JPS6118451Y2 - - Google Patents

Info

Publication number
JPS6118451Y2
JPS6118451Y2 JP10387680U JP10387680U JPS6118451Y2 JP S6118451 Y2 JPS6118451 Y2 JP S6118451Y2 JP 10387680 U JP10387680 U JP 10387680U JP 10387680 U JP10387680 U JP 10387680U JP S6118451 Y2 JPS6118451 Y2 JP S6118451Y2
Authority
JP
Japan
Prior art keywords
catalyst layer
temperature
gas flow
measured
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10387680U
Other languages
Japanese (ja)
Other versions
JPS5728364U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10387680U priority Critical patent/JPS6118451Y2/ja
Publication of JPS5728364U publication Critical patent/JPS5728364U/ja
Application granted granted Critical
Publication of JPS6118451Y2 publication Critical patent/JPS6118451Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は燃焼式ガス分析計に関し、特に、温度
検出部分について改良したものである。
[Detailed Description of the Invention] The present invention relates to a combustion gas analyzer, and in particular, the temperature detection part is improved.

ガス分析計の一種として、サンプル中の被測定
成分に対し触媒を用いると、触媒による反応熱が
被測定成分の含有量に相当することから触媒の温
度変化と被測定成分の含有量との間に一義的な関
係が存在するため、温度変化を測定することによ
り含有量を求める方式のものがる。この種の燃焼
式ガス分析計における温度検出の従来例として第
1図a,b,c,dの各例がある。
As a type of gas analyzer, when a catalyst is used for a component to be measured in a sample, the heat of reaction from the catalyst corresponds to the content of the component to be measured, so there is a difference between the temperature change of the catalyst and the content of the component to be measured. Since there is a unique relationship between Examples of conventional temperature detection in this type of combustion gas analyzer are shown in FIGS. 1a, b, c, and d.

第1図aの例は、ガス流Aに対し触媒として白
金線1を用い、白金線1の表面にて接触反応を行
わせて反応の結果生成する熱を白金線1自体で受
け、生成熱による温度上昇を白金線1自体の電気
抵抗の変化として検出するものである。この場
合、通常は電気抵抗自体の測定は行われず、ホイ
ートストン・ブリツジを用いて不平衡電圧を測定
することが行われている。
In the example shown in Figure 1a, a platinum wire 1 is used as a catalyst for the gas flow A, a contact reaction is carried out on the surface of the platinum wire 1, and the heat generated as a result of the reaction is received by the platinum wire 1 itself. The temperature rise caused by this is detected as a change in the electrical resistance of the platinum wire 1 itself. In this case, the electrical resistance itself is usually not measured, but the unbalanced voltage is measured using a Wheatstone bridge.

第1図bの例は、白金線1は触媒として用い
ず、白金線1をアルミナ等の担体2に埋め込み担
体2の表面に触媒層3を形成してガス流A中に設
けるものであり、触媒層3の温度上昇を白金線1
の電気抵抗の変化で検出する。検出の方法は第1
図aの場合と同じである。
In the example shown in FIG. 1b, the platinum wire 1 is not used as a catalyst, but the platinum wire 1 is embedded in a carrier 2 such as alumina, and a catalyst layer 3 is formed on the surface of the carrier 2, which is provided in the gas flow A. The temperature rise of the catalyst layer 3 is controlled by the platinum wire 1.
Detected by changes in electrical resistance. The detection method is the first
This is the same as in Figure a.

第1図cの場合の例は、石英管等のガス流通路
4内に触媒層3を収納し、この触媒層3の下流直
近にサーミスタや白金線のような抵抗式温度検出
器5を設けたものであり、触媒層3の温度上昇に
対応して該触媒層3を流れるガスも温度上昇する
ために、ガス温度の上昇を電気抵抗の変化で検出
する。この場合の検出方法も第1図aと同じであ
る。
In the example shown in FIG. 1c, a catalyst layer 3 is housed in a gas flow path 4 such as a quartz tube, and a resistance type temperature sensor 5 such as a thermistor or platinum wire is installed immediately downstream of this catalyst layer 3. As the temperature of the catalyst layer 3 increases, the temperature of the gas flowing through the catalyst layer 3 also increases, so the increase in gas temperature is detected by a change in electrical resistance. The detection method in this case is also the same as that in FIG. 1a.

第1図dの例は、ガス流通路4内に触媒層3を
収納し、ガス流通路4の外表面に熱電対のような
温度検出器6を設けたものであり、触媒層3の温
度上昇に対応してその付近のガス流通路4も温度
上昇するため、このガス流通路4の温度を温度検
出器で検出する。
In the example shown in FIG. 1d, a catalyst layer 3 is housed in a gas flow passage 4, and a temperature detector 6 such as a thermocouple is provided on the outer surface of the gas flow passage 4. Corresponding to the rise, the temperature of the gas flow passage 4 in the vicinity also rises, so the temperature of this gas flow passage 4 is detected by a temperature detector.

しかし、上記各従来例にはそれぞれ次のような
欠点がある。第1図aでは、白金線1を例えば
600℃という高温に直接哂すため、白金線1の寿
命が4ケ月〜6ケ月と短かい。第1図bでは、触
媒層3の温度を間接的に検出するため、温度検出
の応答時間即ちレスポンスが例えば60%応答で6
秒間〜10秒間と相当遅くまた、高感度(微少含有
量)の検出が難しい。したがつてガス分析計とし
てはガス検知器に向いている。第1図c,dも第
1図bと同様にレスポンスが遅い。
However, each of the above conventional examples has the following drawbacks. In FIG. 1a, the platinum wire 1 is
Because it is directly exposed to a high temperature of 600°C, the lifespan of the platinum wire 1 is short, 4 to 6 months. In Fig. 1b, since the temperature of the catalyst layer 3 is detected indirectly, the response time of temperature detection, that is, the response is, for example, 60% response.
It is quite slow (from 10 seconds to 10 seconds) and is difficult to detect with high sensitivity (microscopic content). Therefore, it is suitable as a gas detector as a gas analyzer. Similarly to FIG. 1b, the responses in FIGS. 1c and 1d are slow.

本考案は上記従来技術の欠点を解消した燃焼式
ガス分析計の提供を目的とするものである。レス
ポンスを早くするためには、触媒層を薄くするこ
とと、触媒層の温度上昇を迅速に測定することが
要点であるが、触媒層は例えば蒸着膜を利用すれ
ば薄くできる。本考案は、特に、温度上昇の迅速
な測定に着目したものであり、半導体式赤外線セ
ンサの如く輻射熱を用いて被測定物体の温度を測
定するものがレスポンスが早く、且つ高感度であ
るので、これを利用して燃焼式ガス分析計を構成
したものである。以下、図面を参照して本考案を
実施例とともに説明する。なお図面中で第1図と
同一部分には同一符号を付す。
The object of the present invention is to provide a combustion type gas analyzer that eliminates the drawbacks of the prior art described above. In order to speed up the response, it is important to make the catalyst layer thin and to quickly measure the temperature rise in the catalyst layer, but the catalyst layer can be made thinner by using a vapor-deposited film, for example. The present invention is particularly focused on the rapid measurement of temperature rises, and devices such as semiconductor infrared sensors that use radiant heat to measure the temperature of an object to be measured have a quick response and high sensitivity. This is used to construct a combustion gas analyzer. Hereinafter, the present invention will be explained along with examples with reference to the drawings. In the drawings, the same parts as in FIG. 1 are given the same reference numerals.

第2図は本考案の一実施例を示し、aは温度検
出部分の断面図、bは燃焼式ガス分析計全体のブ
ロツク図である。第2図aにおいて、3は触媒
層、4はガス流通路である。触媒層3は、担体7
としてガス流通路4の内面に取り付けられる石英
などの熱の不良導体の表面にコーテイングされて
いる。8は赤外線検出器で、触媒層3に相対向す
る側にてガス流通路4の壁を貫通して設けられて
いる。9はホルダーである。このような構成によ
ると、触媒層3表面における接触反応の結果生成
する熱によつて触媒層3の表面温度が上昇する
が、表面温度に対応して触媒層3表面から赤外線
が輻射されるので、この赤外線を検出器8で捕捉
することにより、表面温度を迅速に測定すること
ができるのである。赤外線検出器8の出力はガス
分析計本体に導入され、ガス流A中の被測定成分
の含有量の表示等の処理がなされる。第2図bに
おいて、10は接続ケーブル、11はガス分析計
本体である。
FIG. 2 shows an embodiment of the present invention, in which a is a sectional view of a temperature detection portion and b is a block diagram of the entire combustion type gas analyzer. In FIG. 2a, 3 is a catalyst layer and 4 is a gas flow path. The catalyst layer 3 is a carrier 7
It is coated on the surface of a poor heat conductor such as quartz, which is attached to the inner surface of the gas flow passage 4 as a heat conductor. Reference numeral 8 denotes an infrared detector, which is provided penetrating the wall of the gas flow passage 4 on the side facing the catalyst layer 3 . 9 is a holder. According to such a configuration, the surface temperature of the catalyst layer 3 increases due to the heat generated as a result of the contact reaction on the surface of the catalyst layer 3, but infrared rays are radiated from the surface of the catalyst layer 3 in response to the surface temperature. By capturing this infrared rays with the detector 8, the surface temperature can be quickly measured. The output of the infrared detector 8 is introduced into the main body of the gas analyzer, and processed such as displaying the content of the component to be measured in the gas flow A. In FIG. 2b, 10 is a connection cable, and 11 is a gas analyzer main body.

第3図に具体的な使用例を示す。通常は同図に
示すように、温度検出部分を対にして用いる。即
ち、ガス流通路4と分流してガス流が流れるガス
流通路12を設け、ガス流通路4には目的の接触
反応による温度検出用として第2図aと同様に触
媒層3及び赤外線検出器8を設ける一方、他方の
ガス流通路12には基準用あるいは補償用として
接触反応を起さない不活性の触媒層13と赤外線
検出器14とを設けてある。なお、15は担体で
ある。両赤外線検出器8と14の出力は差動演算
器16に導入され、触媒層3と13の表面温度が
差動的に測定されるように構成してある。この例
によると、ガス流A中にガス組成や流量の変動が
あつたり、あるいは周囲温度に変動があつても、
これらによる両赤外線検出器8,14の出力変化
は等しいため相殺され、測定結果には上記変動に
よる影響が殆んど含まれず、正確なガス分析を行
える。
FIG. 3 shows a specific usage example. Usually, the temperature detection parts are used in pairs, as shown in the figure. That is, a gas flow path 12 is provided which is separated from the gas flow path 4 and through which the gas flow flows, and the gas flow path 4 is equipped with a catalyst layer 3 and an infrared detector for detecting the temperature due to the desired catalytic reaction, as shown in FIG. 2a. 8, while the other gas flow passage 12 is provided with an inert catalyst layer 13 that does not cause a contact reaction and an infrared detector 14 for reference or compensation purposes. Note that 15 is a carrier. The outputs of both infrared detectors 8 and 14 are introduced into a differential calculator 16, so that the surface temperatures of the catalyst layers 3 and 13 are measured differentially. According to this example, even if there are fluctuations in the gas composition or flow rate in gas flow A, or fluctuations in the ambient temperature,
The output changes of both the infrared detectors 8 and 14 caused by these changes are equal and cancel each other out, and the measurement results are hardly influenced by the above-mentioned fluctuations, allowing accurate gas analysis.

上記実施例における赤外線検出器としては、半
導体式赤外線センサを用いるのが小型等の点で都
合良いが、基本的には各種型式のものを用いるこ
とができる。また、赤外線検出器はガス流通路内
に直接臨ませず、赤外線を通し易い石英系のガラ
ス等を介して設けても良い。更に、触媒層は必ら
ずしも蒸着膜で形成する必要はないが、できるだ
け薄い方が良い。また触媒層の熱が他へ逃げない
ように、ガス流通路と触媒層との間には熱の不良
導体を介在させると効果的である。
As the infrared detector in the above embodiment, it is convenient to use a semiconductor infrared sensor in terms of compactness, but basically, various types can be used. Further, the infrared detector may not be placed directly in the gas flow path, but may be provided through quartz-based glass or the like that easily transmits infrared rays. Furthermore, the catalyst layer does not necessarily need to be formed of a vapor-deposited film, but it is better to be as thin as possible. Further, it is effective to provide a poor heat conductor between the gas flow path and the catalyst layer so that the heat of the catalyst layer does not escape to other places.

以上実施例とともに具体的に説明したように、
本考案の燃焼式ガス分析計は、温度検出に温度応
答が早く且つ高感度な赤外線検出器を用いたの
で、被測定成分の含有量をレスポンスが早く且つ
微量でも測定することができる。
As specifically explained above with the examples,
Since the combustion gas analyzer of the present invention uses an infrared detector with a quick temperature response and high sensitivity for temperature detection, the content of the component to be measured can be measured with a quick response and even in trace amounts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜dは燃焼式ガス分析計における従来
の温度検出の例をそれぞれ示す説明図、第2図は
本考案の一実施例に係り、aは温度検出部分の構
造を示す断面図、bは全体のブロツク図、第3図
は他の実施例を示す断面図である。 図面中、Aはガス流、3は触媒層、4はガス流
通路、7は担体、8は赤外線検出器、9はホルダ
ー、11はガス分析計本体、12,13,14及
び15は基準用の温度検出部分を構成するガス流
通路、不活性の触媒層、赤外線検出器及び担体、
16は差動演算器である。
1A to 1D are explanatory diagrams showing examples of conventional temperature detection in a combustion gas analyzer, FIG. 2 is an embodiment of the present invention, and a is a sectional view showing the structure of the temperature detection part; b is an overall block diagram, and FIG. 3 is a sectional view showing another embodiment. In the drawing, A is a gas flow, 3 is a catalyst layer, 4 is a gas flow passage, 7 is a carrier, 8 is an infrared detector, 9 is a holder, 11 is a gas analyzer main body, 12, 13, 14 and 15 are for reference. a gas flow path, an inert catalyst layer, an infrared detector and a carrier, which constitute the temperature detection part of the
16 is a differential arithmetic unit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ガス中の被測定成分が接触反応を示す触媒にガ
スを流し、触媒の温度に基づいて被測定成分の含
有量を測定する燃焼式ガス分析計において、ガス
流通路に設けた触媒層と、この触媒層の表面から
の輻射熱を検出する赤外線検出器とを備え、この
赤外線検出器を用いて測定した触媒層の表面温度
から被測定成分の含有量を求めるように構成した
ことを特徴とする燃焼式ガス分析計。
In a combustion gas analyzer that flows gas through a catalyst in which a component to be measured in the gas exhibits a catalytic reaction and measures the content of the component to be measured based on the temperature of the catalyst, a catalyst layer provided in the gas flow path and a catalyst layer provided in the gas flow path are used. Combustion characterized by comprising an infrared detector that detects radiant heat from the surface of the catalyst layer, and configured to determine the content of the component to be measured from the surface temperature of the catalyst layer measured using the infrared detector. type gas analyzer.
JP10387680U 1980-07-24 1980-07-24 Expired JPS6118451Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10387680U JPS6118451Y2 (en) 1980-07-24 1980-07-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10387680U JPS6118451Y2 (en) 1980-07-24 1980-07-24

Publications (2)

Publication Number Publication Date
JPS5728364U JPS5728364U (en) 1982-02-15
JPS6118451Y2 true JPS6118451Y2 (en) 1986-06-04

Family

ID=29465263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10387680U Expired JPS6118451Y2 (en) 1980-07-24 1980-07-24

Country Status (1)

Country Link
JP (1) JPS6118451Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5766917B2 (en) * 2010-03-29 2015-08-19 メタウォーター株式会社 Ozone concentration meter
JP2020160077A (en) * 2020-06-09 2020-10-01 矢崎エナジーシステム株式会社 Calorimeter

Also Published As

Publication number Publication date
JPS5728364U (en) 1982-02-15

Similar Documents

Publication Publication Date Title
US4063898A (en) Combustible gases detector
US3767469A (en) In-situ oxygen detector
JP2002534676A (en) Differential temperature analysis sensor
JP2011501135A5 (en)
US20060076644A1 (en) Nanowire filament
US3871981A (en) In-situ oxygen detector
US4298574A (en) Hydrogen gas detector
US4870025A (en) Method of sensing methane gas-I
US3616677A (en) Electrical resistance bridge with a heat sensitive resistor for the measurement of the thermal dispersion within the ambience of the resistor
US6131438A (en) Method of operating a calorimetric gas sensor
US6244744B1 (en) Three-wire RTD interface
US6085575A (en) Process for the determination of the exhaust gas temperature and of the air/fuel ratio lambda and a sensor arrangement for execution of the process
JPS6118451Y2 (en)
KR19990037001A (en) Methods for determining exhaust gas temperature and air-fuel ratio lambda and sensor arrangements for implementing such methods
KR100425577B1 (en) Gas detection sensor
US3435678A (en) Apparatus for flow monitoring
US3818899A (en) Breath testing system with increased sensitivity
JPH06281605A (en) Simultaneous measuring method for heat conductivity and kinematic viscosity
JP3300110B2 (en) Gas detector
US4222900A (en) Method of activating a palladium-silver alloy
US10689683B2 (en) Systems and methods for determining the concentrations of multiple species using multiple sensors
JPS63285454A (en) Detection of city gas leaked from buried pipe
JPH0521008Y2 (en)
JPH0225721A (en) Thermometer for very low temperature
EP0701123A1 (en) Formaldehyde vapour detector