JP4795575B2 - Laminated wiring board and manufacturing method thereof - Google Patents

Laminated wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP4795575B2
JP4795575B2 JP2001225394A JP2001225394A JP4795575B2 JP 4795575 B2 JP4795575 B2 JP 4795575B2 JP 2001225394 A JP2001225394 A JP 2001225394A JP 2001225394 A JP2001225394 A JP 2001225394A JP 4795575 B2 JP4795575 B2 JP 4795575B2
Authority
JP
Japan
Prior art keywords
conductor
wiring board
pin
laminated wiring
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001225394A
Other languages
Japanese (ja)
Other versions
JP2003037366A (en
Inventor
宏 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2001225394A priority Critical patent/JP4795575B2/en
Publication of JP2003037366A publication Critical patent/JP2003037366A/en
Application granted granted Critical
Publication of JP4795575B2 publication Critical patent/JP4795575B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,導体層と層間絶縁層とを積層してなる積層配線板およびその製造方法に関する。さらに詳細には,3層以上の導体層を一箇所で導通させる層間導通構造を有する積層配線板およびその製造方法に関するものである。
【0002】
【従来の技術】
従来から,導体層と層間絶縁層とを交互に積層する積層配線板においては,多様な回路の実現のため,多層間の層間導通構造を随所に配置している。この多層間の導通構造を有する積層配線板の製造方法としては,次の方法が一般的である。まず,複数の導体層と層間絶縁層とを交互に重ね合わせて1枚の積層配線板を作成する。その積層配線板に対して,ドリル等により貫通孔を形成し,めっきすることによって層間の導通をとる。そして,貫通孔の内部の充填,ふためっき等をするのである。
【0003】
【発明が解決しようとする課題】
しかしながら,従来の積層配線板には,次のような問題点があった。すなわち,この積層配線板の層間導通構造にあっては,貫通孔の内壁をめっきにより析出した金属が覆うことにより層間導通を実現している。このめっきによる導通は,接続面積が狭いため導通の信頼性が低い。また,貫通孔のめっき,充填,ふためっき等の多数の工程を踏まなければならず,製造に多くの手間がかかる。
【0004】
本発明は,前記した従来の積層配線板における層間導通構造が有する問題点を解決するためになされたものである。すなわちその課題とするところは,層間導通構造において,接続面積を拡大するとともに製造の工程数を減らした積層配線板およびその製造方法を提供することにある。
【0005】
【課題を解決するための手段】
この課題の解決を目的としてなされた本発明の積層配線板は,導体層と層間絶縁層とを交互に積層してなる積層配線板であって,第1層間絶縁層の一方の面にある第1導体層と他方の面にある第2導体層との導通をとる導体のピン(A1)と,前記第1層間絶縁層に隣接する第2層間絶縁層の一方の面にある前記第2導体層と他方の面にある第3導体層との導通をとる導体のピン(B1)とが積層配線板の板面内における同じ位置に配置され,前記ピン(A1)を構成する導体(A)と,前記ピン(B1)を構成する導体(B)とが接触して電気的に接続されるとともに、異なる硬度を有するものである。
【0006】
また,本発明の積層配線板は,前記導体(B)が,前記導体(A)より高い硬度を有し,前記ピン(A1)と前記ピン(B1)とが接続する箇所では,前記導体(B)が前記導体(A)にくい込んでいるものである。
【0007】
すなわち,本発明の層間導通構造は,第1層間絶縁層を貫通する「ピン(A1)」と,第1層間絶縁層に隣接する第2層間絶縁層を貫通する「ピン(B1)」とを,同じ位置に配置することで接続させ,3つの導体層の導通をとる多層間の層間接続構造である。ここでいう同じ位置とは,積層配線板の板面内における同じ位置であることをいう。さらに,ピン(A1)を構成する導体(A)と,ピン(B1)を構成する導体(B)とが異なる硬度を有している。このため,両ピンが接続する箇所では,導体が金属の可塑性により変形しており,導体同士が密着している。さらに,硬度の高い導体(B)が導体(A)にくい込むことにより両ピンの接続面積が拡大しており,確実に導通がとられ信頼性が向上している。
【0008】
また,本発明の積層配線板の製造方法では,第1層間絶縁層を挟んで一方の面に第1導体層があり他方の面に第2導体層があり,前記第1層間絶縁層を貫通する導体(A)によるピン(A1)を有する基板(A2)と,第2層間絶縁層の一方の面に導体層がなく他方の面に第3導体層があり,前記第2層間絶縁層を貫通するとともに前記導体(A)と異なる硬度の導体(B)によるピン(B1)を有する基板(B2)とを,前記基板(A2)の他方の面と前記基板(B2)の一方の面とを対向させ,前記ピン(A1)と前記ピン(B1)とが積層配線板の板面内における同じ位置になるように組み合わせ,組み合わせた基板をプレスして一体化するとともに前記ピン(A1)と前記ピン(B1)を接触させて電気的に接続することにより導体層と層間絶縁層とを交互に積層してなる積層配線板を製造する。
【0009】
この製造方法では,ピンが打ち込まれた2枚の基板を出発材とする。ピンを構成する導体の硬度は,それぞれ異なっている。この出発材に対して,まず,ピン同士が同じ位置になるように基板を組み合わせる。その後,その両基板をプレスし一体化することにより積層配線板とする。すなわち,プレス後にふためっき等の作業はしない。これにより,製造工程が簡易である。
【0010】
また,この製造方法では,前記導体(A)と前記導体(B)のうち硬度が高い方の導体が,プレス前の状態で,その導体を有する基板の他方の基板に接する面から突出しているとよい。この基板(A2)と基板(B2)とをプレスすることにより,プレス後に,突出している方の導体が,他方の導体にくい込んだ状態が得られる。これにより,ピン同士の接続面積が拡大し,導通の信頼性が向上する。
【0011】
【発明の実施の形態】
以下,本発明を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。
【0012】
本実施の形態に係る積層配線板100は,図1に示す断面構造を有している。積層配線板100は,導体層11,12,21と,層間絶縁層10,20とを有する3層配線板である。勿論,各導体層には,適宜パターニングが施されている。各層間絶縁層は板厚0.05〜0.15mm程度であり,各導体層である銅箔の厚さは5〜20μm程度である。
【0013】
積層配線板100は,導体層11と導体層12との導通をとるためのビア13を有している。また,導体層12と導体層21との導通をとるためのビア23を有している。このビア13とビア23とは,同じ位置に重ね合わせられている。さらに,ビア13とビア23との接続部分は,ビア23の材質がビア13の材質にくい込んだ形状をしている。
【0014】
ビア13は,絶縁層10に設けられた0.06〜0.30mm程度の径の穴にAg製のピンを挿入したものである。また,ビア23は,絶縁層20を貫通した0.06〜0.30mm程度の径のCu製のピンである。このため,積層配線板100は,導体層11と導体層12と導体層21とが,ビア13およびビア23により導通した層間導通構造を有している。
【0015】
次に,積層配線板100の製造プロセスを説明する。積層配線板100は,両面銅付き樹脂板1と片面銅付き樹脂板2とを出発材として製造される。図2は,両面銅つき樹脂板1を示す図である。両面銅付き樹脂板1は,両面に銅箔(導体層)11,12を有している。次に,図3に示すように,両面銅付き樹脂板1に対して,ドリルにより貫通穴14を開ける。貫通穴14は,層間導通構造を形成するためのものである。なお,貫通穴14の形成は,レーザ加工によるものでもよい。
【0016】
次に,貫通穴14にAg製のピンを挿入する。図4は,挿入後の樹脂板1を示す図である。樹脂板1は,ビア(Ag製のピン)13によって導体層11と導体層12との導通がとられている。ビア13の長さは,樹脂板1の厚さと同じである。そして,この状態の樹脂板1の銅箔11,12をパターニングする。
【0017】
一方,片面銅付き樹脂板2は,片面に銅箔(導体層)21を有している。この片面銅付き樹脂板2に対して,樹脂板2を貫通するようにCu製のピン23を打ち込む。図5は,打ち込み後の樹脂板2を示す図である。樹脂板2は,ビア(Cu製のピン)23が導体層21の反対面まで突き出ているため,導体層21と反対面との導通をとることが可能である。そして,この状態の樹脂板2の銅箔21をパターニングする。
【0018】
次に,Ag製のピンが挿入された両面銅箔付き樹脂板1と,Cu製のピンが打ち込まれた片面銅箔付き樹脂板2とを,ビア13とビア23とが上下に重なるように組み合わせる。片面銅箔付き樹脂板2は,銅箔21のない面と樹脂板1とが接するように配置する。そして,組合せた樹脂板1と樹脂板2とをプレスして一体化する。このとき,Cuの方がAgより硬いため,ビア23のCuがビア13のAgにくい込み,図1に示す積層配線板100が製造される。この積層配線板100は,銅箔11,絶縁層10,銅箔12,絶縁層20,銅箔21の順に積層された構造である。なお,この状態の積層配線板100の表面にソルダレジストを形成してもよい。
【0019】
次に,異種金属による層間導通構造となっているビア13とビア23との接続部に着目して説明する。図7は,図4,図5のそれぞれ一部を示す(ただし,導体層は省略してある。)図である。まず,Ag製であるピン13と,Cu製であるピン23とが同じ位置になるように配置する。また,ピン23は樹脂板2から突出している。
【0020】
上記状態の樹脂板1と樹脂板2とをプレスし,図8の状態とする。図8は,図1の一部を示す(ただし,導体層は省略してある。)図である。ピン13とピン23との接続部分では,プレス加工の際にピン23のCuがピン13のAgにくい込んでいる。これは金属の可塑性による現象であり,CuがAgより硬い材質の金属だからである。これにより,ピン13とピン23との接続面積が拡大し,十分な接続面積を確保することができる。
【0021】
本実施例の積層配線板100では,硬い金属としてCu,軟らかい金属としてAgを用いている。この組合せ以外にも図9に示すような組合せが考えられる。図9中,金属Aとして示したものは金属Bとして示したものより硬度が高い。勿論,これ以外にも硬度が異なる金属同士ならば実現可能である。なお,金属の硬さとしては,ロックウェル法やビッカース法等の試験方法により測定した値を用いればよい。
【0022】
以上詳細に説明したように本実施の形態では,まず,ビア(Ag製のピン)13により層間導通構造を有する樹脂板1と,ビア(Cu製のピン)23により層間導通構造を有する樹脂板2とを組み合わせることとしている。このとき,ビア13とビア23とが同じ位置になるように配置することとしている。また,ビア23は,樹脂板2から突出している。この状態で樹脂板1および樹脂板2をプレスし一体化することとしている。これにより,導体層11と導体層21とが,ビア13およびビア23により導通した層間導通構造を有する積層配線板100が製造される。この積層配線板100のビア13とビア23とが接続している箇所では,突出しているビア23のCuがビア13のAgにくい込んだ形状となっている。このため,ビア13とビア23と接続面積が拡大し,接続信頼性が向上している。
【0023】
また,本実施の形態では,プレス後にめっき等の作業をしない。よって,製造の工程数が少なくてすむ。これにより,接続面積を拡大するとともに製造の工程数を減らした積層配線板およびその製造方法を実現している。
【0024】
なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,AgとAgペーストとは,本発明にいう異なる硬度の導体に該当する。
【0025】
また,同一金属を使用しても治金学的製法によるものとめっきにより析出したものとでは硬さが異なる場合がある。例えばPtは,治金学的製法によるものより,めっきにより析出したものの方が硬い。よって,治金学的製法によるPtとめっきにより析出したPtとは,本発明にいう異なる硬度の導体に該当する。
【0026】
また,本実施例では,硬度の異なる材質のビアを有する2枚の基板を組み合わせているが,2枚以上であれば幾つでもよい。例えば3枚の基板を組み合わせる場合は,ビアの材質をCu,Ag,Cuの順に組合せればよい。勿論,隣り合うビアの材質の硬度が異なっていれば実現できる。また,組み合わせる基板も,両面銅箔付き基板,銅箔なし基板,両面銅箔付き基板の順に組み合わせる場合や,片面銅箔付き基板,両面銅箔付き基板,片面銅箔付き基板の順に組み合わせる等のさまざまなバリエーションで実現できる。
【0027】
【発明の効果】
以上の説明から明らかなように本発明によれば,層間導通構造において,接続面積を拡大するとともに製造の工程数を減らした積層配線板およびその製造方法が提供されている。
【図面の簡単な説明】
【図1】実施の形態に係る積層配線板の断面図である。
【図2】図1の積層配線板の製造途上の段階の断面図(工程1)である。
【図3】図1の積層配線板の製造途上の段階の断面図(工程2)である。
【図4】図1の積層配線板の製造途上の段階の断面図(工程3)である。
【図5】図1の積層配線板の製造途上の段階の断面図(工程4)である。
【図6】図1の積層配線板の製造途上の段階の断面図(工程5)である。
【図7】異種金属による層間導通を示す図(プレス前)である。
【図8】異種金属による層間導通を示す図(プレス後)である。
【図9】金属の組合せを示す図である。
【符号の説明】
10,20 層間絶縁層
11,12,21 導体層(銅箔)
13 ビア(Ag製のピン)
23 ビア(Cu製のピン)
100 積層配線板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated wiring board formed by laminating a conductor layer and an interlayer insulating layer and a method for manufacturing the same. More specifically, the present invention relates to a laminated wiring board having an interlayer conduction structure that conducts three or more conductor layers in one place and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, in a multilayer wiring board in which conductor layers and interlayer insulating layers are alternately stacked, interlayer conductive structures between multiple layers are arranged everywhere in order to realize various circuits. The following method is generally used as a method for manufacturing a laminated wiring board having a multi-layer conductive structure. First, a plurality of conductor layers and interlayer insulating layers are alternately stacked to form a single laminated wiring board. A through hole is formed in the laminated wiring board with a drill or the like, and plating is performed between the layers. Then, filling the inside of the through hole, lid plating, etc. are performed.
[0003]
[Problems to be solved by the invention]
However, the conventional multilayer wiring board has the following problems. That is, in the interlayer conduction structure of this multilayer wiring board, interlayer conduction is realized by covering the inner wall of the through hole with the metal deposited by plating. This plating conduction has a low connection reliability due to the small connection area. In addition, many steps such as through-hole plating, filling, and lid plating must be performed, which requires a lot of labor for manufacturing.
[0004]
The present invention has been made to solve the problems of the interlayer conductive structure in the conventional multilayer wiring board described above. That is, it is an object of the present invention to provide a multilayer wiring board and a method for manufacturing the same in which the connection area is increased and the number of manufacturing steps is reduced in the interlayer conductive structure.
[0005]
[Means for Solving the Problems]
The multilayer wiring board of the present invention, which has been made for the purpose of solving this problem, is a multilayer wiring board in which conductor layers and interlayer insulating layers are alternately stacked, and is formed on one surface of the first interlayer insulating layer. A conductor pin (A1) that conducts between one conductor layer and the second conductor layer on the other surface, and the second conductor on one surface of the second interlayer insulating layer adjacent to the first interlayer insulating layer The conductor (A) that constitutes the pin (A1) is arranged at the same position in the plate surface of the laminated wiring board with the conductor (B1) that conducts the layer and the third conductor layer on the other surface And the conductor (B) constituting the pin (B1) are in contact and electrically connected, and have different hardness.
[0006]
In the laminated wiring board according to the present invention, the conductor (B) has a higher hardness than the conductor (A), and the conductor (B) is connected at the place where the pin (A1) and the pin (B1) are connected. B) is difficult for the conductor (A).
[0007]
In other words, the interlayer conductive structure of the present invention includes a “pin (A1) ” that penetrates the first interlayer insulating layer and a “pin (B1) ” that penetrates the second interlayer insulating layer adjacent to the first interlayer insulating layer. This is an interlayer connection structure between multiple layers that are connected by arranging them at the same position and conducts three conductor layers. The same position here means the same position in the board surface of the laminated wiring board. Furthermore, the conductor (A) constituting the pin (A1) and the conductor (B) constituting the pin (B1) have different hardness. For this reason, at the place where both pins are connected, the conductor is deformed by the plasticity of the metal, and the conductors are in close contact with each other. Furthermore, since the conductor (B) having high hardness is hard to be inserted into the conductor (A), the connection area of both pins is expanded, and conduction is ensured and reliability is improved.
[0008]
In the method for manufacturing a laminated wiring board according to the present invention, the first conductor layer is provided on one surface and the second conductor layer is provided on the other surface with the first interlayer insulating layer interposed therebetween, and penetrates the first interlayer insulating layer. A substrate (A2) having a pin (A1) with a conductor (A) to be formed, a conductor layer not on one surface of the second interlayer insulating layer, and a third conductor layer on the other surface, the second interlayer insulating layer being A substrate (B2) that penetrates and has a pin (B1) made of a conductor (B) having a hardness different from that of the conductor (A), the other surface of the substrate (A2) and one surface of the substrate (B2) Are combined so that the pin (A1) and the pin (B1) are at the same position in the plate surface of the laminated wiring board , and the combined substrate is pressed and integrated, and the pin (A1) and conductors by electrically connecting in contact the pin (B1) Producing a multilayer wiring board formed by alternately laminating interlayer insulating layer.
[0009]
In this manufacturing method, two substrates on which pins are driven are used as starting materials. The hardness of the conductors that make up the pins is different. First, the substrate is combined with the starting material so that the pins are in the same position. Thereafter, the two substrates are pressed and integrated to form a laminated wiring board. In other words, do not perform lid plating after pressing. This simplifies the manufacturing process.
[0010]
Moreover, in this manufacturing method, the conductor having the higher hardness of the conductor (A) and the conductor (B) protrudes from the surface in contact with the other substrate of the substrate having the conductor before pressing. Good. By pressing this board | substrate (A2) and a board | substrate (B2) , the state which the other conductor protruded into the other conductor after pressing is obtained. This increases the connection area between pins and improves the reliability of conduction.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below in detail with reference to the accompanying drawings.
[0012]
A laminated wiring board 100 according to the present embodiment has a cross-sectional structure shown in FIG. The laminated wiring board 100 is a three-layer wiring board having conductor layers 11, 12, and 21 and interlayer insulating layers 10 and 20. Of course, each conductor layer is appropriately patterned. Each interlayer insulating layer has a plate thickness of about 0.05 to 0.15 mm, and the thickness of the copper foil as each conductor layer is about 5 to 20 μm.
[0013]
The laminated wiring board 100 has vias 13 for conducting the conductor layer 11 and the conductor layer 12. In addition, a via 23 for establishing electrical connection between the conductor layer 12 and the conductor layer 21 is provided. The via 13 and the via 23 are overlapped at the same position. Further, the connection portion between the via 13 and the via 23 has a shape in which the material of the via 23 is difficult to be the material of the via 13.
[0014]
The via 13 is obtained by inserting an Ag pin into a hole having a diameter of about 0.06 to 0.30 mm provided in the insulating layer 10. The via 23 is a Cu pin having a diameter of about 0.06 to 0.30 mm that penetrates the insulating layer 20. Therefore, the multilayer wiring board 100 has an interlayer conduction structure in which the conductor layer 11, the conductor layer 12, and the conductor layer 21 are conducted through the via 13 and the via 23.
[0015]
Next, a manufacturing process of the laminated wiring board 100 will be described. The laminated wiring board 100 is manufactured using the resin board 1 with double-sided copper and the resin board 2 with single-sided copper as starting materials. FIG. 2 is a diagram showing a resin plate 1 with double-sided copper. The resin plate 1 with double-sided copper has copper foils (conductor layers) 11 and 12 on both sides. Next, as shown in FIG. 3, the through-hole 14 is opened with the drill with respect to the resin board 1 with a double-sided copper. The through hole 14 is for forming an interlayer conduction structure. The through hole 14 may be formed by laser processing.
[0016]
Next, an Ag pin is inserted into the through hole 14. FIG. 4 is a view showing the resin plate 1 after insertion. The resin plate 1 is electrically connected to the conductor layer 11 and the conductor layer 12 by vias (Ag pins) 13. The length of the via 13 is the same as the thickness of the resin plate 1. Then, the copper foils 11 and 12 of the resin plate 1 in this state are patterned.
[0017]
On the other hand, the resin plate 2 with copper on one side has a copper foil (conductor layer) 21 on one side. A Cu pin 23 is driven into the resin plate 2 with copper on one side so as to penetrate the resin plate 2. FIG. 5 shows the resin plate 2 after driving. Since the resin plate 2 has a via (Cu pin) 23 protruding to the opposite surface of the conductor layer 21, it is possible to establish conduction between the conductor layer 21 and the opposite surface. Then, the copper foil 21 of the resin plate 2 in this state is patterned.
[0018]
Next, the resin plate 1 with a double-sided copper foil in which an Ag pin is inserted and the resin plate 2 with a single-sided copper foil in which a Cu pin is driven are placed so that the via 13 and the via 23 overlap each other vertically. combine. The resin plate 2 with the single-sided copper foil is arranged so that the surface without the copper foil 21 and the resin plate 1 are in contact with each other. Then, the combined resin plate 1 and resin plate 2 are pressed and integrated. At this time, since Cu is harder than Ag, Cu in the via 23 is less likely to be Ag in the via 13, and the laminated wiring board 100 shown in FIG. 1 is manufactured. The laminated wiring board 100 has a structure in which a copper foil 11, an insulating layer 10, a copper foil 12, an insulating layer 20, and a copper foil 21 are laminated in this order. A solder resist may be formed on the surface of the laminated wiring board 100 in this state.
[0019]
Next, a description will be given by paying attention to the connection portion between the via 13 and the via 23 having an interlayer conduction structure made of different metals. FIG. 7 is a diagram showing a part of each of FIGS. 4 and 5 (however, the conductor layer is omitted). First, the pin 13 made of Ag and the pin 23 made of Cu are arranged at the same position. Further, the pin 23 protrudes from the resin plate 2.
[0020]
The resin plate 1 and the resin plate 2 in the above state are pressed to obtain the state shown in FIG. FIG. 8 is a diagram showing a part of FIG. 1 (however, the conductor layer is omitted). In the connection portion between the pin 13 and the pin 23, Cu of the pin 23 is hard to be Ag of the pin 13 during press working. This is a phenomenon due to the plasticity of the metal, because Cu is a metal of a material harder than Ag. Thereby, the connection area of the pin 13 and the pin 23 is expanded, and a sufficient connection area can be secured.
[0021]
In the laminated wiring board 100 of the present embodiment, Cu is used as the hard metal and Ag is used as the soft metal. In addition to this combination, a combination as shown in FIG. 9 is conceivable. In FIG. 9, the metal A has a higher hardness than the metal B. Of course, other metals having different hardnesses can be realized. As the hardness of the metal, a value measured by a test method such as the Rockwell method or the Vickers method may be used.
[0022]
As described above in detail, in the present embodiment, first, the resin plate 1 having an interlayer conduction structure by vias (Ag pins) 13 and the resin plate having an interlayer conduction structure by vias (Cu pins) 23. 2 is combined. At this time, the via 13 and the via 23 are arranged so as to be at the same position. Further, the via 23 protrudes from the resin plate 2. In this state, the resin plate 1 and the resin plate 2 are pressed and integrated. Thereby, the laminated wiring board 100 having an interlayer conduction structure in which the conductor layer 11 and the conductor layer 21 are conducted by the via 13 and the via 23 is manufactured. In the portion where the via 13 and the via 23 of the laminated wiring board 100 are connected, the protruding Cu 23 has a shape in which the Cu of the via 13 is difficult to be Ag. For this reason, the connection area between the via 13 and the via 23 is increased, and the connection reliability is improved.
[0023]
In the present embodiment, no work such as plating is performed after pressing. Therefore, the number of manufacturing processes can be reduced. As a result, a laminated wiring board and a manufacturing method therefor have been realized in which the connection area is enlarged and the number of manufacturing steps is reduced.
[0024]
Note that this embodiment is merely an example, and does not limit the present invention. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof. For example, Ag and Ag paste correspond to conductors having different hardnesses according to the present invention.
[0025]
Even if the same metal is used, the hardness may differ between the metallurgical manufacturing method and that deposited by plating. For example, Pt is harder when deposited by plating than by metallurgical manufacturing. Therefore, Pt by the metallurgical manufacturing method and Pt deposited by plating correspond to conductors having different hardness as referred to in the present invention.
[0026]
In the present embodiment, two substrates having vias made of materials having different hardnesses are combined. However, any number of substrates may be used as long as the number is two or more. For example, when three substrates are combined, the via materials may be combined in the order of Cu, Ag, and Cu. Of course, it can be realized if the materials of adjacent vias have different hardnesses. Also, the board to be combined can be combined in the order of a board with double-sided copper foil, a board without copper foil, a board with double-sided copper foil, or a board with single-sided copper foil, a board with double-sided copper foil, and a board with single-sided copper foil. It can be realized in various variations.
[0027]
【The invention's effect】
As is apparent from the above description, according to the present invention, there are provided a laminated wiring board and a manufacturing method thereof in which the connection area is increased and the number of manufacturing steps is reduced in the interlayer conductive structure.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a multilayer wiring board according to an embodiment.
2 is a cross-sectional view (Step 1) of a stage in the process of manufacturing the multilayer wiring board of FIG. 1. FIG.
3 is a cross-sectional view (step 2) of a stage in the process of manufacturing the multilayer wiring board of FIG. 1;
4 is a cross-sectional view (step 3) of a stage in the process of manufacturing the multilayer wiring board of FIG. 1;
5 is a cross-sectional view (step 4) of the stage in the process of manufacturing the multilayer wiring board of FIG. 1;
6 is a cross-sectional view (step 5) of a stage in the process of manufacturing the multilayer wiring board of FIG. 1. FIG.
FIG. 7 is a diagram (before pressing) showing interlayer conduction by dissimilar metals.
FIG. 8 is a diagram (after pressing) showing interlayer conduction by dissimilar metals.
FIG. 9 is a diagram showing combinations of metals.
[Explanation of symbols]
10, 20 Interlayer insulation layer 11, 12, 21 Conductor layer (copper foil)
13 Via (Ag pin)
23 Via (Cu pin)
100 laminated wiring board

Claims (6)

導体層と層間絶縁層とを交互に積層してなる積層配線板において,
第1層間絶縁層の一方の面にある第1導体層と他方の面にある第2導体層との導通をとる導体のピン(A1)と,前記第1層間絶縁層に隣接する第2層間絶縁層の一方の面にある前記第2導体層と他方の面にある第3導体層との導通をとる導体のピン(B1)とが積層配線板の板面内における同じ位置に配置され,
前記ピン(A1)を構成する導体(A)と,前記ピン(B1)を構成する導体(B)とが接触して電気的に接続されるとともに、異なる硬度を有することを特徴とする積層配線板。
In a laminated wiring board in which conductor layers and interlayer insulating layers are alternately laminated,
A conductor pin (A1) that conducts electrical conduction between the first conductor layer on one side of the first interlayer insulating layer and the second conductor layer on the other side, and a second interlayer adjacent to the first interlayer insulating layer Conductor pins (B1) that conduct electricity between the second conductor layer on one side of the insulating layer and the third conductor layer on the other side are arranged at the same position in the plate surface of the laminated wiring board ;
A laminated wiring characterized in that the conductor (A) constituting the pin (A1) and the conductor (B) constituting the pin (B1) are in contact with each other and are electrically connected, and have different hardnesses. Board.
請求項1に記載する積層配線板において,
前記導体(B)は,前記導体(A)より高い硬度を有し,
前記ピン(A1)と前記ピン(B1)とが接続する箇所では,前記導体(B)が前記導体(A)にくい込んでいることを特徴とする積層配線板。
In the laminated wiring board according to claim 1,
The conductor (B) has a higher hardness than the conductor (A),
The laminated wiring board, wherein the conductor (B) is not easily inserted into the conductor (A) at a location where the pin (A1) and the pin (B1) are connected.
請求項1または請求項2に記載する積層配線板において,
前記ピン(A1)は前記第1導体層を貫通し,前記ピン(B1)は前記第3導体層を貫通していることを特徴とする積層配線板。
In the laminated wiring board according to claim 1 or 2,
The laminated wiring board, wherein the pin (A1) penetrates the first conductor layer and the pin (B1) penetrates the third conductor layer.
請求項1から請求項3のいずれか1つに記載する積層配線板において,
前記導体(A)と前記導体(B)との組合せは,
前記導体(A)がAgであり前記導体(B)がCuである組合せと,
前記導体(A)がCuであり前記導体(B)がNiである組合せと,
前記導体(A)がAgであり前記導体(B)がNiである組合せと,
のいずれか1つであることを特徴とする積層配線板。
In the laminated wiring board according to any one of claims 1 to 3,
The combination of the conductor (A) and the conductor (B) is:
A combination in which the conductor (A) is Ag and the conductor (B) is Cu;
A combination in which the conductor (A) is Cu and the conductor (B) is Ni;
A combination in which the conductor (A) is Ag and the conductor (B) is Ni;
A laminated wiring board, which is any one of the above.
導体層と層間絶縁層とを交互に積層してなる積層配線板の製造方法において,
第1層間絶縁層を挟んで一方の面に第1導体層があり他方の面に第2導体層があり,前記第1層間絶縁層を貫通する導体(A)によるピン(A1)を有する基板(A2)と,第2層間絶縁層の一方の面に導体層がなく他方の面に第3導体層があり,前記第2層間絶縁層を貫通するとともに前記導体(A)と異なる硬度の導体(B)によるピン(B1)を有する基板(B2)とを,前記基板(A2)の他方の面と前記基板(B2)の一方の面とを対向させ,前記ピン(A1)と前記ピン(B1)とが積層配線板の板面内における同じ位置になるように組み合わせ,
組み合わせた基板をプレスして一体化するとともに前記ピン(A1)と前記ピン(B1)を接触させて電気的に接続することを特徴とする積層配線板の製造方法。
In a method for manufacturing a laminated wiring board in which conductor layers and interlayer insulating layers are alternately laminated,
A substrate having a first conductor layer on one surface and a second conductor layer on the other surface across a first interlayer insulating layer, and having a pin (A1) made of a conductor (A) penetrating the first interlayer insulating layer (A2) and a conductor having no conductor layer on one surface of the second interlayer insulating layer and a third conductor layer on the other surface, penetrating the second interlayer insulating layer and having a hardness different from that of the conductor (A). The substrate (B2) having the pin (B1) according to (B) , the other surface of the substrate (A2) and the one surface of the substrate (B2) are opposed to each other, and the pin (A1) and the pin ( B1) and the laminated wiring board so that they are in the same position in the board surface ,
A method of manufacturing a laminated wiring board, wherein the combined substrates are pressed and integrated, and the pins (A1) and the pins (B1) are brought into electrical contact with each other .
請求項5に記載する積層配線板の製造方法において,
前記導体(A)と前記導体(B)のうち硬度が高い方の導体は,プレス前の状態で,その導体を有する基板の他方の基板に接する面から突出していることを特徴とする積層配線板の製造方法。
In the manufacturing method of the laminated wiring board of Claim 5,
The conductor having the higher hardness of the conductor (A) and the conductor (B) protrudes from the surface in contact with the other substrate of the substrate having the conductor before pressing. A manufacturing method of a board.
JP2001225394A 2001-07-26 2001-07-26 Laminated wiring board and manufacturing method thereof Expired - Fee Related JP4795575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001225394A JP4795575B2 (en) 2001-07-26 2001-07-26 Laminated wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001225394A JP4795575B2 (en) 2001-07-26 2001-07-26 Laminated wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003037366A JP2003037366A (en) 2003-02-07
JP4795575B2 true JP4795575B2 (en) 2011-10-19

Family

ID=19058392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001225394A Expired - Fee Related JP4795575B2 (en) 2001-07-26 2001-07-26 Laminated wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4795575B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101942732B1 (en) * 2017-04-12 2019-01-28 삼성전기 주식회사 Inductor and manufacturing method of the same
DE112018006091T5 (en) 2017-12-27 2020-08-20 Murata Manufacturing Co., Ltd. SEMI-CONDUCTOR COMPOSITE COMPONENT AND THE PACKAGE BOARD USED IN IT

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2767645B2 (en) * 1990-03-07 1998-06-18 富士通株式会社 Method for manufacturing multilayer wiring board
JPH1027824A (en) * 1996-02-23 1998-01-27 Matsushita Electric Ind Co Ltd Semiconductor device having bump electrode and manufacture thereof
JP2000216198A (en) * 1999-01-26 2000-08-04 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacture
US6326555B1 (en) * 1999-02-26 2001-12-04 Fujitsu Limited Method and structure of z-connected laminated substrate for high density electronic packaging
JP2000294931A (en) * 1999-04-07 2000-10-20 Shinko Electric Ind Co Ltd Multilayer wiring board and manufacture thereof
JP2001068856A (en) * 1999-06-22 2001-03-16 Asahi Chem Ind Co Ltd Insulation resin sheet and its manufacture

Also Published As

Publication number Publication date
JP2003037366A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
TW200524502A (en) Method of providing printed circuit board with conductive holes and board resulting therefrom
JP4256603B2 (en) Manufacturing method of laminated wiring board
TW201813463A (en) Rigid and flexible composite circuit board
JP4795575B2 (en) Laminated wiring board and manufacturing method thereof
TWI272887B (en) Printed circuit board and manufacturing method thereof
US20060175081A1 (en) method for electrical interconnection between printed wiring board layers using through holes with solid core conductive material
JP2003046249A (en) Lamination wiring board and its manufacturing method
JP2003229666A (en) Wiring board and method of manufacturing the same
JPH04336486A (en) Printed-circuit board
KR20070000644A (en) Chip embedded pcb and method of the same
CN103458624B (en) Technology for double-faced flexible substrate pieces to be connected into rolls
JP2002016332A (en) Laminated board having through hole and its manufacturing method
JP2007048768A (en) Laminated electronic component and its manufacturing method
JP3165617B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP6804115B1 (en) Printed board
JPH10270860A (en) Multilayered printed wiring board
JP2001308529A (en) Laminated wiring board and its manufacturing method
TW201143568A (en) Hybrid high/low-density multi-layer circuit board and its manufacturing process
JP2000286554A (en) Multilayer wiring board and its manufacture
JP2007157771A (en) Printed wiring board and method of forming its continuity
TW566070B (en) Structure and manufacture of multi-layer board
KR20160139829A (en) Multilayer fpcb and fabricating method thereof
JP6139856B2 (en) Wiring board and manufacturing method thereof
JPH05299844A (en) Printed multilayer wiring board and manufacture thereof
JP2003188532A (en) Method of manufacturing printed wiring board and printed wiring board manufactured thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees