JP3657668B2 - Beverage cooler - Google Patents

Beverage cooler Download PDF

Info

Publication number
JP3657668B2
JP3657668B2 JP27916495A JP27916495A JP3657668B2 JP 3657668 B2 JP3657668 B2 JP 3657668B2 JP 27916495 A JP27916495 A JP 27916495A JP 27916495 A JP27916495 A JP 27916495A JP 3657668 B2 JP3657668 B2 JP 3657668B2
Authority
JP
Japan
Prior art keywords
beverage
evaporation pipe
beverage tank
tank
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27916495A
Other languages
Japanese (ja)
Other versions
JPH09119759A (en
Inventor
明 小川
豊彰 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP27916495A priority Critical patent/JP3657668B2/en
Publication of JPH09119759A publication Critical patent/JPH09119759A/en
Application granted granted Critical
Publication of JP3657668B2 publication Critical patent/JP3657668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は圧縮式の冷凍装置を備えたボトル式の飲料冷却機に関する。
【0002】
【従来の技術】
飲料冷却機としては、例えば、実開昭62−38571号公報に記載されている様な、圧縮式の冷凍装置を備えたボトル式の飲料冷却機が一般的に知られている。
【0003】
図3に、従来のボトル式の飲料冷却機の構造の概要を示す。この飲料冷却機の主要部は、圧縮器11、凝縮器12、膨張弁(図示せず)及び蒸発管6及を備えた圧縮式の冷凍装置15と、飲料水5を蓄え、底部に注出弁10を備えた飲料タンク3とにより構成されている。飲料タンク3の外周には、ほぼ全面にわたって蒸発管6が密着して巻き付けられていて、その外側は更に断熱材2で覆われている。
【0004】
膨張弁で温度降下した気液混合状態の冷媒は、飲料タンク3の胴部外周の下端側から蒸発管6に供給され、飲料タンク3の胴部側壁を介して内部の飲料水と熱交換して気化した後、飲料タンク3の胴部外周の上端側から圧縮機11に流入し、凝縮機12を経て膨張弁に戻る。また、蒸発管6の上端部の近傍の部位には感熱パイプ7が溶接等により取り付けられていて、更に、感熱パイプ7の外側にはアルミニウム製の伝熱板14の一端が密着して固定され、伝熱板13の他端は飲料タンク3の胴部外周の上端部付近に密着して固定されている。感熱パイプ7の中には測温抵抗体からなる温度センサ8が収容され、この温度センサ8の出力信号により冷凍装置15が制御される様になっている。
【0005】
以下に、この飲料冷却機によって飲料水を冷却する過程について説明する。冷凍装置15の運転を開始すると、膨張弁で温度降下した気液混合状態の冷媒が飲料タンク3の胴部外周の下端側から蒸発管6に供給され、飲料タンク3の胴部側壁を介して内部の飲料水5と熱交換して気化しながら上端側へ流れて行く。飲料タンク3の内部の飲料水5の温度が高い間は、冷媒は飲料水との熱交換によって飲料タンクの下部で完全に気化し、冷却能力を失って、飲料タンク3の上端部付近から圧縮器11へ戻る。飲料水5の温度が次第に低下するに従って、冷媒の気液混合状態の領域が蒸発管6の上方へ拡大して、飲料タンクの胴部の上部の壁面を介しても冷却が行われる様になる。この様にして、冷媒の気液混合状態の領域が蒸発管6の上端部に達すると、蒸発管6の上端部の近傍に取り付けられた感熱パイプ7が冷却され、これが内部の温度センサ8により検知されて、制御装置9が働いて冷凍装置15の運転を、一旦、停止する。
【0006】
冷媒の気液混合状態の領域が蒸発管6の上端部に達しても、短時間では、飲料タンク3内の飲料水の全てを完全に冷却することはできないので、冷凍装置15が停止すると、伝熱板14を介して飲料タンク3の内部の飲料水の温度が感熱パイプ7に伝わって、その温度が上昇する。これが内部の温度センサ8により検知され、制御装置9が働いて冷凍装置15の運転を再開する。運転の再開後は、既に、飲料タンクの内部の飲料水は、ある程度、冷却されているので、前回と較べて、短い時間で冷媒の気液混合状態の領域が蒸発管6の上端部に達して、再度、冷凍装置15が停止する。この様な動作を3〜4回、繰り返すことによって漸く飲料タンク3の中の飲料水の全体が所定の温度まで冷却される。
【0007】
なお、飲料タンク3の内部の飲料水5の温度のみを検知して、冷凍装置15を制御する方法も考えられるが、飲料タンク3の内部に温度分布があるため、その方法では、飲料タンク3の上部の飲料水の温度が所定の温度まで降下する前に下部の飲料水の氷結が始まるという不都合がある。従って、上記の様なボトル式の構造の飲料冷却機では、蒸発管の温度を検知して冷凍装置の制御を行うことが不可欠とされている。
【0008】
【発明が解決しようとする課題】
上記の様な従来型の飲料冷却機では、飲料タンク内の飲料の全体を所定の温度に冷却するまでに、冷凍装置の運転及び停止を短周期で繰り返さざるを得ず、冷却に要する時間が掛かるとともに、冷凍装置の耐久性の面でも好ましくないという問題点があった。
【0009】
このような問題点に鑑み、本発明の目的は、飲料タンク内の上部の飲料の冷却能力を改善して冷却に要する時間を短縮するともに、冷凍装置の運転周期を延長して、冷凍装置の耐久性の向上を図ることができる飲料冷却機を提供することにある。
【0010】
【課題を解決するための手段】
本発明の飲料冷却機は、
圧縮器、凝縮器、膨張弁及び蒸発管を備えた圧縮式の冷凍装置と、
胴部外周に密着して前記蒸発管が巻付けられた飲料タンクと、
前記蒸発管の上端部付近に接触するとともに、前記飲料タンクの胴部側壁の上端部付近に接触してあるいは熱良導体を介して取付けられ、内部に温度センサを収容する感熱パイプと、
前記温度センサの出力信号に基づいて前記冷凍装置の運転を制御する制御装置とを備え、
前記冷凍装置は、前記飲料タンクの外周の下端側から前記蒸発管に冷媒を供給する様に構成され、
前記蒸発管は、前記飲料タンクの上部と下部で、飲料タンク外周面の単位面積当りの飲料タンクと蒸発管との接触面積が異なる複数の部分から構成され、下部での接触面積が上部での接触面積と比較して小さいことを特徴とする。
【0011】
また、蒸発管を前記飲料タンクの上部と下部で断面形状が異なる二つの部分から構成して、下部は円形の断面とし、上部は偏平の断面として、その偏平面を飲料タンクの外周に接触する様に巻付ける様にすれば、上記の条件を満足する蒸発管とすることができる。
【0012】
以下に、この飲料冷却機によって飲料水を冷却する過程について説明する。
【0013】
冷凍装置の運転を開始すると、膨張弁で温度降下した気液混合状態の冷媒は、飲料タンクの胴部の下端側から蒸発管に供給され、飲料タンクの胴部側壁を介して内部の飲料水と熱交換を行い、次第に気化しながら上端側へ流れて行く。飲料タンクの内部の水温が高い間は、冷媒は、蒸発管の下部で完全に気化し、冷却能力を失って、飲料タンクの上端部から圧縮器へ戻る。飲料タンクの内部の水温が次第に低下するに従って、冷媒の気液混合状態の領域が蒸発管の上部まで拡大して行き、飲料タンクの上部の胴部側壁を介して冷却が行われる様になる。飲料タンクの上部では、飲料タンク外周面の単位面積当りの飲料タンクと蒸発管との接触面積が下部と較べて大きくなっているので、単位面積当りの冷媒と飲料水との熱交換量が増加する結果、気液混合状態の冷媒の領域が上方へ拡大する速度が緩やかになる。従って、冷媒の気液混合状態の領域が蒸発管の上端部まで到達するまでの間に、飲料タンクの上部において、十分な時間、冷却が行われる。なお、飲料タンクの下部において蒸発管の接触面積が相対的に小さく設定されている結果、この間、下部において氷結が起こることはない。冷媒の気液混合状態の領域が蒸発管の上端部まで到達すると、感熱パイプが蒸発管の上端部に接触して取り付けられているので、感熱パイプが冷却され、感熱パイプの中に収容されている温度センサが感熱パイプの温度を検知して、制御装置を作動させて冷凍装置を、一旦、停止させる。
【0014】
冷凍装置が最初に停止した段階では、冷却タンクの上部の飲料水は、まだ完全には冷却が完了していない。このため、冷凍装置が停止して冷媒の循環が止まると、感熱パイプが飲料タンクの胴部側壁の上端部付近に接触してあるいは熱良導体を介して取付けられているので、冷却タンクの上部の飲料水の温度が取付け部を介して感熱パイプに伝わって温度センサに検知され、制御装置を作動させて冷凍装置の運転が再開される。冷凍装置の運転が再開されると、冷媒の気液混合状態の領域は再び蒸発管の下部から上方へ向かって拡大する。この段階では、飲料タンクの中の水温は既に相当程度、低下しているので、初回と較べてはるかに短い時間で、冷媒の気液混合状態の領域が蒸発管の上部に拡大する。冷媒の気液混合状態の領域が蒸発管の上部に拡大すると、飲料タンクの中の水温は上部の方が下部よりも高く、また、飲料タンクと蒸発管との接触面積も上部の方が下部よりも大きいので、冷媒の気液混合状態の領域が上方へ拡大する速度は、やや緩やかになる。これにより、飲料タンクの中部及び上部の飲料水が再度、冷却される。この様にして、冷媒の気液混合状態の領域が蒸発管の上端部まで到達すると再び制御装置によって冷凍装置が停止される。
【0015】
以上の様な過程を辿って、内容量3l、内径160mm程度の一般的な飲料冷却器の場合、通常、一回の長周期の運転サイクルと、一回の短周期の運転サイクルで、飲料タンクの内部の全体が所定温度以下に冷却される。その結果、短周期の運転サイクルの後、飲料タンクの上部の水温が感熱パイプに伝わっても、もはや、制御装置は作動せず、以降は、飲料水の消費に伴う飲料水の補給、あるいは時間経過に伴って、冷凍装置が断続的に短期間、運転される定常運転状態となる。
【0016】
【発明の実施の形態】
図1(a)及び(b)に本発明に基づく飲料冷却機の構造を示す、なお、(b)は、(a)のY−Y部断面図である。図中、3は飲料タンク、15は冷凍装置、11は圧縮器、12は凝縮器、13は膨張弁、6は蒸発管、7は感熱パイプ、8は温度センサ、9は制御装置を表す。
【0017】
筐体1の中には縦長の金属性の飲料タンク3が設置され、筐体1の側面には注出弁10が取り付けられ、注出弁10は飲料タンク3の底部に配管で接続されている。飲料タンク3の胴部外周には蒸発管6が密着して巻き付けられていて、蒸発管6は、筐体1の底部に収容された圧縮器11、凝縮器12及び膨張弁13とともに圧縮式の冷凍装置15を構成している。感熱パイプ7は、飲料タンク3の胴部の上端部付近に、胴部外周に沿うように溶接により取付けられ、同時に、蒸発管6の上端面にも溶接されている。感熱パイプ7の中には、ゴムチューブ16が挿入され、このゴムチューブ16の中には測温抵抗体からなる温度センサ8が収容されている。飲料タンク3及び蒸発管6と筐体1の間には断熱材2が充填されている。このほか、筐体1の内部には、温度センサ8の出力信号に基づいて冷凍装置15を制御する制御装置9が収容されている。
【0018】
蒸発管6は、飲料タンク3の胴部外周上の上約半分と下約半分で断面形状が互いに異なる二つの部分6a、6bにより構成され、下部蒸発管6aは円形の断面を有し、上部蒸発管6bは偏平の断面を有し、その偏平面が飲料タンク3の胴部外周面に接触するように巻付けられている。
【0019】
次に、この飲料冷却機によって飲料水を冷却する過程について説明する。先ず、飲料タンク3に飲料水5を満たして、冷凍装置15の運転を開始すると、膨張弁13で温度降下した気液混合状態の冷媒が飲料タンク3の胴部の下端側から下部蒸発管6aに供給され、飲料タンク3の胴部側壁を介して内部の飲料水5と熱交換して、気化しながら上端側へ流れて行く。飲料タンク3の内部の水温が高い間は、冷媒は、下部蒸発管6aの領域で完全に気化し、冷却能力を失って、飲料タンク3の上端部から圧縮器11へ戻る。飲料水5の温度が次第に低下するに従って、冷媒の気液混合状態の領域が上部蒸発管6bの内部まで拡大して行き、飲料タンク3の上部の胴部側壁を介しても冷却が行われる様になる。上部蒸発管6bの断面は偏平になっていて、その偏平面が飲料タンク3の胴部外周に接触するように巻付けられているので、飲料タンク3外周面の単位面積当りの蒸発管との接触面積が大きいために、気液混合状態の冷媒の領域が上方へ拡大する速度が緩やかになる。この様にして、飲料タンク3の上部において、十分な時間、冷却が行われた後、冷媒の気液混合状態の領域が蒸発管6bの上端部まで到達する。この結果、感熱パイプ7が冷却されると、感熱パイプ7の中にはゴムチューブ16が挿入されていて、感熱パイプ7から温度センサ8へやや熱が伝わりにくくなっているので、ある程度の時間遅れの後、温度センサ8が感熱パイプ7の温度を検知し、制御装置9を作動させて冷凍装置15を、一旦、停止させる。
【0020】
冷凍装置15が最初に停止した段階では、飲料タンク3の上部の飲料水はまだ完全には冷却されていない。このため、冷凍装置15が停止して冷媒の循環が止まると、飲料タンク3の上部の飲料水の温度が溶接部を介して感熱パイプ7に伝わり、ある程度の時間遅れの後、温度センサ8が感熱パイプ7の温度を検知し、制御装置9を作動させて冷凍装置15の運転が再開される。
【0021】
以下、手段の項の後段で述べた様に、冷凍装置の第二サイクル目の運転が行われた後、定常運転状態に移行する。
【0022】
図2に、飲料水の冷却の過程と冷凍装置の運転状況(ON−OFF)について本発明に基づく飲料冷却機と従来の飲料冷却機を比較した一例を示す。図中、縦軸は、飲料タンクの中心部で水面からの距離が底面までの深さの30%相当の位置の水温、横軸は、冷凍装置の運転を開始してからの経過時間を表す。また、Aは本発明に基づく飲料冷却機による水温の変化、Bは従来の飲料冷却機による水温の変化を表す。本発明に基づく飲料冷却機では、最初の長周期の運転サイクルで水温が目標の温度θ近くまで降下して、次の短周期の運転サイクルで目標の温度θまで到達する。これに対して、従来の飲料冷却機では、短周期の運転サイクルを更に3回繰り返した後、Aよりも時間ΔTだけ遅れて、目標の温度θまで到達する。
【0023】
【発明の効果】
本発明の飲料冷却機では、飲料タンクの上部における蒸発管の接触面積を下部に較べて大きくした結果、飲料タンクの上部における熱交換量が増加して、比較的少ない運転サイクルで飲料水を冷却することが可能となり。最初に飲料水を冷却するために要する時間を短縮することが可能になった。また、冷凍装置の運転の周期が長くなる結果、冷凍装置の耐久性を向上させる効果が得られる。
【図面の簡単な説明】
【図1】本発明に基づく飲料冷却機の構造の一例を示す図。(a)は垂直断面図、(b)はY−Y部の水平断面図を表す。
【図2】飲料水の冷却の過程について、本発明に基づく飲料冷却機と従来の飲料冷却機を比較した一例を示す図。
【図3】従来の飲料冷却機の一例を示す図。
【符号の説明】
1・・・筐体、2・・・断熱材、3・・・飲料タンク、5・・・飲料水、6・・・蒸発管、6a・・・下部蒸発管、6b・・・上部蒸発管、7・・・感熱パイプ、8・・・温度センサ、9・・・制御装置、11・・・圧縮器、12・・・凝縮器、13・・・膨張弁、15・・・冷凍装置、16・・・ゴムチューブ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bottle-type beverage cooler provided with a compression-type refrigeration apparatus.
[0002]
[Prior art]
As a beverage cooler, for example, a bottle-type beverage cooler equipped with a compression-type refrigeration apparatus as described in Japanese Utility Model Laid-Open No. 62-38571 is generally known.
[0003]
FIG. 3 shows an outline of the structure of a conventional bottle-type beverage cooler. The main part of the beverage cooler stores a compressor 11, a condenser 12, an expansion valve (not shown), a compression refrigeration apparatus 15 having an evaporation pipe 6, and drinking water 5, and is poured into the bottom. The beverage tank 3 is provided with a valve 10. On the outer periphery of the beverage tank 3, the evaporation pipe 6 is wound around almost the entire surface, and the outside is further covered with the heat insulating material 2.
[0004]
The gas-liquid mixed refrigerant whose temperature has been reduced by the expansion valve is supplied to the evaporation pipe 6 from the lower end side of the outer periphery of the beverage tank 3, and exchanges heat with the internal drinking water via the barrel side wall of the beverage tank 3. After being vaporized, it flows into the compressor 11 from the upper end side of the outer periphery of the body portion of the beverage tank 3 and returns to the expansion valve via the condenser 12. Further, a heat sensitive pipe 7 is attached by welding or the like to a portion near the upper end of the evaporation pipe 6, and one end of an aluminum heat transfer plate 14 is fixed in close contact with the outside of the heat sensitive pipe 7. The other end of the heat transfer plate 13 is fixed in close contact with the vicinity of the upper end of the outer periphery of the body portion of the beverage tank 3. A temperature sensor 8 made of a resistance temperature detector is accommodated in the heat sensitive pipe 7, and the refrigeration apparatus 15 is controlled by an output signal of the temperature sensor 8.
[0005]
Below, the process of cooling drinking water with this drink cooling machine is demonstrated. When the operation of the refrigeration apparatus 15 is started, the gas-liquid mixed refrigerant whose temperature has been lowered by the expansion valve is supplied to the evaporation pipe 6 from the lower end side of the outer periphery of the body of the beverage tank 3, via the body side wall of the beverage tank 3. It flows to the upper end while vaporizing by exchanging heat with the internal drinking water 5. While the temperature of the drinking water 5 inside the beverage tank 3 is high, the refrigerant is completely vaporized in the lower part of the beverage tank by heat exchange with the drinking water, loses the cooling capacity, and is compressed from the vicinity of the upper end of the beverage tank 3 Return to vessel 11. As the temperature of the drinking water 5 gradually decreases, the gas-liquid mixed state region of the refrigerant expands above the evaporation pipe 6 so that cooling is also performed via the upper wall surface of the body portion of the beverage tank. . In this manner, when the gas-liquid mixed state region of the refrigerant reaches the upper end portion of the evaporation pipe 6, the heat sensitive pipe 7 attached in the vicinity of the upper end portion of the evaporation pipe 6 is cooled, and this is cooled by the internal temperature sensor 8. Once detected, the control device 9 operates to temporarily stop the operation of the refrigeration apparatus 15.
[0006]
Even if the region of the gas-liquid mixture state of the refrigerant reaches the upper end of the evaporation pipe 6, it is not possible to completely cool all the drinking water in the beverage tank 3 in a short time. The temperature of the drinking water inside the beverage tank 3 is transmitted to the heat sensitive pipe 7 via the heat transfer plate 14, and the temperature rises. This is detected by the internal temperature sensor 8, and the control device 9 works to restart the operation of the refrigeration device 15. Since the drinking water in the beverage tank has already been cooled to some extent after the restart of the operation, the region in the gas-liquid mixture state of the refrigerant reaches the upper end of the evaporation pipe 6 in a short time compared to the previous time. Then, the refrigeration apparatus 15 stops again. By repeating such an operation 3 to 4 times, the whole drinking water in the beverage tank 3 is gradually cooled to a predetermined temperature.
[0007]
In addition, although the method of detecting only the temperature of the drinking water 5 inside the drink tank 3 and controlling the freezing apparatus 15 is also considered, since there exists temperature distribution inside the drink tank 3, in the method, the drink tank 3 There is a disadvantage that freezing of the lower drinking water starts before the temperature of the upper drinking water drops to a predetermined temperature. Therefore, in the beverage cooler having the bottle-type structure as described above, it is indispensable to control the refrigeration apparatus by detecting the temperature of the evaporation pipe.
[0008]
[Problems to be solved by the invention]
In the conventional beverage cooler as described above, it is necessary to repeat the operation and stop of the refrigeration apparatus in a short cycle until the entire beverage in the beverage tank is cooled to a predetermined temperature, and the time required for cooling is reduced. In addition, there is a problem that it is not preferable in terms of durability of the refrigeration apparatus.
[0009]
In view of such problems, the object of the present invention is to improve the cooling capacity of the upper beverage in the beverage tank to shorten the time required for cooling and extend the operation cycle of the refrigeration apparatus. It is providing the drink cooler which can aim at the improvement of durability.
[0010]
[Means for Solving the Problems]
The beverage cooler of the present invention is
A compression refrigeration apparatus comprising a compressor, a condenser, an expansion valve and an evaporation pipe;
A beverage tank in which the evaporation pipe is wound in close contact with the outer periphery of the body,
A heat-sensitive pipe that contacts the vicinity of the upper end of the evaporation pipe, contacts the vicinity of the upper end of the body side wall of the beverage tank or is attached through a good thermal conductor, and houses a temperature sensor therein,
A control device for controlling the operation of the refrigeration apparatus based on an output signal of the temperature sensor,
The refrigeration apparatus is configured to supply a refrigerant to the evaporation pipe from the lower end side of the outer periphery of the beverage tank,
The evaporation pipe is composed of a plurality of portions having different contact areas between the beverage tank and the evaporation pipe per unit area on the outer peripheral surface of the beverage tank at the upper and lower portions of the beverage tank, and the contact area at the lower portion is It is characterized by being small compared to the contact area.
[0011]
Further, the evaporation pipe is composed of two parts having different cross-sectional shapes at the upper part and the lower part of the beverage tank, the lower part is a circular cross section, the upper part is a flat cross section, and the flat surface is in contact with the outer periphery of the beverage tank. If it winds like this, it can be set as the evaporation pipe which satisfies said conditions.
[0012]
Below, the process of cooling drinking water with this drink cooling machine is demonstrated.
[0013]
When the operation of the refrigeration apparatus is started, the refrigerant in the gas-liquid mixed state whose temperature has dropped by the expansion valve is supplied to the evaporation pipe from the lower end side of the body portion of the beverage tank, and the internal drinking water is passed through the body side wall of the beverage tank. It exchanges heat with it and flows to the upper end side while gradually evaporating. While the water temperature inside the beverage tank is high, the refrigerant is completely vaporized in the lower part of the evaporation pipe, loses the cooling capacity, and returns to the compressor from the upper end of the beverage tank. As the water temperature inside the beverage tank gradually decreases, the gas-liquid mixed region of the refrigerant expands to the upper part of the evaporation pipe, and cooling is performed through the upper body side wall of the beverage tank. In the upper part of the beverage tank, the contact area between the beverage tank and the evaporation pipe per unit area on the outer surface of the beverage tank is larger than the lower part, so the amount of heat exchange between the refrigerant and the drinking water per unit area increases. As a result, the speed at which the region of the refrigerant in the gas-liquid mixed state expands upward becomes moderate. Therefore, cooling is performed in the upper part of the beverage tank for a sufficient period of time until the gas-liquid mixed state region of the refrigerant reaches the upper end of the evaporation pipe. In addition, as a result of the contact area of the evaporation pipe being set to be relatively small in the lower part of the beverage tank, freezing does not occur in the lower part during this period. When the gas-liquid mixture state of the refrigerant reaches the upper end of the evaporator tube, the heat sensitive pipe is attached in contact with the upper end of the evaporator tube, so the heat sensitive pipe is cooled and accommodated in the heat sensitive pipe. A temperature sensor that detects the temperature of the heat-sensitive pipe activates the control device to temporarily stop the refrigeration apparatus.
[0014]
When the refrigeration unit is first stopped, the drinking water at the top of the cooling tank has not yet been completely cooled. For this reason, when the refrigeration system is stopped and the circulation of the refrigerant stops, the heat sensitive pipe is attached to the vicinity of the upper end of the body side wall of the beverage tank or attached via a good heat conductor. The temperature of the drinking water is transmitted to the heat sensitive pipe via the attachment portion and detected by the temperature sensor, and the operation of the refrigeration apparatus is restarted by operating the control device. When the operation of the refrigeration apparatus is resumed, the region of the refrigerant in the gas-liquid mixed state again expands upward from the lower part of the evaporator tube. At this stage, since the water temperature in the beverage tank has already decreased considerably, the gas-liquid mixed region of the refrigerant expands to the upper part of the evaporator tube in a much shorter time than the first time. If the gas-liquid mixed state area of the refrigerant expands to the upper part of the evaporation pipe, the water temperature in the beverage tank is higher in the upper part than in the lower part, and the contact area between the beverage tank and the evaporator pipe is lower in the upper part. Therefore, the speed at which the region of the gas-liquid mixed state of the refrigerant expands upward is slightly moderate. Thereby, the drinking water in the middle and upper part of the beverage tank is cooled again. In this way, when the region of the gas-liquid mixture state of the refrigerant reaches the upper end of the evaporation pipe, the refrigerating apparatus is stopped again by the control device.
[0015]
By following the above process, in the case of a general beverage cooler having an internal volume of 3 l and an inner diameter of about 160 mm, the beverage tank is usually divided into one long cycle operation cycle and one short cycle operation cycle. The whole inside is cooled to a predetermined temperature or lower. As a result, after a short cycle of operation, even if the water temperature at the top of the beverage tank is transmitted to the heat sensitive pipe, the control device will no longer operate, and after that, the drinking water consumption or time associated with the consumption of drinking water Along with the progress, the refrigeration apparatus is intermittently operated for a short period of time.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
1 (a) and 1 (b) show the structure of a beverage cooler according to the present invention, wherein (b) is a cross-sectional view taken along the line YY of (a). In the figure, 3 is a beverage tank, 15 is a freezing device, 11 is a compressor, 12 is a condenser, 13 is an expansion valve, 6 is an evaporation pipe, 7 is a heat sensitive pipe, 8 is a temperature sensor, and 9 is a control device.
[0017]
A vertically long metallic beverage tank 3 is installed in the housing 1, a pouring valve 10 is attached to the side of the housing 1, and the pouring valve 10 is connected to the bottom of the beverage tank 3 by piping. Yes. An evaporation pipe 6 is tightly wound around the outer periphery of the body of the beverage tank 3, and the evaporation pipe 6 is a compression type together with a compressor 11, a condenser 12 and an expansion valve 13 housed in the bottom of the housing 1. A refrigeration apparatus 15 is configured. The heat-sensitive pipe 7 is attached to the vicinity of the upper end portion of the body portion of the beverage tank 3 by welding along the outer periphery of the body portion, and is also welded to the upper end surface of the evaporation pipe 6 at the same time. A rubber tube 16 is inserted into the heat sensitive pipe 7, and a temperature sensor 8 made of a resistance temperature detector is accommodated in the rubber tube 16. A space between the beverage tank 3 and the evaporation pipe 6 and the housing 1 is filled with a heat insulating material 2. In addition, a control device 9 that controls the refrigeration device 15 based on the output signal of the temperature sensor 8 is housed inside the housing 1.
[0018]
The evaporating pipe 6 is composed of two parts 6a and 6b which are different from each other in the upper half and the lower half on the outer periphery of the body of the beverage tank 3, and the lower evaporating pipe 6a has a circular cross section. The evaporation pipe 6 b has a flat cross section and is wound so that the flat surface is in contact with the outer peripheral surface of the body portion of the beverage tank 3.
[0019]
Next, the process of cooling drinking water by this beverage cooler will be described. First, when the beverage tank 3 is filled with the drinking water 5 and the operation of the refrigeration apparatus 15 is started, the refrigerant in the gas-liquid mixed state whose temperature has dropped by the expansion valve 13 is discharged from the lower end side of the trunk portion of the beverage tank 3 to the lower evaporation pipe 6a. And exchanges heat with the drinking water 5 inside through the trunk side wall of the beverage tank 3 and flows to the upper end side while vaporizing. While the water temperature inside the beverage tank 3 is high, the refrigerant is completely vaporized in the region of the lower evaporation pipe 6a, loses the cooling capacity, and returns to the compressor 11 from the upper end portion of the beverage tank 3. As the temperature of the drinking water 5 gradually decreases, the region in the gas-liquid mixture state of the refrigerant expands to the inside of the upper evaporation pipe 6b, and cooling is performed also through the trunk side wall at the top of the beverage tank 3. become. Since the cross section of the upper evaporation pipe 6b is flat and is wound so that the flat face is in contact with the outer periphery of the body portion of the beverage tank 3, the upper evaporation pipe 6b is connected to the evaporation pipe per unit area of the outer peripheral surface of the beverage tank 3. Since the contact area is large, the speed at which the region of the refrigerant in the gas-liquid mixed state expands upward is moderate. In this way, after cooling for a sufficient time in the upper part of the beverage tank 3, the region in the gas-liquid mixed state of the refrigerant reaches the upper end of the evaporation pipe 6b. As a result, when the heat-sensitive pipe 7 is cooled, the rubber tube 16 is inserted into the heat-sensitive pipe 7 and heat is hardly transmitted from the heat-sensitive pipe 7 to the temperature sensor 8. After that, the temperature sensor 8 detects the temperature of the heat sensitive pipe 7, operates the control device 9, and temporarily stops the refrigeration device 15.
[0020]
At the stage when the refrigeration apparatus 15 is first stopped, the drinking water in the upper part of the beverage tank 3 has not been completely cooled. For this reason, when the refrigerating apparatus 15 is stopped and the circulation of the refrigerant is stopped, the temperature of the drinking water in the upper part of the beverage tank 3 is transmitted to the thermal pipe 7 through the welded portion, and after a certain time delay, the temperature sensor 8 is activated. The temperature of the heat sensitive pipe 7 is detected, the control device 9 is operated, and the operation of the refrigeration device 15 is resumed.
[0021]
Hereinafter, as described in the latter part of the section of the means, after the operation of the second cycle of the refrigeration apparatus is performed, the state shifts to the steady operation state.
[0022]
FIG. 2 shows an example of a comparison between a beverage cooler based on the present invention and a conventional beverage cooler with respect to the process of cooling drinking water and the operating status (ON-OFF) of the refrigeration apparatus. In the figure, the vertical axis represents the water temperature at a position corresponding to 30% of the depth from the water surface to the bottom surface at the center of the beverage tank, and the horizontal axis represents the elapsed time since the start of the operation of the refrigeration apparatus. . Moreover, A represents the change in the water temperature by the beverage cooler according to the present invention, and B represents the change in the water temperature by the conventional beverage cooler. In the beverage cooler according to the present invention, the water temperature drops to near the target temperature θ in the first long-cycle operation cycle, and reaches the target temperature θ in the next short-cycle operation cycle. On the other hand, in the conventional beverage cooler, the short cycle operation cycle is repeated three more times, and then the target temperature θ is reached later than A by a time ΔT.
[0023]
【The invention's effect】
In the beverage cooler of the present invention, as a result of increasing the contact area of the evaporation pipe in the upper part of the beverage tank as compared with the lower part, the heat exchange amount in the upper part of the beverage tank is increased, and the drinking water is cooled with a relatively few operation cycles. It becomes possible to do. It has become possible to reduce the time required to cool the drinking water first. Moreover, as a result of the operation cycle of the refrigeration apparatus becoming longer, the effect of improving the durability of the refrigeration apparatus can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of the structure of a beverage cooler according to the present invention. (A) is a vertical sectional view, and (b) is a horizontal sectional view of a YY portion.
FIG. 2 is a diagram showing an example of a process for cooling drinking water, in which a beverage cooler based on the present invention is compared with a conventional beverage cooler.
FIG. 3 is a diagram showing an example of a conventional beverage cooler.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Housing | casing, 2 ... Heat insulating material, 3 ... Beverage tank, 5 ... Drinking water, 6 ... Evaporation pipe, 6a ... Lower evaporation pipe, 6b ... Upper evaporation pipe , 7 ... thermal pipe, 8 ... temperature sensor, 9 ... control device, 11 ... compressor, 12 ... condenser, 13 ... expansion valve, 15 ... freezing device, 16: Rubber tube.

Claims (2)

圧縮器、凝縮器、膨張弁及び蒸発管を備えた圧縮式の冷凍装置と、
胴部外周に密着して前記蒸発管が巻付けられた飲料タンクと、
前記蒸発管の上端部付近に接触するとともに、前記飲料タンクの胴部側壁の上端部付近に接触してあるいは熱良導体を介して取付けられ、内部に温度センサを収容する感熱パイプと、
前記温度センサの出力信号に基づいて前記冷凍装置の運転を制御する制御装置とを備え、
前記冷凍装置は、前記飲料タンクの外周の下端側から前記蒸発管に冷媒を供給する様に構成され、
前記蒸発管は、前記飲料タンクの上部と下部で、飲料タンク外周面の単位面積当りの飲料タンクと蒸発管との接触面積が異なる複数の部分から構成され、下部での接触面積が上部での接触面積に較べて小さいことを特徴とする飲料冷却機。
A compression refrigeration apparatus comprising a compressor, a condenser, an expansion valve and an evaporation pipe;
A beverage tank in which the evaporation pipe is wound in close contact with the outer periphery of the body,
A heat-sensitive pipe that contacts the vicinity of the upper end of the evaporation pipe, contacts the vicinity of the upper end of the body side wall of the beverage tank or is attached through a good thermal conductor, and houses a temperature sensor therein,
A control device for controlling the operation of the refrigeration apparatus based on an output signal of the temperature sensor,
The refrigeration apparatus is configured to supply a refrigerant to the evaporation pipe from the lower end side of the outer periphery of the beverage tank,
The evaporation pipe is composed of a plurality of portions having different contact areas between the beverage tank and the evaporation pipe per unit area on the outer peripheral surface of the beverage tank at the upper and lower portions of the beverage tank, and the contact area at the lower portion is A beverage cooler characterized by being smaller than the contact area.
前記蒸発管は、前記飲料タンクの外周面の上部と下部で断面形状が異なる二つの部分から構成され、下部では円形の断面を有し、上部では偏平の断面を有し、その偏平面が飲料タンクの外周に接触するように巻付けられていることを特徴とする請求項1に記載の飲料冷却機。The evaporation pipe is composed of two parts having different cross-sectional shapes at the upper and lower parts of the outer peripheral surface of the beverage tank, the lower part has a circular cross section, the upper part has a flat cross section, and the flat surface is a beverage. The beverage cooler according to claim 1, wherein the beverage cooler is wound so as to be in contact with the outer periphery of the tank.
JP27916495A 1995-10-26 1995-10-26 Beverage cooler Expired - Fee Related JP3657668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27916495A JP3657668B2 (en) 1995-10-26 1995-10-26 Beverage cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27916495A JP3657668B2 (en) 1995-10-26 1995-10-26 Beverage cooler

Publications (2)

Publication Number Publication Date
JPH09119759A JPH09119759A (en) 1997-05-06
JP3657668B2 true JP3657668B2 (en) 2005-06-08

Family

ID=17607349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27916495A Expired - Fee Related JP3657668B2 (en) 1995-10-26 1995-10-26 Beverage cooler

Country Status (1)

Country Link
JP (1) JP3657668B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020035679A (en) * 2000-11-07 2002-05-15 김수연 Apparatus for eletronic cooling controlling in refrigerator
JP5719996B2 (en) * 2010-08-27 2015-05-20 パナソニックIpマネジメント株式会社 Auger ice machine
JP5716152B2 (en) * 2010-09-16 2015-05-13 パナソニックIpマネジメント株式会社 Reverse cell ice machine

Also Published As

Publication number Publication date
JPH09119759A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
JPH0663697B2 (en) Carbonated beverage dispenser
US2496466A (en) Liquid cooling apparatus
JPH051870A (en) Automatic ice making device
JP3657668B2 (en) Beverage cooler
JPS6050247B2 (en) Refrigeration equipment
JPH1026455A (en) Drink cooler
JPH05296633A (en) Hot and cold water supplier
JP2003192097A (en) Cold drink feed device
US2750756A (en) Refrigerating apparatus for water coolers
JP4794913B2 (en) Beverage cooler
CN211177546U (en) Dual-mode ice making and water making system
CN106642838B (en) Cooling device and control method thereof
JPS6050257B2 (en) Refrigeration equipment
JPH08170868A (en) Beverage cooler
JPS5928285Y2 (en) Refrigeration equipment
JPH11101563A (en) Ice water cooler
JPH068467Y2 (en) Chiller
JPH09152239A (en) Ice making machine
JPS6146371Y2 (en)
JPH09152245A (en) Cooling device
JPH0156997B2 (en)
JP2590539Y2 (en) Water heater
JPH0124539Y2 (en)
JPS6030240Y2 (en) beverage chiller
JPS6129009Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050310

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees