JP4794913B2 - Beverage cooler - Google Patents

Beverage cooler Download PDF

Info

Publication number
JP4794913B2
JP4794913B2 JP2005164570A JP2005164570A JP4794913B2 JP 4794913 B2 JP4794913 B2 JP 4794913B2 JP 2005164570 A JP2005164570 A JP 2005164570A JP 2005164570 A JP2005164570 A JP 2005164570A JP 4794913 B2 JP4794913 B2 JP 4794913B2
Authority
JP
Japan
Prior art keywords
water
ice
sealed
beverage
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005164570A
Other languages
Japanese (ja)
Other versions
JP2006336980A (en
Inventor
猶太 天野
耕想 神谷
俊志 坪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2005164570A priority Critical patent/JP4794913B2/en
Publication of JP2006336980A publication Critical patent/JP2006336980A/en
Application granted granted Critical
Publication of JP4794913B2 publication Critical patent/JP4794913B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、飲料冷却装置に関し、特に、水槽内の冷却水を冷却する過程で蒸発器の周囲に形成される氷の厚さを制御する氷厚制御装置を備えた飲料冷却装置に関する。 The present invention relates to a beverage cooling apparatus, and more particularly to a beverage cooling apparatus including an ice thickness control device that controls the thickness of ice formed around an evaporator in the process of cooling cooling water in a water tank.

常に冷たい飲料等を供給する飲料冷却装置では、冷却水が貯留された水槽内に配置した蒸発管(蒸発器)の周囲に所望厚さの氷塊を生成して、この氷塊の潜熱を利用するアイスバンク式のものが知られている。この飲料冷却装置は、所定量の冷却水が貯留された水槽の内部に、飲料が流通するコイル状の飲料冷却管と、冷凍装置から導出されたコイル状の蒸発管とが同軸的に配置されて、両管が冷却水に浸漬される。この状態で、冷凍装置を運転して蒸発管に冷媒を循環供給することにより冷却水の一部を蒸発管の周囲に氷結させて氷塊を生成し、該氷塊の潜熱によって冷却された冷却水で、前記飲料冷却管を流通する飲料を間接的に冷却するようになっている。 In a beverage cooling apparatus that always supplies cold beverages or the like, an ice block having a desired thickness is generated around an evaporation pipe (evaporator) disposed in a water tank in which cooling water is stored, and ice that uses the latent heat of the ice block is generated. The bank type is known. In this beverage cooling device, a coiled beverage cooling pipe through which a beverage circulates and a coiled evaporation tube led out from the freezing device are coaxially arranged inside a water tank in which a predetermined amount of cooling water is stored. Both pipes are immersed in cooling water. In this state, a part of the cooling water by freezing around the evaporator tube to produce ice blocks, is cooling by the latent heat of ice lumps by circulating and supplying a coolant to the evaporation pipe by operating the refrigeration system The beverage flowing through the beverage cooling pipe is indirectly cooled with the cooling water.

上記の飲料冷却装置は、水槽内に生成される氷塊の氷厚を制御する氷厚制御装置を備え、該制御装置により冷凍装置をON/OFF制御することで、常に所定厚みの氷塊を維持するよう構成される。この氷厚制御装置は、所定の氷厚位置に位置決めした一対の電極を備え、両電極間のインピーダンスが予め設定された閾値より低ければ、蒸発管に氷結した氷塊の厚みが所定の氷厚以下であると判断して冷凍装置の運転を継続し、少なくとも一方の電極が氷塊で覆われて両電極間のインピーダンスが閾値より高くなったときに、氷塊の厚みが所定の氷厚に達したと判断して冷凍装置を停止するよう設定されている。その後、時間が経過すると、冷却水の温度上昇に伴って氷塊が融け始め、該氷塊の厚さが所定の氷厚を下回ると前記電極が水中に露呈するに至る。この電極の露呈により、再び両電極間のインピーダンスが閾値より低くなるの、前記氷厚制御装置が冷凍装置の運転再開を指示する。このように、予め設定された閾値に対する両電極間の変化するインピーダンスの高低を基に冷凍装置のON/OFF制御を行なうことで、常に氷塊の厚さを所望の氷厚に維持するようになっている。
特許第3600812号公報。
The beverage cooling apparatus includes an ice thickness control device that controls the ice thickness of ice blocks generated in the water tank, and the control device controls ON / OFF of the refrigeration device so that ice blocks having a predetermined thickness are always maintained. It is configured as follows. The ice thickness control device includes a pair of electrodes positioned at a predetermined ice thickness position, if lower than the threshold impedance is set Me pre between the electrodes, the thickness of the ice blocks were frozen in the evaporation tube a predetermined ice thickness and equal to or less than the continued operation of the refrigeration apparatus, when the at least one electrode is higher than covered by the impedance threshold between the two electrodes in ice cubes, the ice thickness thickness of a given ice masses reach It is set to stop the refrigeration system when it is determined that it has been. Thereafter, as time elapses, the ice block begins to melt as the temperature of the cooling water rises, and when the thickness of the ice block falls below a predetermined ice thickness, the electrode is exposed to water. The exposure of the electrode, and the impedance between the electrodes is lower than the threshold value again, the ice thickness controller signals the resuming operation of the refrigeration system. As described above, the ice block thickness is always maintained at a desired ice thickness by performing ON / OFF control of the refrigeration apparatus based on the level of impedance changing between both electrodes with respect to a preset threshold value. ing.
Japanese Patent No. 36000812.

上記のような飲料冷却装置の冷却水としては一般に水道水が用いられ、この水道水の水質は地域や季節によって異なる場合があり、その水質の違いにより冷却水の温度に対する電気電導度の変化特性も変わることがある。さらに、飲料冷却装置の運転をすると、水槽内の冷却水は、空気中の水蒸気を吸収することにより増加したり、蒸発して減少することがある。水槽内の冷却水が増加または減少すると、冷却水の温度に対する電気伝導度の変化特性が変わることがあり、その結果、冷却水中の各電極間のインピーダンスの変化特性も変わることになる。しかるに、前述した氷厚制御を行なうための閾値は、冷却水の電気電導度に応じて両電極間のインピーダンスが変化するにも拘らず、予め定めた固定値であるため、冷却水の温度に対する電気電導度の変化特性の違いによっては、正常な氷厚制御を行ない得なくなる。すなわち、冷却水の温度に対する電気電導度の変化特性が極度に高い場合には、電極が氷塊で覆われても両電極間のインピーダンスが閾値を越えて高くならず、そのため冷凍装置が停止しないで氷塊が成長し過ぎて飲料冷却管が氷塊で覆われてしまい、飲料自体が氷結して注出できなくなる。これとは逆に、冷却水の温度に対する電気電導度の変化特性が極度に低い場合は、氷塊がなくても両電極間のインピーダンスが閾値を下回らず冷凍装置が運転を開始しないために、飲料を冷却できなくなってしまうことになる。 Generally, tap water is used as the cooling water of the beverage cooling device as described above, and the quality of this tap water may vary depending on the region and season, and the change in electrical conductivity with respect to the temperature of the cooling water due to the difference in water quality. May also change. Furthermore, when the beverage cooling device is operated, the cooling water in the water tank may increase by absorbing water vapor in the air or may evaporate and decrease. When the cooling water in the water tank is increased or decreased, it may change the characteristics of the electrical conductivity with respect to temperature of the cooling water is changed, the result will vary also change characteristic of the impedance between the electrodes in the cooling water. However, the threshold for performing the ice thickness control described above, although the impedance between the two electrodes changes according to the electric conductivity of the cooling water, because it is predetermined fixed value, for the temperature of the cooling water the difference in the change characteristic of the electric conductivity is eliminated deeds give normal ice thickness control. That is, when the change characteristic of the electrical conductivity with respect to temperature of the cooling water is extremely high, Razz electrode is high beyond the impedance threshold between covered even both electrodes in the ice mass, therefore the refrigeration apparatus stops ice blocks is too grown beverage cooling pipes do not have will be covered with ice cubes, that such not Deki pouring drink itself is frozen. On the contrary, since if the change characteristic of the electrical conductivity with respect to temperature of the cooling water is extremely low, the ice blocks regardless refrigeration device falls below even the impedance threshold between the electrodes without does not start the operation In addition, the beverage cannot be cooled .

さらに、上記の両電極は冷却水中に配置されているので、各電極にスケールなどの汚れが付着して両電極間のインピーダンス正確に測定されなくなって正常な氷厚制御をできないことがある。 Furthermore, the electrodes of the above because it is disposed in the cooling water, the impedance between the dirt adheres to the electrodes, such as the scale to the electrodes may not be normal ice thickness control gone be accurately measured.

よって、本発明は、水槽内の冷却水の温度に対する電気伝導度の変化特性に影響を受けることなく、蒸発管の周囲に形成される氷の厚さを正確に制御する氷厚制御装置を備えた飲料冷却装置を提供することを目的とする。 Therefore, the present invention includes an ice thickness control device that accurately controls the thickness of the ice formed around the evaporator tube without being affected by the change in electrical conductivity with respect to the temperature of the cooling water in the water tank. Another object is to provide a beverage cooling apparatus.

本発明は、上記課題を解決するため、冷却水を貯留した水槽の内部に立設したコイル状の飲料供給管の周囲にコイル状の蒸発管を離間して配置した飲料冷却装置において、
所定量の電導水をその内部に封入しその水面の上方空間に空気又は窒素ガスを封入した熱伝導性金属素材からなる密閉容器に互いに離間して前記封入した電導水に浸漬される一対の電極を液密的に組付けて構成され、前記密閉容器が前記蒸発管の周囲に所定の間隔にて離間して配置される氷厚検知器と、前記蒸発管に冷媒が循環供給されて同蒸発管の周囲に前記冷却水が凍結した氷が前記氷厚検知器の前記密閉容器に付着して同密閉容器に封入した電導水が凍結したとき前記電極間のインピーダンスを検知して前記冷媒の循環供給を停止する制御手段とを備えた氷厚制御装置を設けたことを特徴とする飲料冷却装置を提供するものである。
In order to solve the above problems, the present invention provides a beverage cooling apparatus in which a coiled evaporating pipe is disposed around a coiled beverage supply pipe provided upright in a water tank in which cooling water is stored.
A pair of electrodes that are immersed in the enclosed conductive water while being separated from each other in a sealed container made of a heat conductive metal material in which a predetermined amount of conductive water is sealed inside and air or nitrogen gas is sealed in a space above the water surface. And an ice thickness detector in which the hermetic container is arranged at a predetermined interval around the evaporation pipe, and a refrigerant is circulated and supplied to the evaporation pipe for the same evaporation. Circulation of the refrigerant by detecting the impedance between the electrodes when the frozen water of the cooling water around the pipe adheres to the sealed container of the ice thickness detector and the conductive water sealed in the sealed container is frozen. An ice thickness control device provided with a control means for stopping supply is provided.

上記のように構成した飲料冷却装置においては、下記の利点がある。
(1)前記密閉容器に封入した電導水の電気伝導度は、前記水槽に貯留した冷却水の電気伝導度が変化しても常に一定であるので、前記両電極間のインピーダンスの変化特性が変わることがなく、前記蒸発管の周囲に形成される氷の厚さを的確に規制することができる。
(2)前記密閉容器に封入した電導水は常に清浄に保たれるので、前記両電極にスケールが付着することがなく、同電極間のインピーダンスの検出に支障をきたさない。
(3)前記密閉容器に封入した電導水の水面上方に空気又は窒素ガスを封入したことにより、前記電導水が凍結して形成された氷の体積膨張が吸収されるので、前記密閉容器がその内部に形成された氷によって破損することはない。
The beverage cooling apparatus configured as described above has the following advantages.
(1) Since the electric conductivity of the conductive water sealed in the sealed container is always constant even if the electric conductivity of the cooling water stored in the water tank changes, the change characteristic of the impedance between the two electrodes changes. Therefore, the thickness of the ice formed around the evaporation tube can be accurately regulated.
(2) Since the conductive water sealed in the sealed container is always kept clean, scales do not adhere to the electrodes, and the impedance detection between the electrodes is not hindered.
(3) By enclosing air or nitrogen gas above the surface of the conductive water sealed in the sealed container, the volume expansion of ice formed by freezing the conductive water is absorbed, so the sealed container is It is not damaged by the ice formed inside.

以下、本発明の実施形態を図面を用いて説明する。
(第1実施形態)
図1〜図3は、本発明の飲料冷却装置を採用した飲料ディスペンサの第1実施形態を示しており、この飲料ディスペンサは、装置本体Bと、炭酸ガスの封入したガスボンベGと、飲料を蓄えた飲料供給源Tと、注出コックPとにより構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
1 to 3 show a first embodiment of the present onset Ming beverage beverage dispenser that employs a cooling device, the beverage dispenser includes a device main body B, a gas cylinder G enclosing the carbon dioxide, the beverage Is constituted by a beverage supply source T and a pouring cock P.

装置本体Bは、図1に示すように、下側ハウジングB1と、この下側ハウジングB1上に載置固定した上側ハウジングB2とにより構成されているApparatus main body B, as shown in FIG. 1, the lower housing B1, is constituted by an upper housing B2 which is mounted and fixed on the lower housing B1.

図2に示すように、上側ハウジングB2の内部には、水槽10と、コイル状の蒸発器21と、コイル状の30と、撹拌装置40と、氷厚制御装置の氷厚検知器50が配置されている。水槽10は、飲料冷却管30内の飲料を冷却する冷却水Wを貯えている。 As shown in FIG. 2 , a water tank 10, a coiled evaporator 21, a coiled 30, a stirring device 40, and an ice thickness detector 50 of an ice thickness control device are arranged inside the upper housing B <b> 2. Has been. Water tank 10, Ru Tei stored the cooling water W to cool the beverage in the beverage cooling pipe 30.

コイル状の蒸発器21は、水槽10の周壁近傍に立設されていて、下側ハウジングB1の内部に配置した冷凍装置(図示せず)に接続されている。冷凍装置は、公知のとおり、圧縮機により圧縮した冷媒ガスを凝縮器により冷却して液化させ、この液化冷媒を膨張弁キャピラリを通して水槽10内に配置した蒸発器21に導いて気化させる。これにより、水槽内の冷却水が凍結して蒸発器の周囲に円筒状の氷を形成する。 Coiled evaporator 21, have been erected on the peripheral wall near the water tank 10 is connected to a refrigeration system disposed within the lower housing B1 (not shown). Frozen equipment, as is known, the refrigerant gas compressed by the compressor is liquefied by cooling by a condenser, to vaporization and have guide the evaporator 21 disposed in the water tank 10 through an expansion valve and a capillary the liquefied refrigerant The As a result, the cooling water in the water tank is frozen to form cylindrical ice around the evaporator.

飲料冷却管30は、図2に示すように、水槽10内にて蒸発器21の内側に同心的に立設して冷却水に浸漬され、飲料供給源TからガスボンベGの炭酸ガス圧により圧送される飲料が供給される。飲料冷却管30に供給されて冷却水により冷却された飲料が図1に示したホースを通して注出コックPから飲料容器に注出される。 Beverage cooling tube 30, as shown in FIG. 2, is immersed in concentrically erected to the cooling water to the inside of the evaporator 21 in a water bath 10, the carbon dioxide gas pressure of the gas cylinder G from drinking source T A beverage to be pumped is supplied. The beverage supplied to the beverage cooling pipe 30 and cooled by the cooling water is poured out from the dispensing cock P into the beverage container through the hose shown in FIG .

撹拌装置40は、図2に示すように、モータ41と、プロペラ42とを備えている。モータ41は、水槽41の上端開口部に固定した支持板上に搭載されている。モータ41の出力軸と同軸的に連結されて水槽10内に垂下する回転軸の先端にはプロペラ42が連結されている。プロペラ42はモータ41の駆動により回転して水槽10内に貯留されている冷却水Wを撹拌し、冷却水Wの全体が蒸発器21の周囲に形成される氷Iに接触して均一に冷却されるようにする。 As shown in FIG. 2, the stirring device 40 includes a motor 41 and a propeller 42. The motor 41 is mounted on a support plate fixed to the upper end opening of the water tank 41 . A propeller 42 is connected to the tip of a rotating shaft that is coaxially connected to the output shaft of the motor 41 and hangs down in the water tank 10. Propeller 42 was stirred cooling water W stored rotates in the water tank 10 by driving the motor 41, in contact with the ice I the entire body of cooling water W is formed around the vapor Hatsuki 21 To ensure uniform cooling.

氷厚制御装置(氷厚制御手段)の氷厚検知器50は、蒸発器21の周囲に形成される氷Iの厚さを検知して制御するためのものであり、図2に示すように、水槽10内の上下方向の任意の位置(本実施形態では中間位置)にて蒸発器21の周囲から離間して適宜な支持手段により配置されている。図3に示したように、氷厚検知器50は、密閉容器51の内部に所定量の電導水を封入すると共にその水面の上方空間に緩衝気体として機能する空気又は窒素ガス54封入し、互いに離間して封入した電導水に浸漬される一対の電極52を密閉容器51に組付けて構成されている。 The ice thickness detector 50 of the ice thickness control device ( ice thickness control means) is for detecting and controlling the thickness of the ice I formed around the evaporator 21 , as shown in FIG. , any vertical position in the water tank 10 (in this embodiment a middle position) is disposed by appropriate support means spaced from the periphery of the evaporator 21 at. As shown in Figure 3, ice thickness detector 50 is internal to a predetermined amount of conductive water the air or nitrogen gas 54 is sealed and functions as a buffer gas in the space above the water surface while enclosing the closed container 51, with each other A pair of electrodes 52 to be immersed in conductive water sealed and separated are assembled to the sealed container 51.

密閉容器51は、ステンレスなどの熱伝導金属素材により形成され、容器本体51aの上端開口部に蓋体51bに周囲を溶接して構成されている。この密閉容器51の内部に封入した電導水は、水槽10内の冷却水から隔離して遮断されている。一対の電極52は、容器本体51の上部に液密的に組込んだ電極保持部材51cに保持されて電導水に浸漬されている。なお、一対の電極52は、中間部から上部にかけて蓋51bと電極保持部材51cに接触しないように絶縁部材により被覆されている。また、電極52が挿入されている蓋51bの貫通孔の周囲には、Oリングが介装されているので電導水53が密閉部材51内から漏れることがない。 The sealed container 51 is formed of a heat conductive metal material such as stainless steel, and is configured by welding the periphery of the lid body 51b to the upper end opening of the container body 51a. The conductive water sealed in the sealed container 51 is isolated from the cooling water in the water tank 10 and blocked. The pair of electrodes 52 is held by an electrode holding member 51c that is liquid-tightly incorporated in the upper part of the container body 51 and is immersed in conductive water. The pair of electrodes 52 are covered with an insulating member so as not to contact the lid 51b and the electrode holding member 51c from the middle part to the upper part. Further, since the O-ring is interposed around the through hole of the lid 51b in which the electrode 52 is inserted, the conductive water 53 does not leak from the inside of the sealing member 51 .

密閉容器51に封入した電導水53は、蒸発管21の周囲に形成された氷が密閉容器51に付着したとき凍結するもので、純水に重曹を加えて所定の電気伝導度(例えば電気伝導度300μS/cm)となるように調整されている。なお、電導水53には過冷却防止剤としてヨウ化銀を添加するのが望ましく、これにより密閉容器51内にて電導水が過冷却により凍結するのを防止できる。 The conductive water 53 sealed in the sealed container 51 freezes when ice formed around the evaporation tube 21 adheres to the sealed container 51. Sodium bicarbonate is added to pure water to obtain a predetermined electrical conductivity (for example, electrical conductivity). The degree of adjustment is 300 μS / cm. In addition, it is desirable to add silver iodide as a supercooling preventive agent to the conductive water 53 , so that the conductive water can be prevented from freezing due to supercooling in the sealed container 51.

上記のように構成した氷厚検知器50を備えた氷厚制御装置は、下側ハウジングの内部に設置した冷凍装置(図示せず)の制御回路(マイクロコンピュータ)に接続されていて、氷厚検知器50内の両電極52間のインピーダンスの測定値に応じて前記冷凍装置の運転が前記制御回路の制御下にて制御されるように機能する。The ice thickness control device including the ice thickness detector 50 configured as described above is connected to a control circuit (microcomputer) of a refrigeration apparatus (not shown) installed in the lower housing, and the ice thickness control device is provided. It functions so that the operation of the refrigeration apparatus is controlled under the control of the control circuit in accordance with the measured value of the impedance between both electrodes 52 in the detector 50.

上記のように構成した飲料デイスペンサにおいて、冷凍装置の運転時に圧縮機の作動によって圧縮された冷媒ガスが凝縮器により冷却されて液化し、液化した冷媒が膨張弁を通して水槽10内の蒸発器21にて気化する。これにより、水槽10内の冷却水Wが蒸発器21との熱交換によって徐々に冷却されて蒸発器21の周囲に氷Iを形成する。このとき、モータ41の作動によって回転駆動されるプロペラにより冷却水Wが攪拌され均一に冷却され、飲料供給管30に供給される飲料が冷却される。 In the beverage dispenser configured as described above, the refrigerant gas compressed by the operation of the compressor during operation of the refrigeration apparatus is cooled and liquefied by the condenser, and the liquefied refrigerant passes through the expansion valve to the evaporator 21 in the water tank 10. Vaporize. Thereby, the cooling water W in the water tank 10 is gradually cooled by heat exchange with the evaporator 21 to form ice I around the evaporator 21. At this time, the cooling water W is stirred and uniformly cooled by the propeller that is rotationally driven by the operation of the motor 41, and the beverage supplied to the beverage supply pipe 30 is cooled.

このような冷却水の冷却中に蒸発器21の周囲に形成された氷Iが成長して氷厚検知器50の密閉容器51に付着すると、同密閉容器51に封入した電導水が凍結して両電極間のインピーダンスの測定値が所定値(閾値)以上になる。このとき、氷厚制御装置にて測定される両電極間のインピーダンスの上昇に応答して冷凍装置の運転がその制御回路の制御下にて停止する。When ice I formed around the evaporator 21 grows and adheres to the sealed container 51 of the ice thickness detector 50 during the cooling of such cooling water, the conductive water sealed in the sealed container 51 is frozen. The measured value of the impedance between both electrodes becomes equal to or greater than a predetermined value (threshold value). At this time, the operation of the refrigeration apparatus stops under the control of the control circuit in response to the increase in impedance between both electrodes measured by the ice thickness control apparatus.

冷凍装置20の運転が停止すると、蒸発器21の周囲に形成された氷Iは徐々に融けてその氷厚が減少する。これにより、蒸発器21の周囲に形成された氷Iが氷厚制御装置の密閉容器51から解離すると、両電極52間のインピーダンスが所定値以下になり、
氷厚制御装置にて測定される両電極52間のインピーダンスの下降に応答して冷凍装置の運転がその制御回路の制御下にて再開する。
When the operation of the refrigeration apparatus 20 is stopped, the ice I formed around the evaporator 21 is gradually melted and the ice thickness is reduced. Thus, when the ice I formed around the evaporator 21 is dissociated from the sealed container 51 of the ice thickness control device, the impedance between the electrodes 52 becomes a predetermined value or less,
In response to the drop in impedance between the electrodes 52 measured by the ice thickness control device, the operation of the refrigeration device resumes under the control of the control circuit.

上記のように構成した飲料ディスペンサにおいては、所定の電気伝導度(例えば300μS/cm)に調整された電導水53は、密閉容器51に封入されているので、その電気伝導度の変化特性が変化することがなく、両電極52間のインピーダンスの変化特性も殆ど変わることがない。よって、氷厚検知器50を備えた氷厚制御装置は、冷却水Wの水質(電気伝導度)に影響されることなく、常に正確に氷厚制御をすることができる。 In the beverage dispenser configured as described above, since the conductive water 53 adjusted to a predetermined electrical conductivity (for example, 300 μS / cm) is sealed in the sealed container 51, the change characteristic of the electrical conductivity changes. The impedance change characteristic between the electrodes 52 hardly changes. Therefore, the ice thickness control device including the ice thickness detector 50 can always accurately control the ice thickness without being affected by the water quality (electrical conductivity) of the cooling water W.

また、密閉容器51は、ステンレス製等の熱伝導性が高い金属素材で形成されているので、蒸発器21の周囲に形成された氷Iが付着したとき同密閉容器内に封入した電導水が即時に凍結する。よって、上記の氷厚検知器50を備えた氷厚制御装置によれば、蒸発器21の周囲に形成される氷の厚さを的確に制御することができる。なお、氷厚検知器50の密閉容器51内に封入した電導水は水槽10に貯留された冷却水から隔離されてその水質の影響を受けないので、両電極52にスケールが付着する虞もない。また、密閉容器51内に緩衝気体として機能する空気又は窒素ガスを封入したことにより、密閉容器51内にて凍結した氷の体積膨張に起因する同密閉容器の破損を防止することができる。 Further, since the sealed container 51 is formed of a metal material having high thermal conductivity such as stainless steel , when the ice I formed around the evaporator 21 adheres, the conductive water sealed in the sealed container 51 Freeze immediately. Therefore, according to the ice thickness control device including the ice thickness detector 50 described above, the thickness of ice formed around the evaporator 21 can be accurately controlled. In addition, since the conductive water sealed in the sealed container 51 of the ice thickness detector 50 is isolated from the cooling water stored in the water tank 10 and is not affected by the water quality, there is no possibility that scales adhere to both electrodes 52. . Further, by sealing air or nitrogen gas functioning as a buffer gas in the sealed container 51, it is possible to prevent the sealed container from being damaged due to the volume expansion of ice frozen in the sealed container 51.

また、電導水53には、過冷却防止剤としてヨウ化銀が含まれているので、電導水53が、過冷却状態にて凍結されることもない。 Moreover, since the conductive water 53 contains silver iodide as a supercooling preventive agent, the conductive water 53 is not frozen in a supercooled state .

(第2実施形態)
図3に示した実施形態においては、密閉容器51の内部に封入した電導水に一対の電極52を浸漬したが、図4に示したように単一の電極52Aを電導水53Aに浸漬して、図3に示した密閉容器51と同様に形成した密閉容器51Aの周壁を他の電極として機能させてこれらの両電極間のインピーダンスを検出するように実施してもよい。
(Second Embodiment)
In the embodiment shown in FIG. 3, the pair of electrodes 52 are immersed in the conductive water sealed in the sealed container 51. However, as shown in FIG. 4, a single electrode 52A is immersed in the conductive water 53A. 3 may be implemented such that the peripheral wall of the sealed container 51A formed in the same manner as the sealed container 51 shown in FIG. 3 functions as another electrode to detect the impedance between these two electrodes.

本発明に係る飲料冷却装置の一実施形態である飲料ディスペンサの概略構成図である。It is a schematic block diagram of the drink dispenser which is one Embodiment of the drink cooling device which concerns on this invention. 図1の装置本体の要部の断面図である。It is sectional drawing of the principal part of the apparatus main body of FIG. 第1実施形態における氷厚検出器の断面図である。It is sectional drawing of the ice thickness detector in 1st Embodiment. 第2実施形態における氷厚検出器の断面図である。It is sectional drawing of the ice thickness detector in 2nd Embodiment.

10…水槽、20…冷凍装置、21…蒸発器、50…氷厚制御装置の氷厚検出器、51…密閉容器、52…電極、53…電導水、54…空気又は窒素ガス DESCRIPTION OF SYMBOLS 10 ... Water tank, 20 ... Refrigeration apparatus, 21 ... Evaporator, 50 ... Ice thickness detector of ice thickness control apparatus , 51 ... Sealed container , 52 ... Electrode, 53 ... Conducting water, 54 ... Air or nitrogen gas .

Claims (2)

冷却水を貯留した水槽の内部に立設したコイル状の飲料供給管の周囲にコイル状の蒸発管を離間して配置した飲料冷却装置において、
所定量の電導水をその内部に封入しその水面の上方空間に空気又は窒素ガスを封入した熱伝導性金属素材からなる密閉容器に互いに離間して前記封入した電導水に浸漬される一対の電極を液密的に組付けて構成され、前記密閉容器が前記蒸発管の周囲に所定間隔にて離間して配置される氷厚検知器と、冷凍運転中に前記蒸発管の周囲に前記冷却水が凍結した氷が前記氷厚検知器の密閉容器に付着して同密閉容器に封入した電導水が凍結し、前記電極間のインピーダンスが所定値以上になったとき前記冷媒の循環供給を停止する制御手段とを備えた氷厚制御装置を設けたことを特徴とする飲料冷却装置。
In the beverage cooling apparatus in which the coiled evaporating pipe is arranged separately around the coiled beverage supply pipe erected inside the water tank storing the cooling water,
A pair of electrodes that are immersed in the enclosed conductive water while being separated from each other in a sealed container made of a heat conductive metal material in which a predetermined amount of conductive water is sealed inside and air or nitrogen gas is sealed in a space above the water surface. And an ice thickness detector in which the sealed container is arranged at a predetermined interval around the evaporation pipe, and the cooling water around the evaporation pipe during a freezing operation. When the frozen ice adheres to the airtight container of the ice thickness detector and the conductive water sealed in the airtight container freezes and the impedance between the electrodes exceeds a predetermined value, the circulation supply of the refrigerant is stopped. An ice thickness control device comprising a control means is provided.
前記密閉容器に封入した電導水に過冷却防止剤を混入したことを特徴とする請求項1に記載した飲料冷却装置。   The beverage cooling apparatus according to claim 1, wherein a supercooling inhibitor is mixed in the conductive water sealed in the sealed container.
JP2005164570A 2005-06-03 2005-06-03 Beverage cooler Expired - Fee Related JP4794913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005164570A JP4794913B2 (en) 2005-06-03 2005-06-03 Beverage cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005164570A JP4794913B2 (en) 2005-06-03 2005-06-03 Beverage cooler

Publications (2)

Publication Number Publication Date
JP2006336980A JP2006336980A (en) 2006-12-14
JP4794913B2 true JP4794913B2 (en) 2011-10-19

Family

ID=37557681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005164570A Expired - Fee Related JP4794913B2 (en) 2005-06-03 2005-06-03 Beverage cooler

Country Status (1)

Country Link
JP (1) JP4794913B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5256692B2 (en) * 2007-10-31 2013-08-07 日産自動車株式会社 Fuel cell system
JP6482174B2 (en) * 2014-01-21 2019-03-13 ホシザキ株式会社 Beverage cooler

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3281644B2 (en) * 1992-07-01 2002-05-13 三洋電機株式会社 Cooling room
JPH06336291A (en) * 1993-05-28 1994-12-06 Sanyo Electric Co Ltd Beverage dispenser
JP2001225898A (en) * 2000-02-17 2001-08-21 Taiyo Kk Cooling circuit for beverage server
JP2004020518A (en) * 2002-06-20 2004-01-22 Ubukata Industries Co Ltd Electrostatic capacity type liquid sensor
JP2004333372A (en) * 2003-05-09 2004-11-25 Ubukata Industries Co Ltd Capacitance type liquid sensor

Also Published As

Publication number Publication date
JP2006336980A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
US5065598A (en) Ice thermal storage apparatus
US6370892B1 (en) Batch process and apparatus optimized to efficiently and evenly freeze ice cream
US6119472A (en) Ice cream machine optimized to efficiently and evenly freeze ice cream
US20190360736A1 (en) Ice making assemblies and methods for making clear ice
RU2010128469A (en) CONDENSER FOR REFRIGERATING UNIT
JP4794913B2 (en) Beverage cooler
JP4972430B2 (en) Beverage dispenser
US4691529A (en) Absorption refrigerator for ice-making
WO2001001052A1 (en) A control assembly for a refrigeration unit
JP4794909B2 (en) Drinking water dispenser
KR100868068B1 (en) Apparatus for making ice from seawater or ozonewater
JP2006145193A (en) Refrigerator
JP2005061680A (en) Water supply/discharge control device for cooling tower
CN112728826A (en) Ice maker and refrigerator
JP2003192097A (en) Cold drink feed device
JP2007333325A (en) Ice making device and refrigerator equipped with same
JP4445688B2 (en) Cold beverage supply device
JP4008393B2 (en) Water cooler
JP5219356B2 (en) Cold water supply device
JP3657668B2 (en) Beverage cooler
JP4147026B2 (en) Cold beverage supply device
KR20200001489U (en) Liquid Phase Beverage Supercooling Device
JP3600812B2 (en) Control device of refrigerator in soft drink dispenser
JP3970620B2 (en) Ice storage type beverage dispenser
JPH0227976Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100707

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees