JP4788534B2 - エキシマランプ - Google Patents

エキシマランプ Download PDF

Info

Publication number
JP4788534B2
JP4788534B2 JP2006242314A JP2006242314A JP4788534B2 JP 4788534 B2 JP4788534 B2 JP 4788534B2 JP 2006242314 A JP2006242314 A JP 2006242314A JP 2006242314 A JP2006242314 A JP 2006242314A JP 4788534 B2 JP4788534 B2 JP 4788534B2
Authority
JP
Japan
Prior art keywords
ultraviolet
inner tube
particles
excimer lamp
discharge space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006242314A
Other languages
English (en)
Other versions
JP2008066095A (ja
Inventor
優 塩崎
清幸 蕪木
幸裕 森本
真一 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP2006242314A priority Critical patent/JP4788534B2/ja
Publication of JP2008066095A publication Critical patent/JP2008066095A/ja
Application granted granted Critical
Publication of JP4788534B2 publication Critical patent/JP4788534B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

本発明は、紫外線を放射するエキシマランプであって、特に、内側管と外側管を有する二重管構造のエキシマランプであって、内側管の放電空間に接する表面に紫外線反射膜が形成されてなるエキシマランプに関する。
従来からエキシマランプを用いて、処理物を洗浄するなど光処理する技術が知られており、図11は、従来の二重管構造のエキシマランプの説明図である。なお、図11は、エキシマランプを管軸方向に沿って切断した状態の断面図である。
このエキシマランプ10は、各々、シリカガラスよりなる円筒状の外側管12および円筒状の内側管13が同軸上に配置されると共に、両端部において溶融、接合されて外側管12と内側管13との間に環状の放電空間Sが形成されてなる二重管構造をなす放電容器11を備えており、金網などの導電性材料よりなるメッシュ状の外部電極16が外側管12の外周面に密接して設けられていると共に例えばアルミニウムよりなる内部電極15が内側管13の内周面に密接して設けられており、キセノンガスなどの希ガスや、希ガスに塩素などのハロゲンガスを混合した放電ガスが放電空間S内に封入されて、構成されている。図中、17は、放電空間S内の一端部に設けられたゲッターであり、18は、ランプ点灯用電源である。
このようなエキシマランプを使った光処理において光反応速度の向上が強く求められ、それに伴いランプからの紫外線の放射出力をより一層向上させる要求がある。
この要求に答えるためには、ランプ入力を増大させる方法があるが、単純にランプ入力を増大させると、放電容器11の温度が上昇するものである。
放電容器11の温度が上昇する理由は、放電容器11を構成しているシリカガラスは、真空紫外線に対して半透明体であり、真空紫外線の一部を吸収し、この紫外線の吸収により放電容器11の温度が上昇する。
さらに、シリカガラスは温度が高くなるほど真空紫外線の吸収率が大きくなり、これに起因して、さらに、放電容器11の温度が上昇するものである。
特に、内側管13と外側管12を有する放電容器11では、内側管13が放電容器11の内部側に存在することにより、外部雰囲気から隔離されたり、エキシマランプの両端部に設けられた不図示のベース構造によっては、内側管13が外部雰囲気と十分に連通することができず、内側管13の温度が、外側管12に比べ顕著に上昇するものである。
この結果、高温状態となった内側管13によって、真空紫外線が吸収される割合が高くなり、紫外線の放射効率が低下してしまうという問題があった。
一方、放電ガスに着目すると、内側管13の温度が上昇することにより、内側管13に放電ガスが接しているために、放電ガスの温度も上昇する。
放電ガスの温度が上昇すると、放電空間Sにおいて、エキシマ分子が生成される効率が大幅に低下するので、その結果として、紫外線の放射効率が大きく低下してしまう。
つまり、内側管13の温度上昇に伴い、内側管13自体で真空紫外線の吸収割合が高くなり、さらに、放電ガスの温度が上昇しエキシマ分子が生成される効率が大幅に低下するので、これらの要因が重なり合い、エキシマランプから放射される紫外線の放射出力が低下するものである。
このような問題を解決するために、内側管13を直接冷却する構造として、例えば、特開平4−301357号には、内側管13の内部に冷却水を流す構造が開示されている。
しかしながら、このような構造では、エキシマランプ以外に冷却構造が必要となり、構造が複雑になるという問題があった。
特開平4−301357号公報
本発明は、このような問題を解決するためになされたものであって、シリカガラスよりなる内側管の放電空間と接する表面に紫外線反射膜を設けることにより、内側管に紫外線が吸収されることなく、しかも、内側管の温度上昇を抑えることにより放電ガスの温度上昇をも抑制することがきで、放電空間においてエキシマ分子が効率よく生成され、紫外線の放射出力が大きいエキシマランプを提供することにある。
本発明のエキシマランプは、シリカガラスよりなる内側管と外側管を有する放電容器を備え、当該放電容器の内側管と外側管との間の空間が放電空間であるエキシマランプにおいて、前記内側管の放電空間に接した表面に、少なくともシリカ粒子を含む紫外線散乱粒子が粒子状態で保持されてなる紫外線反射膜が形成され、紫外線散乱粒子は、シリカ粒子以外に、セラミック粒子を含み、シリカ粒子を30重量%以上含有することを特徴とする
本発明のエキシマランプは、シリカガラスよりなる内側管と外側管を有する放電容器を備え、当該放電容器の内側管と外側管との間の空間が放電空間であるエキシマランプにおいて、前記内側管の放電空間に接した表面に、シリカガラス層内にシリカ粒子以外のセラミック粒子が紫外線散乱粒子として粒子状態で保持されてなる紫外線反射膜が形成され、前記放電空間側のセラミック粒子の粒径が、前記内側管側のセラミック粒子の粒径より小さいことを特徴とする。
さらに、紫外線反射膜の厚みが、30〜300μmであることを特徴とする。
本発明のエキシマランプによれば、シリカガラスよりなる内側管と外側管を有する放電容器を備え、内側管の放電空間に接した表面に、少なくともシリカ粒子を含む紫外線散乱粒子が粒子状態で保持されてなる紫外線反射膜が形成されているので、内側管に紫外線が吸収されることなく、しかも、内側管の温度上昇を抑えることにより放電ガスの温度上昇をも抑制することがきで、放電空間においてエキシマ分子が効率よく生成され、エキシマランプから放射される紫外線の放射出力を大きくすることができる。
以下、本発明のエキシマランプを説明する。
図1は、本発明が適用された二重管構造のエキシマランプの一例における構成の概略を、管軸方向に沿って切断した状態で示す断面図であり、図2は、図1に示すエキシマランプの構成の概略を、管軸に直交する方向に沿って切断した状態で示す断面図である。
このエキシマランプ10は、各々、シリカガラスよりなる円筒状の外側管12および円筒状の内側管13が同軸上に配置されると共に、両端部において溶融、接合されて外側管12と内側管13との間に環状の放電空間Sが形成されてなる二重管構造をなす放電容器11を備えており、例えば金網などの導電性材料よりなるメッシュ状の外部電極16が外側管12の外周面に密接して設けられていると共に例えばアルミニウムよりなる内部電極15が内側管13の内周面に密接して設けられており、例えばキセノンガスなどの希ガスや、希ガスに塩素などのハロゲンガスを混合した放電ガスが放電空間S内に封入されて、構成されている。図1において、17は、放電空間S内の一端部に設けられたゲッターであり、18は、ランプ点灯用電源である。
このエキシマランプ10においては、放電空間Sを形成する内側管13の放電空間Sに接した表面に、紫外線反射膜20が設けられている。
紫外線反射膜20は、例えば中心径が0.1〜10μm、好ましくは1〜5μmとなる粒子径分布を有するシリカ粒子により形成されてなり、凹凸のある光散乱面を有し、例えば150〜190nmの波長域の紫外線に対して不透明すなわち紫外線反射機能を備えている。
ここに、「粒子径」とは、粒子の投影像を2本の平行線で挟んだとき、平行線の間隔が最大となる粒子の幅をいい、「中心径」とは、累積度数分布において度数が最大となる粒子径をいう。
このような紫外線反射膜20は、例えばグリーンシートと呼ばれるフィルム状成形体を使用し、このグリーンシートを焼成することにより、形成することができる。
すなわち、先ず、シリカ粒子と、有機バインダーと、例えばアクリル系樹脂などの可塑剤および分散剤などとを溶剤に混合することにより得られるペーストを、例えばポリエチレンテレフタレート(PET)などの有機フィルム構造体上に一定の厚みで流延し、溶剤を乾燥させてフィルム状としたグリーンシート状成形体を形成する。
次に、このグリーンシート状成形体を孔付きステンレス製パイプに仮止めして、シリカガラス製の内側管13の表面に配設し、グリーンシート状成形体を内側管13の表面に接着転写した状態において、グリーンシート状成形体を焼成することにより内側管13の表面に固着させ、これにより、シリカ粒子が粒子状態で保持されてなる紫外線反射膜20を形成することができる。
焼成処理を行う際の処理条件としては、処理温度が例えば1100〜1200℃、処理時間が30〜90分間であることが好ましい。このような条件で熱処理が行われることにより、シリカ粒子のすべてが溶融して内側管13と一体化してしまうことがなく、シリカ粒子が粒子状態で内側管13の表面に焼結した状態となり、紫外線反射膜20の表面が凹凸のある光散乱面となり、十分な紫外線反射機能を確実に得ることができる。
図3は、電子顕微鏡による紫外線反射膜20の一部拡大模式図である。
図3の拡大模式図に示すように、内側管13の放電空間と接する表面に紫外線反射膜20が形成されており、この紫外線反射膜20は、粒子径1〜5μmのシリカ粒子21が粒子状態の形態を保った状態であって、シリカ粒子21の内側管13と接している粒子が内側管13の表面に焼結した状態になっており、他のシリカ粒子21が一部隣接したシリカ粒子21同士で接触したり結合した状態になっているものである。
そして、放電空間側から紫外線反射膜20の表面に矢印で示すように紫外線が入射すると、乱雑に配置されたシリカ粒子21の隙間に紫外線が入り込み、シリカ粒子21間で紫外線が多重反射されるために、この紫外線反射膜20によって紫外線が放電空間側に確実に反射されることになり、内側管13に紫外線が照射されることを防止できるものである。
この紫外線反射膜20の厚みは、例えば30〜300μmであることが好ましく、実際上、紫外線の直線透過率が例えば3%以下となる厚みとされている。これにより、内側管13に紫外線が吸収されることがなく、しかも所期の紫外線反射機能が確実に発現されて、放電ガスの温度上昇をも抑え、放電空間S内においてエキシマ分子を効率よく生成し、発生した紫外線を外側管12より取り出して放射することができ、従って、紫外線の放射出力を確実に高めることができる。
しかも、紫外線反射膜20がシリカ粒子を主体としたものであることにより、放電容器11に対して高い親和性が得られるので、当該紫外線反射膜20がもろく剥がれることがなく、紫外線反射膜20を確実に形成することができ、ランプを所期の性能が長時間の間にわたって維持されるものとして確実に構成することができる。
以上において、紫外線反射膜20がシリカ粒子のみにより形成されている構成のものについて説明したが、上記のような効果を一層確実に得るために、紫外線反射膜20は、シリカ粒子と他の紫外線散乱粒子とにより形成された構成とされていることが好ましい。
このような紫外線反射膜20の構成について具体的に説明すると、シリカ粒子は中心径が例えば0.1〜10μm、好ましくは1〜5μmとなる粒子径分布を有するものであり、他の紫外線散乱粒子は中心径が例えば0.1〜3μmとなる粒子径分布を有するものであり、シリカ粒子と他の紫外線散乱粒子とにより凹凸のある光散乱面が構成されている。
シリカ粒子以外の他の紫外線散乱粒子としては、例えばZnS、CeO、ZrO、Y、Ta、MO、Al、CeF、LaF、BaF、CaF、MgF、LiF、NaFなどのセラミック粒子を用いることができる。
図4は、シリカ粒子以外の他の紫外線散乱粒子としてアルミナ(Al)粒子よりなる紫外線反射膜20の一部を電子顕微鏡によって観察した拡大模式図である。
図4の拡大模式図に示すように、内側管13の放電空間と接する表面に紫外線反射膜20が形成されており、この紫外線反射膜20は、粒子径1〜5μmのシリカ粒子21と、粒子径0.1〜3μmのアルミナ粒子22が粒子状態の形態を保った状態であって、シリカ粒子21とアルミナ粒子22の内側管13と接している粒子が内側管13の表面に焼結した状態になっており、他のシリカ粒子21やアルミナ粒子22が一部隣接した粒子同士で接触したり結合した状態になっているものである。
そして、放電空間側から紫外線反射膜20の表面に矢印で示すように紫外線が入射すると、乱雑に配置されたシリカ粒子21やアルミナ粒子22の隙間に紫外線が入り込み、シリカ粒子21間、アルミナ粒子22間、シリカ粒子21とアルミナ粒子22間で紫外線が多重反射されるために、この紫外線反射膜20によって紫外線が放電空間側に確実に反射されることになり、内側管13に紫外線が照射されることを防止できるものである。
この紫外線反射膜20においては、シリカ粒子の割合が30重量%以上とされていることが好ましい。シリカ粒子の割合が30重量%以上であることにより、紫外線反射膜20を内側管13に対して確実に焼結させることができる。
また、紫外線反射膜20の厚みは、例えば30〜300μmであることが好ましく、実際上、紫外線の直線透過率が例えば3%以下となる厚みとされている。
つまり、膜厚が30μm以下では、紫外線が透過してしまい反射率が悪く、膜厚が300μm以上では、膜が剥離する。
紫外線反射膜20がシリカ粒子と他の紫外線散乱粒子とにより形成されていることにより、例えばセラミック粒子からなる他の紫外線散乱粒子がシリカ粒子よりも紫外線の反射効率の高いものであるので、放電空間S内で発生した紫外線を確実に反射することができる。
しかも、紫外線反射膜20がシリカ粒子を30重量%以上含有しているものであることにより、紫外線反射膜20をシリカガラス製の内側管13に対して確実に焼結させることができる。
以上において、紫外線反射膜20はすべてのシリカ粒子がその形状が維持された状態で形成されている必要はなく、例えばシリカ粒子が全て溶融された場合であっても、他の紫外線散乱粒子は紫外線反射膜20中に分散された状態とされるため、紫外線反射膜20を高い紫外線反射特性を有するものとして構成することができる。
また、本発明においては、紫外線反射膜20は、シリカ粒子、またはシリカ粒子および他の紫外線散乱粒子を、熱処理により焼成することにより形成されてなるものに限定されるものではなく、例えばシリカガラス層中に上記において例示したセラミック粒子からなる他の紫外線散乱粒子が粒子状態で保持されてなるものにより構成することができる。
他の紫外線散乱粒子の含有割合は、例えば30〜65重量%であることが好ましい。これにより所期の紫外線反射機能を確実に得ることができると共に、紫外線反射膜20を確実に形成することができる。
このような紫外線散乱反射層20は、紫外線散乱粒子を例えばゲル状のTMOS(Tetra−Metoxy−Oxy−Silane)中に混濁させてスラリーを調製し、これを内側管13の表面に浸透させるなどして塗布して例えばキセノンエキシマランプからの光を照射する処理を、必要に応じて繰り返し行うことにより、形成することができる。
図5は、シリカガラス層中に、シリカ粒子以外の他の紫外線散乱粒子としてアルミナ(Al)粒子が粒子状態で保持されてなる紫外線反射膜20の一部を電子顕微鏡によって観察した拡大模式図である。
図5の拡大模式図に示すように、内側管13の放電空間と接する表面に紫外線反射膜20が形成されており、この紫外線反射膜20は、シリカガラス層23中に、粒子径0.1〜3μmのアルミナ粒子22が粒子状態の形態を保った状態で保持されたものである。
そして、シリカガラス層23の内部であって内側管13側には比較的大きな粒径のアルミナ粒子22が存在し、放電空間側には比較的に小さな粒径のアルミナ粒子が存在する状態とされている。
この紫外線反射膜20は、放電空間側から紫外線反射膜20の表面に矢印で示すように紫外線が入射すると、シリカガラス層23内に紫外線が入射するが、シリカガラス層に乱雑に混入されたアルミナ粒子22に紫外線が照射され、このアルミナ粒子22間で紫外線が多重反射され、しかも、放電空間側の比較的に小さな粒径のアルミナ粒子に照射されず、この粒子間を抜けた紫外線があっても内側管13側の比較的大きな粒径のアルミナ粒子22に照射されることになり、確実に、アルミナ粒子22間で紫外線が多重反射されるために、この紫外線反射膜20によって紫外線が放電空間側に確実に反射されることになり、内側管13に紫外線が照射されることを防止できるものである。
紫外線散乱反射層20の厚みは、例えば30〜300μmであることが好ましく、実際上、紫外線の直線透過率が例えば3%以下となる厚みとされている。
図6は、エキシマランプの内側管13の異なるエキシマランプの図であり、図7は管軸方向の断面図、図7は管軸と直交する方向の断面図である。
エキシマランプ10は、各々、シリカガラスよりなる円筒状の外側管12および円筒状の内側管13を有し、内側管13が支持部材14によって外側管12の内部において、外側管12と同軸上になるように配置され、外側管12の一端部が封止されて外側管12と内側管13との間に環状の放電空間Sが形成されてなる二重管構造をなす放電容器11を備えている。
外側管12の外表面には、例えば金網などの導電性材料よりなるメッシュ状の外部電極16が密接して設けられており、内部電極15は、例えばタングステンからなる棒状電極であり、少なくとも外部電極16との間で放電を起こす部位を覆うように内側管13が設けられている。この内側管13は、その両端部が放電空間S内で開放されている。この内側管13と内部電極15間には若干の隙間が形成されている。
また、放電空間Sには、例えばキセノンガスなどの希ガスや、希ガスに塩素などのハロゲンガスを混合した放電ガスが放電空間S内に封入されており、17は、放電空間S内の一端部に設けられたゲッターであり、18は、ランプ点灯用電源である。
このエキシマランプ10においても、放電空間Sを形成する内側管13の放電空間Sに接した表面に、紫外線反射膜20が設けられている。
この紫外線反射膜20は、上述した紫外線反射膜と同様に、例えば中心径が0.1〜10μm、好ましくは1〜5μmとなる粒子径分布を有するシリカ粒子により形成されてなり、一部隣接したシリカ粒子同士が接触したり結合したりして粒子塊状態で保持された状態になり、紫外線反射膜20の表面が凹凸のある光散乱面を有し、例えば150〜190nmの波長域の紫外線に対して不透明すなわち紫外線反射機能を備えており、紫外線反射膜20の厚みは、例えば30〜300μmであることが好ましく、実際上、紫外線の直線透過率が例えば3%以下となる厚みとされている。
或いは、紫外線反射膜20は、シリカ粒子と上述したシリカ粒子以外のセラミック粒子からなる紫外線散乱粒子とにより形成された構成となっていてもよい。
さらには、シリカ粒子が全て溶融された場合は、セラミック粒子からなる紫外線散乱粒子は紫外線反射膜20中に粒子状態で保持された状態となっていてもよく、シリカガラス層の内部にセラミック粒子からなる紫外線散乱粒子が存在する状態であってもよい。
以下、本発明の効果を確認するために行った実験例について説明する。実験結果及び実験条件を図10に記載する。
<実験例>
この実験に用いたエキシマランプは、図1、図2に示す構造のエキシマランプであって、各構成は下記に示すものである。
放電容器:シリカガラス製で全長が300mm
外側管内径:24.5mm
内側管外径:18mm
放電用ガス:キセノン(封入量400Torr)
点灯条件:放電空間Sの体積1cmあたりの入力が3W
紫外線反射膜の構成は下記に示すものである。
シリカ粒子(出発原料):粒子径0.5〜5μm(中心径3μm)
アルミナ粒子(出発原料):粒子径0.1〜3μm(中心径1μm)
膜厚:図10に記載の通り
紫外線反射膜の形成位置。
図10中、「紫外線反射膜形成位置」の欄に記載の内側管とは、放電空間に接する内側管の表面に紫外線反射膜が形成されていることを意味するものである。
図10中、「紫外線反射膜形成位置」の欄に記載の外側管の半周とは、図8に示すように、エキシマランプの管軸に直交する断面において、エキシマランプの管軸を中心とした中心角(θ)が180°(外側管の内表面の半周)となる外側管の放電空間と接している表面領域に紫外線反射膜が形成されていることを意味するものである。
この実験では、図9に示すように、内面が反射防止フィルム33により覆われたアルミボックス30の中に、外面が反射防止フィルム33で覆われた冷却ブロック31を配置すると共に、エキシマランプ10を、冷却ブロック31上に配置し、アルミボックス30の上方開口を、アルミボックス30内に例えばNガスを充填した状態で、ガラス板32により気密に閉塞し、エキシマランプ10に対向する位置に配置した紫外線照度計34によって、エキシマランプ10から放射される150〜200nmの波長域の紫外線の照度測定を、作製した各々のエキシマランプについて行った。結果を図10に示す。また、図10には、紫外線散反射膜を有さないエキシマランプ(参照ランプ1)における紫外線照度対する相対値(相対紫外線照度)で示してある。
また、エキシマランプ10の外側管12から紫外線照度計34までの距離は3mmであり、外側管の半周に紫外線反射膜を設けた場合は、紫外線反射膜が冷却ブロック31側に位置される状態で、エキシマランプ10を冷却ブロック上に配置したものである。
図10中、比較表の参照ランプとして、紫外線反射膜を有さないエキシマランプを参照ランプ1としている。
図10に示すように、紫外線反射膜を有するエキシマランプ(発明ランプ1〜8)は、紫外線反射膜を有していない参照ランプ1に比べ、紫外線照度が大きくなっており、ランプから放射される紫外線の放射出力が大きくなっている。
これは、紫外線反射膜により、内側管に紫外線が吸収されることが抑制され、また、放電ガスの温度上昇を抑え、放電空間内においてエキシマ分子が効率よく生成され、紫外線の放射出力を確実に高めているからである。
図10の発明ランプ1〜3を比較すると、紫外線反射膜の厚みが大きくなるに従って紫外線照度が大きくなり、紫外線反射膜の厚みが30μm以上である場合は、紫外線照度が約2割以上高くなり、紫外線反射膜の効果が十分に発揮されていることが確認された。
発明ランプ3と発明ランプ4を比較すると、紫外線反射膜にアルミナ粒子を含む発明ランプ4の方が、アルミナ粒子を含んでいるため、シリカ粒子よりも紫外線の反射効率の高く、紫外線照度が大きくなることが確認された。
発明ランプ4〜6から、紫外線反射膜にシリカ粒子とアルミナ粒子を含む場合であっても、紫外線反射膜の厚みが大きくなるに従って紫外線照度が大きくなることがわかる。
さらに、発明ランプ7〜8に示すように、外側管の放電空間と接している表面にも紫外線反射膜が形成されていると更に一層紫外線照度が大きくなることが確認された。
<参考実験例1>
参考実験として、紫外線反射膜をシリカ粒子を全く用いず、アルミナ粒子のみで作成する実験を行った。
この実験では、粒子径が0.1〜3μmの範囲内にあり、中心径が1μmであるアルミナ粒子を用い、アルミナ粒子のみからなる紫外線反射膜を放電容器を構成する内側管の内面に形成しようとしたところ、アルミナ粒子を含むフィルム状成形体をシリカガラス製の内側管に付着させることができず、紫外線反射膜を形成することができなかった。
<参考実験例2>
参考実験として、紫外線反射膜をシリカ粒子とアルミナ粒子で作成し、シリカ粒子の混合割合が低い場合の実験を行った。
粒子径が0.5〜5μmの範囲内にあり、中心径が3μmであるシリカ粒子と、粒子径が0.1〜3μmの範囲内にあり、中心径が1μmであるアルミナ粒子とからなり、シリカ粒子を20重量%、アルミナ粒子を80重量%の割合で含有する紫外線反射膜を放電容器を構成する内側管の内面に形成しようとしたところ、フィルム状成形体をシリカガラス製の内側管に付着させることができず、紫外線反射膜を形成することができなかった。
本発明が適用された二重管構造のエキシマランプの一例における構成の概略を、管軸方向に沿って切断した状態で示す断面図である。 図1に示すエキシマランプの構成の概略を、管軸に直交する方向に沿って切断した状態で示す断面図である。 本発明のエキシマランプにおける紫外線反射膜の一部拡大模式図である。 本発明のエキシマランプにおける他の紫外線反射膜の一部拡大模式図である。 本発明のエキシマランプにおける他の紫外線反射膜の一部拡大模式図である。 本発明が適用された他の二重管構造のエキシマランプの一例における構成の概略を、管軸方向に沿って切断した状態で示す断面図である。 図6に示すエキシマランプの構成の概略を、管軸に直交する方向に沿って切断した状態で示す断面図である。 本発明が適用された二重管構造のエキシマランプの一例における構成の概略を、管軸に直交する方向に沿って切断した状態で示す断面図であり、外側管の放電空間と接する表面の一部に紫外線反射膜を設けた図である。 本発明による効果を確認するために行った実験例において用いた測定系を説明するための断面図である。 実験結果のデータ説明図である。 従来の二重管構造のエキシマランプの管軸方向に沿って切断した断面図である。
符号の説明
1 エキシマランプ
11 放電容器
12 外側管
13 内側管
14 支持部材
15 内側電極
16 外部電極
17 ゲッター
18 点灯用電源

Claims (3)

  1. シリカガラスよりなる内側管と外側管を有する放電容器を備え、当該放電容器の内側管と外側管との間の空間が放電空間であるエキシマランプにおいて、
    前記内側管の放電空間に接した表面に、少なくともシリカ粒子を含む紫外線散乱粒子が粒子状態で保持されてなる紫外線反射膜が形成されており、
    前記紫外線散乱粒子は、シリカ粒子以外にセラミック粒子を含み、シリカ粒子を30重量%以上含有することを特徴とするエキシマランプ。
  2. シリカガラスよりなる内側管と外側管を有する放電容器を備え、当該放電容器の内側管と外側管との間の空間が放電空間であるエキシマランプにおいて、
    前記内側管の放電空間に接した表面に、シリカガラス層内にシリカ粒子以外のセラミック粒子が紫外線散乱粒子として粒子状態で保持されてなる紫外線反射膜が形成されており、
    前記放電空間側のセラミック粒子の粒径が、前記内側管側のセラミック粒子の粒径より小さいことを特徴とするエキシマランプ。
  3. 前記紫外線反射膜の厚みが、30〜300μmであることを特徴とする請求項1から請求項2のいずれか一項に記載のエキシマランプ。
JP2006242314A 2006-09-07 2006-09-07 エキシマランプ Active JP4788534B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006242314A JP4788534B2 (ja) 2006-09-07 2006-09-07 エキシマランプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006242314A JP4788534B2 (ja) 2006-09-07 2006-09-07 エキシマランプ

Publications (2)

Publication Number Publication Date
JP2008066095A JP2008066095A (ja) 2008-03-21
JP4788534B2 true JP4788534B2 (ja) 2011-10-05

Family

ID=39288630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006242314A Active JP4788534B2 (ja) 2006-09-07 2006-09-07 エキシマランプ

Country Status (1)

Country Link
JP (1) JP4788534B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101158962B1 (ko) 2007-10-10 2012-06-21 우시오덴키 가부시키가이샤 엑시머 램프
JP5092950B2 (ja) * 2007-10-10 2012-12-05 ウシオ電機株式会社 エキシマランプ
JP4946772B2 (ja) 2007-10-11 2012-06-06 ウシオ電機株式会社 エキシマランプ
JP5528683B2 (ja) 2008-06-06 2014-06-25 ウシオ電機株式会社 エキシマランプ
JP5245552B2 (ja) 2008-06-06 2013-07-24 ウシオ電機株式会社 エキシマランプ
DE102008028233A1 (de) * 2008-06-16 2009-12-17 Heraeus Noblelight Gmbh Kompaktes UV-Bestrahlungsmodul
JP5266972B2 (ja) * 2008-08-29 2013-08-21 ウシオ電機株式会社 エキシマランプ
JP5151816B2 (ja) * 2008-08-29 2013-02-27 ウシオ電機株式会社 エキシマランプ
JP5083184B2 (ja) * 2008-11-26 2012-11-28 ウシオ電機株式会社 エキシマランプ装置
JP7206810B2 (ja) * 2018-10-30 2023-01-18 ウシオ電機株式会社 気体処理装置
KR102229631B1 (ko) * 2019-05-13 2021-03-18 주식회사 원익큐엔씨 임플란트 표면개질 처리용 자외선 램프

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636348B2 (ja) * 1989-02-23 1994-05-11 日亜化学工業株式会社 高演色型蛍光ランプ
JP3189481B2 (ja) * 1993-03-19 2001-07-16 ウシオ電機株式会社 誘電体バリヤ放電ランプ
JPH1131480A (ja) * 1997-05-12 1999-02-02 Toshiba Lighting & Technol Corp 誘電体バリヤ放電ランプ用放電体、誘電体バリヤ放電ランプ、誘電体バリヤ放電ランプ装置および紫外線照射装置
JP3580233B2 (ja) * 2000-09-19 2004-10-20 ウシオ電機株式会社 誘電体バリア放電ランプ装置

Also Published As

Publication number Publication date
JP2008066095A (ja) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4788534B2 (ja) エキシマランプ
JP4857939B2 (ja) 放電ランプ
RU2190283C2 (ru) Способ получения света и устройство излучения света (варианты)
US20020030453A1 (en) High brightness microwave lamp
JP2002093377A (ja) 誘電体バリア放電ランプ装置
JP2016001625A (ja) 連続材料のための紫外線硬化装置
JP5223741B2 (ja) エキシマランプ
JP2011107264A (ja) 紫外線照射装置
JP4946772B2 (ja) エキシマランプ
JP4962256B2 (ja) エキシマランプ光照射装置
TWI515762B (zh) Fluorescent light
CN103137422A (zh) 稀有气体荧光灯
JP5092700B2 (ja) エキシマランプ
JP5303905B2 (ja) エキシマランプ
JP5303890B2 (ja) エキシマランプ
JP2009199845A (ja) エキシマランプ
JP2011076892A (ja) メタルハライドランプ、紫外線照射装置
JP4466198B2 (ja) 光源装置
JP2009266649A (ja) 高圧放電ランプおよび照明器具
JP7343839B2 (ja) フィラメントランプ
KR101849829B1 (ko) 광조사 장치 및 롱 아크형 방전 램프
JP5151816B2 (ja) エキシマランプ
JP5963119B2 (ja) 光照射装置及びロングアーク型放電ランプ
CN1222248A (zh) 具有硫或硒填充物的多次反射无电极灯和用它辐射的方法
JP2001015064A (ja) 紫外線放電灯及び紫外線照射装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4788534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250