JP4790502B2 - Blasting method for converter furnace mouth - Google Patents

Blasting method for converter furnace mouth Download PDF

Info

Publication number
JP4790502B2
JP4790502B2 JP2006160932A JP2006160932A JP4790502B2 JP 4790502 B2 JP4790502 B2 JP 4790502B2 JP 2006160932 A JP2006160932 A JP 2006160932A JP 2006160932 A JP2006160932 A JP 2006160932A JP 4790502 B2 JP4790502 B2 JP 4790502B2
Authority
JP
Japan
Prior art keywords
metal
fusing
bullion
converter
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006160932A
Other languages
Japanese (ja)
Other versions
JP2007327124A (en
Inventor
浩二 森田
敏 鷲巣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006160932A priority Critical patent/JP4790502B2/en
Publication of JP2007327124A publication Critical patent/JP2007327124A/en
Application granted granted Critical
Publication of JP4790502B2 publication Critical patent/JP4790502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は転炉炉口の内周部に付着した地金をブローランスからの酸素吹き付けにより溶断して除去する技術に関する。   The present invention relates to a technique for removing a bare metal adhering to an inner peripheral portion of a converter furnace opening by blowing off oxygen from a blow lance.

転炉で吹錬を行うと、ブローランスからの酸素ジェットで吹き飛ばされた溶鉄が飛散し、転炉炉口の内周部に地金として付着することが知られている。そして、転炉での操業を繰り返す間にこの転炉炉口に付着した地金は次第に成長し、炉口の小径化を招く。その結果、溶銑挿入時に溶銑が転炉炉口からこぼれる危険性を生ずる。また、付着地金の重量が増加し、転炉内面の耐火レンガの支持強度を上回ることがあると、炉口の耐火レンガが剥離して炉内に落下し、転炉寿命の低下を招くことになる。
例えば図4(A)に示す如く、るつぼ型の転炉100にブローランス101を装入して吹き込み精錬している場合、酸素ジェット102により吹き飛ばされた溶銑が飛散して転炉100の炉口内周部103に付着して地金105となり、この地金105が炉口内周部103の中心方向に地金延出部106を形成するように成長することがある。ここで、炉口内周部103に内張りされている耐火レンガ107の取付強度が高く、前記地金105と地金延出部106の重量を充分に支えることができる場合は、先の地金延出部106の自重により図4(B)に示す如く延出部106の根本部分に亀裂を生じ、地金延出部106が自重により脱落し、精錬中の溶鉄の中に落下するならば転炉100の操業に支障を来すことはない。
ところが、耐火レンガ107の取付強度が低いか、耐火レンガ107の取付強度以上に地金105と地金延出部106が成長した場合、これらとともに耐火レンガ107が図4(C)に示すように剥離して落下するおそれがあり、このような場合は図4(D)に示すように転炉100の鉄製の壁部が溶鉄側に露出するので、緊急補修が必要となり、操業を停止して補修作業に取りかかる必要を生じ、転炉100が傷むおそれがあるとともに、緊急補修時間の確保のために転炉を停止させるので生産減に繋がる問題がある。
When blowing in a converter, it is known that molten iron blown off by an oxygen jet from a blow lance scatters and adheres to the inner periphery of the converter furnace as metal. And while the operation in a converter is repeated, the metal | bulb adhering to this converter furnace port grows gradually, and invites the diameter reduction of a furnace port. As a result, there is a risk that hot metal spills out of the converter furnace when hot metal is inserted. In addition, if the weight of the adhering metal increases and exceeds the support strength of the refractory bricks on the inner surface of the converter, the refractory bricks at the furnace port will peel off and fall into the furnace, leading to a reduction in converter life. become.
For example, as shown in FIG. 4A, when the blow lance 101 is inserted into the crucible type converter 100 and blown and refined, the hot metal blown off by the oxygen jet 102 is scattered and the inside of the furnace 100 of the converter 100 is scattered. In some cases, the base metal 105 adheres to the peripheral portion 103 and grows so as to form the base metal extending portion 106 in the center direction of the inner peripheral portion 103 of the furnace port. Here, when the mounting strength of the refractory brick 107 lined on the inner periphery 103 of the furnace port is high and can sufficiently support the weight of the bullion 105 and the bullion extension 106, If the weight of the protruding portion 106 causes a crack in the root portion of the extending portion 106 as shown in FIG. 4 (B), the bare metal extending portion 106 falls off due to its own weight and falls into the molten iron being refined. The operation of the furnace 100 is not hindered.
However, when the mounting strength of the refractory brick 107 is low, or when the bullion 105 and the bullion extending portion 106 grow more than the mounting strength of the refractory brick 107, the refractory brick 107 together with them as shown in FIG. In such a case, the iron wall of the converter 100 is exposed on the molten iron side as shown in FIG. 4 (D). Therefore, emergency repair is necessary, and the operation is stopped. There is a need to start repair work, there is a risk that the converter 100 may be damaged, and the converter is stopped to secure an emergency repair time, leading to a reduction in production.

このため従来から、転炉操業時に転炉炉口に付着した地金を除去する作業が行われている。
従来の地金除去作業の一例として、作業員がブローランスを手作業により操作し、炉口周辺部の地金に酸素を吹き付けることによって地金を溶断する地金除去が行われていた。しかしこの方法は、転炉炉口付近での高温作業となるため作業環境が極めて悪い上、多くの時間がかかるという問題があった。一方、重機を利用して棒状の器具を振り下ろし、転炉炉口に付着した地金に前記棒状の器具を衝突させ、その衝撃力により地金を除去するという方法も知られているが、地金の除去に時間がかかる上に、炉口周辺の耐火レンガを損傷しやすいという問題があった。
For this reason, conventionally, the operation | work which removes the metal which adhered to the converter furnace port at the time of converter operation is performed.
As an example of conventional bullion removal work, bullion removal is performed by fusing bullion by an operator manually operating a blow lance and blowing oxygen to the bullion around the furnace port. However, this method has a problem that the working environment is very bad and a lot of time is required because it is a high-temperature work in the vicinity of the converter furnace opening. On the other hand, a method of swinging down a bar-shaped instrument using a heavy machine, causing the bar-shaped instrument to collide with a bullion attached to a converter furnace port, and removing the bullion by the impact force is also known, In addition to taking time to remove the bullion, there was a problem that the refractory bricks around the furnace mouth were easily damaged.

そこで以下の特許文献1、2に示すように、酸素を一方向に噴出可能な構成のブローランスを吹き込み用のブローランスとは別個に転炉炉口に挿入して回転させながら、炉口内周部の地金を溶断する地金切り方法が提案されている。しかしこれらの方法では、付着地金を完全に除去できる流量の酸素を噴出しながらブローランスを回転させているため、転炉炉口の周辺部において地金付着量の多い部位では十分な溶断と除去を実現できるものの、地金付着量の少ない部位では供給過剰となった酸素により炉口の耐火レンガを溶損してしまい、転炉寿命の低下を招く危険性があった。また、従来は地金切り作業の開始と終了をオペレータの勘に頼って行っているため、作業時間と作業精度がオペレータによるばらつきを生ずるという問題もあった。
このため以下の特許文献3に示すように、転炉の炉口近傍に炉口周縁部撮影用のカメラを配置し、このカメラにより炉口内周縁部の地金付着量を監視して把握し、一方向に酸素を噴出できる構成のブローランスを用いて前記地金の付着量に応じてブローランスの回転角度と酸素流量を制御して地金を切る方法が提供されている。
また、以下の特許文献4に示す如く転炉の炉口に酸素を吹き付けて地金を除去する方法の一例として、転炉からの出鋼中に酸素を吹き付けて地金切りを実現する方法が提言されている。
特開平5−179331号公報 特開平5−223470号公報 特開2005−15849号公報 特願平2−125809号公報
Therefore, as shown in the following Patent Documents 1 and 2, while inserting a blow lance having a structure capable of jetting oxygen in one direction into the converter furnace opening separately from the blow lance for blowing, There has been proposed a bullion cutting method for fusing the bullion. However, in these methods, the blow lance is rotated while spouting oxygen at a flow rate that can completely remove the attached metal, so that sufficient fusing can be achieved at the area around the converter furnace where there is a large amount of metal. Although the removal can be realized, there is a risk that the refractory bricks at the furnace entrance may be melted down by oxygen that has been excessively supplied at a portion where the amount of metal adhesion is small, leading to a reduction in converter life. Further, conventionally, since the start and end of the bullion cutting operation is performed depending on the operator's intuition, there is a problem that the operation time and the operation accuracy vary depending on the operator.
For this reason, as shown in Patent Document 3 below, a camera for photographing the periphery of the furnace port is disposed in the vicinity of the furnace port of the converter, and this camera monitors and grasps the amount of metal adhesion on the inner periphery of the furnace port, There has been provided a method of cutting a bare metal by using a blow lance configured to eject oxygen in one direction and controlling a rotation angle and an oxygen flow rate of the blow lance according to the amount of adhesion of the bare metal.
Moreover, as shown in the following Patent Document 4, as an example of a method for removing metal by blowing oxygen to the furnace port of a converter, there is a method for realizing metal cutting by blowing oxygen during steel output from the converter. It has been recommended.
Japanese Patent Laid-Open No. 5-179331 JP-A-5-223470 JP 2005-15849 A Japanese Patent Application No. 2-125809

前述のカメラを用いた地金切り方法では、地金切りの状況をカメラで確認しながら地金の切れ方を確認し、その都度必要に応じて地金切り時間を延長しなくてはならないために、地金切り時間にバラツキが発生し、地金切り作業に必要以上の時間がかかると、転炉の操業に影響が生じてしまう問題がある。
例えば最近の製鉄所の操業状況では、生産効率の向上化の面から、転炉を傾動させて溶鋼を排出した後、再びスクラップなどを投入して精錬工程に戻る際、地金切り作業のために割り当てできる時間は数分間程度であるので、この数分の間に地金切作業り作業を完了して再び転炉を稼働できないと、転炉の操業に影響が出るおそれがあり、転炉の操業に影響を生じると、後工程にも悪影響を及ぼす問題がある。従って、地金の成長状態がどのような状態であっても、地金切り時間を延長することが無いような、一定時間で地金切り作業を完了できる方法が望まれている。
また、前述の出鋼中に転炉の炉口周辺部に酸素を吹き付ける方法においても、不必要に送酸速度を上げて必要以上の酸素を噴いた場合は、地金だけでなく、転炉内壁を構成する耐火レンガも溶損することになるので、適正な送酸速度と作業時間で地金切りを行うことができることが望まれていた。
In the bullion cutting method using the above-mentioned camera, it is necessary to check how the bullion is cut while checking the bullion cutting status with the camera, and each time you have to extend the bullion cutting time as necessary. In addition, there is a problem that when the bullion cutting time varies and the bullion cutting operation takes more time than necessary, the operation of the converter is affected.
For example, in the recent steel mill operation situation, from the viewpoint of improving production efficiency, after tilting the converter and discharging molten steel, when scrap is again put in and returned to the refining process, it is necessary to cut the metal. The time that can be allocated to the power plant is about a few minutes, so if you do not complete the bar cutting work within this few minutes and you cannot start the converter again, the converter operation may be affected. If the operation of the system is affected, there is a problem of adversely affecting the post-process. Therefore, there is a demand for a method that can complete the bullion cutting operation in a fixed time so as not to extend the bullion cutting time regardless of the growth state of the bullion.
Also, in the above-described method of blowing oxygen to the periphery of the furnace opening of the converter, if the oxygen is unnecessarily increased and more oxygen is sprayed than necessary, not only the metal but also the converter Since the refractory bricks constituting the inner wall will also be melted, it has been desired that the metal can be cut at an appropriate acid feed rate and working time.

本発明は前記背景に鑑みてなされたもので、地金温度が違う場合でも溶断量にできるだけバラツキを生じない地金溶断方法を見出し、転炉の操業に支障を与えることがない地金溶断技術を提供することにある。   The present invention has been made in view of the above background, and finds a metal cutting method that does not cause variations in the fusing amount as much as possible even when the metal temperature is different, and does not hinder the operation of the converter. Is to provide.

本発明者らは、溶断用ランスから転炉の炉口内周側に酸素を噴出して地金溶断を行う場合に、如何なる条件が影響しているかについて研究し、地金切り条件について鋭意研究した結果、地金切りを行う前の地金の表面温度によって地金の溶断効率が変化することを見出した。そして、この知見に基づき、地金切り作業を行う場合のブローランスからの送酸速度と地金表面温度と溶断量の相関関係について鋭意研究した結果、本願発明に到達した。
(1)本発明は、先端部側面側から酸素ガスを噴出可能な構成の溶断用ランスを用いて酸素ガスを転炉炉口の内周部に付着している地金に吹き付け、地金を溶断除去する転炉炉口の地金溶断方法において、前記転炉に内張された耐火物付着許容厚みを予め設定し、この耐火物付着許容厚みよりも低い管理値を規定しておき、前記転炉炉口内周部の周方向の地金厚みの複数位置把握を行い、複数の把握位置の少なくとも1箇所の地金厚みが前記管理値を超えた場合、前記溶断用ランスにより酸素ガスを前記地金に吹き付けて地金除去を行うにあたり、該地金除去を行う際、溶断用ランスによって酸素ガスを吹き付ける特定の範囲における地金厚みに応じた地金溶断量を把握し、この地金溶断量と、地金の測定温度の平均値から規定した地金表面温度に対応する送酸速度を、予め把握した溶断可能な地金量と該地金表面温度、送酸速度の相関関係を基に設定して前記溶断用ランスにより酸素ガスを前記地金に吹き付けて地金除去を行うことを特徴とする。

The inventors of the present invention studied what conditions are influencing when injecting oxygen from the fusing lance to the inner peripheral side of the converter mouth and performing bullion cutting, and intensively studied the bullion cutting conditions. As a result, it was found that the fusing efficiency of the bullion changes depending on the surface temperature of the bullion before cutting the bullion. And based on this knowledge, as a result of earnestly researching on the correlation between the acid feed rate from the blow lance when performing the metal cutting operation, the metal surface temperature, and the amount of fusing, the present invention was reached.
(1) In the present invention, oxygen gas is blown onto the metal bar attached to the inner peripheral part of the converter furnace mouth using a fusing lance configured to be able to eject oxygen gas from the side surface of the tip part, In the ingot method of the converter furnace opening to remove by fusing, the allowable thickness of refractory adhesion lined in the converter is set in advance, and a control value lower than the allowable thickness of refractory adhesion is defined, A plurality of positions of the metal thickness in the circumferential direction of the inner periphery of the converter furnace mouth are grasped, and when at least one metal thickness at a plurality of grasp positions exceeds the control value, the oxygen gas is supplied by the fusing lance. spraying the bullion per to do bullion removed, when performing the該地gold removed, grasp the bullion blown amount according to bullion thickness in a specific range of blowing oxygen gas by lance blown, this bullion and fusing amount bullion surface defined from the average value of the measured temperature of the bullion The oxygen-flow-rate corresponding to the time, spraying previously grasped fusible bullion amount and該地gold surface temperature, the oxygen gas by the blowing lance and set based on the correlation between the oxygen-flow-rate in the bullion It is characterized by removing bullion.

)本発明は、前記溶断用ランスから酸素ガスを地金に噴出した場合に溶断可能な地金量を該地金の温度と送酸速度から予め把握するとともに、特定の送酸速度における地金表面温度と溶断量の関係を特定の送酸速度に対応する地金表面温度と溶断量の関係として求め、前記特定の送酸速度を複数規定して各規定した送酸速度毎の関係を求め、地金温度に応じたこれら複数の関係により決定される地金溶断量に応じた地金除去を行うことを特徴とする。
)本発明は、前記1つの特定の送酸速度により規定される関係と前記他の1つの特定の送酸速度により規定される関係との間に地金温度と地金溶断量の関係が存在している場合、地金溶断量の多い側の関係に基づく送酸速度に設定して前記溶断用ランスによる地金除去を行うことを特徴とする。
)本発明は、前記溶断用ランスから酸素ガスを地金に噴出する場合の噴射角度を前記溶断用ランスの周方向に30゜〜150゜の範囲とすることを特徴とする。
( 2 ) The present invention grasps in advance the amount of metal that can be melted when oxygen gas is ejected from the fusing lance to the metal from the temperature of the metal and the acid feed rate, and at a specific acid feed rate. The relationship between the metal surface temperature and the fusing amount is determined as the relationship between the metal surface temperature and the fusing amount corresponding to a specific acid feed rate, and a plurality of the specific acid feed rates are defined, and the relationship for each specified acid feed rate. The bullion removal according to the amount of bullion fusing determined by the plurality of relationships according to the bullion temperature is performed.
( 3 ) The present invention relates to the relationship between the metal temperature and the metal fusing amount between the relationship defined by the one specific acid delivery rate and the relationship defined by the other specific acid delivery rate. Is present, the metal removal is performed by the fusing lance by setting the acid feed rate based on the relationship on the side having the larger amount of the metal fusing.
( 4 ) The present invention is characterized in that an injection angle when oxygen gas is ejected from the fusing lance to the metal is in the range of 30 ° to 150 ° in the circumferential direction of the fusing lance.

)本発明は、 前記転炉傾動時の炉口内周部の複数位置毎の地金量の計測にプロフィール計測装置を用いて多点計測し、転炉炉口内周部の高さ方向と径方向における地金量の3次元計測を行い、炉口内周方向と高さ方向における地金量を把握し、これらの結果から少なくとも1箇所の地金厚みが前記管理値を超えた場合、前記溶断用ランスにより酸素ガスを前記地金に吹き付けて地金除去を行うことを特徴とする。
)本発明は、(1)〜()のいずれかに記載の転炉炉口の地金溶断方法を実施するにあたり、当該ヒートと次のヒート間の転炉の非稼働時間を基に地金溶断時間を設定し、測定した溶断地金量から必要酸素量を求め、該必要酸素量と前記地金量から溶断用ランスの送酸速度を設定して地金溶断を行うことを特徴とする。






( 5 ) The present invention uses a profile measuring device to measure the amount of metal at a plurality of positions in the inner periphery of the furnace port at the time of tilting the converter, and measures the height direction of the inner periphery of the converter furnace port. Perform the three-dimensional measurement of the amount of bullion in the radial direction, grasp the amount of bullion in the inner circumference direction and the height direction of the furnace mouth, and if the thickness of at least one bullion exceeds the control value from these results, The bullion is removed by blowing oxygen gas onto the bullion with a fusing lance.
( 6 ) The present invention is based on the non-operating time of the converter between the heat and the next heat in carrying out the ingot method of the converter furnace inlet according to any one of (1) to ( 5 ). Set the bullion fusing time to the required amount of oxygen from the measured amount of molten bullion, set the acid feed rate of the lance for fusing from the required amount of oxygen and the amount of bullion Features.






本発明によれば、溶断用ランスで溶断可能な地金量を予め地金の表面温度に応じて計測して把握するか、予め数値計算シミュレーション等により把握しておき、それらの把握状況に基づいて転炉炉口の耐火物の付着許容厚みを超えないような管理値に基づき、計測した地金厚み、あるいは、計算シミュレーション等により把握した地金厚みに応じて溶断用ランスによる溶断を行うので、転炉炉口部分からの耐火物の脱落を引き起こすことなく地金の溶断除去ができる効果がある。また、地金の複数位置の厚みの計測あるいは計算シミュレーション等による把握を行い、1箇所でも管理値を超えた場合に溶断用ランスによる溶断作業を行うので、転炉炉口部分からの耐火物の脱落を完全に無くすることが可能となり、確実な地金の溶断除去ができる効果がある。
更に、転炉炉口の地金を除去しておくならば、次のヒートの吹錬の際にスクラップの投入作業に地金が邪魔にならないのでスクラップ投入トラブルを生じないとともに、溶銑を転炉に装入する作業時においても投入トラブルを生じない効果がある。
According to the present invention, the amount of metal that can be melted by the fusing lance is measured in advance according to the surface temperature of the metal, or is grasped in advance by numerical calculation simulation, etc. Based on a control value that does not exceed the allowable thickness of the refractory at the converter furnace mouth, fusing with a fusing lance is performed according to the measured metal thickness or the metal thickness ascertained by calculation simulation, etc. There is an effect that the metal can be melted and removed without causing the refractory to fall off from the converter furnace part. In addition, it is possible to grasp the thickness of the bullion by measuring the thickness or calculating the thickness of the bullion and perform fusing work with a fusing lance when the control value is exceeded even at one location. It is possible to completely eliminate the drop-off, and there is an effect that it is possible to surely remove the molten metal from fusing.
Furthermore, if the metal at the converter furnace is removed, the metal does not get in the way of throwing in the scrap during the next heat blowing, so there will be no scrap charging trouble and the hot metal is converted into the converter. There is an effect that no charging trouble occurs even during the work of charging the battery.

本発明によれば、地金温度に応じた溶断量の把握を基に特定の範囲における地金厚みに応じた地金溶断量を把握し、この地金溶断量に対応する送酸速度に設定して溶断用ランスにより酸素ガスを吹き付けて地金を溶断するので、適切な送酸速度で地金を溶断することができ、転炉炉口の内周部の地金の除去を行う場合に過度に酸素を供給してしまう危険性が低くなり、耐火材を損傷させる危険性を低くしながら地金を除去できる効果がある。   According to the present invention, based on grasping the fusing amount according to the metal temperature, grasping the metal fusing amount according to the metal thickness in a specific range, and setting the acid feed rate corresponding to this metal fusing amount. Since the metal is blown by blowing oxygen gas with the lance for fusing, the metal can be blown at an appropriate acid feed rate, and the metal in the inner periphery of the converter furnace is removed. The risk of excessively supplying oxygen is reduced, and the metal can be removed while reducing the risk of damaging the refractory material.

本発明によれば、複数の送酸速度における地金表面温度と溶断量の関係を複数の送酸速度に対応する地金表面温度と溶断量の関係を求め、地金温度と送酸速度に応じた溶断を行うので、より適切な送酸速度と溶断条件を選定することができ、耐火材を損傷させることなく適切な地金除去をなし得る。
本発明によれば、溶断用ランスからの酸素ガスの噴射角度を30゜〜150゜の範囲とするならば、転炉炉口の1/4の地金を溶断するので、転炉の操業において、地金の堆積状態に応じて複数回に区分けして短い時間で溶断の必要な部分を中心に、効率良く地金溶断ができる。従って転炉操業において地金溶断の時間を短縮し、転炉で吹錬する時間に影響を及ぼすことなく地金溶断作業ができる。
本発明によれば、プロフィール計測装置を用いて多点計測して地金の複数箇所の地金量の3次元計測が可能であり、この結果から地金除去を始めることで、必要な時点でより確実な地金除去ができる。
According to the present invention, the relationship between the base metal surface temperature and the fusing amount at a plurality of acid feeding rates is obtained, and the relationship between the base metal surface temperature and the fusing amount corresponding to the plurality of acid feeding rates is obtained. Since a suitable fusing is performed, a more appropriate acid feed rate and fusing conditions can be selected, and appropriate metal removal can be achieved without damaging the refractory material.
According to the present invention, if the injection angle of the oxygen gas from the fusing lance is in the range of 30 ° to 150 °, 1/4 of the bare metal at the converter furnace port is blown out. The bullion can be efficiently cut around a portion that needs to be cut in a short time by dividing into multiple times according to the state of the bullion deposition. Therefore, in the converter operation, the time for melting the metal can be shortened, and the metal can be melted without affecting the time for blowing in the converter.
According to the present invention, it is possible to measure three points using a profile measuring device and measure the amount of a bullion in a plurality of locations of a bullion. More reliable bullion removal.

本発明によれば、転炉の吹錬と溶銑の排出の操作を繰り返す転炉操業において、当該ヒートと次のヒート間の転炉の非稼働時間から設定した送酸速度を利用することが転炉作業の効率運用上望ましい。   According to the present invention, in the converter operation that repeats the operation of blowing the converter and discharging the molten iron, it is possible to use the acid feed rate set from the non-operation time of the converter between the heat and the next heat. Desirable for efficient operation of furnace work.

以下に本発明方法の最良の形態について説明するが、本発明方法は以下の最良の形態に制限されるものではない。
図1において1はるつぼ型の転炉であり、図1において正立状態で示した転炉1の炉口2の内周部分には、吹錬の際に飛散した溶銑が堆積して地金Mが付着した状態が示されている。転炉1は鉄皮3の内面に耐火物(耐火レンガ)4を多数内張りした構造である。5は転炉1を正立させた状態において転炉炉口2に挿入される溶断用ランスである。このブローランス5は昇降・回転機構6を備えており、運転室7に設置された制御盤8からの遠隔自動制御により、昇降運動と回転運動が行われる。また転炉1の斜め上方にはカメラ9が設置され、溶断用ランス5の先端側の位置を制御室7のモニター10に映し出すことができるようになっている。
また、転炉1を傾動してその炉口2を横向きとした状態で対面する側に、プロフィール計測装置11が設置されている。図1には転炉1を傾動してその炉口2を横向きとした状態も併せて示すが、転炉1を傾動する際にブローランス5は図1に示す位置よりも上方に引き上げて転炉1と干渉しないようにしておくのは勿論である。
The best mode of the method of the present invention will be described below, but the method of the present invention is not limited to the following best mode.
In FIG. 1, reference numeral 1 denotes a crucible type converter, and hot metal scattered during blowing is deposited on the inner peripheral portion of the furnace port 2 of the converter 1 shown upright in FIG. A state in which M is attached is shown. The converter 1 has a structure in which a large number of refractories (refractory bricks) 4 are lined on the inner surface of the iron skin 3. Reference numeral 5 denotes a fusing lance inserted into the converter furnace port 2 in a state where the converter 1 is upright. The blow lance 5 is provided with an elevating / rotating mechanism 6, and an elevating and rotating motion is performed by remote automatic control from a control panel 8 installed in the cab 7. A camera 9 is installed obliquely above the converter 1 so that the position of the front end side of the fusing lance 5 can be displayed on the monitor 10 of the control chamber 7.
In addition, a profile measuring device 11 is installed on the side facing the converter 1 in a state where the converter 1 is tilted and the furnace port 2 is turned sideways. FIG. 1 also shows a state in which the converter 1 is tilted and its furnace port 2 is turned sideways. However, when the converter 1 is tilted, the blow lance 5 is lifted upward from the position shown in FIG. Of course, it should not interfere with the furnace 1.

前記プロフィール計測装置11は、一例として多点観測が可能なレーザ計測装置であって、転炉炉口2に付着している地金Mについて転炉炉口2の内周方向の任意の位置での厚みと、炉口2の奥行き方向(転炉1の傾動時の左右方向)の任意の位置での厚みを個々に多点把握することができる装置である。より詳細には、レーザ計測装置とは対象物の表面形状の凹凸を測定するものであるので、転炉の耐火物の張り替え直後の転炉内壁のイニシャル形状(まだ、溶銑を受けていない状態)を測定し、その計測値を基準として、それ以降の測定結果との比較で地金厚みを算出することができる演算部を備えた装置として適用することができる。
例えばレーザ計測装置であれば、レーザを転炉炉口2の内周部に照射して反射してきた反射波を計測し、その時間差から地金Mの厚みを把握するので、極めて短時間の操作により転炉炉口2の内周部の地金厚さを把握することができる。なお、ここで用いるプロフィール計測装置11はレーザ計測装置に限るものではなく、超音波計測装置、カメラを利用した画像解析による計測装置等でも良い。
カメラ9からの画像は運転室7のモニター10に表示され、オペレータはモニター10により転炉炉口2への地金付着状況を監視できるとともに、正立状態の転炉1に挿入した溶断用ランス5の先端位置や姿勢等も併せて監視できるようになっている。
The profile measuring device 11 is a laser measuring device capable of multi-point observation as an example, and the metal M attached to the converter furnace port 2 is at an arbitrary position in the inner peripheral direction of the converter furnace port 2. And the thickness at an arbitrary position in the depth direction of the furnace port 2 (left and right direction when the converter 1 is tilted) can be grasped individually at multiple points. More specifically, since the laser measuring device measures unevenness of the surface shape of the object, the initial shape of the inner wall of the converter immediately after the replacement of the refractory material of the converter (the state that has not yet received hot metal) Can be applied as a device including a calculation unit that can calculate the thickness of a bare metal by comparing the measured value with a measurement result thereafter.
For example, in the case of a laser measuring device, the reflected wave that is reflected by irradiating a laser to the inner periphery of the converter furnace port 2 is measured, and the thickness of the metal M is grasped from the time difference. Thus, the thickness of the ingot at the inner periphery of the converter furnace port 2 can be grasped. The profile measuring device 11 used here is not limited to the laser measuring device, but may be an ultrasonic measuring device, a measuring device based on image analysis using a camera, or the like.
The image from the camera 9 is displayed on the monitor 10 of the cab 7, and the operator can monitor the adhesion state of the metal to the converter furnace port 2 with the monitor 10, and the fusing lance inserted into the upright converter 1. The tip position and posture of 5 can be monitored together.

図2(A)に示すように、本発明で用いる溶断用ランス5は、筒状の本端部5Aの下部側面に並列形成された複数の噴出口12から高圧の酸素ガスを水平向きに噴出する構造となっている。図2(A)に示すブローランス下部の断面構造に示すように、これら複数の噴出口12から酸素ガスを噴出する際の酸素ガスの開き角度αを90°程度に設定しておき、ブローランス5の先端部側面の一方向側に酸素を噴出させることができるように構成されている。
前記前開き角αが狭いとピンポイントで酸素を噴出させることができるが、地金付着範囲が広い場合には、一度に溶断させることができず位置を変えて複数回に分けて溶断する必要があり、効率が悪くなり、一方前開き角αが広すぎると地金が付着していない耐火物の部分まで熱負荷が掛かり耐火物を溶損させる恐れがあるため、地金の付着状況に応じて前開き角αを30゜〜150゜の範囲で適宜選択することが好ましく、特に90゜前後が好ましい。
As shown in FIG. 2 (A), the fusing lance 5 used in the present invention ejects high-pressure oxygen gas horizontally from a plurality of ejection ports 12 formed in parallel on the lower side surface of the cylindrical main end 5A. It has a structure to do. As shown in the cross-sectional structure of the lower portion of the blow lance shown in FIG. 2A, the opening angle α of the oxygen gas when the oxygen gas is ejected from the plurality of jets 12 is set to about 90 °. 5 is configured such that oxygen can be ejected to one side of the side surface of the tip portion.
If the front opening angle α is narrow, oxygen can be ejected at a pinpoint, but if the metal adhesion range is wide, it cannot be melted at a time, and it is necessary to change the position and blow in multiple times However, if the front opening angle α is too wide, there is a risk that the refractory will not be attached to the refractory, which may cause the refractory to melt. Accordingly, it is preferable to appropriately select the front opening angle α in the range of 30 ° to 150 °, and particularly preferably around 90 °.

溶断用のブローランス5は高温の炉内に挿入されるので、側壁等は水冷構造としておくことが好ましい。また、操作盤8はブローランス5の高さ、回転角度を自動制御できるほか、酸素ガスの流量も自動制御可能としておくことが好ましい。   Since the blow lance 5 for fusing is inserted into a high-temperature furnace, it is preferable that the side walls have a water cooling structure. Further, it is preferable that the operation panel 8 can automatically control the height and rotation angle of the blow lance 5 and can also automatically control the flow rate of oxygen gas.

以下に本発明の転炉炉口地金溶断方法の手順を説明する。
転炉操業は一般に、別途転炉1の近傍に設備されている図示略の吹き込み吹錬用のブロ−ランスを用いて転炉において銑鉄の精錬を行い、精錬終了後に転炉1を傾動して溶鋼を排出し、この後にスクラップ等を投入した後、再度溶銑を流し込み、精錬するという工程を繰り返し行って操業している。この転炉操業において、吹き込み吹錬用のブローランスで繰り返し吹錬を行う間に酸素ガスを溶銑に吹き付ける操作に伴って溶銑が飛散し、転炉炉口2の内周部に地金Mとして徐々に付着してゆく。
本発明ではこの転炉操業において、傾動時に逐次プロフィール計測装置11にて転炉炉口2の内周部の地金付着量を測定して監視し、地金Mの付着量に応じてその重量により耐火物4の支持強度が限界となる値よりも若干低い値に対応する耐火物許容厚みを規定し、地金Mの付着により耐火物許容厚みが規定の管理値を超えた場合に地金Mの溶断作業を行う。
Below, the procedure of the converter furnace neck metal fusing method of this invention is demonstrated.
The converter operation is generally performed by refining pig iron in the converter using a blown blown blown blown (not shown) separately provided near the converter 1 and tilting the converter 1 after the refining is completed. After the molten steel is discharged, and then scraps and the like are added, the hot metal is poured again and refining is performed repeatedly. In this converter operation, the hot metal spatters with the operation of blowing oxygen gas to the hot metal while repeatedly blowing with the blow lance for blow blowing, and as the metal M on the inner periphery of the converter furnace port 2 It gradually adheres.
In the present invention, in this converter operation, during the tilting, the profile measuring device 11 sequentially measures and monitors the amount of metal in the inner periphery of the converter furnace port 2 and monitors the amount of metal in accordance with the amount of metal M attached. Stipulates the allowable thickness of the refractory corresponding to a value slightly lower than the limit value of the support strength of the refractory 4, and if the allowable thickness of the refractory exceeds the specified control value due to the adhesion of the base metal M M is blown out.

本発明方法に係る地金の溶断作業に先立ち、溶断用ランス5によって溶断可能な地金の厚みと地金温度の高低に応じて溶断できる地金厚さを予め実験計測し、その相関関係を計測値として把握しておく。
溶断用ランス形状(吐出部の幅、高さ、広がり角度)により、溶断可能な炉壁の地金面積(「有効溶断面積」)が異なり、溶断実験等により予めこの「有効溶断面積」を求めておき、実績の溶断量を「有効溶断面積」と「地金比重(ここでは鉄比重の7を使用)」で割り戻せば「地金厚み」を算出することができる。
従って実際には、逆に測定した「地金厚み」に「有効溶断面積」と「地金比重(ここでは鉄比重の7を使用)」を掛けて「(有効溶断面積当たりの)地金溶断量」を算出し、この「地金溶断量」を元に以下の図3の関係を用いて「地金温度」、「地金溶断時間」から「送酸速度」を決定するものとする。
Prior to the fusing operation of the metal in accordance with the method of the present invention, the thickness of the metal that can be melted by the fusing lance 5 and the thickness of the metal that can be melted according to the level of the metal temperature are experimentally measured in advance, and the correlation between them is measured. Keep track of measurements.
Depending on the shape of the lance for fusing (width, height, spread angle of the discharge part), the metal wall area (“effective melting area”) of the furnace wall that can be fused differs, and this “effective melting area” is obtained in advance by fusing experiments. If the actual fusing amount is divided by “effective melt cross-sectional area” and “ingot specific gravity (here, iron specific gravity of 7 is used)”, “ingot thickness” can be calculated.
Therefore, in actuality, the measured “metal thickness” is multiplied by “effective melting cross-sectional area” and “bulk specific gravity (here, iron specific gravity is 7)” to “cut the metal (per effective molten cross-sectional area)” “Amount” is calculated, and “Oxidation rate” is determined from “Base metal temperature” and “Base metal fusing time” using the relationship shown in FIG.

図3にその計測値の一例を示すが、溶断用ランス5の先端部側面から広がり角90゜として送酸速度10000Nm/hrとした場合と、送酸速度15000Nm/hrとした場合と、送酸速度20000Nm/hrとした場合の3通りについて、転炉炉口2の内周部に付着した地金Mの溶断量を地金温度毎に実験により計測して地金溶断量を把握し、それらの相関関係を把握しておく。
図3は「地金溶断時間」が2分の場合のデータであるが、例えば溶断時間が変化しても基本的には溶断量は送酸量(送酸速度と溶断時間)に正比例すると考えることができるので、図3の関係をそのまま適用することができる。なお、図3において溶断用ランスの前開き角α=90゜であり、溶断用ランスと転炉炉壁の地金表面までの距離2.5mとして「有効溶断面積」(90゜照射範囲)=2.75m(=2.5×2×π×90÷360)の場合のデータである。
FIG. 3 shows an example of the measured values. When the divergence angle is 90 ° from the side surface of the front end of the fusing lance 5 and the acid feed rate is 10000 Nm 3 / hr, and when the acid feed rate is 15000 Nm 3 / hr, Measure the fusing amount of the metal M adhering to the inner periphery of the converter furnace port 2 by experiment for each metal temperature, and grasp the metal fusing amount for three ways when the acid feed rate is 20000 Nm 3 / hr And keep track of their correlation.
FIG. 3 shows data when the “bulb fusing time” is 2 minutes. For example, even if the fusing time changes, the fusing amount is considered to be directly proportional to the amount of acid fed (acid feeding speed and fusing time). Therefore, the relationship of FIG. 3 can be applied as it is. In FIG. 3, the front opening angle α of the fusing lance is 90 °, and the distance between the fusing lance and the metal surface of the converter furnace wall is 2.5 m, “effective fusing area” (90 ° irradiation range) = This is data in the case of 2.75 m 2 (= 2.5 × 2 × π × 90 ÷ 360).

ここで、転炉炉口2に付着する地金Mの主成分は、転炉2において通常の吹錬を行っている場合、一般的にはFeとFeOとFeとその他CaOなどの混合成分からなる。
また、Fe+(1/2)O→FeO+64kcalの関係とFe+(3/2)O→Fe+190.7kcalの関係があり、溶断用ランス5により酸素ガスを吹き付けるといずれも地金Mの酸素吹き付け部位において熱が発生する。この発生熱により地金Mを溶かして溶断し、転炉1の内部に落下させて炉口2の内周部から地金Mを除去することができる。
Here, the main component of the bare metal M adhering to the converter furnace port 2 is generally Fe, FeO, Fe 2 O 3 and other CaO when ordinary blowing is performed in the converter 2. Consists of mixed components.
Further, there is a relationship of Fe + (1/2) O 2 → FeO + 64 kcal and Fe + (3/2) O 2 → Fe 2 O 3 +190.7 kcal, both of which are ingots when oxygen gas is blown by the fusing lance 5 Heat is generated at the oxygen sprayed part of M. The ingot M is melted and melted by the generated heat, dropped into the converter 1, and the ingot M can be removed from the inner periphery of the furnace port 2.

本発明者らは、溶断用ランス5によって地金Mに酸素ガスを吹き付けて溶断する際、酸素吹込み速度・時間が同一の条件下においても地金Mの表面温度により溶断量が異なることを予見し、先の図3に示す如く試験した結果、溶断用ランス5から地金Mに対する送酸速度が高い程、地金Mの溶断量が増加するが、その増加の関係は一様ではなく、送酸時の地金Mの表面温度により大きく影響を受けて変動することを把握することができた。
その結果、同じ送酸速度として地金表面温度との相関関係は、地金表面温度が600℃、650℃、700℃、750℃と向上するに連れて、等比級数的に地金溶断量(t)が増加するという結果を得ることができ、その関係は図3に示す3つの送酸速度に応じた3本の相関曲線(相関式:相関関係)にて表示することができるとの結果を得ることができた。また、先の相関曲線は、送酸速度を10000Nm/hr、15000Nm/hr、20000Nm/hrと増加するにつれて地金溶断量が増加する方向にシフトし、それらの相関関係について送酸速度が増加すると溶断量が増加するという関係にあることを知見した。
The inventors of the present invention have found that when the oxygen gas is blown and blown to the metal M by the fusing lance 5, the amount of fusing differs depending on the surface temperature of the metal M even under the same oxygen blowing rate and time. As a result of testing as shown in FIG. 3, the amount of fusing of the ingot M increases as the acid feed rate from the fusing lance 5 to the ingot M increases, but the relationship of the increase is not uniform. It was possible to grasp that it fluctuated by being greatly influenced by the surface temperature of the metal M during acid feeding.
As a result, the correlation with the metal surface temperature for the same acid feed rate is as follows. As the metal surface temperature is improved to 600 ° C., 650 ° C., 700 ° C., and 750 ° C. The result that (t) increases can be obtained, and the relationship can be displayed by three correlation curves (correlation formula: correlation) corresponding to the three acid delivery rates shown in FIG. The result was obtained. Moreover, the correlation curve of previous shifts the oxygen-flow-rate 10000Nm 3 / hr, 15000Nm 3 / hr, in a direction bullion blowing amount is increased with increasing the 20000 nm 3 / hr, oxygen-flow-rate for their correlation It has been found that the amount of fusing increases as the value increases.

本発明では以上のような知見を利用し、送酸速度と地金溶断量との関係を把握した上で実際の転炉操業に地金Mの溶断作業を組み込んで行うものとする。
より具体的には、図3に示す関係において、溶断用ランス5が酸素ガスを吹き付ける転炉炉口2の内周90゜について溶断可能な地金量は、換言すると、溶断可能な地金厚さとも見ることができるので、この地金厚さを把握する。
また、転炉1の内部には耐火レンガなどの耐火物4が内張され、これらの耐火物4は所望の強度にて転炉1の内部に設けられている。ここで例えば、耐火物の支持強度として、前述の地金Mの重量から換算して、仮に、FeとFeOとFeとその他成分とが12%、18%、17%、53%の割合とすれば、耐火物の支持強度として約500mm厚の地金厚み付着量までは耐火物の剥離が起こらないが、500mm厚を超える地金厚みとなると耐火物の剥離を生じるおそれがあるとした場合、地金厚みの管理値を100mm以上、400mm以下(例えば、安全地金最大厚み(約500mm)の20%〜80%)と設定し、この管理値を制御装置8に入力して地金厚み管理を行う。
In the present invention, the knowledge as described above is utilized, and the fusing operation of the metal M is incorporated into the actual converter operation after grasping the relationship between the acid feed rate and the metal melting amount.
More specifically, in the relationship shown in FIG. 3, the amount of metal that can be melted at the inner circumference 90 ° of the converter furnace port 2 to which the fusing lance 5 blows oxygen gas is, in other words, the thickness of the metal that can be melted. You can also see the thickness of this bullion.
Further, a refractory 4 such as a refractory brick is lined inside the converter 1, and these refractories 4 are provided in the converter 1 with a desired strength. Here, for example, as the supporting strength of the refractory, when converted from the weight of the above-described metal M, Fe, FeO, Fe 2 O 3 and other components are 12%, 18%, 17%, 53%. As a ratio, refractory peeling does not occur up to a bare metal thickness of about 500 mm as the support strength of the refractory, but if the thickness of the bullion exceeds 500 mm, there is a risk of refractory peeling. In this case, the management value of the metal thickness is set to 100 mm or more and 400 mm or less (for example, 20% to 80% of the maximum safe metal thickness (about 500 mm)), and this management value is input to the control device 8 to Perform gold thickness management.

転炉1の操業に伴い、前述のプロフィール計測装置11にて地金Mの厚みを傾動時に逐一観測した場合、この管理値のどの範囲となっているか制御装置8にて監視し、多点計測して地金Mの厚みを監視している間に1点(1計測位置)でも地金厚みが400mmを超えた場合、吹錬終了後の傾動後に、溶断用ランス5によって地金Mの溶断を行う。したがって、前記プロフィール計測装置11による多点計測により地金厚みMが全領域にて100〜400mmの範囲に入っている場合は傾動後の地金Mの溶断を行わずに転炉1をそのまま正立させて再び吹錬するという通常の転炉操業を繰り返す。   As the converter 1 is operated, when the thickness of the metal M is observed one by one at the time of tilting by the profile measuring device 11 described above, the control device 8 monitors which range of this control value is used, and multipoint measurement is performed. While the thickness of the metal M is monitored, if the metal thickness exceeds 400 mm even at one point (one measurement position), the metal M is melted by the fusing lance 5 after tilting after the end of blowing. I do. Therefore, when the metal thickness M is in the range of 100 to 400 mm in all regions by multi-point measurement by the profile measuring device 11, the converter 1 is corrected as it is without melting the metal M after tilting. Repeat the normal converter operation of standing and blowing again.

前記プロフィール計測装置11による多点計測において地金Mの厚みの管理値400mmを地金厚みが1点でも超えた場合に以下の地金溶断作業を行う。
それには、プロフィール計測装置11にて計測した地金Mの測定温度の平均値から地金表面温度を規定し、プロフィール計測装置11にて計測した地金Mの荷重を算出して耐火物を保護するうえで必要となる溶断量を算出推定し、その関係を図3に示す予め実験により決めておいた相関曲線に当てはめて3種類のどの送酸速度を選択すれば良いかの判断を制御装置8で行い、制御装置8で溶断用ランス5からの送酸速度を決定し、溶断作業を行う。
溶断作業の実際は、図1に示す如く転炉1を正立させた後、溶断用ランス5を転炉炉口2の内周側に挿入し、溶断用ランス5の噴出口12…からほぼ90゜幅の酸素ガスを吹き付けて該当領域にある地金Mを溶断して転炉1の底部に落下させれば良い。ここで落下させた地金Mは溶断後の次工程の吹錬においてそのまま他の投入原料と混同して利用することができる。
In the multipoint measurement by the profile measuring device 11, when the thickness of the bare metal exceeds the management value 400mm of the bare metal M, the following bare metal fusing operation is performed.
For this purpose, the surface temperature of the bullion M is defined from the average value of the measured temperatures of the bullion M measured by the profile measuring device 11, and the load of the bullion M measured by the profile measuring device 11 is calculated to protect the refractory. The controller calculates and estimates the amount of fusing required to perform the process, and applies the relationship to the correlation curve previously determined by experiment shown in FIG. 8, the control device 8 determines the acid feed rate from the fusing lance 5 and performs the fusing operation.
As shown in FIG. 1, the fusing operation is actually performed after the converter 1 is upright, and then the fusing lance 5 is inserted into the inner periphery of the converter furnace port 2, and is approximately 90 from the jet 12 of the fusing lance 5. It is only necessary to blow the metal gas M in the corresponding area by blowing an oxygen gas having a width and drop it to the bottom of the converter 1. The dropped metal M can be confused with other input materials as it is in the next step of blowing after fusing.

また、プロフィール計測装置11にて転炉炉口2の内周部全周の地金厚みを測定し、地金厚みMが100〜400mmの管理値内に入っているか、入っていないかを逐次管理把握する。これにより、どの領域の地金Mが成長著しいか、否か、把握しながら溶断作業を行うことができる。
一例として、転炉1の規模に応じて地金溶断時間2分、地金表面温度700℃、地金溶断必要量3.5tとした場合、図3の相関図から、送酸速度20000Nm/hを選択すれば、必要十分な量の地金Mを溶断することができることがわかる。
ところで、図3に示す如く溶断用ランス5の送酸速度を10000Nm/hr、15000Nm/hr、20000Nm/hrの3段階のみ変更可能な場合、図3に示す15000Nm/hrの送酸速度の相関曲線と、20000Nm/hrの送酸速度の相関曲線との中間値に地金溶断量が設定される場合がある。例えば、地金表面温度700℃にて地金溶断量3tの場合は、両相関曲線の中間値となるが、そのような場合においては溶断量の余裕を見て20000Nm/hrの送酸速度の相関曲線を適用して地金の溶断を行なえば良い。
Further, the profile measuring device 11 measures the thickness of the ingot around the inner periphery of the converter furnace port 2 and successively determines whether the ingot thickness M is within the control value of 100 to 400 mm. Understand management. Thus, the fusing operation can be performed while grasping which region of the metal M is growing significantly.
As an example, when the metal melting time is 2 minutes, the metal surface temperature is 700 ° C., and the metal melting required amount is 3.5 t according to the scale of the converter 1, the acid feeding rate is 20000 Nm 3 / It can be seen that if h is selected, a necessary and sufficient amount of the metal M can be fused.
Incidentally, 10000 Nm 3 / hr of oxygen-flow-rate of the blown lance 5 as shown in FIG. 3, 15000 nm 3 / hr, when 20000 nm 3 / hr capable of changing three stages only, oxygen-flow of 15000 nm 3 / hr illustrated in Figure 3 The metal fusing amount may be set to an intermediate value between the velocity correlation curve and the acid feeding velocity correlation curve of 20000 Nm 3 / hr. For example, in the case of a metal surface fusing amount of 3 t at a metal surface temperature of 700 ° C., it is an intermediate value between the two correlation curves. In such a case, an acid feed rate of 20000 Nm 3 / hr is taken into account in the margin of fusing amount. It is only necessary to melt the bullion by applying the correlation curve.

ただし、過剰な送酸速度で地金Mの溶断を行えば、転炉炉口2の内側に付着した地金Mを除去する以上に可能な酸素を転炉炉口2の内周面に吹き付けることになるので、転炉炉口2の内周部の耐火物を損傷させるおそれが高くなる。この点において図3に示す相関曲線の中間値において1つ上の段階の相関曲線に沿うように送酸速度を選定する程度ならば、転炉炉口2の内周部の耐火物の損傷も可能な限り低く抑制することができる。勿論、図3に隣接して示される相関曲線の間に目的の溶断条件が位置した場合、加重平均をとってその平均値に基づいて送酸速度を微調整しても良い。これにより、より的確な送酸速度で必要な量の地金Mを溶断することができる。
従って本発明の溶断方法を実施することにより、耐火物を損傷するおそれを低減した上で確実な地金溶断効果を得ることができる。
However, if the base metal M is melted at an excessive acid feed rate, oxygen that is available to the inner peripheral surface of the converter furnace port 2 is blown to the inner peripheral surface of the converter furnace port 2 more than removing the base metal M adhering to the inside of the converter furnace port 2. As a result, the risk of damaging the refractory in the inner periphery of the converter furnace port 2 is increased. At this point, if the acid feed rate is selected so as to follow the correlation curve of the next higher level in the intermediate value of the correlation curve shown in FIG. 3, damage to the refractory in the inner periphery of the converter furnace port 2 will also occur. It can be suppressed as low as possible. Of course, when the target fusing condition is located between the correlation curves shown adjacent to FIG. 3, a weighted average may be taken and the acid feed rate may be finely adjusted based on the average value. As a result, a necessary amount of the metal M can be melted at a more accurate acid feed rate.
Therefore, by carrying out the fusing method of the present invention, it is possible to obtain a reliable metal fusing effect while reducing the risk of refractory damage.

ところで、図3に示す関係は溶断時間が2分の場合の例であるが、地金溶断時間を常に2分で完了させる必要はなく、転炉の非稼働時間との関係で2分は極めて短い場合の例と考える。即ち、転炉の精錬スケジュールが決まっており、生産量との兼ね合いから、余裕がある場合は非稼働時間は当然2分よりも長くなるので、その場合は地金溶断時間を2分よりも長い時間に延長することができる。しかし、前述した如く地金溶断時間を長くして送酸速度を多くすると耐火物に与えるダメージも増加する可能性があるので、一方で時間的に余裕があって地金溶断に時間を掛けすぎると地金温度が低下してかえって効率が悪くなる可能性があるので適切な時間を選択すればよい。   By the way, the relationship shown in FIG. 3 is an example when the fusing time is 2 minutes, but it is not always necessary to complete the metal fusing time in 2 minutes, and 2 minutes is extremely related to the non-operation time of the converter. Consider an example of a short case. In other words, the refining schedule of the converter is fixed, and from the balance with the production volume, if there is a margin, the non-operation time will naturally be longer than 2 minutes, so in that case the metal fusing time will be longer than 2 minutes Can be extended in time. However, as mentioned above, increasing the acid feed rate by increasing the metal cutting time may increase the damage to the refractory. On the other hand, there is time to spare and it takes too much time to cut the metal. Since the metal temperature may decrease and the efficiency may worsen, an appropriate time may be selected.

また、前記したようにモニター10に転炉炉口2の画像が表示されており、オペレータはこの画像中に表示された地金Mの状況と転炉炉口2の内周面の状況を監視しながら地金溶断作業を行うことができる。従って例えば、転炉炉口2の全周において管理値の400mmを超える厚みの地金Mが1箇所発生し、その発生箇所を含む90゜範囲内において、仮に発生箇所以外の部分の地金Mが遙かに薄かった場合、例えば管理値400mmよりも管理値100mmに近いほど薄かった場合に、過剰な酸素吹き付けにより転炉炉口2の内周面の耐火物を損傷させるおそれを有するので、その場合は厚い地金Mの部分の溶断を確認できた後、できるだけ早い時間で溶断を停止すると良い。このようにモニター10に転炉炉口2の画像を表示して監視しながら溶断することにより、転炉炉口部分の損傷を防止しつつ溶断作業を行うことができる。   Further, as described above, the image of the converter furnace port 2 is displayed on the monitor 10, and the operator monitors the status of the metal M displayed in this image and the status of the inner peripheral surface of the converter furnace port 2. While doing this, it is possible to perform the metal fusing work. Accordingly, for example, one ingot M having a thickness exceeding the control value of 400 mm is generated in the entire periphery of the converter furnace port 2 and, in the 90 ° range including the occurrence location, the ingot M other than the generated portion Is much thinner, for example, when it is so thin that the control value is closer to 100 mm than the control value of 400 mm, there is a possibility of damaging the refractory on the inner peripheral surface of the converter furnace port 2 by excessive oxygen blowing, In that case, it is preferable to stop the fusing as soon as possible after confirming the fusing of the thick metal M part. Thus, by fusing while displaying and monitoring the image of the converter furnace port 2 on the monitor 10, the fusing operation can be performed while preventing damage to the converter furnace port part.

溶断作業の際に地金付着量が多く、地金厚み最も厚い部分に溶断用ランスの広がり角の中心を合わせて酸素を吹いて地金Mを溶断することが望ましい。また、転炉炉口2には常に所定量の地金Mを残すようにすることが望ましい。その地金Mの厚さは例えば100〜200mm程度とする。このため、本発明によれば炉口2の内周部の耐火物を溶損することなく、炉口内部に付着した地金Mを溶断することができる。地金Mの厚さは例えばカメラ9からのモニター画像により自動的に確認することができる。
このように、本発明ではブローランス5の酸素流量を制御しながら地金付着量の多い部分の地金Mを除去することが望ましい。なお、溶断用ランスの広がり角よりも溶断するべき地金Mの広がりが大きい場合は、地金付着量の多い部分を中心に溶断用ランスを左右に往復回転させながら溶断することが望ましい。なおまた、送酸速度はブローランス5の高さによっても変化させることが好ましい。すなわち、ブローランス5の噴出口11が転炉炉口2の出鋼口付近にあるときには酸素流量を減少させ、出鋼口付近の耐火レンガの溶損を防止することが好ましい。
In the fusing operation, it is preferable that the metal M is blown by blowing oxygen with a large amount of metal adhesion, with the center of the spread angle of the fusing lance aligned with the thickest part of the metal. Moreover, it is desirable to always leave a predetermined amount of metal M in the converter furnace port 2. The thickness of the metal M is about 100 to 200 mm, for example. For this reason, according to this invention, the metal M adhering to the inside of the furnace port can be blown out without melting the refractory in the inner periphery of the furnace port 2. The thickness of the metal M can be automatically confirmed by a monitor image from the camera 9, for example.
As described above, in the present invention, it is desirable to remove the bare metal M in the portion where the adhesion amount of the bare metal is large while controlling the oxygen flow rate of the blow lance 5. In addition, when the spread of the metal M to be melted is larger than the spread angle of the fusing lance, it is desirable to perform the fusing while reciprocating the fusing lance left and right around a portion where the amount of metal adhesion is large. In addition, it is preferable that the acid feeding speed is changed depending on the height of the blow lance 5. That is, it is preferable to reduce the oxygen flow rate when the outlet 11 of the blow lance 5 is in the vicinity of the steel outlet of the converter furnace 2 to prevent the refractory brick near the steel outlet from being melted.

ところで、本実施形態では地金Mを溶断するべき管理値として、地金厚み500mmを支持限界値と見てその80%の400mmに設定したが、これらの値は転炉1の構造と耐火物の支持強度に応じて異なるので、適用する転炉の構造や規模に合わせて適宜設定することが必要であるのは勿論である。従って、転炉によってはもっと低い地金厚みを支持限界値として見立て、その限界値の80%あるいはそれよりも低い値を管理値の上限と見立てて溶断開始の目安とすることもできる。
また、本実施の形態では、プロフィール計測装置にて計測することにより地金Mの付着量を把握したが、地金Mの付着量や付着状態を把握する際、数値計算シミュレーションにて地金Mの付着量や付着状態を予測し、把握しても良い。
更に、前述のように転炉炉口の地金Mを除去しておくならば、次の転炉操業のチャージの際にスクラップの投入作業に地金が邪魔にならないので、スクラップ投入トラブルを生じることがないとともに、溶銑を転炉1に装入して転炉操業を行う際においても溶銑の投入トラブルを生じない効果がある。例えば、スクラップの投入作業時に転炉炉口2が地金Mで一部塞がれた状態であると、スクラップが地金Mに接触して投入作業に支障を来すおそれがある。また、転炉操業開始のためのチャージの際に転炉炉口2に突出されている地金Mが邪魔になって溶銑が外部にこぼれたりするおそれもある。
By the way, in this embodiment, as the control value for fusing the metal M, the metal thickness 500 mm is set to 80% of the support metal limit value, which is set to 400 mm, but these values are the structure of the converter 1 and the refractory. Of course, it is necessary to set appropriately according to the structure and scale of the converter to be applied. Therefore, depending on the converter, a lower metal thickness can be regarded as the support limit value, and 80% of the limit value or a value lower than that can be regarded as the upper limit of the control value, which can be used as a guide for starting fusing.
Moreover, in this Embodiment, although the amount of adhesion | attachment of the bullion M was grasped | ascertained by measuring with a profile measuring apparatus, when grasping | ascertaining the adhesion amount and adhesion | attachment state of the bullion M, the bullion M was calculated by numerical simulation It is also possible to predict and grasp the amount of adhesion and the state of adhesion.
Furthermore, if the metal M at the converter furnace port is removed as described above, the metal does not get in the way of throwing in the scrap when charging the next converter operation. In addition, there is an effect that hot metal charging trouble does not occur even when the hot metal is charged into the converter 1 and the converter operation is performed. For example, if the converter furnace port 2 is partially blocked by the metal M during the scrap charging operation, the scrap may come into contact with the metal M and interfere with the charging operation. Further, when charging for the start of the converter operation, the metal M protruding from the converter furnace port 2 may become an obstacle and the hot metal may spill outside.

転炉操業中に転炉炉口に付着した地金の溶断量と溶断用ランスからの送酸速度と地金表面温度との関係について試験した。
転炉炉口に付着した地金を一部採取して成分分析した結果は、Fe=12%、FeO18%、Fe=17%、CaO等その他成分53%であった。溶断用ランスとして、直径30cm、長さ10m、先端部の側面に内径2cmの噴出口を周方向に7個等間隔に、先端部周面の90゜の範囲に形成したものを用いた。この溶断用ランスの送酸速度を10000Nm/hr、15000Nm/hr、20000Nm/hrの3段階に調整し、各送酸速度において転炉炉口の地金の表面部分の温度と溶断量について溶断時間2分の条件で溶断作業した結果、溶断できた地金量を測定した。
溶断できた地金量の計測は、溶断開始前のプロフィール計測装置による地金の平均厚みと溶断終了後にプロフィール計測装置により計測した残留地金の厚みの差から算出して把握した。
During the converter operation, the relationship between the amount of molten metal attached to the converter furnace mouth, the acid feed rate from the fusing lance, and the surface temperature of the metal was tested.
Bullion adhering to the converter furnace outlet to part collected results of component analysis, Fe = 12%, FeO18% , Fe 2 O 3 = 17%, were other ingredients 53% like CaO. As a fusing lance, a lance having a diameter of 30 cm, a length of 10 m, and 7 spouts with an inner diameter of 2 cm formed on the side surface of the tip portion at an equal interval in the circumferential direction at a range of 90 ° on the peripheral surface of the tip portion was used. 10000 Nm 3 / hr of oxygen-flow-rate of the blowing lance, 15000 nm 3 / hr, and adjusted to three levels of 20000 nm 3 / hr, temperature and blowing amount of the surface portion of the bare metal of the converter furnace port at each oxygen-flow-rate As a result of fusing work under the condition of fusing time of 2 minutes, the amount of metal that could be melted was measured.
The amount of the bare metal that could be melted was calculated and grasped from the difference between the average thickness of the bare metal by the profile measuring device before the start of melting and the thickness of the residual bare metal measured by the profile measuring device after the end of melting.

以上の結果を図3に示す。ここで、1ヒートの操業に要する時間を50分と規定しており、稼働時間が通常48分程度のために2分の非稼働時間が生じることから地金切り時間を2分と規定した。
図3に示す結果から、送酸速度が10000Nm/hr、15000Nm/hr、20000Nm/hrと上昇するにつれて地金溶断量はいずれの地金表面温度においても増加する傾向にある。また、地金溶断量について地金表面温度との関係は、同一送酸速度の場合に600℃、650℃、700℃、750℃と地金温度が上昇するにつれて、等比級数的に増加することが明らかになった。
従って図3に示す関係を把握し、例えば、地金表面温度700℃、地金溶断必要量3.5tの場合、図3の関係から、20000Nm/hrの送酸速度に設定すれば、確実に地金の溶断ができることがわかる。
The above results are shown in FIG. Here, the time required for the operation of one heat is defined as 50 minutes, and since the operation time is normally about 48 minutes, the non-operation time of 2 minutes is generated, so the metal cutting time is defined as 2 minutes.
From the results shown in FIG. 3, the oxygen-flow-rate 10000Nm 3 / hr, 15000Nm 3 / hr, bullion blown amount as it rises 20000 nm 3 / hr tends to increase in any of the bare metal surface temperature. In addition, the relationship between the metal fusing amount and the metal surface temperature increases geometrically as the metal temperature rises to 600 ° C., 650 ° C., 700 ° C., and 750 ° C. at the same acid feed rate. It became clear.
Therefore, if the relationship shown in FIG. 3 is grasped, for example, in the case of a metal surface temperature of 700 ° C. and a metal fusing required amount of 3.5 t, it is ensured by setting the acid feed rate of 20000 Nm 3 / hr from the relationship of FIG. It can be seen that the metal can be melted.

なお、転炉の操業において吹錬が終了して溶鋼を排出した後、地金温度は徐々に低下してゆく。この低下の際にどの時点から地金の溶断を行うかによって、溶断用ランスからの好適な送酸速度は変化することになる。しかし、転炉の操業において常に同じ温度の時点で地金の溶断ができる訳ではなく、操業時の種々の条件により地金の溶断に取りかかる時間は決まっていないので、本発明の如く地金表面温度に応じて好適な送酸速度を選択することは極めて有効な地金溶断方法となり、溶鋼排出後のいかなる時点で地金溶断を開始しても、好適な送酸速度で地金を溶断することができる。   In addition, after the blowing is completed in the operation of the converter and the molten steel is discharged, the metal temperature gradually decreases. The suitable acid feed rate from the fusing lance varies depending on the point at which the metal is blown from the time of the reduction. However, in the operation of the converter, it is not always possible to blow out the metal at the same temperature, and the time taken to melt the metal is not determined according to various conditions during operation. Choosing a suitable acid feed rate according to the temperature is a very effective method for fusing ingots. Even if metal fusing starts at any point after the molten steel is discharged, the ingots are melted at a suitable acid feed rate. be able to.

図1は本発明に係る地金の溶断方法の実施状況の一例を説明するための構成図であり、転炉と溶断用ランス及びその他の設備の配置状態を示す構成図。FIG. 1 is a configuration diagram for explaining an example of an implementation status of a method for fusing a metal bar according to the present invention, and is a configuration diagram showing an arrangement state of a converter, a fusing lance, and other equipment. 図2は本発明に係る溶断方法に用いられる溶断用ランスを示すもので、図2(A)は溶断用ランスの下端部の斜視図、図2(B)は溶断用ランスの部分断面図。2A and 2B show a fusing lance used in the fusing method according to the present invention. FIG. 2A is a perspective view of a lower end portion of the fusing lance, and FIG. 2B is a partial cross-sectional view of the fusing lance. 図3は転炉において溶断用ランスの送酸速度を変えた場合の地金溶断量と地金表面温度の関係を示すグラフ。FIG. 3 is a graph showing the relationship between the amount of metal melt and the surface temperature of the metal when the acid feed rate of the fusing lance is changed in the converter. 図4は従来の転炉の操業状態と地金の状態を示すもので、図4(A)は転炉に吹き込みランスを挿入して吹錬している状態を示す断面図、図4(B)は転炉の炉口部分から地金が脱落した状態を示す断面図、図4(C)は地金と共に転炉の耐火物が剥離した状態を示す断面図、図4(D)は地金と共に転炉の耐火物が転炉内に脱落した状態を示す断面図。FIG. 4 shows the operation state of the conventional converter and the state of the metal, and FIG. 4 (A) is a cross-sectional view showing a state where the blowing lance is inserted into the converter and blown, FIG. 4 (B ) Is a cross-sectional view showing a state in which the metal has fallen from the furnace port portion of the converter, FIG. 4C is a cross-sectional view showing a state in which the refractory of the converter is peeled off together with the metal, and FIG. Sectional drawing which shows the state which the refractory of the converter fell in the converter with gold | metal | money.

符号の説明Explanation of symbols

1 転炉、
2 転炉炉口、
3 鉄皮、
4 耐火物(耐火レンガ)、
5 溶断用ランス、
8 制御装置、
9 カメラ、
10 モニタ、
11 プロフィール計測装置、
12 噴出口、
1 converter,
2 Converter furnace opening,
3 Iron skin,
4 refractories (refractory bricks),
5 Lance for fusing,
8 control device,
9 Camera,
10 monitor,
11 Profile measuring device,
12 spouts,

Claims (6)

先端部側面側から酸素ガスを噴出可能な構成の溶断用ランスを用いて酸素ガスを転炉炉口の内周部に付着している地金に吹き付け、地金を溶断除去する転炉炉口の地金溶断方法において、
前記転炉に内張された耐火物付着許容厚みを予め設定し、この耐火物付着許容厚みよりも低い管理値を規定しておき、前記転炉炉口内周部の周方向の地金厚みの複数位置把握を行い、複数の把握位置の少なくとも1箇所の地金厚みが前記管理値を超えた場合、前記溶断用ランスにより酸素ガスを前記地金に吹き付けて地金除去を行うにあたり、
該地金除去を行う際、溶断用ランスによって酸素ガスを吹き付ける特定の範囲における地金厚みに応じた地金溶断量を把握し、この地金溶断量と、地金の測定温度の平均値から規定した地金表面温度に対応する送酸速度を、予め把握した溶断可能な地金量と該地金表面温度、送酸速度の相関関係を基に設定して前記溶断用ランスにより酸素ガスを前記地金に吹き付けて地金除去を行うことを特徴とする転炉炉口の地金溶断方法。
A converter furnace port that blows and removes metal from the inner periphery of the converter furnace by blowing it using a fusing lance that can blow out oxygen gas from the side of the tip. In the bullion cutting method of
The allowable thickness of the refractory attached to the converter is set in advance, a control value lower than the allowable thickness of the refractory is defined, and the thickness of the metal in the circumferential direction of the inner periphery of the converter furnace is set. When performing multiple position grasping, and when the metal thickness of at least one location of the plurality of grasping positions exceeds the control value, when performing the metal removal by blowing oxygen gas to the metal with the fusing lance ,
When performing該地gold removed, grasp the bullion blown amount according to bullion thickness in a specific range of blowing oxygen gas by lance Blown, and the bullion blowing amount, the average value of the measured temperature of the bullion The oxygen feed rate corresponding to the metal surface temperature specified from the above is set based on the correlation between the meltable metal volume, the metal surface temperature, and the acid feed rate ascertained in advance. A method of blowing a bullion to the bullion to remove the bullion.
前記溶断用ランスから酸素ガスを地金に噴出した場合に溶断可能な地金量を該地金の温度と送酸速度から予め把握するとともに、特定の送酸速度における地金表面温度と溶断量の関係を特定の送酸速度に対応する地金表面温度と溶断量の関係として求め、前記特定の送酸速度を複数規定して各規定した送酸速度毎の関係を求め、地金温度に応じたこれら複数の関係により決定される地金溶断量に応じた地金除去を行うことを特徴とする請求項に記載の転炉炉口の地金溶断方法。 The amount of metal that can be melted when oxygen gas is ejected from the fusing lance is preliminarily determined from the temperature of the metal and the acid feed rate, and the surface temperature of the metal and the amount of fusing at a specific acid feed rate. Is determined as a relationship between the metal surface temperature corresponding to a specific acid feed rate and the fusing amount, a plurality of the specific acid feed rates are defined, and a relationship for each specified acid feed rate is determined, 2. The method for fusing a bullion at a converter furnace port according to claim 1 , wherein the bullion is removed according to the amount of bulge fusing determined by the plurality of relationships. 前記1つの特定の送酸速度により規定される関係と前記他の1つの特定の送酸速度により規定される関係との間に地金温度と地金溶断量の関係が存在している場合、地金溶断量の多い側の関係に基づく送酸速度に設定して前記溶断用ランスによる地金除去を行うことを特徴とする請求項2に記載の転炉炉口の地金溶断方法。   When there is a relationship between the metal temperature and the metal fusing amount between the relationship defined by the one specific acid delivery rate and the relationship defined by the other specific acid delivery rate, 3. The method of fusing a bullion at a converter furnace mouth according to claim 2, wherein the bullion removal is performed by the fusing lance by setting the acid feed speed based on the relationship on the side having a larger amount of bullion fusing. 前記溶断用ランスから酸素ガスを地金に噴出する場合の噴射角度を前記溶断用ランスの周方向に30゜〜150゜の範囲とすることを特徴とする請求項1〜3のいずれかに記載の転炉炉口の地金溶断方法。 4. An injection angle when oxygen gas is jetted from the fusing lance to the metal is in a range of 30 [deg.] To 150 [deg.] In the circumferential direction of the fusing lance. Method of fusing ingots at the converter furnace. 前記転炉傾動時の炉口内周部の複数位置毎の地金量の計測にプロフィール計測装置を用いて多点計測し、転炉炉口内周部の高さ方向と径方向における地金量の3次元計測を行い、炉口内周方向と高さ方向における地金量を把握し、これらの結果から少なくとも1箇所の地金厚みが前記管理値を超えた場合、前記溶断用ランスにより酸素ガスを前記地金に吹き付けて地金除去を行うことを特徴とする請求項1〜4のいずれかに記載の転炉炉口の地金溶断方法。   Using a profile measuring device to measure the amount of metal at multiple positions in the inner periphery of the furnace port during tilting of the converter, the amount of metal in the height direction and radial direction of the inner periphery of the converter furnace port is measured. Three-dimensional measurement is performed to determine the amount of metal in the furnace port inner circumferential direction and height direction. From these results, when the thickness of at least one metal bar exceeds the control value, oxygen gas is supplied by the fusing lance. 5. The method of fusing a bullion in a converter furnace opening according to claim 1, wherein the bullion is removed by spraying on the bullion. 請求項1〜5のいずれかに記載の転炉炉口の地金溶断方法を実施するにあたり、当該ヒートと次ヒート間の転炉の非稼働時間を基に地金溶断時間を設定し、測定した溶断地金量から必要酸素量を求め、該必要酸素量と前記地金量から溶断用ランスの送酸速度を設定して地金溶断を行うことを特徴とする請求項1〜5のいずれかに記載の転炉炉口の地金溶断方法。   In carrying out the method for fusing the ingot of the converter furnace according to any one of claims 1 to 5, the ingot cutting time is set based on the non-operation time of the converter between the heat and the next heat, and measured. The amount of oxygen required is determined from the amount of molten metal that has been cut, and the metal is blown by setting the acid feed rate of the fusing lance from the amount of necessary oxygen and the amount of metal. A method for fusing metal in the converter furnace port according to the above.
JP2006160932A 2006-06-09 2006-06-09 Blasting method for converter furnace mouth Active JP4790502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006160932A JP4790502B2 (en) 2006-06-09 2006-06-09 Blasting method for converter furnace mouth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006160932A JP4790502B2 (en) 2006-06-09 2006-06-09 Blasting method for converter furnace mouth

Publications (2)

Publication Number Publication Date
JP2007327124A JP2007327124A (en) 2007-12-20
JP4790502B2 true JP4790502B2 (en) 2011-10-12

Family

ID=38927780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006160932A Active JP4790502B2 (en) 2006-06-09 2006-06-09 Blasting method for converter furnace mouth

Country Status (1)

Country Link
JP (1) JP4790502B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015200188A1 (en) 2015-01-09 2016-07-14 Sms Group Gmbh Method and device for operating a lance in a converter
US10761035B2 (en) * 2017-02-27 2020-09-01 Nippon Steel Corporation Diagnosis support apparatus, diagnosis support method, diagnosis method, and repair method of vacuum degassing tank
CN114317879B (en) * 2022-01-26 2023-04-11 南京钢铁股份有限公司 Method for controlling mouth-melting oxygen lance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428811A (en) * 1990-05-23 1992-01-31 Sumitomo Metal Ind Ltd Burner, and device and method for removing metal
JP2002012910A (en) * 2000-06-28 2002-01-15 Kawasaki Steel Corp Method for protecting refractory lined inside converter
JP2005015849A (en) * 2003-06-26 2005-01-20 Nippon Steel Corp Method for cutting off scull on converter nose

Also Published As

Publication number Publication date
JP2007327124A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
KR100625372B1 (en) Method for slag coating of converter wall
JP4790502B2 (en) Blasting method for converter furnace mouth
JP6756074B2 (en) How to repair refractories installed on the bottom blown tuyere of a converter type reaction vessel
EP0725150B1 (en) Segmented oxygen blowing lance capable of being used in an electric arc furnace
JPH10176212A (en) Method for preventing flow-out of slag at the time of discharging molten steel
JP2010031338A (en) Method for operating converter
JP5344906B2 (en) Refractory management method for molten iron containers
JP4737176B2 (en) Method for controlling adhesion of metal in the refining furnace
JP4689782B2 (en) Method for coating slag on converter furnace wall and method for managing converter furnace bottom during slag coating
JP2011179041A (en) Method for removing metal in converter
JP6421731B2 (en) Converter operation method
JP2009149956A (en) Method for producing molten steel with converter
JP2021131222A (en) Method for detecting material charge pipe clogging, method for dissolving material charge pipe clogging, and melting facility
JP5076515B2 (en) Dissolving and removing adhesion metal from the inner wall of vacuum degassing tank
KR101818511B1 (en) Method for removing adherent
JP2009174029A (en) Method for operating converter
JP2000096122A (en) Operation method for restraining sticking of metal in refining furnace
JP2018024911A (en) Method for melting bullion adhered in ladle in molten iron preliminary treatment
JP2524083Y2 (en) Lance for blowing and furnace mouth metal cutting
JP4016500B2 (en) Blasting method for suppressing metal adhesion in converter refining furnace
JP2021147668A (en) Cooling method of top-blown lance, cooling device for top-blown lance, and top-blown lance facility
JP2800537B2 (en) Prediction method of molten steel and slag spouting scale in refining process
JP5488025B2 (en) Melting method of converter furnace deposit metal
JP3748455B2 (en) Top blown oxygen lance of converter
JP2005015849A (en) Method for cutting off scull on converter nose

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4790502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350