JP2001272367A - Reaction heat detection type gas sensor - Google Patents

Reaction heat detection type gas sensor

Info

Publication number
JP2001272367A
JP2001272367A JP2000082625A JP2000082625A JP2001272367A JP 2001272367 A JP2001272367 A JP 2001272367A JP 2000082625 A JP2000082625 A JP 2000082625A JP 2000082625 A JP2000082625 A JP 2000082625A JP 2001272367 A JP2001272367 A JP 2001272367A
Authority
JP
Japan
Prior art keywords
temperature
gas
sensor
detected
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000082625A
Other languages
Japanese (ja)
Inventor
Shukuji Asakura
祝治 朝倉
Hidemoto Nakagawa
英元 中川
Shinji Okazaki
慎司 岡崎
Hironori Shimizu
博則 清水
Isamu Iwamoto
勇 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Jitsugyo Co Ltd
Original Assignee
Ebara Jitsugyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Jitsugyo Co Ltd filed Critical Ebara Jitsugyo Co Ltd
Priority to JP2000082625A priority Critical patent/JP2001272367A/en
Publication of JP2001272367A publication Critical patent/JP2001272367A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect and measure a detection objective gas concentration in a tested gas, such as ozone without having to use reaction promoters, such as a catalyst. SOLUTION: A temperature of a sensor is set to be higher than a thermal cracking temperature of a test objective gas sort and to be a temperature which suppresses a reaction, causing variations in a detection property, so that oxidative decomposition of the detection objective gas is progressed without using any reaction promoter such as a catalyst, and then the concentration of the test objective gas in the tested gas is measured. In this case, two gas sensors are used, and one of the gas sensors measures a temperature change due to decomposition heat, when the element is heated at a temperature above the decomposition heat, while the other sensor eliminates influence of a temperature change of the tested gas without being influenced by the reaction heat due to thermal decomposition, when its temperature is set to a room temperature or to be slightly higher than the room temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、オゾン等被検ガ
ス中の検知対象ガス濃度を、触媒等の反応促進物質を使
用することなしに検知し測定するガスセンサに関する。
The present invention relates to a gas sensor for detecting and measuring the concentration of a gas to be detected in a test gas such as ozone without using a reaction promoting substance such as a catalyst.

【0002】[0002]

【従来の技術】反応熱の温度変化を検出する方式のガス
センサは、披検ガスの温度が一定でない限り、何らかの
方法で被検ガスの温度を測定し、温度補償を行う必要が
ある。従来、この方式に近い反応熱による温度変化を検
知するガスセンサとして、接触燃焼式センサが知られて
いる。この接触燃焼式センサは通常、触媒を添加した検
知素子と、触媒活性のない温度補償素子を組にして、ブ
リッジ接続としてどちらの素子も同じ温度で動作させる
と同時に温度補償も行っている。
2. Description of the Related Art A gas sensor of the type which detects a change in the temperature of reaction heat needs to measure the temperature of a test gas by some method to compensate for the temperature unless the temperature of the test gas is constant. Conventionally, a contact combustion type sensor has been known as a gas sensor for detecting a temperature change due to reaction heat close to this type. The contact combustion type sensor usually includes a sensing element to which a catalyst is added and a temperature compensation element having no catalytic activity, and both elements are operated at the same temperature as a bridge connection, and at the same time, temperature compensation is performed.

【0003】[0003]

【発明が解決しようとする課題】上記接触燃焼式センサ
において、補償素子での反応を押さえるために、動作温
度は必ず検知対象ガスの熱分解温度以下とする必要があ
り、検知素子には触媒の活用が不可欠となる。触媒は一
般に活性が触媒の状態で大きく変化するものが多く、ま
た接触するガス種によってはいわゆる触媒被毒を起すも
のも少なくない。特にオゾンやフッ化水素、含シリコン
化合物等、酸化性の強いガスや分解後に生成物質が固体
となって残存する場合にはこの影響が大きい。従来使わ
れてきたブリッジ接続に基づく接触燃焼式ガスセンサは
簡単に温度補償ができる反面、触媒の使用が前提となる
ので、適当な触媒のない難分解性ガスや、少し加熱する
だけで簡単に分解するガスの検知、あるいは触媒被毒を
起こすガスの検出は難しかった。これらのガスに相当す
るものとして、シラン、トリクロロシラン、テトラエト
キシシラン等が上げられる。シラン等の含シリコン化合
物は分解後検知素子表面にシリカを付着させ触媒活性を
変化させる。
In the above-mentioned catalytic combustion type sensor, in order to suppress the reaction in the compensating element, the operating temperature must be lower than the thermal decomposition temperature of the gas to be detected. Utilization is essential. In many catalysts, the activity generally changes greatly depending on the state of the catalyst, and there are many catalysts that cause so-called catalyst poisoning depending on the kind of gas contacted. In particular, this effect is significant when a strongly oxidizing gas such as ozone, hydrogen fluoride, or a silicon-containing compound or a product remains as a solid after decomposition. The conventional catalytic combustion type gas sensor based on bridge connection can easily compensate for temperature, but requires the use of a catalyst, so it can be easily decomposed with no suitable catalyst or easily decomposed with a slight heating. It is difficult to detect the gas that causes the poisoning or the gas that causes the catalyst poisoning. Examples of those corresponding to these gases include silane, trichlorosilane, and tetraethoxysilane. After decomposition, the silicon-containing compound such as silane causes silica to adhere to the surface of the sensing element and changes the catalytic activity.

【0004】従来オゾンガスは低、高濃度ともに紫外線
吸光光度法で定量されるのが一般的であるが、検知装置
が高価である。高濃度のオゾン検出に分解熱を測定する
方法も提案されていたが、いずれも触媒分解を前提とし
ていたため、安定性が乏しく実用化が困難であった。オ
ゾンはオゾン自体も触媒活性を変化させるほか、人工的
に発生させる場合には窒素酸化物ガスが副生されること
が多く、これらは触媒活性を変化させるばかりでなく、
550℃より低い低温では、固形酸化物が検知素子表面
に付着する恐れがある。
Conventionally, ozone gas is generally determined at low and high concentrations by ultraviolet absorption spectroscopy, but the detection device is expensive. Methods for measuring the heat of decomposition for detecting ozone at a high concentration have also been proposed, but all of these methods were based on the premise of catalytic decomposition, so that their stability was poor and practical application was difficult. Ozone itself changes the catalytic activity of ozone itself, and when artificially generated, nitrogen oxide gas is often produced as a by-product, which not only changes the catalytic activity,
If the temperature is lower than 550 ° C., the solid oxide may adhere to the sensing element surface.

【0005】そこで触媒を使用せずに検知対象ガスの熱
分解温度以上に素子を加熱し、ガスの熱分解熱を測定す
ることにより、原理的には触媒被毒のない、長期間安定
したガスセンサが実現できる。しかしながらこの場合の
トレードオフとして、ブリッジ接続で温度補償を行おう
とすると、補償素子でも検知対象ガスが熱分解するた
め、温度補償が出来ないというジレンマに陥っていた。
Therefore, by heating the element above the thermal decomposition temperature of the gas to be detected without using a catalyst and measuring the thermal decomposition heat of the gas, a gas sensor which is in principle free from catalyst poisoning and is stable for a long period of time. Can be realized. However, as a trade-off in this case, if temperature compensation is performed with a bridge connection, the gas to be detected is thermally decomposed even with the compensating element, so that there is a dilemma that temperature compensation cannot be performed.

【0006】[0006]

【課題を解決するための手段】そこでこの発明では、ガ
スセンサを2個用い、1個のガスセンサでは熱分解熱以
上に素子を加熱することで分解熱による温度変化を観測
し、もう1個のセンサは室温ないしは室温よりわずかに
高い温度に設定することにより、熱分解による反応熱の
影響を受けることなしに被検ガスの温度変化による影響
を除去するようにした。すなはち、この発明は、検知対
象ガスが高温のガスセンサに接触することで分解ないし
は酸化される際に発生または吸収される熱量を温度変化
として検出するセンサにおいて、センサの温度を検知対
象ガス種の熱分解温度より高くかつ検知特性を変化させ
る反応を抑制する温度に設定しておくことにより、触媒
等の反応促進物質を使用することなしに検知対象ガスの
酸化分解を進行させ、被検ガス中の検知対象ガスの濃度
を測定するようにしたものである。
Accordingly, in the present invention, two gas sensors are used, and one gas sensor heats the element more than the heat of thermal decomposition to observe a temperature change due to the heat of decomposition, and the other sensor is used. By setting the temperature at room temperature or slightly higher than room temperature, the influence of the temperature change of the test gas is removed without being affected by the heat of reaction due to thermal decomposition. That is, the present invention relates to a sensor for detecting the amount of heat generated or absorbed when a gas to be detected is decomposed or oxidized by coming into contact with a high-temperature gas sensor as a temperature change. By setting the temperature higher than the thermal decomposition temperature of the gas and suppressing the reaction that changes the detection characteristics, the oxidative decomposition of the gas to be detected proceeds without using a reaction accelerator such as a catalyst, The concentration of the detection target gas in the inside is measured.

【0007】またこの発明は、検知対象ガスが高温のガ
スセンサに接触することで分解ないしは酸化される際に
発生または吸収される熱量を温度変化として検出するセ
ンサに加え、温度補償用として同一または類似の温度特
性を有する補償素子を備え、前記ガスセンサの温度を検
知対象ガス種の熱分解温度より高くかつ検知特性を変化
させる反応を抑制する温度に設定し、補償素子の温度を
検知対象ガスの温度ないしは熱分解温度より低い温度に
設定して被検ガスの温度を測定し、電子的演算ないしは
ソフトウエアによる演算から温度補償を行うようにした
ものである。上記2つの場合において、検知対象ガスと
してはオゾン、シラン、トリクロロシラン、テトラエト
キシシラン等が挙げられる。
The present invention also provides a sensor for detecting the amount of heat generated or absorbed when a gas to be detected is decomposed or oxidized by contact with a high-temperature gas sensor as a temperature change. The temperature of the gas sensor is set to a temperature higher than the thermal decomposition temperature of the gas type to be detected and to suppress a reaction that changes the detection characteristics, and the temperature of the compensation element is set to the temperature of the gas to be detected. Alternatively, the temperature of the test gas is measured at a temperature lower than the thermal decomposition temperature, and the temperature is compensated by electronic calculation or calculation by software. In the above two cases, the detection target gas includes ozone, silane, trichlorosilane, tetraethoxysilane, and the like.

【0008】[0008]

【発明の実施の態様】この発明の一実施例として、白金
抵抗を測定する方式の温度補償式ガスセンサを使ってオ
ゾンガスを測定する場合の概念図を図1に示す。それぞ
れ白金抵抗で温度を検知するガスセンサ1と補償素子2
は、同じ特性の素子からなっており、同じ被検ガス雰囲
気、ここではオゾンの中に置かれている。ガスセンサ1
と補償素子2とにそれぞれ異なる電流を流すことによ
り、二つの素子の動作温度が異なるが、同じ環境に置
き、且つ増倍率を変えて加算することにより、温度補償
を行う。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a conceptual diagram of an embodiment of the present invention in which ozone gas is measured using a temperature-compensated gas sensor of the type that measures platinum resistance. Gas sensor 1 and temperature compensator 2 for detecting temperature with platinum resistance
Are elements having the same characteristics and are placed in the same test gas atmosphere, here, ozone. Gas sensor 1
The operation temperature of the two elements is different by supplying different currents to the compensation element 2 and the compensation element 2, respectively. However, the temperature compensation is performed by placing them in the same environment and adding them with different multiplication factors.

【0009】今仮に定電流源3より電流Iをガスセンサ
1に流した時に、温度が検知対象ガスの熱分解温度より
高い温度(約550℃)に加熱される。オゾンの熱分解
速度は127℃で約0.0295L.mel−1−1
と報告されており、検知素子の温度をこれより約100
℃高い230℃近辺まで加熱すれば、オゾンの検知は可
能となる。ただし窒素酸化物ガスが共存する場合は、固
形化した窒素酸化物が検知素子に付着するため、550
℃以上で動作させることが望ましい。また、特定電流源
4より補償素子2に、ガスセンサ1に流す電源Iの1/1
0の電流I/10を流すと、補償素子2の温度は約100
℃上昇するが、検知対象ガスの熱分解温度までは上がら
ない。白金抵抗の温度係数は温度に依存し、100℃に
おける温度係数は500℃における温度係数の約1.4
倍であるので、披検ガスの温度が変動したとすると、ガ
スセンサ1および補償素子2の出力電圧も変動するが、
変動の大きさは電流に比例しているので、約7倍違うこ
とになる。
If a current I is supplied from the constant current source 3 to the gas sensor 1, the gas is heated to a temperature (about 550 ° C.) higher than the thermal decomposition temperature of the gas to be detected. The thermal decomposition rate of ozone is about 0.0295 L at 127 ° C. mel -1 s -1
It is reported that the temperature of the sensing element is about 100
Heating up to 230 ° C., which is higher by 230 ° C., enables detection of ozone. However, when nitrogen oxide gas coexists, the solidified nitrogen oxide adheres to the sensing element, and thus the amount of nitrogen gas becomes 550.
It is desirable to operate at a temperature of at least ℃. Further, the specific current source 4 supplies the compensating element 2 with 1/1 of the power
When a current I / 10 of 0 flows, the temperature of the compensating element 2 becomes about 100
° C, but not to the thermal decomposition temperature of the gas to be detected. The temperature coefficient of the platinum resistance depends on the temperature, and the temperature coefficient at 100 ° C. is about 1.4 times the temperature coefficient at 500 ° C.
Therefore, if the temperature of the test gas fluctuates, the output voltages of the gas sensor 1 and the compensating element 2 also fluctuate.
Since the magnitude of the variation is proportional to the current, it will be about seven times different.

【0010】そこで、補償素子2側の増幅器5とセンサ
1側の増幅器6との増幅度の比を〜7倍に設定して出力
を加算してやれば、被検ガスの温度が変動しても出力信
号は変動せず、温度補償が実現する。このときガスセン
サ1と補償素子2とは動作温度が異なるため、抵抗比も
違い出力電圧にオフセットが生じるので、オフセット回
路7からそれを打ち消す電圧を加えておけば、検知対象
ガス濃度が0のとき、加算回路8の出力も0となる。こ
の状態で被検ガスに検知対象ガス(オゾン)が含まれて
いれば、熱分解熱に相当する余分な温度上昇が出力信号
として得られる。
Therefore, if the ratio of the amplification degree between the amplifier 5 on the compensation element 2 side and the amplifier 6 on the sensor 1 side is set to about 7 times and the outputs are added, the output is maintained even if the temperature of the gas to be detected fluctuates. The signal does not fluctuate and temperature compensation is realized. At this time, since the operating temperature of the gas sensor 1 and that of the compensating element 2 are different, the resistance ratio is also different, and an offset is generated in the output voltage. , The output of the adder circuit 8 also becomes zero. In this state, if the detection target gas (ozone) is contained in the test gas, an extra temperature rise corresponding to the heat of thermal decomposition is obtained as an output signal.

【0011】実際の白金抵抗の温度係数は、温度により
わずかに異なるが、増幅器5と増幅器6との増幅度の比
を調整することで、温度依存性の違いは補償可能であ
る。また、以上の説明は電子回路によるアナログ的な演
算で説明したが、ガスセンサ1と補償素子2の信号をA
/D変換した後、コンピュータを使って演算することも
可能である。また、温度測定に白金抵抗を使って説明し
たが、サーミスタや熱電対を使った場合でもこの発明の
適用は可能である。図2はセンサの出力例で、オゾン濃
度に比例した出力電圧が得られている。
Although the actual temperature coefficient of the platinum resistor slightly varies depending on the temperature, the difference in temperature dependency can be compensated by adjusting the ratio of the amplification degree between the amplifier 5 and the amplifier 6. Although the above description has been made with reference to an analog operation by an electronic circuit, the signals of the gas sensor 1 and the compensating element 2
After the / D conversion, the calculation can be performed using a computer. Further, although the description has been made using a platinum resistor for temperature measurement, the present invention can be applied to a case where a thermistor or a thermocouple is used. FIG. 2 shows an output example of the sensor, in which an output voltage proportional to the ozone concentration is obtained.

【0012】[0012]

【発明の効果】この発明は以上に述べたように構成した
ので、特に適当な触媒のない難分解性ガスや、少し加熱
するだけで簡単に分解するガスの検知、あるいは触媒被
毒を起こすガス、例えばオゾンガスを、従来用いられて
いた高価な紫外線吸光光度法による検知装置を用いるこ
となく、安価に長期間安定に測定する手段を提供するほ
か、触媒被毒で接触燃焼式センサでは安定に検出できな
いガス種についても、検知が可能にになった等、顕著な
効果を有するものである。
Since the present invention is constructed as described above, it is particularly difficult to detect a hardly decomposable gas without a suitable catalyst, a gas which can be easily decomposed by heating a little, or a gas which causes catalyst poisoning. In addition to providing a means to measure ozone gas stably inexpensively over a long period of time without using expensive conventional ultraviolet absorption spectroscopy detection devices, catalytically poisoned catalysts provide stable detection. Even a gas type that cannot be used has a remarkable effect, such as the detection being possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 白金抵抗を測定する方式の温度補償式ガスセ
ンサの概念図である。
FIG. 1 is a conceptual diagram of a temperature-compensated gas sensor that measures platinum resistance.

【図2】 センサの出力特性を示すグラフである。FIG. 2 is a graph showing output characteristics of a sensor.

【符号の説明】[Explanation of symbols]

1 ガスセンサ 2 補償素子 3、4 定電流源 5、6 増幅器 7 オフセット回路 8 演算回路 DESCRIPTION OF SYMBOLS 1 Gas sensor 2 Compensation element 3, 4 Constant current source 5, 6 Amplifier 7 Offset circuit 8 Operation circuit

───────────────────────────────────────────────────── フロントページの続き (71)出願人 599115273 岡崎 慎司 神奈川県横浜市神奈川区羽沢町353番3号 (72)発明者 朝倉 祝治 神奈川県横浜市旭区中沢1丁目31番3号 (72)発明者 中川 英元 東京都大田区田園調布本町40番12−809号 (72)発明者 岡崎 慎司 神奈川県横浜市神奈川区羽沢町353番3号 (72)発明者 清水 博則 東京都中央区銀座7丁目14番1号 荏原実 業株式会社内 (72)発明者 岩本 勇 東京都中央区銀座7丁目14番1号 荏原実 業株式会社内 Fターム(参考) 2G060 AA01 AB01 AB15 AE19 AF02 AF07 BA03 BB02 BB09 BD02 HA01 HC02 HC10 HC13 HE01 KA03  ──────────────────────────────────────────────────続 き Continuation of the front page (71) Applicant 599115273 Shinji Okazaki 353-3 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture (72) Inventor Shoji Asakura 1-31-3, Nakazawa, Asahi-ku, Yokohama-shi, Kanagawa Prefecture (72) Inventor Eiji Nakagawa 40-12-809 Denen Chofuhonmachi, Ota-ku, Tokyo (72) Inventor Shinji Okazaki 353-3 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa Prefecture (72) Inventor Hironori Shimizu Ginza, Chuo-ku, Tokyo 7-14-14 Ebara Corporation (72) Inventor Isamu Iwamoto 7-14-14 Ginza, Chuo-ku, Tokyo F-term within Ebara Corporation (reference) 2G060 AA01 AB01 AB15 AE19 AF02 AF07 BA03 BB02 BB09 BD02 HA01 HC02 HC10 HC13 HE01 KA03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 検知対象ガスが高温のガスセンサに接触
することで分解ないしは酸化される際に発生または吸収
される熱量を温度変化として検出するセンサにおいて、
センサの温度を検知対象ガス種の熱分解温度より高くか
つ検知特性を変化させる反応を抑制する温度に設定して
おくことにより、触媒等の反応促進物質を使用すること
なしに検知対象ガスの酸化分解を進行させ、検知対象ガ
スあるいは妨害ガスの反応で生じる検知特性の経年変化
を防止することを特徴とする、被検ガス中の検知対象ガ
スの濃度を測定するガスセンサ。
1. A sensor for detecting, as a temperature change, the amount of heat generated or absorbed when a detection target gas is decomposed or oxidized by contact with a high-temperature gas sensor,
By setting the temperature of the sensor to a temperature higher than the thermal decomposition temperature of the gas species to be detected and to suppress the reaction that changes the detection characteristics, the oxidation of the gas to be detected can be performed without using a reaction promoting substance such as a catalyst. A gas sensor for measuring the concentration of a gas to be detected in a gas to be detected, wherein the gas is subjected to decomposition to prevent a change in the detection characteristics caused by the reaction of the gas to be detected or an interfering gas with time.
【請求項2】 検知対象ガスがオゾンであり、前記セン
サの温度を約550℃に設定する、請求項1に記載のガ
スセンサ。
2. The gas sensor according to claim 1, wherein the gas to be detected is ozone, and the temperature of the sensor is set to about 550 ° C.
【請求項3】 検知対象ガスが高温のガスセンサに接触
することで分解ないしは酸化される際に発生または吸収
される熱量を温度変化として検出するセンサに加え、温
度補償用として同一または類似の温度特性を有する補償
素子を備え、請求項1記載のガスセンサの温度を検知対
象ガス種の熱分解温度より高くかつ検知特性を変化させ
る反応を抑制する温度に設定し、補償素子の温度を検知
対象ガスの温度ないしは熱分解温度より低い温度に設定
して被検ガスの温度を測定し、電子的演算ないしはソフ
トウエアによる演算から温度補償を行う温度補償型ガス
センサ。
3. A sensor for detecting the amount of heat generated or absorbed when a gas to be detected is decomposed or oxidized by coming into contact with a high-temperature gas sensor as a temperature change, and having the same or similar temperature characteristics for temperature compensation. Wherein the temperature of the gas sensor according to claim 1 is set to a temperature higher than the thermal decomposition temperature of the gas species to be detected and a temperature that suppresses a reaction that changes the detection characteristics, and the temperature of the compensation element is set to the temperature of the gas to be detected. A temperature-compensated gas sensor that measures the temperature of a test gas by setting it at a temperature lower than the temperature or the thermal decomposition temperature, and performs temperature compensation from electronic calculations or calculations by software.
【請求項4】 検知対象ガスがオゾンであり、前記ガス
センサの温度を約550℃に設定する、請求項3に記載
のガスセンサ。
4. The gas sensor according to claim 3, wherein the gas to be detected is ozone, and the temperature of the gas sensor is set to about 550 ° C.
JP2000082625A 2000-03-23 2000-03-23 Reaction heat detection type gas sensor Pending JP2001272367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000082625A JP2001272367A (en) 2000-03-23 2000-03-23 Reaction heat detection type gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000082625A JP2001272367A (en) 2000-03-23 2000-03-23 Reaction heat detection type gas sensor

Publications (1)

Publication Number Publication Date
JP2001272367A true JP2001272367A (en) 2001-10-05

Family

ID=18599407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000082625A Pending JP2001272367A (en) 2000-03-23 2000-03-23 Reaction heat detection type gas sensor

Country Status (1)

Country Link
JP (1) JP2001272367A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004111628A1 (en) * 2003-06-12 2004-12-23 Riken Keiki Co., Ltd. Catalytic combustion type gas sensor and method for manufacture thereof
JP2007198816A (en) * 2006-01-25 2007-08-09 Taizo Ishikawa Detection circuit using catalytic combustion type gas sensor
JP2015169552A (en) * 2014-03-07 2015-09-28 株式会社リコー Detection device, detection circuit, sensor module, and image forming apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004111628A1 (en) * 2003-06-12 2004-12-23 Riken Keiki Co., Ltd. Catalytic combustion type gas sensor and method for manufacture thereof
JPWO2004111628A1 (en) * 2003-06-12 2006-07-20 理研計器株式会社 Contact combustion type gas sensor and manufacturing method thereof
JP2010078609A (en) * 2003-06-12 2010-04-08 Riken Keiki Co Ltd Method of manufacturing catalytic combustion type gas sensor
JP4627037B2 (en) * 2003-06-12 2011-02-09 理研計器株式会社 Contact combustion type gas sensor
JP2007198816A (en) * 2006-01-25 2007-08-09 Taizo Ishikawa Detection circuit using catalytic combustion type gas sensor
JP2015169552A (en) * 2014-03-07 2015-09-28 株式会社リコー Detection device, detection circuit, sensor module, and image forming apparatus

Similar Documents

Publication Publication Date Title
US8721970B2 (en) Temperature and humidity compensated single element pellistor
Schwebel et al. A selective, temperature compensated O2 sensor based on Ga2O3 thin films
US11467110B2 (en) Method for operating a sensor device
CA2542799A1 (en) Process for measuring the concentration of gases
CN110988272A (en) Method for correcting measured values of a hydrogen sensor
EP0314919B1 (en) Combustible gas detector having temperature stabilization capability
Zhou et al. A study of the response rate to nitrogen dioxide exposure in metal phthalocyanine thin film sensors
JPH08145920A (en) Microcalorimeter sensor to measure heat quantity of natural gas
JPH0562947B2 (en)
US6131438A (en) Method of operating a calorimetric gas sensor
EP1152238B1 (en) Instrument for combustible gas detection
US10451575B2 (en) Gas measurement device and measurement method thereof
JP5526411B2 (en) Gas analyzer
JP2001272367A (en) Reaction heat detection type gas sensor
Ivanov et al. Expanding catalytic sensor capabilities to combustible gas mixtures monitoring
RU2250455C1 (en) Method of measuring concentration of methane and/or hydrogen
JPH10260149A (en) Method for measuring concentration of gas
JP3321315B2 (en) Atmospheric gas detector
JP2001188056A (en) Gas detector
JPH07260730A (en) Environment sensor output correction device
SU1116374A1 (en) Method of checking multicomponent combustible admixtures in gas atomosphere
SU855471A1 (en) Gas analyzer
JPS6118451Y2 (en)
JPH1038833A (en) Gas detecting device and temperature detecting method used for this device
US4315956A (en) Process for depositing cobalt ondes on a refractory-coated platinum resistor coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070323

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201