JP4790430B2 - Detection circuit using catalytic combustion type gas sensor - Google Patents

Detection circuit using catalytic combustion type gas sensor Download PDF

Info

Publication number
JP4790430B2
JP4790430B2 JP2006015822A JP2006015822A JP4790430B2 JP 4790430 B2 JP4790430 B2 JP 4790430B2 JP 2006015822 A JP2006015822 A JP 2006015822A JP 2006015822 A JP2006015822 A JP 2006015822A JP 4790430 B2 JP4790430 B2 JP 4790430B2
Authority
JP
Japan
Prior art keywords
gas
sensor
carrier
catalyst
catalytic combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006015822A
Other languages
Japanese (ja)
Other versions
JP2007198816A (en
Inventor
泰三 石川
Original Assignee
泰三 石川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰三 石川 filed Critical 泰三 石川
Priority to JP2006015822A priority Critical patent/JP4790430B2/en
Publication of JP2007198816A publication Critical patent/JP2007198816A/en
Application granted granted Critical
Publication of JP4790430B2 publication Critical patent/JP4790430B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

検出可能な濃度範囲が広く、高感度の接触燃焼式ガスセンサに用いる検出回路に関する。   The present invention relates to a detection circuit used in a high-sensitivity catalytic combustion type gas sensor having a wide detectable concentration range.

接触燃焼式ガスセンサは、触媒による可燃性ガスの接触燃焼を利用して、それに伴うセンサの温度変化をセンサ抵抗値の変化として検出する方式のセンサである。センサの感度は、可燃性ガスの濃度と良好な比例関係にあるため、ガス濃度の計測及び監視を目的とした機器(たとえば、ガス給湯器の安全装置など)には、接触燃焼式ガスセンサが使用されている。   The catalytic combustion type gas sensor is a sensor of a type that uses catalytic combustion of combustible gas by a catalyst and detects a change in temperature of the sensor as a change in sensor resistance value. Since the sensitivity of the sensor has a good proportional relationship with the concentration of combustible gas, a catalytic combustion type gas sensor is used for equipment for measuring and monitoring the gas concentration (for example, a safety device for a gas water heater). Has been.

図1は、従来の接触燃焼式ガスセンサの構造を説明するための図である。図1は、検知素子としての接触燃焼式ガスセンサの構造を示す図であって、検知素子は、例えば、直径約20μmの白金線コイルを担体としてのアルミナで球状に包むような構造であり、その担体の表面に触媒(例えば、白金、パラジウムなどの貴金属)が担持されている。
このような接触燃焼式ガスセンサは、コイルに担体を滴下して付着させ、焼成後、さらに触媒を担体表面に塗布し、焼成することにより製造される。
FIG. 1 is a view for explaining the structure of a conventional catalytic combustion type gas sensor. FIG. 1 is a diagram showing the structure of a catalytic combustion type gas sensor as a sensing element. The sensing element has a structure in which, for example, a platinum wire coil having a diameter of about 20 μm is spherically wrapped with alumina as a carrier. A catalyst (for example, a noble metal such as platinum or palladium) is supported on the surface of the support.
Such a contact combustion type gas sensor is manufactured by dropping a carrier on a coil and attaching it to the coil. After firing, the catalyst is further applied to the surface of the carrier and then fired.

図2は、接触燃焼式センサを用いた測定装置の従来の定電圧電源を用いた回路を示す図である。白金コイルは、センサを加熱するヒータとしての役割のほか、可燃性ガスの接触燃焼による温度の変化を捉える温度計としての役割も兼ねている。このため、検知素子E1は、ガスの接触燃焼以外の温度変化、例えば、周囲の温度や風の変化に対しても抵抗値が変化する。これを補償するための温度補償素子E2が用いられる。温度補償素子E2は、検知素子E1と温度特性の同一なものが望ましいため、検知素子E1と同一の白金コイルに触媒を担持しないアルミナを焼結させたものを用いている。図2の回路による測定原理は以下のとおりである。   FIG. 2 is a diagram showing a circuit using a conventional constant voltage power source of a measuring apparatus using a contact combustion type sensor. In addition to serving as a heater for heating the sensor, the platinum coil also serves as a thermometer that captures changes in temperature due to contact combustion of combustible gas. For this reason, the resistance value of the detection element E1 also changes with respect to temperature changes other than gas catalytic combustion, for example, ambient temperature and wind changes. A temperature compensation element E2 is used to compensate for this. The temperature compensation element E2 is preferably the same in temperature characteristics as the sensing element E1, and therefore, the same platinum coil as the sensing element E1 is obtained by sintering alumina that does not carry a catalyst. The measurement principle by the circuit of FIG. 2 is as follows.

図1のように、可燃性ガスの酸化反応に対して、高い触媒活性を持つ白金やパラジウムを担持したアルミナで白金コイルを包み込んだ検知素子E1に、可燃性ガスを含む空気を接触させると、触媒上で可燃性ガスと空気中の酸素が反応(接触燃焼反応)し、反応熱(燃焼熱)が発生する。この反応熱は可燃性ガスの濃度に比例し、それに応じて白金コイルの抵抗値が増大する。このため、空気中の可燃性ガスの濃度に比例して白金コイルの抵抗値が増大する。これを電気量に変換するために、図2のように、検知素子E1と温度補償素子E2を2辺とするブリッジ回路(他辺は固定抵抗R1、R2)が用いられる。検知素子E1及び補償素子E2には、常時100mA程度の電流が供給され、可燃性ガスが接触燃焼反応を起こすのに必要な温度に保たれている。検知素子E1と温度補償素子E2の電気抵抗が等しくなるように設定されているため、可燃性ガスが含まれていない空気中では、ブリッジ回路は平衡を保ち、A−B間に電位差は生じない。一方、空気中に可燃性ガスがあるときには、その接触燃焼のために、検知素子E1の温度は上昇し、電気抵抗が大きくなるため、A−B間に電位差が生じる。この電位差は可燃性ガス濃度に比例して変化するため、この電位差により、空気中の可燃性ガスの濃度を知ることができる。   As shown in FIG. 1, when an air containing a flammable gas is brought into contact with the sensing element E1 enclosing a platinum coil with alumina supporting platinum or palladium having a high catalytic activity for an oxidation reaction of a flammable gas, A combustible gas and oxygen in the air react (catalytic combustion reaction) on the catalyst to generate reaction heat (combustion heat). This reaction heat is proportional to the concentration of the combustible gas, and the resistance value of the platinum coil increases accordingly. For this reason, the resistance value of the platinum coil increases in proportion to the concentration of the combustible gas in the air. In order to convert this into an electric quantity, as shown in FIG. 2, a bridge circuit having two sides of the detection element E1 and the temperature compensation element E2 (the other sides are fixed resistors R1 and R2) is used. The detection element E1 and the compensation element E2 are constantly supplied with a current of about 100 mA, and are maintained at a temperature necessary for the combustible gas to cause a catalytic combustion reaction. Since the electric resistances of the detection element E1 and the temperature compensation element E2 are set to be equal, the bridge circuit is kept in balance in air containing no flammable gas, and no potential difference is generated between A and B. . On the other hand, when there is a flammable gas in the air, the temperature of the sensing element E1 rises due to the contact combustion, and the electrical resistance increases, so that a potential difference occurs between A and B. Since this potential difference changes in proportion to the combustible gas concentration, the concentration of the combustible gas in the air can be known from this potential difference.

しかしながら、従来の接触燃焼式ガスセンサには、次のような課題がある。
第一に、筒状のコイルを担体が球状に覆っているため、コイルと球体表面の距離が担体の位置により異なるため、可燃性ガスを燃焼するためにコイルに通電を行ったとき、表面温度がかなりばらつく。そのため、すべての表面温度を被検出可燃性ガスの燃焼温度に保つことができず、被検出可燃性ガス以外のガスも燃焼してしまい、良好な可燃性ガス選択性が得られない。
例えば、白金触媒を用いた場合、白金触媒は一酸化炭素ガスと約160℃で接触燃焼を起こし、約200℃で水素ガスと接触燃焼を起こすので、担体表面に温度むらが生じて一部分の温度が上がりすぎると、被検出可燃性ガスではない水素ガスと接触燃焼を起こす可能性があり、ガス選択性が悪い。
However, the conventional catalytic combustion type gas sensor has the following problems.
First, since the carrier covers the cylindrical coil in a spherical shape, the distance between the coil and the surface of the sphere varies depending on the position of the carrier, so that when the coil is energized to burn the combustible gas, the surface temperature Vary considerably. Therefore, not all surface temperatures can be maintained at the combustion temperature of the combustible gas to be detected, and gases other than the combustible gas to be detected are combusted, and good combustible gas selectivity cannot be obtained.
For example, when a platinum catalyst is used, the platinum catalyst causes catalytic combustion with carbon monoxide gas at about 160 ° C., and catalytic combustion with hydrogen gas at about 200 ° C., so that temperature unevenness occurs on the surface of the carrier, resulting in a partial temperature. If the gas is too high, contact combustion may occur with hydrogen gas that is not a combustible gas to be detected, and gas selectivity is poor.

第二に、担体を球状にするため、担体の表面積に対する質量が大きくなり、センサの熱容量が大きくなり、熱容量が大きいと、可燃性ガスが触媒に接触して燃焼するときに、センサ全体が昇温する速度が遅くなり、検出応答性が悪くなる。特に、低濃度領域におけるガスの検出感度が悪化し、低濃度側の検知範囲が狭まる。例えば、従来においては、一酸化炭素ガスの低濃度側における濃度測定は、約0.03%(300ppm)までの測定に限定されていた。
第三に、担体のアルミナ表面に微細な孔を作って、ある程度、触媒を担持する表面積を大きくすることができるものの、表面に担持された触媒の燃焼能力を超える高濃度のガスに対しては、燃焼が飽和してしまい、高濃度側の検出範囲は限定される。例えば、従来においては、一酸化炭素ガスの濃度測定においては、約0.3%(3000ppm)程度までの測定しかできなかった。
Secondly, since the carrier is made spherical, the mass with respect to the surface area of the carrier is increased, and the heat capacity of the sensor is increased. When the heat capacity is large, the entire sensor rises when the combustible gas contacts the catalyst and burns. The heating speed becomes slow and the detection response becomes poor. In particular, the gas detection sensitivity in the low concentration region is deteriorated, and the detection range on the low concentration side is narrowed. For example, conventionally, the measurement of the concentration of carbon monoxide gas on the low concentration side is limited to the measurement up to about 0.03% (300 ppm).
Thirdly, although the surface area supporting the catalyst can be increased to some extent by making fine pores on the alumina surface of the support, for high concentration gas exceeding the combustion capacity of the catalyst supported on the surface Combustion is saturated, and the detection range on the high concentration side is limited. For example, conventionally, in the measurement of the concentration of carbon monoxide gas, only measurement up to about 0.3% (3000 ppm) was possible.

また、特許文献1(特開2003−121402号公報)は、コイルの両端部の巻回ピッチで中央部の巻回ピッチよりも密に作成することで、優れたガス選択性がある高感度な接触燃焼式ガスセンサが開示されている。
このセンサは、円筒状の担体をコイルに付着させ、その担体表面に触媒層を設けたものである。円筒の中空領域の内面にも表面積を確保することができ、可燃性ガスと触媒との接触面積が向上し、センサの高感度化が図られる。また、コイルと担体表面との距離をほぼ一定にすることができるので、ガス選択性の向上も期待できる。
Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-121402) discloses a high sensitivity with excellent gas selectivity by making the winding pitch at both ends of the coil denser than the winding pitch at the center. A catalytic combustion gas sensor is disclosed.
In this sensor, a cylindrical carrier is attached to a coil, and a catalyst layer is provided on the surface of the carrier. The surface area can be secured also on the inner surface of the hollow region of the cylinder, the contact area between the combustible gas and the catalyst is improved, and the sensitivity of the sensor is increased. Further, since the distance between the coil and the carrier surface can be made substantially constant, an improvement in gas selectivity can be expected.

特開2003−121402号公報JP 2003-121402 A

しかしながら、上記特許文献1の製造方法により製造される接触燃焼式ガスセンサも、上述した球形状の接触燃焼式ガスセンサと同様の課題を有する。すなわち、担体の表面積に対する質量は依然として大きいため、熱容量も大きく、低濃度領域における感度と検出濃度範囲の向上には、限界がある。また、熱容量が依然として大きいことで、昇温時間に時間がかかるとともに、担体表面に温度むらが生じやすく、良好なガス選択性を得にくい。また、高濃度領域に関しても、円筒形状の担体の内面の面積分だけ、接触面積が増大するので、球形状の接触燃焼式ガスセンサと比較して、若干、検出可能濃度範囲は広がるものの、実用上、従来の球形状の接触燃焼式ガスセンサとさほど変わらない。   However, the catalytic combustion gas sensor manufactured by the manufacturing method of Patent Document 1 also has the same problems as the spherical catalytic combustion gas sensor described above. That is, since the mass with respect to the surface area of the carrier is still large, the heat capacity is also large, and there is a limit in improving the sensitivity and the detection concentration range in the low concentration region. Further, since the heat capacity is still large, it takes a long time to raise the temperature, and temperature unevenness is likely to occur on the surface of the carrier, making it difficult to obtain good gas selectivity. Also, in the high concentration region, the contact area increases by the area of the inner surface of the cylindrical carrier, so that the detectable concentration range is slightly expanded compared to the spherical contact combustion type gas sensor, but in practical use. The conventional spherical contact combustion type gas sensor is not so different.

本発明に用いる接触燃焼式ガスセンサは、ニッケル系導線に触媒を担持する担体が付着され、当該触媒による可燃性ガスの接触燃焼により、当該可燃性ガスの濃度を検出する接触燃焼式ガスセンサにおいて、前記触媒は、前記担体に混合された状態で担持され、前記担体の表面に、担体の内部の触媒が可燃性ガスと接触可能とする複数の孔が形成され、前記担体の厚さは、0.1〜0.5mmとしたものである。この接触燃焼式ガスセンサに適する検出回路の主な構成は次のとおりである。   The catalytic combustion type gas sensor used in the present invention is a catalytic combustion type gas sensor in which a carrier supporting a catalyst is attached to a nickel-based conductor, and the concentration of the combustible gas is detected by catalytic combustion of the combustible gas by the catalyst. The catalyst is supported in a state of being mixed with the carrier, and a plurality of pores are formed on the surface of the carrier so that the catalyst inside the carrier can come into contact with the combustible gas. 1 to 0.5 mm. The main configuration of a detection circuit suitable for this catalytic combustion type gas sensor is as follows.

(1)多数の孔が形成された担体に担持された触媒を厚さ0.1〜0.5mmにニッケル系導体に付着させた接触燃焼式ガスセンサを2個用いた検出回路であって、
直列に配置した定電流回路C2と一方の接触燃焼式ガスセンサS1と、直列に配置した定電流回路C3と他方の接触燃焼式ガスセンサS2とを、並列に配置し、
2つの接触燃焼式ガスセンサS1、S2それぞれの電圧を検出する検出器V1,V2を設け、検出された2つの電圧を比較して混合燃焼ガスを検出することを特徴とする接触燃焼式ガスセンサを用いた検出回路。
(2)ニッケル系導体の形状を中空コイル状としたことを特徴とする(1)に記載の接触燃焼式ガスセンサを用いた検出回路。
(3)(1)又は(2)に記載された接触燃焼式ガスセンサを用いた検出回路を備えたことを特徴とする可燃性ガスセンサ。
(1) A detection circuit using two catalytic combustion type gas sensors in which a catalyst carried on a carrier having a large number of holes is attached to a nickel-based conductor with a thickness of 0.1 to 0.5 mm,
A constant current circuit C2 arranged in series and one catalytic combustion gas sensor S1, a constant current circuit C3 arranged in series and the other catalytic combustion gas sensor S2 are arranged in parallel,
Detectors V1 and V2 for detecting the respective voltages of the two catalytic combustion gas sensors S1 and S2 are provided, and a mixed combustion gas is detected by comparing the two detected voltages. Detection circuit.
(2) The detection circuit using the catalytic combustion type gas sensor according to (1), wherein the nickel-based conductor has a hollow coil shape.
(3) A combustible gas sensor comprising a detection circuit using the contact combustion gas sensor described in (1) or (2) .

本発明は、高感度のガスセンサの能力を検出する検出回路が実現できる。また、特に定電流回路を検出回路に組み込むことにより、検出用出力ゲインを大きくすることができ、センサの感度を十分に引き出すことができる。
特に、ガスセンサ部は、担体が触媒を混合した状態で薄膜状に担持され、担体内部の触媒に可燃性ガスが接触可能な複数の孔が、担体表面に形成されるので、触媒による接触燃焼が行われる領域が大幅に増大し、高濃度側の検出範囲が飛躍的に広がる。また、導線に多孔質体からなる担体を薄層状に付着させているので、担体の熱容量が大きく低下し、低濃度領域における感度が向上し、低濃度側の検出範囲も広がる。また、熱容量の低下により、担体の表面温度の温度むらが起きず、良好なガス選択性が得られる。
また、特に、導線として、触媒反応が無いニッケル系導体を用いることにより、補償素子側に不側の反応を発生することがなく、センサの感度を高精度に発揮することができる。
また、ニッケルの着磁性を利用することにより、組付けなどの作業性に優れている。
The present invention can realize a detection circuit that detects the ability of a highly sensitive gas sensor. In particular, by incorporating a constant current circuit in the detection circuit, the detection output gain can be increased, and the sensitivity of the sensor can be sufficiently extracted.
In particular, the gas sensor unit is supported in a thin film state with the carrier mixed with the catalyst, and a plurality of holes are formed in the carrier surface so that the combustible gas can contact the catalyst inside the carrier. The area to be performed is greatly increased, and the detection range on the high concentration side is dramatically expanded. In addition, since the carrier made of a porous material is attached to the conducting wire in a thin layer, the heat capacity of the carrier is greatly reduced, the sensitivity in the low concentration region is improved, and the detection range on the low concentration side is widened. Further, due to the decrease in the heat capacity, the temperature unevenness of the surface temperature of the carrier does not occur, and good gas selectivity can be obtained.
In particular, by using a nickel-based conductor that does not have a catalytic reaction as the conductive wire, a non-side reaction does not occur on the compensating element side, and the sensitivity of the sensor can be exhibited with high accuracy.
In addition, by using the magnetization of nickel, workability such as assembly is excellent.

また、特に、一酸化炭素ガスの検出に用いる場合、本発明の接触燃焼式ガスセンサは、触媒反応がないニッケル系導線を用いることにより、補償素子側のノイズが低減でき、ほぼ0.002%(20ppm)〜7%(70000ppm)の広い濃度測定範囲を有し、小型・簡易型のセンサにもかかわらず、大規模で大電源を必要とする赤外線方式やガスクロマトグラフィー方式の固定型の濃度測定装置と同等の濃度範囲の測定が可能となる。   In particular, when used for detection of carbon monoxide gas, the catalytic combustion type gas sensor of the present invention can reduce noise on the compensation element side by using a nickel-based conducting wire that does not have a catalytic reaction, and is approximately 0.002% ( 20ppm) to 7% (70,000ppm) wide concentration measurement range. Despite being a small and simple sensor, it is a large-scale infrared and gas chromatographic fixed type concentration measurement that requires a large power source. Measurement in the same concentration range as the device is possible.

以下、本発明の実施の形態を図面に従って説明する。しかしながら、本発明の技術的範囲は、本実施の形態の範囲に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the technical scope of the present invention is not limited to the scope of the present embodiment.

<接触燃焼式ガスセンサ>
本発明の実施の形態における接触燃焼式ガスセンサは、導線に付着する担体中に、触媒が混合された状態で担持されており、担体は表面から内部に通ずる複数の孔が形成されている。担体に形成されたこの孔は、貫通するものが多く、多孔質化されていることが好ましい。
<Contact combustion type gas sensor>
The catalytic combustion type gas sensor according to the embodiment of the present invention is supported in a state in which a catalyst is mixed in a carrier adhering to a conducting wire, and the carrier has a plurality of holes communicating from the surface to the inside. Many of the holes formed in the carrier penetrate therethrough and are preferably made porous.

担体の表面にのみ触媒が担持されている場合と比較して、担体の内部にも触媒が存在し、その内部にある触媒が、複数の孔から進入する可燃性ガスと接触することにより、担体中における触媒が接触燃焼できる領域が飛躍的に増大する。また、多数の孔により内部の通気性が確保されることから、孔内部への可燃性ガス及び酸素の進入、さらには、接触燃焼による二酸化炭素の孔内部からの排出が効率的に行われる。このため、従来、燃焼飽和のため測定できなかった高濃度の範囲についても、測定可能範囲が大幅に拡大する。例えば、一酸化炭素ガスの検出においては、従来、測定可能濃度の上限が0.5%(5000ppm)程度であったものが、7%(70000ppm)程度まで測定することできるようになる。   Compared to the case where the catalyst is supported only on the surface of the carrier, the catalyst is also present inside the carrier, and the catalyst inside the carrier comes into contact with the combustible gas entering from a plurality of holes, thereby supporting the carrier. The area in which the catalyst can be catalytically burned increases dramatically. In addition, since the air permeability is ensured by the large number of holes, the inflow of combustible gas and oxygen into the inside of the hole, and the discharge of carbon dioxide from the inside of the hole by catalytic combustion are efficiently performed. For this reason, the measurable range is greatly expanded even in the high concentration range that could not be measured due to combustion saturation. For example, in the detection of carbon monoxide gas, conventionally, the upper limit of the measurable concentration is about 0.5% (5000 ppm), but it can be measured up to about 7% (70000 ppm).

また、導線に付着する担体は、薄膜状であり、多孔質化であるので質量が小さく、担体の熱容量が低下し、低濃度領域における感度が向上させることができる。特に、上述のように、触媒が接触燃焼可能表面積が増加したことに加えて、導線に付着する担体の質量が小さいので、低濃度領域における著しい感度向上効果が得られる。例えば、一酸化炭素ガスの検出において、従来、測定可能濃度の下限が、0.03%(300ppm)程度であったものが、0.005%(50ppm)程度まで測定することができるようになる。   In addition, since the carrier attached to the conductive wire is thin and porous, the mass is small, the heat capacity of the carrier is reduced, and the sensitivity in a low concentration region can be improved. In particular, as described above, in addition to the increase in the surface area where the catalyst can be combusted, the mass of the carrier adhering to the conducting wire is small, so that a significant sensitivity improvement effect in a low concentration region can be obtained. For example, in the detection of carbon monoxide gas, conventionally, the lower limit of the measurable concentration is about 0.03% (300 ppm), but it can be measured to about 0.005% (50 ppm). .

<ニッケル導体について>
温度係数は、実用温度を100〜300℃の範囲において、白金13.6〜21.0(x10-8Ω・m)に比し、ニッケルは10.3〜22.5(x10-8Ω・m)であり、温度係数比は白金で21.0/13.6=1.54、ニッケルで22.5/10.3=2.18と成り、ニッケルは白金と較べて、温度係数比は2.18/1.54=1.41で40%以上も利得がある。また、白金線自体に触媒反応があるが、ニッケルには無く、これはセンサとしてコーテングされた触媒のみに反応することが理想であるところ、白金導線にも反応する危険がある。特に、ダミーである補償素子が反応することは、不安定要素となり、不都合である。その他ニッケルには、着磁性があり作業性が良く、他の物質との融合性も富み、安価で温度も700℃程度まで耐えるため、温度センサにも用いられ電気材料として適している。ニッケルを導体素材と用いることにより、感度や応答性に優れた素子と成る。
<About nickel conductor>
Temperature coefficient, to the extent practical temperature of 100 to 300 ° C., compared to platinum 13.6~21.0 (x10 -8 Ω · m) , nickel is 10.3~22.5 (x10 -8 Ω · m) , the temperature coefficient ratio Is 21.0 / 13.6 = 1.54 for platinum and 22.5 / 10.3 = 2.18 for nickel. Compared with platinum, nickel has a temperature coefficient ratio of 2.18 / 1.54 = 1.41, which is more than 40% gain. Moreover, although there is a catalytic reaction in the platinum wire itself, it is not in nickel, and this is ideal to react only with the catalyst coated as a sensor, but there is also a risk of reacting with the platinum wire. In particular, it is inconvenient that the dummy compensation element reacts because it becomes an unstable element. In addition, nickel is magnetized, has good workability, has a good compatibility with other substances, is inexpensive, and can withstand temperatures up to about 700 ° C., so it is also used as a temperature sensor and is suitable as an electrical material. By using nickel as a conductor material, an element excellent in sensitivity and responsiveness is obtained.

なお、具体的には例えば白金コイルにビート状(米粒状)に触媒を附した従来例では、その質量が本発明のセンサの10倍程度大きくなるので、本発明のセンサは、質量差に応じて応答性が10倍程度早くすることができる。具体的にはビート状の従来例が10〜20秒で安定するのに対し、本発明の中空コイルヒーターでは1〜2秒で安定する。さらに、特許文献1に開示した相体を付着した中空コイルの担体表面に触媒を形成したものに比べても、質量差により同触媒で2〜3倍の感度上昇を実験で確認できた。   Specifically, for example, in a conventional example in which a catalyst is added in a beat shape (rice granular shape) to a platinum coil, the mass of the sensor of the present invention is about 10 times larger than that of the sensor of the present invention. Thus, the responsiveness can be increased by about 10 times. Specifically, the beat-shaped conventional example is stabilized in 10 to 20 seconds, while the hollow coil heater of the present invention is stabilized in 1 to 2 seconds. Furthermore, compared with what formed the catalyst on the support | carrier surface of the hollow coil which adhered the phase body disclosed to patent document 1, the sensitivity increase of 2 to 3 times with the catalyst was able to be confirmed by experiment by the mass difference.

<担体>
担体は、通常、アルミナ(Al23)であるが、シリカ(SiO2)や酸化亜鉛(ZnO)などが用いられてもよい。
<Carrier>
The carrier is usually alumina (Al 2 O 3 ), but silica (SiO 2 ), zinc oxide (ZnO), or the like may be used.

<触媒>
触媒は、白金(Pt)、パラジウム(Pd)、ロジウム(Rd)などから、検出したい可燃性ガスの種類に応じて選ばれる。
例えば、一酸化炭素ガスの濃度検出には、白金(Pt)が利用される。白金(Pt)触媒において一酸化炭素ガスを燃焼させるコイル温度は、約160℃である。白金触媒において、水素ガスを燃焼させるコイル温度は、200℃であり、一酸化炭素ガスの温度と比較的近い。白金触媒を利用した本実施の形態の接触燃焼式ガスセンサにおいては、コイル線に担体を薄膜状にして付着させるため、コイル線と担体の表面との距離が近くなるとともに、ほぼ一定となるので、担体の表面の温度のばらつきがなくなり、良好な一酸化炭素ガス選択性を得ることができる。従って、一酸化炭素ガスと水素ガスが混合したガスについても、水素ガスを燃焼することなく、一酸化炭素ガスの濃度を正確に検出することができる。
<Catalyst>
The catalyst is selected from platinum (Pt), palladium (Pd), rhodium (Rd) and the like according to the type of combustible gas to be detected.
For example, platinum (Pt) is used for detecting the concentration of carbon monoxide gas. The coil temperature for burning carbon monoxide gas in the platinum (Pt) catalyst is about 160 ° C. In the platinum catalyst, the coil temperature for burning hydrogen gas is 200 ° C., which is relatively close to the temperature of carbon monoxide gas. In the catalytic combustion type gas sensor of the present embodiment using a platinum catalyst, since the carrier is attached to the coil wire in a thin film form, the distance between the coil wire and the surface of the carrier becomes closer and becomes almost constant. There is no variation in temperature on the surface of the carrier, and good carbon monoxide gas selectivity can be obtained. Therefore, the concentration of the carbon monoxide gas can be accurately detected without burning the hydrogen gas even in a gas mixture of the carbon monoxide gas and the hydrogen gas.

水素ガスの濃度検出には、パラジウム(Pd)が利用される。パラジウム触媒において、水素ガスを燃焼させるコイル温度は、約150℃であるのに対し、一酸化炭素ガスを燃焼させるコイル温度は、約180℃である。この場合も、水素ガスと一酸化炭素ガスのコイル温度は比較的近いが、パラジウムを利用した本発明の実施の形態の接触燃焼式ガスセンサにおいては、良好な水素ガス選択性を得ることができる。   Palladium (Pd) is used for hydrogen gas concentration detection. In the palladium catalyst, the coil temperature for burning hydrogen gas is about 150 ° C., whereas the coil temperature for burning carbon monoxide gas is about 180 ° C. Also in this case, although the coil temperatures of hydrogen gas and carbon monoxide gas are relatively close, in the catalytic combustion type gas sensor of the embodiment of the present invention using palladium, good hydrogen gas selectivity can be obtained.

<焼成>
焼成は、空気(酸素)雰囲気中で外部から熱を加えると同時に、コイルに通電し、コイルを加熱することで、内部からも加熱する。焼成は、電着樹脂を分離させるのに必要な条件が設定される。ニッケルは700℃以上では酸化するので、雰囲気温度:500〜700℃、コイル印加電圧:3〜5V、焼成時間:10分以上である。上記条件以下の場合は、電着樹脂分の燃焼が不十分となり、本発明の接触燃焼式ガスセンサの特性を発揮することができない。
<電着用樹脂>
電着樹脂は、例えば、酢酸ビニルとアクリル酸アルキルエステル(アクリル樹脂)の混合物である。
<Baking>
In the firing, heat is applied from the outside in an air (oxygen) atmosphere, and at the same time, the coil is energized to heat the coil, thereby heating from the inside. Firing is performed under conditions necessary for separating the electrodeposition resin. Since nickel is oxidized at 700 ° C. or higher, the ambient temperature is 500 to 700 ° C., the coil applied voltage is 3 to 5 V, and the firing time is 10 minutes or longer. When the above conditions are met, the electrodeposition resin is not sufficiently combusted and the characteristics of the catalytic combustion type gas sensor of the present invention cannot be exhibited.
<Electrodeposition resin>
The electrodeposition resin is, for example, a mixture of vinyl acetate and an acrylic acid alkyl ester (acrylic resin).

<接触燃焼式ガスセンサについて>
以下、本発明の実施の形態における接触燃焼式ガスセンサの構造及び製造方法について詳しく説明する。
<About catalytic combustion type gas sensor>
Hereinafter, the structure and manufacturing method of the catalytic combustion type gas sensor in the embodiment of the present invention will be described in detail.

図3は、本発明の実施の形態における接触燃焼式ガスセンサの構造の一例を示す外観斜視図である。図3に示すように、本発明の実施の形態における接触燃焼式ガスセンサ1は、Ni製ニッケル線などのコイル線2に触媒を担持する担体3が薄膜状に付着した構造を有する。担体3が、コイル線2に対して薄膜状に衣のように付着し、コイルの中心部分は中空となる。また、コイル線の巻回ピッチが小さく薄膜の厚さより狭い場合は、隣接するコイル線2に付着する担体同士が接触し、中空の円筒形状とすることもできる。   FIG. 3 is an external perspective view showing an example of the structure of the catalytic combustion type gas sensor in the embodiment of the present invention. As shown in FIG. 3, the catalytic combustion gas sensor 1 according to the embodiment of the present invention has a structure in which a carrier 3 supporting a catalyst is attached to a coil wire 2 such as a nickel nickel wire in a thin film shape. The carrier 3 adheres like a garment to the coil wire 2 like a thin film, and the central portion of the coil becomes hollow. When the winding pitch of the coil wire is small and narrower than the thickness of the thin film, the carriers attached to the adjacent coil wires 2 can be brought into contact with each other to form a hollow cylindrical shape.

また、導線を平らな三角波状などに折り返して平面状とすることもできる。このような薄板状に構成される接触燃焼式ガスセンサは、例えば、プリント基板への適用など、厚さが制限される部位への適用に好適である。また、平面の薄板状であれば、形状は三角波状に限らず、例えば、矩形波状であってもかまわない。   Further, the conducting wire can be folded back into a flat triangular wave or the like to form a flat shape. Such a contact combustion type gas sensor configured in a thin plate shape is suitable for application to a part whose thickness is limited, such as application to a printed circuit board. Moreover, as long as it is a flat thin plate shape, the shape is not limited to a triangular wave shape, and may be a rectangular wave shape, for example.

図4は、本発明の実施の形態における接触燃焼式ガスセンサの特徴を説明するための図である。また、図4は、本発明の実施の形態における電着製法により製造される接触燃焼式ガスセンサの断面図であり、点線部分の拡大図も示される。図4では、コイル線2に担体3が円筒形状に付着して構成される接触燃焼式ガスセンサが例示される。   FIG. 4 is a view for explaining the characteristics of the catalytic combustion type gas sensor according to the embodiment of the present invention. FIG. 4 is a cross-sectional view of a catalytic combustion type gas sensor manufactured by the electrodeposition method according to the embodiment of the present invention, and an enlarged view of a dotted line portion is also shown. FIG. 4 illustrates a contact combustion type gas sensor configured by attaching a carrier 3 to a coil wire 2 in a cylindrical shape.

本発明のガスセンサは、電着用樹脂と担体と触媒を混合した状態で、コイルに薄く付着させた後に焼成することにより、樹脂部分が抜け落ち、多孔質状態に担体がセラミック化されているものである。触媒は、担体の外表面や孔の内表面に露出することとなり、反応面積が大きくなっている。また、多孔質により軽量化され、孔が連続状となって貫通しているので、空気やガスの通過がよく、燃焼性も向上するので、感知度が向上する。
その模式図を図4に示す。(a)は、コイル2に担体3が薄層に付着している様子を示す。(b)は、部分拡大図であり、電着用樹脂が焼成により抜けて孔5や貫通項6が多数存在する多孔質状態となっている様子を示している。触媒4は、担体中にほぼ均一に分布しているので、外表面及び孔の内表面に多数露出することとなる。このような構造とすることにより、薄くしても十分な反応量の触媒を確保できるので、担体の膜厚は0.1〜0.5mmで十分である。薄い方が導線に温度が敏感に伝わるので、感度が向上する。しかし、膜厚のコントロールなど、作成上の制限により、0.1mm程度が現在では実用的な値である。
なお、従来の特許文献1で開示したセンサは、電極樹脂と担体を付着し、その後、触媒を表面に塗布した後に焼成しているので、十分な触媒量を確保するためには、厚く塗る必要があり、担体の厚みは1mm以上が実用的な数値であった。
In the gas sensor according to the present invention, the resin part is removed and the carrier is ceramicized in a porous state by firing after thinly adhering to the coil in a mixed state of the electrodeposition resin, the carrier and the catalyst. . The catalyst is exposed on the outer surface of the carrier and the inner surface of the pores, and the reaction area is large. Moreover, since it is reduced in weight by the porous material, and the holes are continuous and penetrated, air and gas can be easily passed through and the combustibility is improved, so that the sensitivity is improved.
The schematic diagram is shown in FIG. (A) shows a state in which the carrier 3 is attached to the coil 2 in a thin layer. (B) is a partially enlarged view showing a state in which the electrodeposition resin is removed by firing and is in a porous state in which a large number of holes 5 and penetrating terms 6 exist. Since the catalyst 4 is distributed almost uniformly in the carrier, a large number of the catalysts 4 are exposed on the outer surface and the inner surface of the pores. By adopting such a structure, a catalyst with a sufficient reaction amount can be ensured even if it is thinned, so that the film thickness of the support is 0.1 to 0.5 mm. The thinner the temperature, the more sensitive the temperature is to the conductor, and the sensitivity is improved. However, due to production limitations such as film thickness control, about 0.1 mm is currently a practical value.
In addition, since the sensor disclosed in the conventional patent document 1 has electrode resin and a carrier attached, and then baked after applying the catalyst to the surface, it is necessary to apply a thick coating to ensure a sufficient amount of catalyst. The thickness of the carrier was a practical value of 1 mm or more.

また、膜厚を薄くすることで、焼成の際に、電着樹脂の分離により形成される多数の孔が、相対的に担体内部の深いところまで形成されることになり、また、貫通孔が形成されやすくなる。さらに、膜厚を薄くすることで、担体自体の質量が小さくなり、担体の熱容量を下げることができるので、低濃度領域における感度の向上が図られる。本発明の発明者らの実験によれば、好ましい膜厚は、0.1mm〜0.5mmである。従来に比して、半分以下とすることができる。また、被測定ガス中の可燃性ガスを、担体内部の触媒に接触燃焼可能とし、広い検出濃度範囲を得るためには、電着樹脂の分離により担体表面に形成される孔は、およそ10μm〜60μmの径にすることが望まれる。   In addition, by reducing the film thickness, a large number of holes formed by separation of the electrodeposition resin are formed at a relatively deep position inside the carrier during firing, and the through holes are formed. It becomes easier to form. Furthermore, by reducing the film thickness, the mass of the carrier itself can be reduced, and the heat capacity of the carrier can be lowered, so that the sensitivity in the low concentration region can be improved. According to the experiments by the inventors of the present invention, the preferred film thickness is 0.1 mm to 0.5 mm. Compared to the conventional case, it can be reduced to half or less. In addition, in order to make the combustible gas in the gas to be measured contact combustion with the catalyst inside the carrier and to obtain a wide detection concentration range, the hole formed on the surface of the carrier by separation of the electrodeposition resin is about 10 μm to It is desired to have a diameter of 60 μm.

<センサの製法>
図5は、本実施の形態における接触燃焼式ガスセンサの製造方法について説明するため
の図である。本発明の接触燃焼式ガスセンサは、電着塗装手法を用いて、以下のようにして製造される。
<Sensor manufacturing method>
FIG. 5 is a diagram for explaining a method of manufacturing the catalytic combustion type gas sensor in the present embodiment. The catalytic combustion type gas sensor of the present invention is manufactured as follows using an electrodeposition coating method.

まず、図5(a)に示すように、15μm〜30μm程度の細線のニッケル(Ni)コイル線を作成する。なお、あらかじめ作成されたコイル線が用意されていてもよい。
続いて、図5(b)に示すように、担体、触媒、電着樹脂が混合された電着液にコイル線を浸す。そして、コイル線を陰極とし、所定時間、所定電圧を印加し、触媒と電着樹脂が混合された担体をコイル線に電着させる。電圧の印加は間欠的とするのが好ましい。
First, as shown in FIG. 5A, a fine nickel (Ni) coil wire of about 15 μm to 30 μm is formed. A coil wire prepared in advance may be prepared.
Subsequently, as shown in FIG. 5B, the coil wire is immersed in an electrodeposition solution in which a carrier, a catalyst, and an electrodeposition resin are mixed. A coil wire is used as a cathode, a predetermined voltage is applied for a predetermined time, and a carrier in which a catalyst and an electrodeposition resin are mixed is electrodeposited on the coil wire. The voltage is preferably applied intermittently.

積算電力量に応じて膜厚が変化するから、電着時間は、積算電力量が所定量になるように調整する。膜厚が0.1mm〜0.5mm(さらに好ましくは、0.15〜0.35mm)の場合に、上述した顕著な特性を有することを見出した。このため、当該膜厚の範囲内になるような積算電力量を求め、設定された電流値及び電圧値に対して、その積算電力量となる電着時間が決められる。膜厚を約0.15〜0.35mmにするための積算電力量は、以下で説明する実施例では、約0.6〜2.0mWである。電着時間が長すぎると膜厚が厚くなりすぎ、時間が短いと付着量が一定せず、むらが出る。   Since the film thickness changes according to the integrated power amount, the electrodeposition time is adjusted so that the integrated power amount becomes a predetermined amount. It has been found that when the film thickness is 0.1 mm to 0.5 mm (more preferably, 0.15 to 0.35 mm), the film has the above-described remarkable characteristics. For this reason, the integrated electric energy that is within the range of the film thickness is obtained, and the electrodeposition time that becomes the integrated electric energy is determined for the set current value and voltage value. In the embodiment described below, the integrated power amount for making the film thickness about 0.15 to 0.35 mm is about 0.6 to 2.0 mW. If the electrodeposition time is too long, the film thickness becomes too thick, and if the time is short, the amount of adhesion is not constant and unevenness occurs.

電着液は、触媒、担体、電着樹脂を含む水溶液であって、それぞれの成分を所定の割合で混合する。各成分の構成割合(重量比)については、電着樹脂:(触媒+担体)が60:40〜85:15であることが好ましい。焼成の際に酸化して孔となる電着樹脂の割合を比較的大きくすることで(最大85%程度)、貫通孔や比較的径が大きく深い孔を多数形成することができ、担体内部の触媒を有効に活用することができる。   The electrodeposition liquid is an aqueous solution containing a catalyst, a carrier, and an electrodeposition resin, and the respective components are mixed at a predetermined ratio. About the component ratio (weight ratio) of each component, it is preferable that electrodeposition resin: (catalyst + support | carrier) is 60: 40-85: 15. By relatively increasing the ratio of the electrodeposition resin that is oxidized during baking to become pores (up to about 85%), a large number of through-holes and relatively large and deep holes can be formed. The catalyst can be used effectively.

電着条件(時間、電圧など)が同一の場合、電着樹脂が少ないと(60%未満)、焼成後の質量が十分減少せず、熱容量が大きくなるので、感度低下を引き起こす。また、電着樹脂が多すぎると(85%超)、質量が小さくなり、熱容量も小さくなるので、感度は向上するが、担体の体積に対する孔部分の割合が大きくなりすぎると、例えば次のような問題が生じる。すなわち、担体の体積に対する孔部分の割合が大きくなりすぎると、担体表面の酸素量(空気層)が増え、比較的高濃度の可燃性ガスを燃焼した場合、担体表面の温度が、高くなりすぎる。例えば、白金(Pt)触媒を用いて、水素ガスと一酸化炭素ガスとが混在するガス中から一酸化炭素ガス濃度を検出する場合において、白金触媒における一酸化炭素ガスを燃焼させるコイル温度は、約160℃であるのに対し、水素を燃焼させるコイル温度は、200℃であり、比較的近い温度にある。従って、一酸化炭素ガスの濃度検出用に接触燃焼式ガスセンサを用いる場合に、担体表面の温度が上がりすぎると、水素の燃焼温度にまで達するおそれがあり、一酸化炭素ガスと水素が混合したガス(一般に都市ガス等炭化水素を燃料としたガスが不完全燃焼したときはこの状態)においては、表面付近で水素をも燃焼してしまい、一酸化炭素ガスの検出選択性の悪化を招いてしまう。   When the electrodeposition conditions (time, voltage, etc.) are the same, if the amount of electrodeposition resin is small (less than 60%), the mass after firing does not decrease sufficiently, and the heat capacity increases, causing a decrease in sensitivity. Further, when the amount of the electrodeposition resin is too much (over 85%), the mass is reduced and the heat capacity is also reduced, so that the sensitivity is improved. Problems arise. That is, if the ratio of the pore portion to the volume of the carrier becomes too large, the amount of oxygen (air layer) on the surface of the carrier increases and the temperature of the surface of the carrier becomes too high when a relatively high concentration of combustible gas is burned. . For example, when a carbon monoxide gas concentration is detected from a gas in which hydrogen gas and carbon monoxide gas are mixed using a platinum (Pt) catalyst, the coil temperature for burning the carbon monoxide gas in the platinum catalyst is: The coil temperature for burning hydrogen is 200 ° C., which is relatively close to about 160 ° C. Therefore, when a contact combustion type gas sensor is used for detecting the concentration of carbon monoxide gas, if the temperature of the support surface rises too much, there is a risk of reaching the combustion temperature of hydrogen, and a gas in which carbon monoxide gas and hydrogen are mixed. (In general, when gas using hydrocarbons as fuel, such as city gas, is incompletely burned), hydrogen is also burned near the surface, leading to poor carbon monoxide gas detection selectivity. .

<ガスセンサの具体例>
次に、本発明の接触燃焼式ガスセンサの例を示す。
<Specific examples of gas sensors>
Next, an example of the catalytic combustion type gas sensor of the present invention will be shown.

(1)コイル:直径18μm、21ターンの巻回ピッチ0.1mmのニッケル(Ni)線を使用した。 (1) Coil: A nickel (Ni) wire having a diameter of 18 μm and a 21-turn winding pitch of 0.1 mm was used.

(2)電着液組成:触媒、担体、電着樹脂を含む水溶液。
触媒:8.5%、担体(アルミナ):6.0%、電着樹脂:55.7%、水:29.8%
電着樹脂:酢酸ビニルとアクリル酸アルキルエステル(アクリル樹脂)の混合物。
触媒:白金(Pt)、酸化クロム(Cr23)及び酸化銅(CuO)の混合物で、その構成割合は、モル比で、1:0.5:0.5。
(2) Electrodeposition liquid composition: An aqueous solution containing a catalyst, a carrier, and an electrodeposition resin.
Catalyst: 8.5%, support (alumina): 6.0%, electrodeposition resin: 55.7%, water: 29.8%
Electrodeposition resin: A mixture of vinyl acetate and alkyl acrylate (acrylic resin).
Catalyst: A mixture of platinum (Pt), chromium oxide (Cr 2 O 3 ) and copper oxide (CuO), and the constituent ratio is 1: 0.5: 0.5 in molar ratio.

(3)電着方法:電圧を間欠的に印加した。最大電圧20V、周波数50Hzの交流電圧を印加し、電流値は20mAとし、印加時間が異なる3つのサンプルセンサを作成した。上述したように、印加時間の相違は、積算電力量(mW)の相違であって、コイルに付着する担体の膜厚は、積算電力量にほぼ比例する。 (3) Electrodeposition method: A voltage was applied intermittently. An AC voltage with a maximum voltage of 20 V and a frequency of 50 Hz was applied, the current value was 20 mA, and three sample sensors with different application times were created. As described above, the difference in application time is the difference in accumulated electric energy (mW), and the thickness of the carrier attached to the coil is substantially proportional to the accumulated electric energy.

(4)電着条件:表1に示す。 (4) Electrodeposition conditions: Table 1 shows.

(5)焼成条件:次の通り。
雰囲気温度:500℃
コイル印加電圧:3V(コイル温度300℃)
焼成時間:10分
(6)センサ感度特性:低濃度側の感度特性は、膜厚が比較的厚いセンサ3と比較して、膜厚の薄いセンサ1は、低濃度側における濃度変化に対するセンサ出力の勾配が大きく、従来測定できなかった0.03%(300ppm)以下の領域においても感度が大きく向上し、約0.005%(50ppm)の濃度でも測定可能であることが確認できた。
(5) Firing conditions:
Atmospheric temperature: 500 ° C
Coil applied voltage: 3V (coil temperature 300 ° C)
Baking time: 10 minutes (6) Sensor sensitivity characteristic: The sensitivity characteristic on the low concentration side is lower than that of the sensor 3 having a relatively thick film thickness. It was confirmed that the sensitivity was greatly improved even in the region of 0.03% (300 ppm) or less, which could not be measured in the past, and measurement was possible even at a concentration of about 0.005% (50 ppm).

<検出回路について>
一般的な検出方式は、検出コイルに反応触媒をビート状にコイル全体を塗布し一定の電力を与え基底温度まで自己発熱させた状態で触媒に反応ガスを与えることにより反応熱が加算される。一方、補償素子であるダミーコイルに非反応物質を同様に塗布し、電力を与え同基底温度まで自己発熱せしめて両者をブリッジ回路で構成し、反応加熱された温度差を電圧差として取り出す方法である。因みに触媒側を第1温度センサ、非触媒側を第2の温度サンサと称することがある。この第2温度センサを通称レファレンスまたはダミーセンサーと称するが以下では、ダミーと称する。なお、このダミーは、補償素子と意味するものである。これら両方のセンサを一体化したものをセンサハウジングと称し一般的には活性炭フィルターを通してガスを注入する。
<About detection circuit>
In a general detection method, the reaction catalyst is applied to the detection coil in a beat shape, the reaction gas is added to the catalyst in a state in which a constant power is applied and the self-heat is generated up to the base temperature. On the other hand, a non-reactive substance is similarly applied to a dummy coil, which is a compensation element, and power is applied to cause self-heating to the same base temperature to form both of them as a bridge circuit, and a temperature difference obtained by reaction heating is extracted as a voltage difference. is there. Incidentally, the catalyst side may be referred to as a first temperature sensor and the non-catalyst side as a second temperature sensor. This second temperature sensor is commonly referred to as a reference or dummy sensor, but hereinafter referred to as a dummy. This dummy means a compensating element. A combination of both of these sensors is called a sensor housing, and gas is generally injected through an activated carbon filter.

<(1) 従来の検出回路>
一般的な従来例は模式回路を図6及び図7に示す。図6は、定電流帰還補償型ブリッジ法による回路、図7は定電流単純並列補償法による回路の例である。Eは定電圧電源、Dは補償素子(ダミー)コイルで触媒反応は無く補償機能を果たす素子、Sは接触燃焼式センサコイルであり、検出用素子であり、両者に測定ガスが印可する構造である。無ガス平衡時の電気条件は s=dを基本とする。R1,R2は抵抗器、mVは出力計でありGは測定ガスである。
図6に示す回路平衡条件は、
d,sをダミーコイルD及びセンサーS各素子の実効抵
抗とすると次式が成立する。
R1/R2=d/s
図7に示す回路では、R1/d=R2/s が成立する。
両者の相違点は図6の回路では、ダミーDとセンサSが直列で同電流が流れ、互いに干渉しあう相補型電流帰還方式でダイナミックレンジの拡大と直線性に富む。図7の回路は、ダミーコイルDとセンサSを並列に組み相互干渉を無くした回路であり、低濃度で感度が良くR1,R2の選択で電圧範囲が広いが、消費電流が倍となる。
<(1) Conventional detection circuit>
A typical conventional example shows a schematic circuit in FIGS. FIG. 6 shows an example of a circuit based on the constant current feedback compensation bridge method, and FIG. 7 shows an example of a circuit based on the constant current simple parallel compensation method. E is a constant-voltage power supply, D is a compensation element (dummy) coil that does not have a catalytic reaction and performs a compensation function, S is a contact combustion type sensor coil, a detection element, and a structure in which a measurement gas is applied to both. is there. The electrical condition at no gas equilibrium is basically s = d. R1 and R2 are resistors, mV is an output meter, and G is a measurement gas.
The circuit equilibrium condition shown in FIG.
When d and s are effective resistances of the dummy coil D and the sensor S, the following equation is established.
R1 / R2 = d / s
In the circuit shown in FIG. 7, R1 / d = R2 / s is established.
The difference between the two is that in the circuit of FIG. 6, the dummy D and the sensor S are in series and the same current flows, and the complementary current feedback system that interferes with each other increases the dynamic range and increases the linearity. The circuit of FIG. 7 is a circuit in which the dummy coil D and the sensor S are assembled in parallel to eliminate mutual interference. The sensitivity is low and the sensitivity is good, and the voltage range is wide by selecting R1 and R2, but the current consumption is doubled.

図6の回路の調整法は、センサSの端子電圧を監視し、事前のデータにより求めた基底温度に達する電圧に電源Eを加減する。最後に可変抵抗R2で出力計mVを零に追い込む。この回路では、ダミーコイルDとセンサSの端子電圧が同じであるため、最小自乗法が成立して、最大の感度がえられる。大信号時の出力特性は、ブリッジ回路特有なSカーブ特性を示す。
図6の回路は、センサ"S"の端子電圧が基底温度の電圧に電源Eを設定し、ダミーDの端子電圧を可変とした抵抗R1で零を追い込む。この回路でも、Sと抵抗R2の端子電圧を同じに設定すれば、図6の回路同様最小自乗法が適用され平衡付近では、最大感度で直線出力と見なすことができる。
両回路とも補償用ダミーコイルDを使用するが、同温度係数を持つ同金属を非反応物質でコーテングし、質量を調整して同ガス雰囲気に浸し、主としてガス温度と周囲温度の補償を行うものである。当然ながら物理的且つ電気的に補償が可能ならば、本ダミー素子も不要となる事は充分考えられるが、現状では低濃度域での補償は困難である。
In the circuit adjustment method of FIG. 6, the terminal voltage of the sensor S is monitored, and the power supply E is adjusted to a voltage that reaches the base temperature obtained from the prior data. Finally, the output meter mV is driven to zero with the variable resistor R2. In this circuit, since the terminal voltages of the dummy coil D and the sensor S are the same, the least square method is established and the maximum sensitivity is obtained. The output characteristic at the time of a large signal shows the S curve characteristic peculiar to the bridge circuit.
In the circuit of FIG. 6, the power source E is set so that the terminal voltage of the sensor “S” is a base temperature voltage, and zero is driven by a resistor R1 in which the terminal voltage of the dummy D is variable. Also in this circuit, if the terminal voltages of S and the resistor R2 are set to be the same, the least square method is applied as in the circuit of FIG. 6, and it can be regarded as a linear output with maximum sensitivity near the equilibrium.
Both circuits use a compensation dummy coil D, but the same metal with the same temperature coefficient is coated with a non-reactive substance, the mass is adjusted and immersed in the same gas atmosphere, and mainly compensates for the gas temperature and ambient temperature It is. Of course, if it is possible to physically and electrically compensate, it is considered that this dummy element is not necessary, but at present, compensation in a low concentration region is difficult.

<(2) 本発明の定電流によるブリッジ方式回路について)>
前記図6,7は電源Eが定電圧電源であるので定電圧式である。これらの最大の欠点は、高濃度のガスに浸されると反応加熱のため温度が上昇し、依って抵抗値が上昇し、結果的に両コイルの電流値が減少する結果、感度低下を招くこととなる。
<(2) Bridge-type circuit with constant current of the present invention>
FIGS. 6 and 7 are constant voltage types because the power source E is a constant voltage power source. The biggest disadvantage of these is that when immersed in a high-concentration gas, the temperature rises due to reaction heating, and thus the resistance value rises. As a result, the current value of both coils decreases, resulting in a decrease in sensitivity. It will be.

ここで提案する定電流法はこの減少分の電流を一定化せしめ、その結果出力信号の増大を計るものである。実験では図6の回路の2倍以上の出力を確認した。信号出力が増大する事は、検出全てに関して有利である。
図8,9は定電流型回路の模式図である。d,s,c1,c2は、各素子の実効抵抗とすると平衡条件は図8に示す回路では、
R1/R2=d/s、
図9に示す回路では、 c1/d=c2/s となる。C,C1,C2は定電流源であるため実効抵抗はオームの法則で定義できるが、出力インピーダンスは無限大であるため電源Eが変動しても電流値が一定である。依って電源Eは特に安定の必要はない。因みに定電圧源の出力インピーダンスは、原理的に零である。
The constant current method proposed here makes the current of this decrease constant, and as a result, increases the output signal. In the experiment, an output more than twice that of the circuit of FIG. 6 was confirmed. An increase in signal output is advantageous for all detections.
8 and 9 are schematic diagrams of constant current type circuits. If d, s, c1, and c2 are effective resistances of the respective elements, the equilibrium condition is as shown in FIG.
R1 / R2 = d / s,
In the circuit shown in FIG. 9, c1 / d = c2 / s. Since C, C1, and C2 are constant current sources, the effective resistance can be defined by Ohm's law. However, since the output impedance is infinite, the current value is constant even if the power supply E fluctuates. Therefore, the power source E does not need to be particularly stable. Incidentally, the output impedance of the constant voltage source is theoretically zero.

図8に示す回路では、R1,R2>>d,cと設定すれば、図9の回路の様に2つの定電流源を入れなくも無視できる。また図8の回路では各コイルが直列に接続されているが、定電流源であるため図6の回路のような電流帰還は成立しない。従って図8,9に示す回路ともセンサーSの抵抗の変化量のみが出力される。因みに図6,7に示す回路は、抵抗が上昇すると電流が減少し、オームの法則により「電圧V=電流I×抵抗R」となり出力が低減する。この様に定電流方式は、最大限の信号が引き出せる特徴がある回路である。本発明のセンサの様に微弱な信号変化には非常に有用な回路である。   In the circuit shown in FIG. 8, if R1, R2 >> d, c are set, it can be ignored without two constant current sources as in the circuit of FIG. In the circuit of FIG. 8, each coil is connected in series. However, since it is a constant current source, current feedback as in the circuit of FIG. 6 is not established. Therefore, only the amount of change in the resistance of the sensor S is output in the circuits shown in FIGS. In the circuit shown in FIGS. 6 and 7, the current decreases as the resistance increases, and the output decreases as “voltage V = current I × resistance R” according to Ohm's law. As described above, the constant current method is a circuit having a feature that a maximum signal can be extracted. This circuit is very useful for weak signal changes like the sensor of the present invention.

<(3) 補償方式と複合検出方式>
次に、主として、補償の意味や方法と複合検出について説明する。
(3)−1安定度の補償
本発明の接触燃焼式ガス検出方式では、検出ガスと触媒により基底温度を設定する。このためこの基底温度の変動が、低濃度ガスでは精度を左右する。そこで、一般的には、非触媒で同温度係数のヒーターコイルとのバランスを取り安定化を期す。これらは、主として入ってくるガス温度や周囲温度等の検出素子自体の補償用であり、電子回路やその他の温度係数を補正するための第三の温度センサーで補償する必要もある。当然ながらマイクロコンピュータで行うため多種多様な方法が講じ得る。何れにしても定電流方式での出力の増強は、安定度と低濃度域には非常に有用である。
<(3) Compensation method and composite detection method>
Next, the meaning and method of compensation and composite detection will be mainly described.
(3) -1 Stability Compensation In the catalytic combustion type gas detection system of the present invention, the base temperature is set by the detection gas and the catalyst. For this reason, the fluctuation of the base temperature affects the accuracy in a low concentration gas. Therefore, in general, a balance is made with a non-catalyst heater coil having the same temperature coefficient for stabilization. These are mainly for the compensation of the detecting element itself such as the incoming gas temperature and ambient temperature, and it is also necessary to compensate with a third temperature sensor for correcting the electronic circuit and other temperature coefficients. Naturally, since it is performed by a microcomputer, various methods can be taken. In any case, the enhancement of the output by the constant current method is very useful for the stability and the low concentration range.

(3)−2 複合検出方式
可燃性の混合ガスを探求する場合の回路の例を示す。
図10の回路では、ブリッジ構成をしないで各触媒素子S1,S2の素子電圧の変化量v1,v2を検出し比例常数を乗じ、2素子間で加算して混合ガスが検出できる。
また、逆に減算して混合ガスの特定ガスや触媒の特性を加味して検出ガスの選択性を高めることができる。単純に現すと、V=k|V±V|(k=比例定数)となる。また、図8の回路の様に素子単体でブリッジを構成させ、且つ複数のブリッジ回路で演算することによっても精度向上が期待できる。この場合各素子の基底温度の設定も自由度が増し触媒の利用幅も増す。何れにしろ複数のブリッジ開土を用いた場合、周囲温度補償のため専用温度センサが必要となる。
(3)−3家庭用警報機仕様特性
今日法制化された家庭用火災報知器は、一酸化炭酸ガスの検出が有用と位置づけている。それは、火災に至る前の不完全燃焼時に発生する一酸化炭素ガスの監視が、火災による発生熱の室温上昇監視を主とする現在の火災報知器より原理的に優れているとされている。要は、火災に至る前に燻った状態で検出できることとなるので早期検出ができる。
(3) -2 Composite detection method An example of a circuit for searching for a flammable gas mixture is shown.
In the circuit of FIG. 10, the mixed gas can be detected by detecting the element voltage changes v1 and v2 of the catalyst elements S1 and S2, multiplying by the proportional constant, and adding between the two elements without a bridge configuration.
In addition, the selectivity of the detection gas can be enhanced by subtracting in reverse from the specific gas of the mixed gas and the characteristics of the catalyst. When expressed simply, V = k | V 1 ± V 2 | (k = proportional constant). In addition, improvement in accuracy can be expected by forming a bridge with a single element as in the circuit of FIG. 8 and calculating with a plurality of bridge circuits. In this case, the degree of freedom in setting the base temperature of each element increases, and the utilization range of the catalyst also increases. In any case, when a plurality of bridge openings are used, a dedicated temperature sensor is required for ambient temperature compensation.
(3) -3 Characteristics of specifications for household alarm devices Household fire alarms, which have been legalized today, position the detection of carbon monoxide as useful. It is said that the monitoring of carbon monoxide gas generated at the time of incomplete combustion before a fire is in principle superior to the current fire alarm mainly monitoring the rise in room temperature of the heat generated by the fire. In short, early detection is possible because it can be detected in the state of being hit before the fire.

さて、家庭用は、量産性、さらにコストやメンテナンスでは、計測器とは一線をなす。即ち、いちいちメーカーに持ち帰って、メンテナンスを行うことは不可能であるので、現場で行う必要がある。また、センサコイルとダミーコイルのペアリングを同時に交換すると、コスト高になる。
図10に示す回路では、S1をセンサコイルとし互換性を持たせ、S2をレファレンスとして回路の固定をする。電源スイッチON時の特別操作で、オートチューニングモードにて自動的にバランス量を計測しデータを採取し、サンサーの感度差を予め測定し、ハード的ソフト的に設定する様に設計すると、現場で交換可能である。また、高濃度設定での精度を要しなければS2のレファレンスを単なる温度センサに代える事も可能である。
Now, home use is in line with measuring instruments in terms of mass productivity, cost and maintenance. In other words, it is impossible to take it home to the manufacturer and perform maintenance, so it is necessary to do it on site. Further, if the pairing of the sensor coil and the dummy coil is exchanged at the same time, the cost increases.
In the circuit shown in FIG. 10, S1 is used as a sensor coil to provide compatibility, and S2 is used as a reference to fix the circuit. With special operation when the power switch is turned on, the balance amount is automatically measured in the auto tuning mode, data is collected, the sensitivity difference of the suncer is measured in advance, and it is designed to be set in hardware and software. It is exchangeable. Further, if accuracy at high density setting is not required, the reference in S2 can be replaced with a simple temperature sensor.

<(4)検出回路の出力特性について>
(4)−1 出力特性
表2は、図6に示す定電圧回路と図8に示す定電流回路に前記表1に示すセンサ2を適用した場合の、出力の測定データである。
センサとレファレンスの組み合わせは同じであり、基底温度も同じく設定した。
<(4) Output characteristics of detection circuit>
(4) -1 Output Characteristics Table 2 shows output measurement data when the sensor 2 shown in Table 1 is applied to the constant voltage circuit shown in FIG. 6 and the constant current circuit shown in FIG.
The combination of sensor and reference was the same, and the base temperature was also set.

表2の例では、定電圧回路より定電流回路では、約2倍強の出力電圧が生じていることがわかる。また50,000ppm(5%)以上の強濃度領域では、図6の定電圧回路では最小自乗法により出力の低下が始まり100,000ppm(10%)で10%程度の出力低下が見られた。これらはブリッジに於ける最小自乗法のSカーブと見られる。しかし図8の定電流回路では、それらのカーブが見られず直線に伸びていることが確認できた。これは定電流回路では単純に抵抗に比例するからである。以上、定電流回路は、出力と直線性に優れた検出方法である。   In the example of Table 2, it can be seen that the output voltage is about twice as high in the constant current circuit than in the constant voltage circuit. In the strong concentration region of 50,000 ppm (5%) or more, the output of the constant voltage circuit of FIG. 6 started to decrease by the least square method, and an output decrease of about 10% was observed at 100,000 ppm (10%). These are seen as least-squares S-curves at the bridge. However, in the constant current circuit of FIG. 8, it was confirmed that those curves were not seen and extended in a straight line. This is because the constant current circuit is simply proportional to the resistance. As described above, the constant current circuit is a detection method excellent in output and linearity.

<(5)校正方法>
(5)−1一般的な校正方法
一般的にはセンサーハウジングはセンサーとダミーが一体化され同時に交換可能な構造となり同時に交換される。校正には標準空気(一般的には清浄空気)で"零"を規定値ガスで感度調整し、規定値に合わせる。また周囲温度変動補正を装備しているものは、標準空気または規定濃度ガスで、例えば0℃,25℃,50℃で変動量を計測し、補正値を設定する事になるので、工場に持ち帰り校正が必要となる。
<(5) Calibration method>
(5) -1 General calibration method In general, the sensor housing is integrated with the sensor and the dummy so that the sensor housing can be replaced at the same time. For calibration, adjust the sensitivity to zero with standard air (generally clean air) and adjust the sensitivity to the specified value. For those equipped with ambient temperature fluctuation correction, standard air or specified concentration gas, for example, measure the fluctuation amount at 0 ° C, 25 ° C, 50 ° C, and set the correction value. Calibration is required.

(5)−2 家庭用警報機等の校正法
家庭用警報機は、量とコストの点で毎度の持ち帰り校正は困難である。そこでレファレンス側を固定とし、センサーのみを交換し、"零"はソフトによるオートチューニングとし、感度はセンサー個々に実測値を暗号化しデジタルスイッチ等で入力する方法等がある。また、レファレンスを無くして、他の温度素子で代用するシステムも同様である。
(5) -2 Calibration method for home alarm devices Home alarm devices are difficult to calibrate for take-out each time in terms of quantity and cost. Therefore, there is a method in which the reference side is fixed, only the sensor is replaced, “zero” is auto-tuning by software, and the sensitivity is obtained by encrypting the measured value for each sensor and inputting it with a digital switch or the like. The same applies to a system that eliminates the reference and substitutes it with another temperature element.

<(6)定電流について>
定電流回路素子としての電界効果型トランジスターによる定電流ダイオードがあるが、商用の素子として、その他の定電流素子は見あたらない。定電流ダイオードは、最大10mA程度で固定型であり、温度係数が大きい。ガスセンサに用いる場合は、コイルには100mA程度で微調整が必要であるため使用できない。
そこで、これらに耐える回路を提案する。
その一例として図11に示す回路図は、一般的に使われる演算増幅器であり、帰還回路には定電流特性を示す。図11では単電源用演算増幅"OP"を使用した例で、可変抵抗"VR"で帰還抵抗"Ra,Rb"の電流が設定できる。反転入力のバイアス電流"Iin-"は多いもので数μA程度から少ないもので数pAである。依って帰還回路電流 Ira>>バイアス電流Iin- となり(「>>」は、差がとても大きいことを示す)無視できる。従って帰還回路は定電流特性となる。
図12に示す回路図は、図11の回路図の出力電流を増強するためパワートランジスタ"TR"を入れた。抵抗RbにセンサーSを入れ、抵抗Raはセンサーの内部抵抗Raと同程度を入れる。コイル電流はVRで微調整すると定電流駆動が実現できる。
図11、12に示す回路は、安定化電源を想定しているが演算増幅器"OP"の"+"端子を安定化すれば非安定電源でも安定な定電流を確保できる。即ち電源が変動しても一定な電流を供給できる。
<(6) Constant current>
There is a constant current diode by a field effect transistor as a constant current circuit element, but no other constant current element is found as a commercial element. The constant current diode is a fixed type with a maximum of about 10 mA and has a large temperature coefficient. When used in a gas sensor, the coil cannot be used because fine adjustment is required at about 100 mA.
Therefore, we propose a circuit that can withstand these.
As an example thereof, a circuit diagram shown in FIG. 11 is a commonly used operational amplifier, and the feedback circuit shows a constant current characteristic. FIG. 11 shows an example in which a single power supply operational amplifier “OP” is used, and the current of the feedback resistors “Ra, Rb” can be set by the variable resistor “VR”. The bias current “Iin−” of the inverting input is large and about several μA to few pA. Therefore, the feedback circuit current Ira >> bias current Iin− (“>>” indicates that the difference is very large) and can be ignored. Therefore, the feedback circuit has a constant current characteristic.
In the circuit diagram shown in FIG. 12, a power transistor “TR” is inserted in order to enhance the output current of the circuit diagram of FIG. The sensor S is inserted into the resistor Rb, and the resistor Ra is inserted to the same extent as the internal resistance Ra of the sensor. When the coil current is finely adjusted by VR, constant current driving can be realized.
The circuits shown in FIGS. 11 and 12 assume a stabilized power supply. However, if the “+” terminal of the operational amplifier “OP” is stabilized, a stable constant current can be secured even with an unstable power supply. That is, a constant current can be supplied even if the power source fluctuates.

<6 総合評価と有用性>
さて、総合的な評価として、質量的に従来のビート型対本発明の極小中空薄膜コイル型での感度比較で2倍強、白金対ニッケルの温度係数比で1.4倍、定電圧回路から定電流回路での転換で2倍強、他の物質との融合性が良いため触媒の改良開発が進み2倍以上の感度が実験的に判明した。これらにより11倍(2×1.4×2×2=11.2)の感度上昇が改善される。このことは、ビード型のセンサである従来製品では一酸化炭素(CO)で200ppmが安定度の限界とされるが、本発明のニッケル系導体を用いたセンサと定電流回路を用いた検出回路を用いることにより、20ppm程度まで安定した感度が確保できることとなる。
ニッケル線との融合が良いため触媒の利用幅が広がり従来型の様に可燃ガス全般に感度を示すのに比し一酸化炭素(CO)単体や水素(H)単体等の検出が可能となる。これらは現在市販されている即応型計器にはない特性である。
<6 Overall evaluation and usefulness>
Now, as a comprehensive evaluation, the sensitivity comparison between the conventional beat type and the ultra-thin hollow thin-film coil type of the present invention is more than twice, and the temperature coefficient ratio of platinum to nickel is 1.4 times higher. The conversion with a constant current circuit is slightly more than twice, and since the fusion with other substances is good, improved development of the catalyst has progressed and the sensitivity more than twice has been experimentally found. As a result, the sensitivity increase of 11 times (2 × 1.4 × 2 × 2 = 111.2) is improved. This is because in the conventional product which is a bead type sensor, carbon monoxide (CO) is limited to 200 ppm, but the sensor using the nickel-based conductor of the present invention and the detection circuit using the constant current circuit By using this, a stable sensitivity up to about 20 ppm can be secured.
Because of its good fusion with nickel wire, the range of utilization of the catalyst is widened, and it is possible to detect carbon monoxide (CO) and hydrogen (H 2 ) alone compared to the conventional type, which is more sensitive to combustible gases. Become. These are characteristics that are not available in the ready-to-use instruments currently on the market.

従来のビード状の接触燃焼式ガスセンサの構造概略図Schematic diagram of conventional bead-shaped catalytic combustion gas sensor 従来の回路図例Conventional circuit diagram example 本発明の接触燃焼式ガスセンサの例を示す概略斜視図The schematic perspective view which shows the example of the contact combustion type gas sensor of this invention 本発明の触媒を含む多孔性担体を示す模式図Schematic diagram showing a porous carrier containing the catalyst of the present invention 本発明の接触燃焼式ガスセンサの製造方法を示す該略図The schematic diagram showing the method of manufacturing the catalytic combustion type gas sensor of the present invention 従来の定電圧検出回路の例Example of conventional constant voltage detection circuit 従来の定電圧検出回路の例Example of conventional constant voltage detection circuit 本発明の定電流検出回路の例Example of constant current detection circuit of the present invention 本発明の定電流検出回路の例Example of constant current detection circuit of the present invention 本発明の複合型定電流検出回路の例Example of composite constant current detection circuit of the present invention 定電流素子の例Example of constant current element 定電流素子の例Example of constant current element

符号の説明Explanation of symbols

1:接触燃焼式ガスセンサ
2:コイル線
3:担体
4:触媒
5:孔
6:貫通孔
1: catalytic combustion type gas sensor 2: coil wire 3: carrier 4: catalyst 5: hole 6: through hole

Claims (3)

多数の孔が形成された担体に担持された触媒を厚さ0.1〜0.5mmにニッケル系導体に付着させた接触燃焼式ガスセンサを2個用いた検出回路であって、
直列に配置した定電流回路C2と一方の接触燃焼式ガスセンサS1と、直列に配置した定電流回路C3と他方の接触燃焼式ガスセンサS2とを、並列に配置し、
2つの接触燃焼式ガスセンサS1、S2それぞれの電圧を検出する検出器V1,V2を設け、検出された2つの電圧を比較して混合燃焼ガスを検出することを特徴とする接触燃焼式ガスセンサを用いた検出回路。
A detection circuit using two catalytic combustion gas sensors in which a catalyst supported on a carrier having a large number of holes is attached to a nickel-based conductor to a thickness of 0.1 to 0.5 mm,
A constant current circuit C2 arranged in series and one catalytic combustion gas sensor S1, a constant current circuit C3 arranged in series and the other catalytic combustion gas sensor S2 are arranged in parallel,
Detectors V1 and V2 for detecting the respective voltages of the two catalytic combustion gas sensors S1 and S2 are provided, and a mixed combustion gas is detected by comparing the two detected voltages. Detection circuit.
ニッケル系導体の形状を中空コイル状としたことを特徴とする請求項1に記載の接触燃焼式ガスセンサを用いた検出回路。   The detection circuit using the catalytic combustion type gas sensor according to claim 1, wherein the nickel-based conductor has a hollow coil shape. 請求項1又は2に記載された接触燃焼式ガスセンサを用いた検出回路を備えたことを特徴とする可燃性ガスセンサ。 Combustible gas sensor, characterized in that it comprises a detection circuit using a been catalytic combustion type gas sensor according to claim 1 or 2.
JP2006015822A 2006-01-25 2006-01-25 Detection circuit using catalytic combustion type gas sensor Expired - Fee Related JP4790430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006015822A JP4790430B2 (en) 2006-01-25 2006-01-25 Detection circuit using catalytic combustion type gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006015822A JP4790430B2 (en) 2006-01-25 2006-01-25 Detection circuit using catalytic combustion type gas sensor

Publications (2)

Publication Number Publication Date
JP2007198816A JP2007198816A (en) 2007-08-09
JP4790430B2 true JP4790430B2 (en) 2011-10-12

Family

ID=38453572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006015822A Expired - Fee Related JP4790430B2 (en) 2006-01-25 2006-01-25 Detection circuit using catalytic combustion type gas sensor

Country Status (1)

Country Link
JP (1) JP4790430B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5467775B2 (en) * 2009-01-29 2014-04-09 矢崎総業株式会社 Gas sensor performance evaluation method
JP5044630B2 (en) * 2009-11-13 2012-10-10 本田技研工業株式会社 Gas sensor
JP5526411B2 (en) * 2010-06-11 2014-06-18 矢崎総業株式会社 Gas analyzer
JP6479450B2 (en) * 2014-12-12 2019-03-06 Nissha株式会社 Contact combustion type hydrogen gas sensor element and contact combustion type hydrogen gas sensor
JP6467212B2 (en) * 2014-12-12 2019-02-06 Nissha株式会社 Contact combustion type hydrogen gas sensor element and contact combustion type hydrogen gas sensor
JP6660105B2 (en) * 2015-06-11 2020-03-04 新コスモス電機株式会社 Gas heat conduction type gas sensor and output correction method for gas heat conduction type gas sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57189289A (en) * 1981-05-15 1982-11-20 Toubishi Kogyo Kk Gas detection monitor
JPH08285807A (en) * 1995-04-17 1996-11-01 Fuji Electric Co Ltd Contact combustion-type gas sensor circuit
JP2001272367A (en) * 2000-03-23 2001-10-05 Ebara Jitsugyo Co Ltd Reaction heat detection type gas sensor
JP2003121402A (en) * 2001-10-11 2003-04-23 Sakaguchi Giken:Kk Catalytic combustion type co gas sensor
JP4084333B2 (en) * 2004-05-06 2008-04-30 東京瓦斯株式会社 Contact combustion type gas sensor

Also Published As

Publication number Publication date
JP2007198816A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
US4911892A (en) Apparatus for simultaneous detection of target gases
US4541988A (en) Constant temperature catalytic gas detection instrument
JP4790430B2 (en) Detection circuit using catalytic combustion type gas sensor
JP5016599B2 (en) Gas detector
CA2426420C (en) Catalytic sensor
JP5154267B2 (en) Gas detector
KR20090082389A (en) Hydrogen sensitive composite material, tubular sensor for detecting hydrogen and other gases
AU2001285148A1 (en) Catalytic sensor
GB2604041A (en) Gas detection device with a detector and with a compensator and gas detection process with such a gas detection device
JPH03282247A (en) Detection of flammable gas
JP4084333B2 (en) Contact combustion type gas sensor
JP4528638B2 (en) Gas detector
JPH0249466B2 (en)
JP2004020377A (en) Catalytic combustion type gas sensor
JP5115411B2 (en) Thin film gas sensor
JP4900319B2 (en) Thin film gas sensor, gas leak alarm, thin film gas sensor setting adjustment device, and thin film gas sensor setting adjustment method
JP3203120B2 (en) Substrate type semiconductor gas sensor and gas detector
JP2004325218A (en) Temperature control device, temperature control method, and gas detection device using them
JP2000028573A (en) Hydrocarbon gas sensor
JPH08226909A (en) Contact-combustion-type carbon monoxide gas sensor
JPH06242060A (en) Hydrocarbon sensor
JP4129253B2 (en) Semiconductor gas sensor
JP2023111492A (en) Catalytic combustion gas sensor
JPH0862169A (en) Carbon monoxide gas detector
JPH09145656A (en) Contact burning type gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees