JP4786282B2 - Evaporating material manufacturing method and evaporating material storage method - Google Patents

Evaporating material manufacturing method and evaporating material storage method Download PDF

Info

Publication number
JP4786282B2
JP4786282B2 JP2005292296A JP2005292296A JP4786282B2 JP 4786282 B2 JP4786282 B2 JP 4786282B2 JP 2005292296 A JP2005292296 A JP 2005292296A JP 2005292296 A JP2005292296 A JP 2005292296A JP 4786282 B2 JP4786282 B2 JP 4786282B2
Authority
JP
Japan
Prior art keywords
sro
cao
evaporation material
pellet
evaporating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005292296A
Other languages
Japanese (ja)
Other versions
JP2007100173A (en
Inventor
倉内  利春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2005292296A priority Critical patent/JP4786282B2/en
Publication of JP2007100173A publication Critical patent/JP2007100173A/en
Application granted granted Critical
Publication of JP4786282B2 publication Critical patent/JP4786282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、例えばプラズマ表示装置(PDP)の保護膜に用いられる蒸発材料に関し、特に、SrOとCaOとを主成分とするペレット状の蒸発材料に関する。   The present invention relates to an evaporation material used for a protective film of a plasma display device (PDP), for example, and more particularly to a pellet-like evaporation material mainly composed of SrO and CaO.

従来より、プラズマ表示装置を構成する誘電体層を保護するための保護膜としてMgO膜が用いられている。
そして、MgO膜以外の保護膜についても研究が進められており、SrOやCaO等からなる複合材料の保護膜へ応用も注目されている(例えば、特許文献1参照)。
Conventionally, an MgO film has been used as a protective film for protecting a dielectric layer constituting a plasma display device.
Research has also been conducted on protective films other than MgO films, and application to a protective film made of a composite material made of SrO, CaO, or the like is also drawing attention (see, for example, Patent Document 1).

近年、SrOとCaOを主成分とする保護膜が、MgO膜に比べて放電電圧の低減と発光効率の向上とが期待できることから、新たな保護膜用材料として有望視されてきている。   In recent years, a protective film mainly composed of SrO and CaO has been regarded as promising as a new material for a protective film because it can be expected to reduce a discharge voltage and improve luminous efficiency as compared with an MgO film.

しかし、SrOは、反応活性に富む材料であり、ペレット状に成形後大気中において焼成を行うと、雰囲気中に含まれる水蒸気及び炭酸ガスと容易に反応し、SrCO3に変質するという性質がある。このため、SrOはペレット状の蒸発材料として製造することが困難であった。 However, SrO is a material rich in reaction activity, and when it is molded into pellets and baked in the atmosphere, it easily reacts with water vapor and carbon dioxide contained in the atmosphere and transforms into SrCO 3. . For this reason, it has been difficult to produce SrO as a pellet-shaped evaporation material.

そこで、SrOとCaOとを混合した粉末を蒸発材料として用いることが試みられているが、SrOとCaOとは蒸気圧が相違しSrOに比べてCaOの方が蒸発し難いため蒸着膜に組成のずれが発生すること、また蒸着の際にスプラッシュが発生することから成膜レートを高くすることが困難であるという問題点があった。
特開2005−19391号公報
Therefore, attempts have been made to use powders mixed with SrO and CaO as the evaporation material. However, since vapor pressures of SrO and CaO are different and CaO is less likely to evaporate than SrO, the composition of the deposited film is low. There is a problem that it is difficult to increase the film formation rate because of the occurrence of deviation and the occurrence of splash during vapor deposition.
JP 2005-19391 A

本発明は、このような従来の技術の課題を解決するためになされたもので、その目的とするところは、SrOとCaOを主成分とするペレット状の蒸発材料の製造方法を提供することである。   The present invention has been made in order to solve such problems of the prior art, and the object of the present invention is to provide a method for producing a pellet-shaped evaporation material mainly composed of SrO and CaO. is there.

上記目的を達成するためになされた請求項1記載の発明は、ペレット状の蒸発材料を製造する方法であって、SrOとCaOを主成分とする混合粉末を加圧成型しペレット状の成型体とする工程と、前記成型体をSrCO3の分解温度以上の温度で30分間以上60分間以下焼成して焼成体とする工程と、前記焼成体を冷却する工程とを有し、上記工程をそれぞれH2O、CO2及びCOを含まない雰囲気中において行うものである。
請求項2記載の発明は、請求項1記載の方法によって得られた蒸発材料を、H2O、CO2及びCOを含まない雰囲気中において保管する蒸発材料の保管方法である。
The invention according to claim 1, which has been made to achieve the above object, is a method for producing a pellet-shaped evaporation material, wherein a mixed powder mainly composed of SrO and CaO is pressure-molded to form a pellet-shaped molded body. A step of firing the molded body at a temperature equal to or higher than the decomposition temperature of SrCO 3 for 30 minutes to 60 minutes to form a fired body, and a step of cooling the fired body, It is performed in an atmosphere not containing H 2 O, CO 2 and CO.
The invention according to claim 2 is a method for storing an evaporating material, wherein the evaporating material obtained by the method according to claim 1 is stored in an atmosphere not containing H 2 O, CO 2 and CO.

本発明にあっては、SrOとCaOを主成分とする混合粉末をペレット状に加圧成型し、この成型体を焼成冷却して蒸発材料を製造する際、各工程をH2O、CO2及びCOを含まない雰囲気中において行うことから、反応性に富むSrOがH2O、CO2又はCOと反応してSrCO3が生成されることを抑制することができる。 In the present invention, when a mixed powder containing SrO and CaO as main components is pressure-molded into a pellet and the molded body is fired and cooled to produce an evaporation material, each step is performed with H 2 O, CO 2. Since it is performed in an atmosphere not containing CO and CO, it can be suppressed that SrO rich in reactivity reacts with H 2 O, CO 2 or CO to produce SrCO 3 .

しかも、本発明においては、SrCO3の分解温度以上でペレットの焼成を行うことから、例えば原料の加工等の過程でSrOが一部H2O、CO2又はCOと反応してSrCO3が生成された場合であっても、このSrCO3を分解して消失させることができる。 Moreover, in the present invention, since the pellets are baked at a temperature higher than the decomposition temperature of SrCO 3 , for example, SrO partially reacts with H 2 O, CO 2, or CO in the course of processing the raw material to produce SrCO 3. Even in such a case, this SrCO 3 can be decomposed and lost.

その結果、本発明によれば、SrOとCaOを主成分とする蒸発材料をペレット状に成型することができ、これにより、形成される蒸着膜と蒸発材料との間に組成のずれがなく、かつ、高い成膜レートにおいてもスプラッシュの発生のない蒸着膜の形成が可能になる。   As a result, according to the present invention, the evaporation material mainly composed of SrO and CaO can be formed into a pellet, and there is no compositional deviation between the vapor deposition film to be formed and the evaporation material. In addition, it is possible to form a deposited film without occurrence of splash even at a high film formation rate.

また、本発明の場合、SrOとCaOを主成分とする蒸発材料をH2O、CO2及びCOを含まない雰囲気中において保管することから、蒸発材料中のSrOとCaOとがH2O、CO2又はCOと反応してSrCO3等に変質してしまうことがなく、蒸発材料を長期間安定して保存することができる。 In the case of the present invention, since the evaporation material mainly composed of SrO and CaO is stored in an atmosphere not containing H 2 O, CO 2 and CO, SrO and CaO in the evaporation material are H 2 O, The evaporated material can be stably stored for a long period of time without reacting with CO 2 or CO to be transformed into SrCO 3 or the like.

そして、本発明の蒸発材料によれば、特にPDPの誘電体層用の保護膜として有用なSrOとCaOを主成分とする蒸着膜を効率良く形成することが可能になる。   According to the evaporation material of the present invention, it is possible to efficiently form a vapor deposition film mainly composed of SrO and CaO, which is particularly useful as a protective film for a PDP dielectric layer.

本発明によれば、SrOとCaOを主成分とするペレット状の蒸発材料を得ることができるので、形成される蒸着膜と蒸発材料との間に組成のずれがなく、かつ、高い成膜レートにおいてもスプラッシュの発生のない蒸着膜の形成が可能になる。   According to the present invention, a pellet-shaped evaporation material mainly composed of SrO and CaO can be obtained. Therefore, there is no composition deviation between the deposited film and the evaporation material to be formed, and the film formation rate is high. In this case, it is possible to form a deposited film without splashing.

以下、本発明の好ましい実施の形態を図面を参照して詳細に説明する。
図1は、本発明に係る蒸発材料の製造方法の実施の形態の手順を説明する工程図である。
本実施の形態では、工程S1〜S4を、H2O、CO2及びCOを含まない雰囲気中において行う。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a process diagram illustrating the procedure of an embodiment of a method for producing an evaporation material according to the present invention.
In the present embodiment, steps S1 to S4 are performed in an atmosphere not containing H 2 O, CO 2 and CO.

本発明の場合、H2O、CO2及びCOを含まない雰囲気としては、SrO及びCaOの変質を極力抑える観点から、不活性ガスを満たした雰囲気を用いることが好ましい。
この場合、製造コストを低減する観点からは、窒素ガス(N2)を用いることが好ましい。
In the case of the present invention, the atmosphere containing no H 2 O, CO 2 and CO is preferably an atmosphere filled with an inert gas from the viewpoint of minimizing the deterioration of SrO and CaO.
In this case, it is preferable to use nitrogen gas (N 2 ) from the viewpoint of reducing the manufacturing cost.

本実施の形態においては、まず、工程S1において、SrO粉末とCaO粉末とを十分かつ均一に混合して混合粉末とする。
ここで、混合粉末におけるSrOとCaOとの配合比は、特に限定されるものではないが、PDP保護膜の耐スパッタ性を確保する観点からは、8:2〜1:9とすることが好ましい。
In the present embodiment, first, in step S1, SrO powder and CaO powder are mixed sufficiently and uniformly to obtain a mixed powder.
Here, the mixing ratio of SrO and CaO in the mixed powder is not particularly limited, but is preferably 8: 2 to 1: 9 from the viewpoint of ensuring the sputtering resistance of the PDP protective film. .

また、SrO粒子の平均粒径は、特に限定されるものではないが、十分な密度の焼成体とする観点からは、15〜100μmのものを用いることが好ましい。
さらに、CaO粒子の平均粒径は、特に限定されるものではないが、十分な密度の焼成体とする観点からは、15〜100μmのものを用いることが好ましい。
さらにまた、本発明においては、SrOとCaO以外に、膜特性の向上の観点から、BaO、MgO等のその他の成分を添加することもできる。
Moreover, the average particle diameter of the SrO particles is not particularly limited, but from the viewpoint of obtaining a sintered body having a sufficient density, it is preferable to use those having a particle diameter of 15 to 100 μm.
Furthermore, although the average particle diameter of CaO particle | grains is not specifically limited, From a viewpoint of setting it as the sintered body of sufficient density, it is preferable to use a thing of 15-100 micrometers.
Furthermore, in the present invention, in addition to SrO and CaO, other components such as BaO and MgO can be added from the viewpoint of improving the film characteristics.

次に、工程S2において、工程S1において得られた混合粉末を加圧成型し、ペレット状の成型体とする。
ここで、加圧成型時に混合粉末に加える圧力は、特に限定されるものではないが、十分な形状の安定性と密度を有する成型体とするためには、100〜500kgf/cm2とすることが好ましい。
Next, in step S2, the mixed powder obtained in step S1 is pressure-molded to obtain a pellet-shaped molded body.
Here, the pressure applied to the mixed powder at the time of pressure molding is not particularly limited, but in order to obtain a molded body having sufficient shape stability and density, it should be 100 to 500 kgf / cm 2. Is preferred.

さらに、工程S3において、工程S2において得られたペレット状の成型体を焼成炉に導入し、SrCO3の分解温度(1155℃)以上の温度で加熱して焼成する。
ここで、焼成温度は、ペレットの密度を高くする観点から、SrOとCaOとの融点(SrO:2430℃ CaO:2570℃)よりも低い温度であれば高ければ高いほどよい。
Further, in step S3, the pellet-shaped molded body obtained in step S2 is introduced into a firing furnace, and heated and fired at a temperature equal to or higher than the decomposition temperature of SrCO 3 (1155 ° C.).
Here, from the viewpoint of increasing the density of the pellets, the firing temperature is preferably higher as long as the temperature is lower than the melting point of SrO and CaO (SrO: 2430 ° C CaO: 2570 ° C).

本発明では、特に限定されるものではないが、十分な密度のペレットを作製するためには、1500℃以上の温度で焼成することが好ましい。
また、焼成時間は特に限定されるものではないが、十分な密度のペレットを作製するためには、30分以上とすることが好ましく、より好ましくは60分である。なお、焼成時間を長くすると、高密度のペレットが得られる傾向がある。
In the present invention, although not particularly limited, firing at a temperature of 1500 ° C. or higher is preferable in order to produce a sufficiently dense pellet.
Moreover, although baking time is not specifically limited, In order to produce a pellet of sufficient density, it is preferable to set it as 30 minutes or more, More preferably, it is 60 minutes. In addition, when baking time is lengthened, there exists a tendency for a high-density pellet to be obtained.

その後、工程S4において、工程S3において得られたペレット状の焼成体を冷却する。この場合、焼成体を例えば焼成炉内において窒素ガスを用いて冷却する。これにより、SrOとCaOを主成分とするペレット状の蒸発材料を得る。
そして、上記工程によって得られたペレット状の蒸発材料は、H2O、CO2及びCOを含まない雰囲気中で保存する。
Thereafter, in step S4, the pellet-like fired body obtained in step S3 is cooled. In this case, the fired body is cooled using, for example, nitrogen gas in a firing furnace. As a result, a pellet-shaped evaporation material mainly containing SrO and CaO is obtained.
Then, pellets of the evaporation material obtained by the above process is stored in an atmosphere that does not contain H 2 O, CO 2 and CO.

以上述べたように本実施の形態においては、SrOとCaOを主成分とする混合粉末をペレット状に加圧成型し、この成型体を焼成冷却して蒸発材料を製造する際、各工程をH2O、CO2及びCOを含まない雰囲気中において行うことから、反応性に富むSrOがH2O、CO2又はCOと反応してSrCO3が生成されることを抑制することができる。 As described above, in the present embodiment, when the mixed powder containing SrO and CaO as main components is pressure-molded into pellets, and this molded body is fired and cooled to produce the evaporation material, each step is performed as H. Since it is performed in an atmosphere not containing 2 O, CO 2 and CO, it can be suppressed that SrO rich in reactivity reacts with H 2 O, CO 2 or CO to produce SrCO 3 .

しかも、本実施の形態においては、SrCO3の分解温度以上でペレットの焼成を行うことから、例えば原料の加工等の過程でSrOが一部H2O、CO2又はCOと反応してSrCO3が生成された場合であっても、このSrCO3を分解して消失させることができる。 Moreover, in this embodiment, SrCO 3 from performing the sintering of the pellets at a temperature higher than the decomposition temperature of SrCO 3, for example, SrO in the course of processing or the like of the raw material reacts with some H 2 O, CO 2 or CO Even when is produced, this SrCO 3 can be decomposed and lost.

そして、本実施の形態によれば、SrOとCaOを主成分とするペレット状の蒸発材料を得ることができ、その結果、形成される蒸着膜と蒸発材料との間に組成のずれがなく、かつ、高い成膜レートにおいてもスプラッシュの発生のない蒸着膜の形成が可能になる。   And according to this Embodiment, the pellet-shaped evaporation material which has SrO and CaO as a main component can be obtained, As a result, there is no shift in composition between the vapor deposition film formed and the evaporation material, In addition, it is possible to form a deposited film without occurrence of splash even at a high film formation rate.

また、本実施の形態の場合、SrOとCaOを主成分とする蒸発材料をH2O、CO2及びCOを含まない雰囲気中において保管することにより、蒸発材料中のSrOとCaOとがH2O、CO2又はCOと反応してSrCO3等に変質してしまうことがなく、蒸発材料を長期間安定して保存することができる。 In the case of the present embodiment, by storing the evaporating material mainly composed of SrO and CaO in an atmosphere not containing H 2 O, CO 2 and CO, SrO and CaO in the evaporating material become H 2. The evaporated material can be stably stored for a long period of time without reacting with O, CO 2 or CO to be transformed into SrCO 3 or the like.

なお、本発明はPDPの誘電体層用の保護膜のみならず、種々の蒸着膜形成に用いることができる。
ただし、PDPの誘電体層用の保護膜を形成する際に用いれば、放電電圧の低減と発光効率の向上が可能なSrOとCaOを主成分とする保護膜を効率良く形成することができる。
In addition, this invention can be used not only for the protective film for the dielectric layer of PDP but for various vapor deposition film formation.
However, if it is used when forming a protective film for a PDP dielectric layer, it is possible to efficiently form a protective film mainly composed of SrO and CaO capable of reducing the discharge voltage and improving the light emission efficiency.

以下、本発明の実施例を比較例とともに説明する。   Examples of the present invention will be described below together with comparative examples.

(実施例)
<蒸発材料の作成>
純度99.5%、粒径100メッシュのSrO粉末と純度99.9%、粒径300メッシュのCaO粉末とをN2ガス中において十分に均一になるように混合して、CaO濃度が30mol%のSrOとCaOとを主成分とする混合粉末を調製した。
(Example)
<Creation of evaporation material>
SrO powder having a purity of 99.5% and a particle size of 100 mesh and CaO powder having a purity of 99.9% and a particle size of 300 mesh are mixed so as to be sufficiently uniform in N 2 gas, and the CaO concentration is 30 mol%. A mixed powder composed mainly of SrO and CaO was prepared.

次に、このSrOとCaOを主成分とする混合粉末をφ10mm×10mmの金型に入れ、400kgf/cm2の圧力でプレスして、ペレットを作製した。
そして、このペレットを焼成炉に入れ、図2に示すような焼成パターンに基づき焼成した。
Next, this mixed powder containing SrO and CaO as main components was placed in a φ10 mm × 10 mm mold and pressed at a pressure of 400 kgf / cm 2 to produce pellets.
And this pellet was put into the baking furnace, and it baked based on the baking pattern as shown in FIG.

本実施例では、焼成炉内に10L/分でN2ガスを導入しながら、焼成炉内の温度を90分かけて1500℃まで昇温し、焼成炉内にN2ガスを10L/分で導入しながら、60分間にわたって焼成炉内の温度を1500℃に維持するように加熱した。 In this embodiment, while introducing N 2 gas at 10L / min in a sintering furnace, the temperature in the firing furnace was raised to 1500 ° C. over 90 minutes, the N 2 gas at 10L / min in a firing furnace While being introduced, heating was performed so that the temperature in the baking furnace was maintained at 1500 ° C. for 60 minutes.

加熱終了後、焼成炉内にN2ガスを20L/分で導入しながらペレット状の焼成体を冷却した。これにより、SrOとCaOを主成分とするペレット状の蒸発材料を得た。 After the heating, the pellet-like fired body was cooled while introducing N 2 gas into the firing furnace at 20 L / min. As a result, a pellet-shaped evaporation material containing SrO and CaO as main components was obtained.

(比較例)
<蒸発材料の作成>
実施例と同一の配合比のSrO粉末とCaO粉末を用い、N2ガス中において十分に均一になるように混合し、この混合粉末を焼成することなくそのまま蒸発材料とした。
(Comparative example)
<Creation of evaporation material>
SrO powder and CaO powder having the same blending ratio as in the examples were used and mixed so as to be sufficiently uniform in N 2 gas, and the mixed powder was directly used as an evaporation material without firing.

(分析方法)
<蒸着膜の組成分析>
得られた蒸発材料を蒸発源に収容し、表1に示すような条件、すなわち、蒸発源と基板との間の距離を350mm、到達圧力を2.0×10-4Pa、電子ビーム出力を1.2kW、蒸着中の圧力を3.0×10-2Pa、基板加熱温度を250℃、成膜レートを60オングストローム/sという条件下で、電子ビーム蒸着法により基板上に蒸着膜を形成した(1オングストローム=10-10m)。
(Analysis method)
<Composition analysis of deposited film>
The obtained evaporation material is accommodated in the evaporation source, and the conditions shown in Table 1, that is, the distance between the evaporation source and the substrate is 350 mm, the ultimate pressure is 2.0 × 10 −4 Pa, and the electron beam output is A deposited film is formed on the substrate by electron beam deposition under the conditions of 1.2 kW, the pressure during deposition is 3.0 × 10 −2 Pa, the substrate heating temperature is 250 ° C., and the deposition rate is 60 Å / s. (1 angstrom = 10 −10 m).

Figure 0004786282
Figure 0004786282

そして、蒸着膜の組成を分析し、その結果を表2にまとめた。   And the composition of the vapor deposition film was analyzed and the result was put together in Table 2.

Figure 0004786282
Figure 0004786282

表2によれば、実施例の蒸発材料を用いて蒸着膜を形成した場合には、蒸発材料中のCaO濃度と蒸着膜中のCaO濃度との間に大きな変化は見られない。
一方、比較例の蒸発材料を用いて蒸着膜を形成した場合には、蒸発材料中のCaO濃度(30.2mol%)が蒸着膜中においては12.6mol%にまで減少している。
According to Table 2, when a vapor deposition film is formed using the evaporation material of the example, there is no significant change between the CaO concentration in the evaporation material and the CaO concentration in the vapor deposition film.
On the other hand, when a vapor deposition film is formed using the evaporation material of the comparative example, the CaO concentration (30.2 mol%) in the evaporation material is reduced to 12.6 mol% in the vapor deposition film.

これは、CaOはSrOより蒸気圧が低いため、CaOを蒸発材料に用いた場合はSrOが優先的に蒸発し蒸着膜中のCaO濃度が相対的に低くなってしまったものと考えられる。
一方、実施例の蒸発材料を用いた場合は電子ビームが当たった部分全体が蒸発するため、蒸発材料とほぼ同じ組成の蒸着膜が得られたものと考えられる。
This is presumably because CaO has a lower vapor pressure than SrO, so when CaO is used as the evaporation material, SrO preferentially evaporates and the CaO concentration in the deposited film becomes relatively low.
On the other hand, when the evaporating material of the example is used, the entire portion irradiated with the electron beam evaporates. Therefore, it is considered that a vapor deposition film having almost the same composition as the evaporating material was obtained.

<蒸着膜のスプラッシュの発生状況の分析>
実施例及び比較例の蒸発材料を用い、成膜レートを20オングストローム/sから200オングストローム/sまで変化させながら、電子ビーム蒸着法によって基板上に蒸着膜を形成した。
そして、形成された蒸着膜中におけるスプラッシュの発生状況を分析した。その結果を表3にまとめた。
<Analysis of the occurrence of splash on the deposited film>
Using the evaporation materials of Examples and Comparative Examples, a deposition film was formed on the substrate by an electron beam deposition method while changing the deposition rate from 20 angstrom / s to 200 angstrom / s.
And the generation | occurrence | production state of the splash in the formed vapor deposition film was analyzed. The results are summarized in Table 3.

Figure 0004786282
Figure 0004786282

表3から明らかなように、比較例の蒸発材料を用いて形成した蒸着膜は、成膜レートが20オングストローム/sのときに既にスプラッシュの発生が確認でき、成膜レートをさらに50、100、150、200オングストローム/sと変化させた場合にもスプラッシュの発生が確認できた。   As is apparent from Table 3, the vapor deposition film formed using the evaporation material of the comparative example can already confirm the occurrence of splash when the film formation rate is 20 angstrom / s, and the film formation rate is further increased to 50, 100, The occurrence of splash was confirmed even when the pressure was changed to 150 and 200 angstrom / s.

一方、実施例の蒸発材料を用いて形成した蒸着膜は、成膜レートを20、50、100、150、200オングストローム/sと上昇させた場合であっても、スプラッシュの発生は確認されなかった。   On the other hand, in the deposited film formed using the evaporation material of the example, no occurrence of splash was confirmed even when the deposition rate was increased to 20, 50, 100, 150, 200 angstrom / s. .

以上の結果から明らかなように、本実施例のSrOとCaOを主成分とするペレット状の蒸発材料を用いると、蒸発材料と蒸着膜との組成のずれを抑制することができるとともに、スプラッシュの発生のない蒸着膜を高い成膜レートで形成することができることがわかった。   As is clear from the above results, the use of the pelletized evaporation material mainly composed of SrO and CaO in this example can suppress the deviation of the composition between the evaporation material and the deposited film, and the splash. It was found that a vapor deposition film without generation can be formed at a high film formation rate.

本実施の形態の手順を説明する工程図Process drawing explaining the procedure of this embodiment 実施例の成型体を焼成する際の焼成パターンを示す説明図Explanatory drawing which shows the baking pattern at the time of baking the molded object of an Example

Claims (2)

ペレット状の蒸発材料を製造する方法であって、
SrOとCaOを主成分とする混合粉末を加圧成型しペレット状の成型体とする工程と、
前記成型体をSrCO3の分解温度以上の温度で30分間以上60分間以下焼成して焼成体とする工程と、
前記焼成体を冷却する工程とを有し、
上記工程をそれぞれH2O、CO2及びCOを含まない雰囲気中において行う蒸発材料の製造方法。
A method for producing a pellet-shaped evaporation material,
A step of pressure-molding a mixed powder mainly composed of SrO and CaO to form a pellet-shaped molded body,
A step of the fired body the molded body was fired following 60 minutes or 30 minutes at the decomposition temperature or more of SrCO 3,
Cooling the fired body,
A method for producing an evaporating material, wherein the above steps are performed in an atmosphere not containing H 2 O, CO 2 and CO, respectively.
請求項1記載の方法によって得られた蒸発材料を、H2O、CO2及びCOを含まない雰囲気中において保管する蒸発材料の保管方法。 A method for storing an evaporating material, wherein the evaporating material obtained by the method according to claim 1 is stored in an atmosphere containing no H 2 O, CO 2 and CO.
JP2005292296A 2005-10-05 2005-10-05 Evaporating material manufacturing method and evaporating material storage method Active JP4786282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005292296A JP4786282B2 (en) 2005-10-05 2005-10-05 Evaporating material manufacturing method and evaporating material storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005292296A JP4786282B2 (en) 2005-10-05 2005-10-05 Evaporating material manufacturing method and evaporating material storage method

Publications (2)

Publication Number Publication Date
JP2007100173A JP2007100173A (en) 2007-04-19
JP4786282B2 true JP4786282B2 (en) 2011-10-05

Family

ID=38027396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005292296A Active JP4786282B2 (en) 2005-10-05 2005-10-05 Evaporating material manufacturing method and evaporating material storage method

Country Status (1)

Country Link
JP (1) JP4786282B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5129772B2 (en) * 2008-03-28 2013-01-30 タテホ化学工業株式会社 Sr-Ca-O sintered body
CN115928010B (en) * 2022-11-18 2023-08-18 有研国晶辉新材料有限公司 Carbon fumigating device and carbon fumigating method for quartz container

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4315406B2 (en) * 2000-01-17 2009-08-19 株式会社アルバック Processing method of Mg evaporation material
JP4419343B2 (en) * 2001-01-25 2010-02-24 三菱マテリアル株式会社 Deposition material for protective film of FPD and method for producing the same
JP4654520B2 (en) * 2001-02-06 2011-03-23 パナソニック株式会社 Plasma display panel and manufacturing method thereof
JP4147988B2 (en) * 2003-03-17 2008-09-10 三菱マテリアル株式会社 Deposition material for protective film of FPD and method for producing the same

Also Published As

Publication number Publication date
JP2007100173A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4754612B2 (en) Manufacturing method of sputtering target
JPH05311412A (en) Production of feed material for vapor deposition and transparent barrier film
CN1576234A (en) Process for producing niobium suboxide
JP4786282B2 (en) Evaporating material manufacturing method and evaporating material storage method
JP6014669B2 (en) Target for barium-scandium oxide dispenser cathode
JP2009120862A (en) Cu-In-Ga TERNARY SINTERED ALLOY SPUTTERING TARGET, AND ITS MANUFACTURING METHOD
JP2012214374A (en) Method for producing microparticle of lanthanum hexaboride, microparticle of lanthanum hexaboride, sintered compact of lanthanum hexaboride, film of lanthanum hexaboride, and organic semiconductor device
JP5336492B2 (en) Fluorine-containing magnesium oxide powder using vapor phase synthesis and method for producing the same
JP4575035B2 (en) Single crystal magnesium oxide sintered body, method for producing the same, and protective film for plasma display panel
JP4419343B2 (en) Deposition material for protective film of FPD and method for producing the same
JPH1192212A (en) Magnesium oxide sintered compact, its production and magnesium oxide thin film
JP2004176135A (en) Material for sputtering target, and sintered compact thereof
JPH04224113A (en) Production of titanium oxide for vapor deposition
JP6286878B2 (en) Method for producing polycrystalline gallium nitride powder
JP5129772B2 (en) Sr-Ca-O sintered body
KR101924274B1 (en) Manufacturing method using two-step reduction for iron metal powders and iron metal powders by the same
JP4269830B2 (en) Vapor deposition material
KR101758640B1 (en) Fabrication method of aligned carbon fiber arrays employing metal base
WO2015037462A1 (en) Production method for silicon oxide sintered body, and silicon oxide sintered body
JP4437934B2 (en) Fluorine-containing indium-tin oxide sintered body and method for producing the same
JPH0641729A (en) Material for vapor deposition
JP5145490B2 (en) Method for manufacturing phosphor for inorganic EL
JP2004281276A (en) Deposition material for protective film of fpd, its manufacturing method, and fpd using it
JP4363168B2 (en) Titanium oxide sintered body and manufacturing method thereof
JP5426137B2 (en) Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101105

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110713

R150 Certificate of patent or registration of utility model

Ref document number: 4786282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250