JP4793529B2 - Lithium ion battery - Google Patents

Lithium ion battery Download PDF

Info

Publication number
JP4793529B2
JP4793529B2 JP2001173697A JP2001173697A JP4793529B2 JP 4793529 B2 JP4793529 B2 JP 4793529B2 JP 2001173697 A JP2001173697 A JP 2001173697A JP 2001173697 A JP2001173697 A JP 2001173697A JP 4793529 B2 JP4793529 B2 JP 4793529B2
Authority
JP
Japan
Prior art keywords
fusion
insulating coating
terminal
negative electrode
fused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001173697A
Other languages
Japanese (ja)
Other versions
JP2002367576A (en
Inventor
武義 野阪
竜昇 米田
敏之 温田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2001173697A priority Critical patent/JP4793529B2/en
Publication of JP2002367576A publication Critical patent/JP2002367576A/en
Application granted granted Critical
Publication of JP4793529B2 publication Critical patent/JP4793529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はリチウムイオン電池に係り、特に負極端子および正極端子のそれぞれの所定位置が絶縁被膜で被覆されたリチウムイオン電池に関する。
【0002】
【従来の技術】
近年、電子技術の大きな進歩により、一般ユーザー向けの携帯用電子機器の小型軽量化が進んでおり、この電子機器のエネルギー源として小型軽量化のリチウムイオン電池が多用されている。なかでも、金属樹脂複合フィルムをパッケージに用い、さらに小型軽量化を図ったリチウムイオン電池が一部実用化されている。
【0003】
金属樹脂複合フィルム製のパッケージは、例えばアルミニウム箔製の金属箔芯材と、金属箔芯材の表面に沿うポリエチレンテレフタレート(PET)等のポリエステル樹脂やナイロン等のポリアミド樹脂、あるいはポリイミド樹脂製の保護層と、金属箔芯材の裏面に沿うポリプロピレン(PP)あるいはポリエチレン(PE)等のポリオレフィン系樹脂製の金属接着性を有する融着性樹脂層とを積層させたもの等が使用される。
【0004】
金属樹脂複合フィルムをパッケージに用いたリチウムイオン電池を製造する際には、図3に示すように負極60および正極61にそれぞれ負極端子62および正
極端子63を接合し、これらの負極60および正極61にセパレータ64を積層させ、例えば図4の矢印に示すように巻回することにより発電要素65を形成する(図5参照)。この発電要素65をパッケージ66(図6参照)を中央で折曲げて収容封止することにより、図6に示すリチウムイオン電池70を形成する。
【0005】
パッケージ66は、矩形状に形成された金属樹脂複合フィルム67を中央の折曲部67Aの上方に発電要素65の形状に対応した窪み(すなわち、収容部68)があらかじめ形成されている。
【0006】
この収容部68に発電要素65を配置した後、金属樹脂複合フィルム67を中央の折曲部67Aで折り曲げ、折曲部67Aから上方の金属樹脂複合フィルムと中央から下方の金属樹脂複合フィルムとを重ね合わせて発電要素65を挟み込み、重ね合わせた金属樹脂フィルム67の三辺を加熱して融着代67B,67C,67Dを形成することで発電要素65をパッケージ66で収容封止する。この際に、金属製の負極端子62および正極端子63を融着代67Dで挟持するとともに、融着代67Dを溶かして負極端子62および正極端子63に接合させる。
【0007】
【発明が解決しようとする課題】
しかしながら、負極端子62および正極端子63は金属製の端子であるため、金属樹脂フィルム67の融着代67Dを負極端子62,正極端子63に確実に密着させることに限界がある。このため、収容部68に収容した電解液が、融着代67Dと負極端子62,正極端子63との隙間から漏れてしまうことが考えられる。
【0008】
この不具合を解消するために特開2000-138057において、図7に示すように負極端子62および正極端子63に樹脂シート80を被せた状態で樹脂シート80同士を予め熱融着し、次に図8に示すように樹脂シート80を金属樹脂フィルム67で挟み込んで熱融着することで、樹脂シート80と融着代67Dとを密着させる技術が開示されている。
【0009】
しかし、負極端子62,正極端子63と接触する樹脂シート80の接触面81は、樹脂シート80同士を熱融着する際に一度目の加熱がおこなわれ、樹脂シート80と金属樹脂フィルム67とを熱融着する際に二度目の加熱がおこなわれ、二度目の加熱の際に樹脂シート80の接触面81が荒れて密着性が低下することが考えられる。このため、負極端子62,正極端子63と金属樹脂フィルム67とを確実に密着させることができるリチウムイオン電池の実用化が望まれていた。
【0010】
本発明は、前述した問題点に鑑みてなされたものであり、負極端子および正極端子と金属樹脂フィルムとを確実に密着させることができるリチウムイオン電池を提供することを目的る。
【0011】
【課題を解決するための手段】
前述した目的を達成するために、本発明は、請求項1に記載したように、セパレータ,負極および正極を具備した発電要素と、前記負極および前記正極にそれぞれ接合された一対の端子と、前記各端子の開放端部が外部露出するように前記発電要素を収容封止するパッケージと、前記パッケージに設けられた所定幅寸法を有する融着代と、前記各端子の所定位置を被覆する絶縁被膜とを備えたリチウムイオン電池であって、前記絶縁被膜は、前記各端子の上下面を挟持する一対のシートであると共に、端子に被せた状態で一対の絶縁被膜同士が予め熱融着されたものであり、前記融着代が、前記絶縁被膜を狭持すると共に前記絶縁被膜に対して前記パッケージの金属樹脂複合フィルムが融着する熱融着による融着部と、前記絶縁被膜を狭持すると共に前記絶縁被膜に対して前記金属樹脂複合フィルムが融着しない非融着部とを備えていることを特徴としている。
【0012】
このように構成されたリチウムイオン電池においては、融着代に非融着部を備えることで、負極端子および正極端子とそれぞれの絶縁被膜との接触面が荒れることを防止できる。このため、負極端子および正極端子とそれぞれの絶縁被膜とを確実に密着させることができる。さらに、融着代に融着部を備えることで、融着代を絶縁被膜に確実に密着させることができる。
【0013】
ところで、融着代の外方側を絶縁被膜に密着させないと、例えばイオン電池の搬送中に融着代が外側から剥離する虞れがある。そこで、融着代が外側から剥離することを防止するために、融着部を外方側に配置して融着代の外方側を絶縁被膜に密着させることが好ましい。
【0014】
このため、本発明においては、請求項2に記載したように、前記融着部の幅寸法が1mm以上であるとともに、前記絶縁被膜における内方側端部が前記融着部から2mm以上離れていることを特徴としている。
【0015】
融着部の幅寸法が1mm未満であると、融着部の幅寸法が小さすぎて、電解液が融着部を経て拡散透過することにより外部に漏れる虞れがある。そこで、融着部の幅寸法を1mm以上に設定して電解液の拡散透過を防ぐようにした。また、端子と絶縁被膜との間に実用上充分な気密性を得るためには、端子に対する絶縁被膜の密着面積が一定以上必要であるが、絶縁被膜における内方側端部が融着部から2mm未満であると、絶縁被膜の総幅寸法が小さくなるため、所望面積を確保し難い。このため、絶縁被膜における内方側端部が融着部から2mm以上に設定することにより、この不具合を回避した。
【0016】
【0017】
ここで、絶縁被膜としては、当該絶縁被膜の幅寸法が融着代の幅寸法と略一致している場合、あらかじめ端子に対して当該絶縁被膜の一部を融着させないでおく構造や、あるいは融着代を形成するにあたって、当該絶縁被膜の一部を金属樹脂複合フィルムに対して融着させないでおく構造等を例示できる。また、絶縁被膜としては、当該絶縁被膜の幅寸法をあらかじめ融着代の幅寸法よりも大きく設定しておき、一定幅寸法を有する融着代を形成することにより、パッケージ内に突出させる構造を採用してもよい。
【0018】
【発明の実施の形態】
以下、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、以下に説明する各実施形態において、図1において説明した部材等については、図中に同一符号あるいは相当符号を付すことにより説明を簡略化あるいは省略する。
【0019】
図1に示すように、本発明に係る第1実施形態であるリチウムイオン電池10は、負極11および正極12を具備する発電要素14と、負極11および正極12にそれぞれ接合された負極端子15および正極端子16と、負極端子15の開放端部15Aおよび正極端子16の開放端部16Aが外部露出するように発電要素14を収容封止するパッケージ20と、発電要素14を囲むようにパッケージ20の周縁に設けられた所定幅寸法を有する融着代24,25,26と、負極端子15および正極端子16の所定位置15B,16Bを被覆するとともに融着代26に挟持される負極端子用の絶縁被膜27および正極端子用の絶縁被膜28とを備える。
【0020】
発電要素14は、負極11および正極12間に介設されたセパレータ13を有するとともに略楕円状に巻回され、かつ、セパレータ13が発電要素14の軸方向両端部14Aにおいて負極11および正極12よりも突設されている。
【0021】
パッケージ20は、矩形状に形成された金属樹脂複合フィルム21を中央の折曲部22の上方に発電要素14の形状に対応した窪み(すなわち、収容部23)があらかじめ形成されている。
【0022】
金属樹脂複合フィルム21は、図2に示すように、一例としてアルミニウム箔製の金属箔心材21Aと、金属箔心材21Aの表面に沿う樹脂製の金属接着性を有する保護層21Bと、金属箔心材21Aの裏面に沿う樹脂製の金属接着性を有する融着性樹脂層21Cとが積層されたものが多用される。
【0023】
絶縁被膜27は、負極端子15の上下面を挟持する一対のシートであり、樹脂製の金属接着性を有する被膜が多用される。絶縁被膜28は、正極端子16の上下面を挟持する一対のシートであり、樹脂製の金属接着性を有する被膜が多用される。これらの絶縁被膜27,28は、負極端子15および正極端子16をそれぞれに被せた状態で一対の絶縁被膜27同士および一対の絶縁被膜同士28があらかじめ熱融着される。
【0024】
図1に示す融着代24,25,26は、収容部23に発電要素14を配置した後、金属樹脂複合フィルム21を折曲部22で折り曲げ、折曲部22から上方の金属樹脂複合フィルムと折曲部22から下方の金属樹脂複合フィルムとを重ね合わせて発電要素14を挟み込み、重ね合わせた金属樹脂フィルムの三辺を加熱して形成される。
【0025】
図2に示すように、融着代26は、絶縁被膜27,28に対してパッケージ20の金属樹脂複合フィルム21が融着する融着部26Aと、絶縁被膜27,28に対して金属樹脂複合フィルム21が融着しない非融着部26Bとを備え、融着部26Aが絶縁被膜27,28における外方側に設けられている。すなわち、融着代26を熱融着する際に、融着部26Aのみを矢印のように加熱加圧することにより熱融着し、非融着部26Bには加熱加圧しないようにした。
【0026】
このように融着代26に非融着部26Bを備えることで、負極端子15および正極端子16とそれぞれの絶縁被膜27,28との接触面27A,28Aが荒れることを防止できる。このため、負極端子15および正極端子16とそれぞれの絶縁被膜27,28とを確実に密着させることができる。さらに、融着代26に融着部26Aを備えることで、融着部26Aの領域で融着代26を絶縁被膜27,28に確実に密着させることができる。従って、パッケージ20内の電解液が外部に漏れることを防止できる。
【0027】
ところで、融着代26の外方側を絶縁被膜27,28に密着させないと、例えばリチウムイオン電池10の搬送中に融着代26が外側から剥離する虞れがある。そこで、融着部26を外方側に配置して融着代26の外方側を絶縁被膜27,28に密着させることにより、融着代26が外側から剥離することを防止するようにした。
【0028】
融着代26は幅寸法がLであり、融着部26Aは幅寸法L1が1mm以上である。加えて、絶縁被膜27,28における内方側端部26Cが融着部26AからL2=2mm以上離れるように設定されている。
【0029】
融着部26Aの幅寸法L1が1mm未満であると、融着部26Aの幅が小さすぎて、電解液が融着部26Aを経て拡散透過することにより外部に漏れる虞れがある。そこで、融着部26Aの幅寸法L1を1mm以上に設定して電解液の拡散透過を防ぐようにした。
【0030】
また、負極端子15および正極端子16と絶縁被膜27,28との間に実用上充分な気密性を得るためには、負極端子15および正極端子16に対する絶縁被膜27,28の密着面積が一定以上必要であるが、絶縁被膜27,28における内方側端部が融着部26Aから2mm未満であると、絶縁被膜27,28の総幅寸法が小さくなるため、所望面積を確保し難い。このため、絶縁被膜27,28における内方側端部が融着部26Aから2mm以上に設定することにより、この不具合を回避した。
【0031】
【0032】
【0033】
【0034】
【0035】
【0036】
【0037】
また、図に示すリチウムイオン電池も本発明に含まれるものである。すなわち、図9に示す第2実施形態のリチウムイオン電池10Aは、絶縁被膜27,28の幅寸法が融着代26の幅寸法Lと略一致し、あらかじめ負極端子15および正極端子16に対して絶縁被膜27,28の一部を融着させないでおき、かつ、融着代26を形成するにあたって、絶縁被膜27,28の一部を金属樹脂複合フィルム21に対して融着させない非融着部26Bが形成されている。
【0038】
【0039】
【0040】
【0041】
【0042】
【0043】
なお、前述した各実施形態では、発電要素を負極および正極にそれぞれ負極端子および正極端子を接合し、これらの負極および正極の間にセパレータを介在させて巻回した例について説明したが、例えば固体電解質リチウムイオン二次電池では、負極と正極との間に固体電解質層が形成されていることからこれらの間の短絡の可能性は少なく、負極と正極との間にセパレータを設けない構成としてもよい。
【0044】
さらに、本発明は、前述した実施形態に限定されるものでなく、適宜な変形,改良等が可能であり、前述した実施形態において例示した発電要素,正極端子、負極端子,絶縁被膜,パッケージ等の材質,形状,寸法,形態,数,配置個所,厚さ寸法等は本発明を達成できるものであれば任意であり、限定されない。
【0045】
【発明の効果】
以上、説明したように、本発明によれば、請求項1に記載したように、負極端子および正極端子の所定位置がそれぞれ絶縁被膜で被覆され、絶縁被膜を挟持する融着代が融着部と非融着部とに分けられている。
【0046】
融着代に非融着部を備えることで、負極端子および正極端子とそれぞれの絶縁被膜との接触面が荒れることを防止できる。このため、負極端子および正極端子とそれぞれの絶縁被膜とを確実に密着させることができる。さらに、融着代に融着部を備えることで、融着代を絶縁被膜に確実に密着させることができる。従って、パッケージ内の電解液が外部に漏れることを防止できる。
【0047】
ところで、融着代の外方側を絶縁被膜に密着させないと、例えばリチウムイオン電池の搬送中に融着代が外側から剥離する虞れがある。そこで、融着部を外方側に配置して融着代の外方側を絶縁被膜に密着させることにより、融着代が外側から剥離することを防止するようにした。
【0048】
また、本発明によれば、請求項2に記載したように、融着部の幅寸法が1mm未満であると、融着部の幅寸法が小さすぎて、電解液が融着部を経て拡散透過することにより外部に漏れる虞れがある。そこで、融着部の幅寸法を1mm以上に設定して電解液の拡散透過を防ぐようにした。
【0049】
また、絶縁被膜における内方側端部が融着部から2mm未満であると、端子と絶縁被膜との間に実用上充分な気密性を得られないため、絶縁被膜における内方側端部が融着部から2mm以上に設定することにより、この不具合を回避した。
【0050】
【図面の簡単な説明】
【図1】本発明に係る第1実施形態のリチウムイオン電池を示す斜視図である。
【図2】本発明に係る第1実施形態のリチウムイオン電池を示す要部断面図である。
【図3】従来のリチウムイオン電池を製造する方法を示す第1説明図である。
【図4】従来のリチウムイオン電池を製造する方法を示す第2説明図である。
【図5】従来のリチウムイオン電池を製造する方法を示す第3説明図である。
【図6】従来のリチウムイオン電池を製造する方法を示す第4説明図である。
【図7】従来のリチウムイオン電池を製造する方法を示す第5説明図である。
【図8】従来のリチウムイオン電池を製造する方法を示す第6説明図である。
【図9】本発明に係る第2実施形態のリチウムイオン電池を示す要部断面図である。
【符号の説明】
10,10A,10B リチウムイオン電池
11 負極
12 正極
13 セパレータ
14 発電要素
14A 発電要素の軸方向両端部
15 負極端子
15A 負極端子の開放端部
15B 負極端子の所定位置
16 正極端子
16A 正極端子の開放端部
16B 正極端子の所定位置
20 パッケージ
21 金属樹脂複合フィルム
24,25,26 融着代
25A,26A 絶縁被膜の端部
26A 融着部
26B 非融着部
26C 内方側端部
27,28 絶縁被膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium ion battery, and more particularly to a lithium ion battery in which predetermined positions of a negative electrode terminal and a positive electrode terminal are covered with an insulating film.
[0002]
[Prior art]
In recent years, due to great advances in electronic technology, portable electronic devices intended for general users have been reduced in size and weight, and lithium-ion batteries that are reduced in size and weight are frequently used as energy sources for these electronic devices. In particular, some lithium ion batteries that use a metal resin composite film as a package and are further reduced in size and weight have been put into practical use.
[0003]
A package made of a metal resin composite film is, for example, a metal foil core material made of aluminum foil, a polyester resin such as polyethylene terephthalate (PET) along the surface of the metal foil core material, a polyamide resin such as nylon, or a protection made of polyimide resin. A layer obtained by laminating a layer and a fusible resin layer having a metal adhesive property made of polyolefin resin such as polypropylene (PP) or polyethylene (PE) along the back surface of the metal foil core is used.
[0004]
When manufacturing a lithium ion battery using a metal resin composite film as a package, a negative electrode terminal 62 and a positive electrode terminal 63 are joined to a negative electrode 60 and a positive electrode 61, respectively, as shown in FIG. The power generation element 65 is formed by laminating the separator 64 on the substrate and winding it, for example, as shown by the arrow in FIG. 4 (see FIG. 5). The power generation element 65 is housed and sealed by folding a package 66 (see FIG. 6) at the center, thereby forming a lithium ion battery 70 shown in FIG.
[0005]
In the package 66, a metal resin composite film 67 formed in a rectangular shape is formed in advance with a depression corresponding to the shape of the power generating element 65 (that is, the accommodating portion 68) above the central bent portion 67A.
[0006]
After the power generation element 65 is disposed in the accommodating portion 68, the metal resin composite film 67 is bent at the center bent portion 67A, and the metal resin composite film above the bent portion 67A and the metal resin composite film below the center are joined. The power generation element 65 is sandwiched between them, and the three sides of the superimposed metal resin film 67 are heated to form the fusion allowances 67B, 67C, 67D. At this time, the metal negative electrode terminal 62 and the positive electrode terminal 63 are sandwiched by the fusion allowance 67D, and the fusion allowance 67D is melted and joined to the negative electrode terminal 62 and the positive electrode terminal 63.
[0007]
[Problems to be solved by the invention]
However, since the negative electrode terminal 62 and the positive electrode terminal 63 are made of metal, there is a limit in reliably bringing the fusion allowance 67D of the metal resin film 67 into close contact with the negative electrode terminal 62 and the positive electrode terminal 63. For this reason, it is conceivable that the electrolytic solution accommodated in the accommodating portion 68 leaks from the gap between the fusion allowance 67D and the negative electrode terminal 62 and the positive electrode terminal 63.
[0008]
In order to solve this problem, in Japanese Patent Laid-Open No. 2000-138057, as shown in FIG. 7, the resin sheets 80 are preliminarily heat-sealed with the negative electrode terminal 62 and the positive electrode terminal 63 covered with the resin sheet 80, As shown in FIG. 8, a technique is disclosed in which a resin sheet 80 is sandwiched between metal resin films 67 and heat-sealed so that the resin sheet 80 and the fusion allowance 67D are brought into close contact with each other.
[0009]
However, the contact surface 81 of the resin sheet 80 that is in contact with the negative electrode terminal 62 and the positive electrode terminal 63 is heated for the first time when the resin sheets 80 are heat-sealed, and the resin sheet 80 and the metal resin film 67 are bonded to each other. It is conceivable that the second heating is performed at the time of heat-sealing, and the contact surface 81 of the resin sheet 80 is roughened and the adhesion is decreased at the second heating. For this reason, there has been a demand for practical application of a lithium ion battery capable of reliably bringing the negative electrode terminal 62, the positive electrode terminal 63, and the metal resin film 67 into close contact with each other.
[0010]
The present invention has been made in view of the above problems, we and aims to provide a lithium ion battery can be reliably brought into close contact with the metal resin film negative terminal and positive terminal.
[0011]
[Means for Solving the Problems]
In order to achieve the above-described object, the present invention provides a power generation element including a separator, a negative electrode, and a positive electrode, a pair of terminals respectively joined to the negative electrode and the positive electrode, and A package that accommodates and seals the power generation element such that the open end of each terminal is exposed to the outside; a fusion allowance having a predetermined width dimension provided in the package; and an insulating coating that covers a predetermined position of each terminal The insulating coating is a pair of sheets that sandwich the upper and lower surfaces of each terminal, and the pair of insulating coatings are heat-sealed in advance in a state of covering the terminals. And the fusion allowance sandwiches the insulating coating and the fusion-bonding portion by thermal fusion bonding the metal resin composite film of the package to the insulating coating, and the insulating coating. You The metal-resin composite film to the insulating film is characterized by comprising a non-fused portion is not fused with.
[0012]
In the lithium ion battery configured as described above, the contact surface between the negative electrode terminal and the positive electrode terminal and the respective insulating coatings can be prevented from being roughened by providing the non-fused portion in the fusion allowance. For this reason, a negative electrode terminal, a positive electrode terminal, and each insulating film can be stuck closely. Furthermore, by providing the fusion portion with the fusion allowance, the fusion allowance can be reliably adhered to the insulating coating.
[0013]
By the way, if the outer side of the fusion allowance is not brought into close contact with the insulating coating, for example, the fusion allowance may be peeled off from the outside during the transportation of the ion battery. Therefore, in order to prevent the fusion allowance from being peeled off from the outside, it is preferable to dispose the fusion portion on the outer side and to adhere the outer side of the fusion allowance to the insulating coating.
[0014]
Therefore, in the present invention, as described in claim 2, the width dimension of the fusion part is 1 mm or more, and the inner side end part of the insulating coating is separated from the fusion part by 2 mm or more. It is characterized by being.
[0015]
If the width dimension of the fused part is less than 1 mm, the width dimension of the fused part is too small, and there is a possibility that the electrolyte solution diffuses and permeates through the fused part and leaks to the outside. Therefore, the width dimension of the fused part is set to 1 mm or more so as to prevent diffusion and permeation of the electrolytic solution. In addition, in order to obtain a practically sufficient airtightness between the terminal and the insulating coating, the adhesion area of the insulating coating with respect to the terminal is required to be greater than a certain value. If it is less than 2 mm, the total width dimension of the insulating coating becomes small, so it is difficult to secure a desired area. For this reason, this inconvenience was avoided by setting the inner side end portion of the insulating coating to 2 mm or more from the fused portion.
[0016]
[0017]
Here, as the insulating film, when the width dimension of the insulating film substantially matches the width dimension of the fusion allowance, a structure in which a part of the insulating film is not fused in advance to the terminal, or In forming the fusion allowance, a structure in which a part of the insulating coating is not fused to the metal resin composite film can be exemplified. In addition, the insulating coating has a structure in which the width dimension of the insulating coating is set larger than the width dimension of the fusion allowance in advance, and a fusion allowance having a constant width dimension is formed to project into the package. It may be adopted.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. In each embodiment described below, the members and the like described in FIG. 1 are simplified or omitted by giving the same reference numerals or equivalent reference numerals in the drawings.
[0019]
As shown in FIG. 1, a lithium ion battery 10 according to a first embodiment of the present invention includes a power generation element 14 including a negative electrode 11 and a positive electrode 12, a negative electrode terminal 15 bonded to the negative electrode 11 and the positive electrode 12, and The positive electrode terminal 16, the package 20 that houses and seals the power generation element 14 so that the open end portion 15A of the negative electrode terminal 15 and the open end portion 16A of the positive electrode terminal 16 are exposed to the outside, and the package 20 so as to surround the power generation element 14 Insulation for negative electrode terminals that are provided on the periphery and have fusion widths 24, 25, 26 having a predetermined width dimension and predetermined positions 15 B, 16 B of the negative electrode terminal 15 and the positive electrode terminal 16 and are sandwiched between the fusion allowances 26. A coating 27 and an insulating coating 28 for positive terminal are provided.
[0020]
The power generation element 14 has a separator 13 interposed between the negative electrode 11 and the positive electrode 12 and is wound in an approximately elliptical shape, and the separator 13 is formed from the negative electrode 11 and the positive electrode 12 at both axial end portions 14A of the power generation element 14. Is also protruding.
[0021]
In the package 20, a metal resin composite film 21 formed in a rectangular shape is formed in advance with a depression corresponding to the shape of the power generation element 14 (that is, the accommodating portion 23) above the central bent portion 22.
[0022]
As shown in FIG. 2, the metal resin composite film 21 includes, as an example, a metal foil core material 21A made of aluminum foil, a protective layer 21B made of resin metal along the surface of the metal foil core material 21A, and a metal foil core material. A laminate in which a fusible resin layer 21C having a resin metal adhesion along the back surface of 21A is laminated is often used.
[0023]
The insulating film 27 is a pair of sheets that sandwich the upper and lower surfaces of the negative electrode terminal 15, and a resin-made film having metal adhesiveness is often used. The insulating coating 28 is a pair of sheets that sandwich the upper and lower surfaces of the positive electrode terminal 16, and a resin-made coating having metal adhesiveness is often used. The insulating coatings 27 and 28 are heat-sealed in advance with the pair of insulating coatings 27 and the pair of insulating coatings 28 in a state where the negative electrode terminal 15 and the positive electrode terminal 16 are covered.
[0024]
In the fusion allowances 24, 25, and 26 shown in FIG. 1, after the power generation element 14 is arranged in the accommodating portion 23, the metal resin composite film 21 is bent at the bent portion 22, and the metal resin composite film above the bent portion 22 is And the metal resin composite film below from the bent portion 22 are overlapped to sandwich the power generating element 14, and the three sides of the overlapped metal resin film are heated.
[0025]
As shown in FIG. 2, the fusion allowance 26 includes a fusion part 26 </ b> A where the metal resin composite film 21 of the package 20 is fused to the insulating coatings 27 and 28, and a metal resin composite to the insulating coatings 27 and 28. The film 21 includes a non-fused portion 26B to which the film 21 is not fused, and the fused portion 26A is provided on the outer side of the insulating coatings 27 and 28. That is, when the fusion allowance 26 is heat-sealed, only the fusion part 26A is heated and pressurized as shown by an arrow, and the non-fusion part 26B is not heated and pressurized.
[0026]
By providing the non-fusion part 26B in the fusion allowance 26 in this way, it is possible to prevent the contact surfaces 27A and 28A between the negative electrode terminal 15 and the positive electrode terminal 16 and the respective insulating coatings 27 and 28 from being roughened. For this reason, the negative electrode terminal 15 and the positive electrode terminal 16 and the insulating coatings 27 and 28 can be securely adhered to each other. Further, by providing the fusion allowance 26 with the fusion part 26A, the fusion allowance 26 can be securely adhered to the insulating coatings 27 and 28 in the region of the fusion part 26A. Therefore, it is possible to prevent the electrolyte in the package 20 from leaking to the outside.
[0027]
By the way, if the outer side of the fusion allowance 26 is not brought into close contact with the insulating coatings 27 and 28, for example, the fusion allowance 26 may be peeled off from the outside during the transportation of the lithium ion battery 10. Therefore, the fusion part 26 is arranged on the outer side, and the outer side of the fusion allowance 26 is brought into close contact with the insulating coatings 27 and 28, thereby preventing the fusion allowance 26 from being peeled from the outside. .
[0028]
The fusion allowance 26 has a width dimension L, and the fusion part 26A has a width dimension L1 of 1 mm or more. In addition, the inner end portions 26C of the insulating coatings 27 and 28 are set so as to be separated from the fused portion 26A by L2 = 2 mm or more.
[0029]
If the width L1 of the fused portion 26A is less than 1 mm, the width of the fused portion 26A is too small, and the electrolyte may leak to the outside by being diffused and transmitted through the fused portion 26A. Accordingly, the width L1 of the fused portion 26A is set to 1 mm or more so as to prevent the electrolyte from diffusing and transmitting.
[0030]
In order to obtain practically sufficient airtightness between the negative electrode terminal 15 and the positive electrode terminal 16 and the insulating coatings 27 and 28, the adhesion area of the insulating coatings 27 and 28 with respect to the negative electrode terminal 15 and the positive electrode terminal 16 is more than a certain value. Although it is necessary, if the inner side end portions of the insulating coatings 27 and 28 are less than 2 mm from the fused portion 26A, the total width dimension of the insulating coatings 27 and 28 becomes small, so that it is difficult to secure a desired area. For this reason, this inconvenience was avoided by setting the inner side end portions of the insulating coatings 27 and 28 to 2 mm or more from the fused portion 26A.
[0031]
[0032]
[0033]
[0034]
[0035]
[0036]
[0037]
Further, the lithium ion battery shown in FIG. 9 is also included in the present invention. That is, in the lithium ion battery 10A of the second embodiment shown in FIG. 9, the width dimensions of the insulating coatings 27 and 28 substantially coincide with the width dimension L of the fusion allowance 26, and the negative electrode terminal 15 and the positive electrode terminal 16 are previously A part of the insulating coatings 27 and 28 is not fused, and a part of the insulating coatings 27 and 28 is not fused to the metal resin composite film 21 when forming the fusion allowance 26. 26B is formed.
[0038]
[0039]
[0040]
[0041]
[0042]
[0043]
In each of the above-described embodiments, an example in which the power generation element is wound with the negative electrode terminal and the positive electrode terminal joined to the negative electrode and the positive electrode, respectively, and a separator interposed between the negative electrode and the positive electrode has been described. In an electrolyte lithium ion secondary battery, since a solid electrolyte layer is formed between the negative electrode and the positive electrode, there is little possibility of short circuit between them, and a configuration in which a separator is not provided between the negative electrode and the positive electrode is also possible. Good.
[0044]
Furthermore, the present invention is not limited to the above-described embodiment, and appropriate modifications, improvements, and the like are possible. The power generation element, positive electrode terminal, negative electrode terminal, insulating coating, package, and the like exemplified in the above-described embodiment The material, shape, dimensions, form, number, location, thickness, etc. are arbitrary as long as the present invention can be achieved, and are not limited.
[0045]
【The invention's effect】
As described above, according to the present invention, as described in claim 1, predetermined positions of the negative electrode terminal and the positive electrode terminal are each coated with an insulating film, and a fusion allowance for sandwiching the insulating film is a fusion part. And non-fused parts.
[0046]
By providing the non-fusion part in the fusion allowance, it is possible to prevent the contact surfaces between the negative electrode terminal and the positive electrode terminal and the respective insulating coatings from being roughened. For this reason, a negative electrode terminal, a positive electrode terminal, and each insulating film can be stuck closely. Furthermore, by providing the fusion portion with the fusion allowance, the fusion allowance can be reliably adhered to the insulating coating. Therefore, the electrolyte in the package can be prevented from leaking outside.
[0047]
By the way, if the outer side of the fusion allowance is not brought into close contact with the insulating coating, for example, the fusion allowance may be peeled off from the outside during transport of the lithium ion battery. In view of this, the fusion part is disposed on the outer side and the outer side of the fusion allowance is brought into close contact with the insulating coating to prevent the fusion allowance from being peeled off from the outside.
[0048]
Further, according to the present invention, as described in claim 2, when the width dimension of the fused portion is less than 1 mm, the width dimension of the fused portion is too small, and the electrolyte solution diffuses through the fused portion. There is a risk of leakage to the outside due to permeation. Therefore, the width dimension of the fused part is set to 1 mm or more so as to prevent diffusion and permeation of the electrolytic solution.
[0049]
In addition, if the inner end of the insulating coating is less than 2 mm from the fused portion, practically sufficient airtightness cannot be obtained between the terminal and the insulating coating. This problem was avoided by setting it to 2 mm or more from the fused part.
[0050]
[Brief description of the drawings]
FIG. 1 is a perspective view showing a lithium ion battery according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a principal part showing a lithium ion battery according to a first embodiment of the present invention.
FIG. 3 is a first explanatory view showing a method of manufacturing a conventional lithium ion battery.
FIG. 4 is a second explanatory view showing a method of manufacturing a conventional lithium ion battery.
FIG. 5 is a third explanatory view showing a method of manufacturing a conventional lithium ion battery.
FIG. 6 is a fourth explanatory view showing a method of manufacturing a conventional lithium ion battery.
FIG. 7 is a fifth explanatory view showing a method of manufacturing a conventional lithium ion battery.
FIG. 8 is a sixth explanatory view showing a method of manufacturing a conventional lithium ion battery.
FIG. 9 is a cross-sectional view of a principal part showing a lithium ion battery according to a second embodiment of the present invention.
[Explanation of symbols]
10,10A, 10B Lithium ion battery
11 Negative electrode
12 Positive electrode
13 Separator
14 Power generation elements
14A Both ends of the power generation element in the axial direction
15 Negative terminal
15A Open end of negative terminal
15B Predetermined position of negative terminal
16 Positive terminal
16A Open end of positive terminal
16B Positive position of positive terminal
20 packages
21 Metal resin composite film
24, 25, 26 Fusion allowance
25A, 26A Insulation coating edge
26A Fusion part
26B Non-fused part
26C Inner side edge
27, 28 Insulation coating

Claims (3)

セパレータ,負極および正極を具備した発電要素と、前記負極および前記正極にそれぞれ接合された一対の端子と、前記各端子の開放端部が外部露出するように前記発電要素を収容封止するパッケージと、前記パッケージに設けられた所定幅寸法を有する融着代と、前記各端子の所定位置を被覆する絶縁被膜とを備えたリチウムイオン電池であって、前記絶縁被膜は、前記各端子の上下面を狭持する一対のシートであると共に、端子に被せた状態で一対の絶縁被膜同士が予め熱融着されたものであり、前記融着代が、前記絶縁被膜を狭持すると共に前記絶縁被膜に対して前記パッケージの金属樹脂複合フィルムが融着する熱融着による融着部と、前記絶縁被膜を狭持すると共に前記絶縁被膜に対して前記金属樹脂複合フィルムが融着しない非融着部とを備えていることを特徴とするリチウムイオン電池。A power generation element including a separator, a negative electrode, and a positive electrode; a pair of terminals respectively joined to the negative electrode and the positive electrode; and a package that accommodates and seals the power generation element so that an open end of each terminal is exposed to the outside. A lithium ion battery comprising a fusion allowance having a predetermined width dimension provided on the package and an insulating film covering a predetermined position of each terminal, wherein the insulating film includes upper and lower surfaces of each terminal. And a pair of insulating coatings that are heat-sealed in advance in a state of covering the terminals, the fusion allowance sandwiching the insulating coating and the insulating coating In contrast, the metal resin composite film of the package is fused by heat fusion, and the insulating coating is sandwiched and the metal resin composite film is not fused to the insulating coating. Lithium-ion batteries, characterized in that it comprises a wear part. 前記融着部の幅寸法が1mm以上であるとともに、前記絶縁被膜における内方側端部が前記融着部から2mm以上離れていることを特徴とする請求項1に記載したリチウムイオン電池。2. The lithium ion battery according to claim 1, wherein a width dimension of the fusion part is 1 mm or more, and an inner side end part of the insulating coating is 2 mm or more away from the fusion part. セパレータ,負極および正極を具備した発電要素と、前記負極および前記正極にそれぞれ接合された一対の端子と、前記各端子の開放端部が外部露出するように前記発電要素を収容封止するパッケージと、前記パッケージに設けられた所定幅寸法を有する融着代と、前記各端子の所定位置を被覆する絶縁被膜とを備えたリチウムイオン電池の製造方法であって、予め、前記各端子の上下面に一対のシートを被せて前記一対のシート同士を熱融着することによって前記各端子の上下面を前記絶縁被膜で狭持し、次いで、前記融着代が、前記絶縁被膜を狭持すると共に前記絶縁被膜に対して前記パッケージの金属樹脂複合フィルムが融着する融着部と、前記絶縁被膜を狭持すると共に前記絶縁被膜に対して前記金属樹脂複合フィルムが融着しない非融着部とを備えるように、前記融着代を熱融着することを特徴とするリチウムイオン電池の製造方法。A power generation element including a separator, a negative electrode, and a positive electrode; a pair of terminals respectively joined to the negative electrode and the positive electrode; and a package that accommodates and seals the power generation element so that an open end of each terminal is exposed to the outside. A method of manufacturing a lithium ion battery comprising a fusion allowance having a predetermined width dimension provided in the package and an insulating film covering a predetermined position of each terminal, wherein the upper and lower surfaces of each terminal are previously A pair of sheets are covered with each other, and the pair of sheets are heat-sealed together to sandwich the upper and lower surfaces of each terminal with the insulating coating, and then the fusion allowance sandwiches the insulating coating. The fused portion where the metal-resin composite film of the package is fused to the insulating coating, and the metal-resin composite film is not fused to the insulating coating while sandwiching the insulating coating. As and a fused portion, a manufacturing method of a lithium ion battery, which comprises heat sealing said fusion Chakudai.
JP2001173697A 2001-06-08 2001-06-08 Lithium ion battery Expired - Lifetime JP4793529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001173697A JP4793529B2 (en) 2001-06-08 2001-06-08 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001173697A JP4793529B2 (en) 2001-06-08 2001-06-08 Lithium ion battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010119191A Division JP5170161B2 (en) 2010-05-25 2010-05-25 Lithium ion battery

Publications (2)

Publication Number Publication Date
JP2002367576A JP2002367576A (en) 2002-12-20
JP4793529B2 true JP4793529B2 (en) 2011-10-12

Family

ID=19015109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001173697A Expired - Lifetime JP4793529B2 (en) 2001-06-08 2001-06-08 Lithium ion battery

Country Status (1)

Country Link
JP (1) JP4793529B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281278A (en) 2003-03-17 2004-10-07 Sony Corp Battery
KR101082960B1 (en) 2007-03-26 2011-11-11 주식회사 엘지화학 Secondary Battery with Excellent Durability
US20220094000A1 (en) * 2019-03-29 2022-03-24 Kabushiki Kaisha Toyota Jidoshokki Power storage module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3505905B2 (en) * 1996-03-29 2004-03-15 住友電気工業株式会社 Non-aqueous electrolyte battery
JP4354028B2 (en) * 1998-08-20 2009-10-28 大日本印刷株式会社 Battery case with safety valve
JP4228376B2 (en) * 1999-08-12 2009-02-25 株式会社ジーエス・ユアサコーポレーション battery

Also Published As

Publication number Publication date
JP2002367576A (en) 2002-12-20

Similar Documents

Publication Publication Date Title
KR100891383B1 (en) Pouch type secondary battery
JP4491843B2 (en) Lithium ion secondary battery and method of sealing a lithium ion secondary battery container
JP4485614B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
WO2020004412A1 (en) Resin film for terminal, and power storage device using resin film for terminal
WO2009113634A1 (en) Film-covered electrical device and assembled battery
JP2000294204A (en) Packing shape and packing method of polymer battery
US10193180B2 (en) Method for manufacturing laminated electrical storage device
JP2001102090A (en) Fabrication method of plate type cell
JP2002319375A (en) Sealed battery
JP3931983B2 (en) Structure of electric lead part, electric device having the lead part structure, battery and assembled battery
WO2018016654A1 (en) Electrochemical device
JP4793529B2 (en) Lithium ion battery
JP2020064742A (en) Battery charger pack and manufacturing method of battery charger pack
JP4592297B2 (en) Sealed battery
JP2005116228A (en) Heat-fusing method of laminate film, manufacturing method of film coating battery, and heat-fusing device for laminate film
JPH11120989A (en) Electrode structure of battery case
JP2023100867A (en) Electrode tab, battery, and method for mounting electrode tab
JP4524360B2 (en) Lithium ion battery
KR102384007B1 (en) Pouch Type Secondary Battery And Method For Preparing The Same
JP5170161B2 (en) Lithium ion battery
JP2016001574A (en) Laminate armored battery
JP2001351692A (en) Cell
JP2010067423A (en) Power storage device
JPH10270059A (en) Manufacture of battery
JP2002319437A (en) Cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110712

R150 Certificate of patent or registration of utility model

Ref document number: 4793529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

EXPY Cancellation because of completion of term