2000-02-09 2007-05-16 テルモ株式会社 catheter
JP2001327603A (en) * 2000-05-25 2001-11-27 Mitsubishi Cable Ind Ltd Method of manufacturing flexible tube
JP2002045428A (en) * 2000-07-31 2002-02-12 Hitachi Cable Ltd Thin ptfe tube for catheter, manufacturing method therefor and catheter tube
JP2004041254A (en) * 2002-07-08 2004-02-12 Terumo Corp Guide wire
JP2006068497A (en) * 2004-08-03 2006-03-16 Ist:Kk Method for manufacturing medical wire and medical wire
JP2006055245A (en) * 2004-08-18 2006-03-02 Japan Lifeline Co Ltd Medical guide wire
JP2007089847A (en) * 2005-09-29 2007-04-12 Kaneka Corp Microcatheter and method for producing the same

Also Published As

Publication number Publication date
JP2008264104A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP4796534B2 (en) Method for manufacturing catheter tube
EP1414511B1 (en) Integrated polymer and braid for intravascular catheters
JP5080094B2 (en) Continuation of catheter tube and method for manufacturing catheter tube
KR101861866B1 (en) Medical tube, and manufacturing method for same
US10065015B2 (en) Catheter devices and methods for making them
WO2013146673A1 (en) Medical instrument and method for manufacturing medical instrument
US9901706B2 (en) Catheters and catheter shafts
JP5885302B2 (en) Medical equipment
JP2008036157A (en) Catheter tube and method for producing the same
EP3650071B1 (en) Catheter devices and methods for making them
KR20140127357A (en) Method for manufacturing medical device, and medical device
JP4854458B2 (en) Medical multi-lumen tube
EP2881137B1 (en) Medical instrument, and medical-instrument production method
JP6089876B2 (en) Medical equipment
CN113456982A (en) Catheter tubing and method of making same
WO2017104465A1 (en) Catheter and method of manufacturing same
JP2006218085A (en) Medical catheter tube and its manufacturing method
JP6319390B2 (en) Medical device and method for manufacturing medical device
JP2010207321A (en) Catheter
JP4397319B2 (en) Microcatheter manufacturing method and microcatheter
JP2007089847A (en) Microcatheter and method for producing the same
JP4274018B2 (en) Catheter tube, method for manufacturing the same, and catheter
JP2018118095A (en) Medical equipment and manufacturing method of medical equipment
JP2006181258A (en) Manufacturing method of microcatheter and microcatheter
CN116985447A (en) Preparation method of medical catheter with gradient hardness and medical catheter with gradient hardness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110729

R150 Certificate of patent or registration of utility model

Ref document number: 4796534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250