JP5426137B2 - Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film - Google Patents

Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film Download PDF

Info

Publication number
JP5426137B2
JP5426137B2 JP2008267226A JP2008267226A JP5426137B2 JP 5426137 B2 JP5426137 B2 JP 5426137B2 JP 2008267226 A JP2008267226 A JP 2008267226A JP 2008267226 A JP2008267226 A JP 2008267226A JP 5426137 B2 JP5426137 B2 JP 5426137B2
Authority
JP
Japan
Prior art keywords
vapor deposition
tantalum oxide
vacuum
deposition material
oxide vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008267226A
Other languages
Japanese (ja)
Other versions
JP2010095755A (en
Inventor
智 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2008267226A priority Critical patent/JP5426137B2/en
Publication of JP2010095755A publication Critical patent/JP2010095755A/en
Application granted granted Critical
Publication of JP5426137B2 publication Critical patent/JP5426137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、真空蒸着により基材に酸化タンタルの蒸着膜を形成させるために用いられる酸化タンタル蒸着材及びその製造方法、並びに該酸化タンタル蒸着材を真空蒸着の蒸着材として用いる酸化タンタル蒸着膜の製造方法に関する。   The present invention relates to a tantalum oxide vapor deposition material used for forming a vapor deposition film of tantalum oxide on a substrate by vacuum vapor deposition, a method for producing the same, and a tantalum oxide vapor deposition film using the tantalum oxide vapor deposition material as a vapor deposition material for vacuum vapor deposition. It relates to a manufacturing method.

高屈折率層形成用の蒸着材としては、酸化タンタル(Ta)(屈折率:n=2.1)、酸化ジルコニウム(ZrO)(屈折率:n=2.2)、酸化チタン(TiO)(屈折率:n=2.4)、酸化ニオブ(Nb)(屈折率:n=2.1)などが用いられている。 As a vapor deposition material for forming a high refractive index layer, tantalum oxide (Ta 2 O 5 ) (refractive index: n = 2.1), zirconium oxide (ZrO 2 ) (refractive index: n = 2.2), titanium oxide (TiO 2 ) (refractive index: n = 2.4), niobium oxide (Nb 2 O 5 ) (refractive index: n = 2.1), and the like are used.

中でも、蒸着材として酸化タンタルを用いて形成した蒸着膜は、屈折率が高く、硬度が高い。例えば、フィルター・ダイクロイックミラー、ブラスチックレンズ等の多層膜の高屈折物質として使用されている。通常の五酸化二タンタル蒸着材は、五酸化二タンタル粉末をプレス成形し焼結体としたペレットやターゲットが用いられる。   Especially, the vapor deposition film formed using tantalum oxide as a vapor deposition material has a high refractive index and high hardness. For example, it is used as a high refractive material for multilayer films such as filters, dichroic mirrors, and plastic lenses. As an ordinary tantalum pentoxide vapor deposition material, pellets or targets formed by pressing a tantalum pentoxide powder into a sintered body are used.

酸化タンタル蒸着膜は、通常、真空蒸着によって基材上に堆積される。この方法では、先ず、コーティングされるべき基材および蒸着材が入っている容器を、適切な真空蒸着装置内に設置し、次いで、装置内を排気し、真空にし、加熱および/または電子ビーム衝撃により、蒸着材を蒸発させ、薄膜の形状で基材表面に析出させる。   The tantalum oxide vapor deposition film is usually deposited on the substrate by vacuum vapor deposition. In this method, the container containing the substrate to be coated and the deposition material is first placed in a suitable vacuum deposition apparatus, then the apparatus is evacuated and evacuated, heated and / or electron beam bombarded. Thus, the vapor deposition material is evaporated and deposited on the substrate surface in the form of a thin film.

このような酸化タンタル蒸着膜を形成させる酸化タンタル蒸着材は、例えば、特開平4−325669号公報(特許文献1)、特開2006−111974号公報(特許文献2)に開示されている。   A tantalum oxide vapor deposition material for forming such a tantalum oxide vapor deposition film is disclosed in, for example, Japanese Patent Laid-Open Nos. 4-325669 (Patent Document 1) and 2006-111974 (Patent Document 2).

特開平4−325669号公報(特許請求の範囲)JP-A-4-325669 (Claims) 特開2006−111974号公報(特許請求の範囲)JP 2006-111974 A (Claims)

しかしながら、上記特許文献1、2の蒸着材には、(1)真空蒸着の際に脱酸素が起こり、真空蒸着装置内の真空度を落としてしまうため、真空度を安定させるための時間ロスが生じること、(2)真空蒸着の際に、スプラッシュが発生し、安定した成膜が困難であり、歩留りの低下や膜厚が不均一になる等の問題があった。   However, in the vapor deposition materials of Patent Documents 1 and 2 described above, (1) deoxygenation occurs during vacuum deposition, and the degree of vacuum in the vacuum deposition apparatus is reduced. Therefore, there is a time loss for stabilizing the degree of vacuum. (2) Splash occurred during vacuum deposition, and stable film formation was difficult, resulting in problems such as a decrease in yield and non-uniform film thickness.

従って、本発明の課題は、真空蒸着の際に、真空蒸着装置の真空度が落ち難く、且つ、スプラッシュ量が少ない酸化タンタル蒸着材の製造方法を提供することにある。   Therefore, the subject of this invention is providing the manufacturing method of the tantalum oxide vapor deposition material with which the degree of vacuum of a vacuum vapor deposition apparatus cannot fall easily in the case of vacuum vapor deposition, and there is little splash amount.

かかる実情において、本発明者は、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、蒸着材として、Taを1200℃以上で焼成し、次いで、真空雰囲気下で電子ビーム溶解法によって溶解して得られる蒸着材を用いることにより、真空蒸着の際に、真空度が落ち難く、且つ、スプラッシュ量が少ないことを見出し、本発明を完成させるに至った。 In such a situation, the present inventor has intensively studied to solve the problems in the prior art, and as a result, Ta 2 O 5 is baked at 1200 ° C. or higher as a deposition material, and then an electron beam in a vacuum atmosphere. By using a vapor deposition material obtained by melting by a melting method, it was found that the degree of vacuum is difficult to drop during vacuum deposition and the amount of splash is small, and the present invention has been completed.

すなわち、本発明は、Taを1200℃以上で焼成し、次いで、真空雰囲気下で電子ビーム溶解法によって溶解した後、冷却することにより得られる酸化タンタル蒸着材を提供するものである。 That is, the present invention provides a tantalum oxide vapor deposition material obtained by firing Ta 2 O 5 at 1200 ° C. or higher, then melting it by an electron beam melting method in a vacuum atmosphere , and cooling it. .

また、本発明は、Taを1200℃以上で焼成するI工程と、
I工程で得られた焼結体を真空雰囲気下で電子ビーム溶解法によって溶解した後、冷却することにより酸化タンタル蒸着材を得るII工程
を有することを特徴とする酸化タンタル蒸着材の製造方法を提供するものである。
The present invention also includes an I step of firing Ta 2 O 5 at 1200 ° C. or higher,
After dissolving by electron beam melting method under vacuum sintered body obtained in step I, and II to obtain a tantalum oxide evaporation material by cooling,
The manufacturing method of the tantalum oxide vapor deposition material characterized by having this.

また、本発明は、前記酸化タンタル蒸着材を用いて、真空蒸着を行い、酸化タンタル蒸着膜を得ることを特徴とする酸化タンタル蒸着膜の製造方法を提供するものである。   Moreover, this invention provides the manufacturing method of the tantalum oxide vapor deposition film characterized by performing vacuum vapor deposition using the said tantalum oxide vapor deposition material, and obtaining a tantalum oxide vapor deposition film.

本発明によれば、真空蒸着の際に、真空蒸着装置内の真空度が落ち難く、且つ、スプラッシュ量が少ない酸化タンタル蒸着材およびその製造方法を提供することができる。   According to the present invention, it is possible to provide a tantalum oxide vapor deposition material and a method for manufacturing the same, in which the degree of vacuum in the vacuum vapor deposition apparatus is difficult to drop and the amount of splash is small during vacuum vapor deposition.

本発明の酸化タンタル蒸着材は、Taを1200℃以上で焼成し、次いで、真空雰囲気下で電子ビーム溶解法によって溶解して得られるものであり、真空蒸着により、酸化タンタル蒸着膜を基材に形成させるために用いられる蒸着材である。 The tantalum oxide vapor deposition material of the present invention is obtained by firing Ta 2 O 5 at 1200 ° C. or higher and then melting it by an electron beam melting method in a vacuum atmosphere. It is a vapor deposition material used for forming on a substrate.

本発明の酸化タンタル蒸着材は、Ta相とTaO相との混合相を主体とするものが好ましく、Ta相とTaO相との混合相が特に好ましい。なお、本発明の酸化タンタル蒸着材は、本発明の効果を損なわない範囲で、他の化合物、あるいは、不純物等を含んでいてもよいが、蒸着膜の光学特性、例えば、屈折率、透過率への影響を考慮すると、本発明の酸化タンタル蒸着材は、高純度であることが望ましい。 Tantalum oxide evaporation material of the present invention is preferably one mainly composed of mixed phases of Ta 2 O 5 phase and Ta 2 O phase, mixed phase of Ta 2 O 5 phase and Ta 2 O phase is particularly preferred. The tantalum oxide vapor deposition material of the present invention may contain other compounds or impurities as long as the effects of the present invention are not impaired, but the optical properties of the vapor deposition film, such as refractive index, transmittance, etc. In view of the influence on the tantalum oxide, it is desirable that the tantalum oxide vapor deposition material of the present invention has high purity.

本発明の酸化タンタル蒸着材としては、以下に示す本発明の酸化タンタル蒸着材の製造方法により製造されたものが、真空蒸着の際に、真空蒸着装置内の真空度が落ち難く、且つ、スプラッシュ量が少ないという効果が高まる点で好ましい。   As the tantalum oxide vapor deposition material of the present invention, those produced by the method for producing a tantalum oxide vapor deposition material of the present invention shown below, the vacuum degree in the vacuum vapor deposition apparatus is difficult to drop during vacuum deposition, and splash It is preferable in that the effect that the amount is small increases.

本発明の酸化タンタル蒸着材の製造方法は、Taを1200℃以上で焼成するI工程と、I工程で得られた焼結体を真空雰囲気下で電子ビーム溶解法によって溶解して酸化タンタル蒸着材を得るII工程、を有する。 The method for producing a tantalum oxide vapor deposition material according to the present invention includes an I step in which Ta 2 O 5 is fired at 1200 ° C. or higher, and a sintered body obtained in the I step is melted and oxidized by an electron beam melting method in a vacuum atmosphere. II process which obtains a tantalum vapor deposition material.

I工程で使用するTaは、粉末状のTa、あるいは粉末状のTaを粒状やペレット状等に成形したものである。原料である粉末状のTaは、純度が可能な限り高いものが好ましく、市販のものを適宜使用できる。Taを成形体とすることで、焼成後、密度の高いTa焼結体を得ることができる。粉末状のTaを成形する方法としては、通常の油圧式または機械式のプレス装置、射出成形装置、押出成形装置などの公知の成形方法を用いておこなわれる。金型のかじり防止と離型性を良くするためや、該原料Ta同士の結合性を上げるために必要に応じて適宜なバインダー成分を添加してもかまわない。 Ta 2 O 5 used in step I is formed by forming powdered Ta 2 O 5 or powdered Ta 2 O 5 into particles, pellets, or the like. The powdery Ta 2 O 5 as a raw material is preferably as high as possible in purity, and commercially available products can be used as appropriate. By using Ta 2 O 5 as a molded body, a Ta 2 O 5 sintered body having a high density can be obtained after firing. As a method of forming the powdered Ta 2 O 5 , a known forming method such as a normal hydraulic or mechanical press device, injection molding device, extrusion molding device or the like is used. An appropriate binder component may be added as necessary in order to improve galling prevention and mold releasability of the mold or to improve the bondability between the raw materials Ta 2 O 5 .

I工程において、Taを加熱炉に移し、焼成を行う。焼成雰囲気としては、特に制限はないが、例えば、真空中、不活性ガス雰囲気下、還元雰囲気下、大気または酸化雰囲気下で行う。この中、真空雰囲気下で焼結を行うことが、後工程の電子ビーム溶解の溶解速度を早くすることができる点で好ましい。なお、焼成は加圧状態で行ってもよい。 In step I, Ta 2 O 5 is transferred to a heating furnace and baked. The firing atmosphere is not particularly limited, and for example, the firing is performed in a vacuum, under an inert gas atmosphere, under a reducing atmosphere, in the air, or in an oxidizing atmosphere. Among these, it is preferable to perform the sintering in a vacuum atmosphere from the viewpoint that the dissolution rate of the electron beam melting in the subsequent step can be increased. In addition, you may perform baking by a pressurized state.

また、焼成温度は1200℃以上である。1200℃以上とすることで、焼成後のTa焼結体の密度が、4.4g/cm以上となる。該Ta焼結体の密度は、その体積と質量を計測して求めることができる。体積は、容器内に水を入れ、この水中に該Ta焼結体を入れた時の水位と、水中に入れる前との水位差により計算したり、焼結体の寸法を計測することなどにより、測定することができる。Taの真比重が8.7g/cmであるので、相対密度は50%以上である。従って、次工程の電子ビーム法溶解において、溶解の1回の処理量を多くすることができる。また、該Ta焼結体は、電子ビーム溶解における溶解性が良好であり、溶け残りが発生しにくい。さらに、Ta成形体を焼成することにより、Ta成形体が含有する吸着ガスを除去することができ、電子ビーム溶解法の溶解処理時間を短縮でき、また電子ビームのアークが安定する。焼成されたTa焼結体は、速やかにポリエチレンシート等で真空包装することが、焼成後、水等の吸着を防止することができる点で好ましい。 The firing temperature is 1200 ° C. or higher. By setting the temperature to 1200 ° C. or higher, the density of the sintered Ta 2 O 5 sintered body becomes 4.4 g / cm 3 or higher. The density of the Ta 2 O 5 sintered body can be determined by measuring its volume and mass. The volume is calculated based on the difference between the water level when the Ta 2 O 5 sintered body is placed in the container and the Ta 2 O 5 sintered body is placed in the water, and the dimensions of the sintered body are measured. This can be measured. Since the true specific gravity of Ta 2 O 5 is 8.7 g / cm 3 , the relative density is 50% or more. Therefore, in the electron beam method melting in the next step, it is possible to increase the processing amount for one melting. In addition, the Ta 2 O 5 sintered body has good solubility in electron beam melting, and hardly melts away. Further, by baking the Ta 2 O 5 formed body, it is possible to remove adsorbed gases Ta 2 O 5 formed body contains, can reduce the dissolution process time of the electron beam melting method, also the arc of the electron beam Stabilize. It is preferable that the fired Ta 2 O 5 sintered body is quickly vacuum-packed with a polyethylene sheet or the like in terms of preventing adsorption of water or the like after firing.

II工程は、I工程で得られた焼結体に、真空雰囲気下で、電子ビームを照射して焼結体を溶解する、電子ビーム溶解法(EB溶解法)により焼成後のTa焼結体の溶解を行う。なお、真空雰囲気とは、1.33×10−2Pa(1×10−4torr)以下の真空度を言う。 In step II, the sintered body obtained in step I is irradiated with an electron beam in a vacuum atmosphere to dissolve the sintered body, and Ta 2 O 5 after firing by an electron beam melting method (EB melting method). The sintered body is melted. Note that the vacuum atmosphere refers to a degree of vacuum of 1.33 × 10 −2 Pa (1 × 10 −4 torr) or less.

II工程において、電子ビーム溶解法によりTa焼結体の溶解を行う方法としては、特に制限されず、通常、金属の溶解に用いられている電子ビーム溶解法を用いることができる。焼成後のTa焼結体を用いることにより、電子ビーム溶解における溶融速度を早くすることができ、本発明の酸化タンタル蒸着材を短時間で製造が可能となり、酸化タンタル蒸着材の生産性を向上することができる。また、該原料Ta焼結体は、アーク溶解の際に、該Ta焼結体が飛散するのを防ぐために、粒状やペレット状等に成形されたものが好ましい。 In the step II, the method for melting the Ta 2 O 5 sintered body by the electron beam melting method is not particularly limited, and the electron beam melting method usually used for melting metal can be used. By using the sintered Ta 2 O 5 sintered body, the melting rate in electron beam melting can be increased, the tantalum oxide deposition material of the present invention can be produced in a short time, and the tantalum oxide deposition material can be produced. Can be improved. Further, raw material Ta 2 O 5 sintered body, when the arc melting, in order to prevent the Ta 2 O 5 sintered body is scattered, those formed into granules or pellets or the like.

II工程においては、焼成後のTa焼結体を、真空雰囲気下で電子ビーム溶解法により溶解した後、不活性ガス雰囲気中で炉冷することにより、酸化タンタル蒸着材を得る。 In step II, the sintered Ta 2 O 5 sintered body is melted by an electron beam melting method in a vacuum atmosphere, and then cooled in a furnace in an inert gas atmosphere to obtain a tantalum oxide vapor deposition material.

本発明の酸化タンタル蒸着材膜の製造方法は、蒸着材として前記本発明の製造方法により得られた酸化タンタル蒸着材を用いて、真空蒸着により酸化タンタルの蒸着を行い、基材に酸化タンタル蒸着膜を形成させる酸化タンタル蒸着膜の製造方法である。   The method for producing a tantalum oxide vapor deposition material film of the present invention uses a tantalum oxide vapor deposition material obtained by the production method of the present invention as a vapor deposition material, and deposits tantalum oxide by vacuum vapor deposition. It is a manufacturing method of the tantalum oxide vapor deposition film which forms a film.

本発明の酸化タンタル蒸着材膜の製造方法において、蒸着膜が形成される該基材としては、特に制限されず、通常、酸化タンタルの蒸着に用いられる基材が挙げられる。   In the method for producing a tantalum oxide vapor deposition material film of the present invention, the substrate on which the vapor deposition film is formed is not particularly limited, and a substrate usually used for vapor deposition of tantalum oxide can be mentioned.

本発明の酸化タンタル蒸着材膜の製造方法において、真空蒸着を行う方法としては、特に制限されず、通常、酸化タンタル蒸着膜を形成するための真空蒸着方法を用いることができ、例えば、真空雰囲気下で該蒸着材を加熱する方法、真空雰囲気下で例えば水冷銅ルツボに充填された該蒸着材に電子ビームを照射する方法、真空雰囲気下で該蒸着材を加熱しつつ該蒸着材に電子ビームを照射する方法等が挙げられる。なお、該真空蒸着を行う際の真空雰囲気とは、1.33×10−2Pa(1×10−4torr)以下の真空度を言う。 In the method for producing a tantalum oxide vapor deposition material film of the present invention, the method for performing vacuum vapor deposition is not particularly limited, and a vacuum vapor deposition method for forming a tantalum oxide vapor deposition film can be usually used. A method of heating the vapor deposition material under a vacuum atmosphere, a method of irradiating the vapor deposition material filled in, for example, a water-cooled copper crucible under a vacuum atmosphere, and an electron beam applied to the vapor deposition material while heating the vapor deposition material under a vacuum atmosphere. And the like. In addition, the vacuum atmosphere at the time of performing this vacuum vapor deposition means a vacuum degree of 1.33 × 10 −2 Pa (1 × 10 −4 torr) or less.

本発明の酸化タンタル蒸着膜の製造方法において、真空蒸着を行う装置としては、特に制限されず、通常、酸化タンタルの真空蒸着に用いられる装置を用いることができる。   In the method for producing a tantalum oxide vapor deposition film of the present invention, the apparatus for performing vacuum vapor deposition is not particularly limited, and an apparatus usually used for vacuum vapor deposition of tantalum oxide can be used.

本発明の酸化タンタル蒸着膜の製造方法は、EB溶解法の前に、該Ta成形体の焼成を行うため、(i)EB溶解装置内での溶解性がよく、短時間で溶解することができ、かつ溶け残りが発生しにくく、(ii)密度が高いため、EB溶解装置への1回あたりのチャージ量を増加することができ、経済的であり、(iii)蒸着時の均一性が向上し、蒸着で歩留が向上すること及び蒸着装置内での真空劣化が生じ難いことで、処理時間の短縮が図れ、(iv)スプラッシュの発生が少ないため、電子ビームガン等への損傷が少なくなり、(v)比較的安定した成膜レート(速度)を保持でき、(vi)TaOが存在するため、イオン銃等を用いた酸素導入等を行うイオンアシスト法の使用を好ましく適用できる等の特徴を有する。 In the method for producing a tantalum oxide vapor deposition film of the present invention, since the Ta 2 O 5 molded body is fired before the EB melting method, (i) the solubility in the EB melting apparatus is good and it dissolves in a short time. (Ii) it is difficult to generate unmelted residue, and (ii) since the density is high, the amount of charge per one time to the EB melting apparatus can be increased, which is economical. (Iii) The uniformity is improved, the yield is improved by vapor deposition, and the vacuum is not easily deteriorated in the vapor deposition apparatus, so that the processing time can be shortened, and (iv) the occurrence of splash is small, so that Damage is reduced, (v) a relatively stable deposition rate (speed) can be maintained, and (vi) Ta 2 O is present, so the use of an ion assist method in which oxygen is introduced using an ion gun or the like is used. It has features such as being applicable preferably

そして、本発明の酸化タンタル蒸着膜の製造方法を行うことにより、該基材に酸化タンタル蒸着膜が形成される。このようにして得られる酸化タンタル蒸着膜は、膜厚等の均一性が高く、優れた光学特性を有する蒸着膜である。   And the tantalum oxide vapor deposition film is formed in this base material by performing the manufacturing method of the tantalum oxide vapor deposition film of this invention. The tantalum oxide vapor-deposited film thus obtained is a vapor-deposited film having high uniformity such as film thickness and having excellent optical characteristics.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

(蒸着材の製造)
平均粒径10μm 以下のTa粉末(純度99.9%以上)を、プレス成形装置を用い、直径60mm、厚さ20mmの円柱状の成形体とした。次いで、この成形体を加熱炉に入れ、真空雰囲気(真空度:1.33Pa(1×10−2Torr)で1200℃で1時間焼成した。その後、炉内の雰囲気をそのまま保持して炉冷した。その後、焼成後の該焼結体をアルミニウム蒸着されたポリエチレンシートで真空包装を行い保管した(I工程)。粉末X線回折法で測定した結果、焼結したTa焼結体は、Ta(正方晶)であった。また、該Ta焼結体の体積と重量より、密度を測定した結果、焼成したTa焼結体は、4.6g/cmであり、相対密度は52%であった。
(Manufacture of vapor deposition material)
Ta 2 O 5 powder (purity 99.9% or more) having an average particle size of 10 μm or less was formed into a cylindrical molded body having a diameter of 60 mm and a thickness of 20 mm using a press molding apparatus. Next, this compact was put in a heating furnace and baked in a vacuum atmosphere (vacuum degree: 1.33 Pa (1 × 10 −2 Torr) for 1 hour at 1200 ° C. Thereafter, the atmosphere in the furnace was kept as it was and the furnace was cooled. Thereafter, the sintered body after firing was vacuum-packed and stored with an aluminum-deposited polyethylene sheet (process I.) As a result of measurement by powder X-ray diffraction, sintered Ta 2 O 5 sintered body was Ta 2 O 5 (tetragonal). Further, from the volume and weight of the Ta 2 O 5 sintered body, the result of measuring the density, calcined Ta 2 O 5 sintered body, 4.6 g / Cm 3 and the relative density was 52%.

次いで、焼結したTaを、銅製の水冷るつぼにセットした後、炉内真空度が10−3Pa台となるまで真空引きを行った。次いで、この焼結したTaを電子ビーム溶解法により溶解し、蒸着材を得た。このとき、電子ビームを焼結したTaの一方の端部より他方の端部へ徐々に照射し、溶解した(II工程)。 Next, the sintered Ta 2 O 5 was set in a copper water-cooled crucible, and then evacuation was performed until the degree of vacuum in the furnace was on the order of 10 −3 Pa. Next, the sintered Ta 2 O 5 was melted by an electron beam melting method to obtain a vapor deposition material. At this time, the electron beam was gradually irradiated from one end portion of the sintered Ta 2 O 5 to the other end portion and dissolved (step II).

そのときの成形体全体の溶解速度、真空劣化の有無、アーキングの状態を評価した。その結果を表1に示す。なお、成形体全体の溶解速度は、電子ビーム溶解装置にセットした試料の質量(kg)を溶解時間(時間)で割ったものであり、アーキング状態は、電子ビームを安定して連続的に照射できるか否かを評価したものである。また、得られた蒸着材を粉末X線回折法により以下の測定条件で測定した。その結果、該蒸着材は、Ta(正方晶)とTaO(立方晶)との混合相であった。 At that time, the dissolution rate of the entire molded body, the presence or absence of vacuum deterioration, and the state of arcing were evaluated. The results are shown in Table 1. The melting rate of the entire compact is the mass (kg) of the sample set in the electron beam melting device divided by the melting time (hour). In the arcing state, the electron beam is stably irradiated continuously. It is evaluated whether it can be done. Moreover, the obtained vapor deposition material was measured by the powder X-ray diffraction method under the following measurement conditions. As a result, the vapor deposition material was a mixed phase of Ta 2 O 5 (tetragonal) and Ta 2 O (cubic).

<X線回折測定条件>
回折装置 RAD−1C(株式会社リガク製)
X線管球 Cu
管電圧・管電流 40kV、30mA
スリット DS-SS:1度、RS:0.15mm
モノクロメータ グラファイト
測定間隔 0.002度
計数方法 定時計数法
<X-ray diffraction measurement conditions>
Diffraction device RAD-1C (manufactured by Rigaku Corporation)
X-ray tube Cu
Tube voltage / tube current 40kV, 30mA
Slit DS-SS: 1 degree, RS: 0.15mm
Monochromator Graphite Measurement interval 0.002 degree Counting method Constant clock method

(蒸着膜の製造)
次いで、該蒸着材を粉砕し、粉砕後の蒸着材を真空蒸着装置内に設置した。次いで、水冷された銅製るつぼへ粉砕した蒸着材12gを投入後、真空度1.33×10−3Pa(10−5torr)まで減圧し、その後、電流400mA、電圧6kVの出力にて、電子銃(日本電子株式会社製)で、蒸着材に電子ビームを照射することにより、ライナ中で溶解してベースを作成し、石英ガラス基板上に真空蒸着して蒸着膜の成膜を行った。真空蒸着の際のスプラッシュの発生状態、真空状態の劣化を溶解中の圧力変動により評価した。その結果を表2に示す。
(Manufacture of evaporated film)
Next, the vapor deposition material was pulverized, and the pulverized vapor deposition material was placed in a vacuum vapor deposition apparatus. Next, 12 g of the vapor-deposited vapor deposition material was put into a water-cooled copper crucible, and then the pressure was reduced to a vacuum degree of 1.33 × 10 −3 Pa (10 −5 torr). Thereafter, an electron was output at a current of 400 mA and a voltage of 6 kV. By irradiating the deposition material with an electron beam with a gun (manufactured by JEOL Ltd.), the base was prepared by melting in a liner, and vacuum deposition was performed on a quartz glass substrate to form a deposited film. The state of occurrence of splash during vacuum deposition and the deterioration of the vacuum state were evaluated by pressure fluctuations during melting. The results are shown in Table 2.

なお、スプラッシュの発生状態を、以下のようにして評価した。焼結体(比較例2)を「2:スプラッシュ発生多い。」とし、「5:スプラッシュ発生なし。」、「4:スプラッシュ発生少ない。」、「3:スプラッシュ発生やや多い。」、「2:スプラッシュ発生多い。」、「1:スプラッシュ発生かなり多い。」のように、相対的評価を行った。真空度の劣化は、焼結体(比較例2)を基準として、3段階「3:圧力変動小さい」「2:基準」「1:圧力変動大きい」のように、相対的評価を行った。   In addition, the occurrence state of splash was evaluated as follows. For the sintered body (Comparative Example 2), “2: Splash generation is high”, “5: Splash generation is low”, “4: Splash generation is low”, “3: Splash generation is high”, “2: Splash generation is low”. Relative evaluations were made, such as “Many occurrences of splash” and “1: Many occurrences of splash”. The deterioration of the degree of vacuum was evaluated relative to the sintered body (Comparative Example 2) as the three stages “3: small pressure fluctuation”, “2: standard”, “1: large pressure fluctuation”.

(蒸着材の製造)
I工程の真空雰囲気に代えて、大気雰囲気とした以外は、実施例1と同様に行なった。なお、I工程で得られたTa焼結体の密度を測定した結果、4.4g/cmであり、相対密度は51%であった。また、II工程で得られた蒸着材を粉末X線回折法で測定した結果、Ta(正方晶)とTaO(立方晶)であった。
(Manufacture of vapor deposition material)
The same procedure as in Example 1 was performed except that an air atmosphere was used instead of the vacuum atmosphere in step I. In addition, as a result of measuring the density of the Ta 2 O 5 sintered body obtained in the step I, it was 4.4 g / cm 3 and the relative density was 51%. As a result of the evaporation material obtained in step II was determined by powder X-ray diffraction method, it was Ta 2 O 5 (tetragonal) and Ta 2 O (cubic).

(蒸着膜の製造)
上記のようにして得られた蒸着材を用いて、実施例1と同様の方法で行った。その結果を表1及び表2に示す。
(Manufacture of evaporated film)
It carried out by the method similar to Example 1 using the vapor deposition material obtained as mentioned above. The results are shown in Tables 1 and 2.

比較例1
(蒸着材の製造)
平均粒径10μm 以下のTa粉末(純度99.9%以上)を、プレス成形装置を用い、直径60mm、厚さ20mmの円柱状の成形体とした。次いで、この成形体を非消耗アーク炉の銅製の水冷ハースに100g充填し、炉内をアルゴンガスで完全に置換した後、アルゴンによって大気圧より若干加圧状態で保持ししつつ、電流550A、電圧55V を印加して20分間アーク溶解し、その後、炉内の雰囲気をそのまま保持して炉冷し、蒸着材を得た。粉末X線回折法で測定した結果、該蒸着材はTa(正方晶)であった。
Comparative Example 1
(Manufacture of vapor deposition material)
Ta 2 O 5 powder (purity 99.9% or more) having an average particle size of 10 μm or less was formed into a cylindrical molded body having a diameter of 60 mm and a thickness of 20 mm using a press molding apparatus. Next, 100 g of this compact was filled in a copper water-cooled hearth of a non-consumable arc furnace, and the inside of the furnace was completely replaced with argon gas. A voltage of 55 V was applied for arc melting for 20 minutes, and then the atmosphere in the furnace was kept as it was and the furnace was cooled to obtain a vapor deposition material. As a result of measurement by a powder X-ray diffraction method, the vapor deposition material was Ta 2 O 5 (tetragonal crystal).

(蒸着膜の製造)
上記のようにして得られた蒸着材を用いて、実施例1と同様の方法で行った。その結果を表1及び表2に示す。
(Manufacture of evaporated film)
It carried out by the method similar to Example 1 using the vapor deposition material obtained as mentioned above. The results are shown in Tables 1 and 2.

比較例2
(蒸着材)
市販のTa焼結体を蒸着材とした。粉末X線回折法で測定した結果、該市販のTa焼結体は、Ta(正方晶)であった。
Comparative Example 2
(Vapor deposition material)
A commercially available Ta 2 O 5 sintered body was used as a vapor deposition material. As a result of measurement by a powder X-ray diffraction method, the commercially available Ta 2 O 5 sintered body was Ta 2 O 5 (tetragonal crystal).

(蒸着膜の製造)
市販のTa焼結体を用いて、実施例1と同様の方法で行った。その結果を表1及び表2に示す。
(Manufacture of evaporated film)
Using a commercially available Ta 2 O 5 sintered body was obtained in the same manner as in Example 1. The results are shown in Tables 1 and 2.

比較例3
(蒸着材の製造)
平均粒径10μm以下のTa粉末(純度99.9%以上)に代えて、平均粒径1μm以下のTa粉末(純度99.9%以上)としたこと、1200℃で1時間の焼成に代えて、焼成を行わなかったこと以外は、実施例1と同様に行なった。なお、得られたTa焼結体の密度を測定した結果、2.0g/cmであり、相対密度は23%であった。
Comparative Example 3
(Manufacture of vapor deposition material)
Instead of following Ta 2 O 5 powder having an average particle size of 10 [mu] m (purity: 99.9% or higher), it has an average particle diameter of 1μm or less of Ta 2 O 5 powder (purity 99.9%), 1 1200 ° C. The same procedure as in Example 1 was performed except that the firing was not performed in place of the firing of time. In addition, as a result of measuring the density of the obtained Ta 2 O 5 sintered body, it was 2.0 g / cm 3 and the relative density was 23%.

(蒸着膜の製造)
上記のようにして得られた蒸着材を用いて、実施例1と同様の方法で行った。その結果を表1及び表2に示す。
(Manufacture of evaporated film)
It carried out by the method similar to Example 1 using the vapor deposition material obtained as mentioned above. The results are shown in Tables 1 and 2.

比較例4
(蒸着材の製造)
平均粒径10μm以下のTa粉末(純度99.9%以上)を、プレス成形装置を用い、直径60mm、厚さ20mmの円柱状成形体とした。このTaの成形体を真空加熱炉にて、真空度1×10−2Torr、処理温度300℃、処理時間1時間で加熱処理(吸着ガス除去処理)を行った。その後、加熱処理された成形体をアルミニウム蒸着されたポリエチレンシートで真空包装を行い保管した。なお、吸着ガス除去処理後の成形体の密度は2.6g/cmであり、相対密度は29%であった。次いで、実施例1と同様の方法で電子ビーム溶解を行って、蒸着材を得た。
Comparative Example 4
(Manufacture of vapor deposition material)
Ta 2 O 5 powder (purity 99.9% or more) having an average particle size of 10 μm or less was formed into a cylindrical molded body having a diameter of 60 mm and a thickness of 20 mm using a press molding apparatus. The molded body of Ta 2 O 5 was subjected to heat treatment (adsorption gas removal treatment) in a vacuum heating furnace at a degree of vacuum of 1 × 10 −2 Torr, a treatment temperature of 300 ° C., and a treatment time of 1 hour. Thereafter, the heat-treated molded body was vacuum-packed with an aluminum-deposited polyethylene sheet and stored. In addition, the density of the molded object after an adsorption gas removal process was 2.6 g / cm < 3 >, and the relative density was 29%. Next, electron beam melting was performed in the same manner as in Example 1 to obtain a vapor deposition material.

(蒸着膜の製造)
上記のようにして得られた蒸着材を用いて、実施例1と同様の方法で行った。結果を表1及び表2に示す。
(Manufacture of evaporated film)
It carried out by the method similar to Example 1 using the vapor deposition material obtained as mentioned above. The results are shown in Tables 1 and 2.

比較例5
(蒸着材の製造)
処理温度300℃に代えて、処理温度1000℃とした以外は、比較例4と同様に行った。なお、吸着ガス除去処理後の成形体の密度は2.8g/cmであり、相対密度は32%であった。次いで、実施例1と同様の方法で電子ビーム溶解を行って、蒸着材を得た。
Comparative Example 5
(Manufacture of vapor deposition material)
It carried out similarly to the comparative example 4 except having replaced with process temperature 300 degreeC, and having set process temperature 1000 degreeC. In addition, the density of the molded object after an adsorption gas removal process was 2.8 g / cm < 3 >, and the relative density was 32%. Next, electron beam melting was performed in the same manner as in Example 1 to obtain a vapor deposition material.

(蒸着膜の製造)
上記のようにして得られた蒸着材を用いて、実施例1と同様の方法で行った。結果を表1及び表2に示す。
(Manufacture of evaporated film)
It carried out by the method similar to Example 1 using the vapor deposition material obtained as mentioned above. The results are shown in Tables 1 and 2.

Figure 0005426137
Figure 0005426137

Figure 0005426137
Figure 0005426137

スプラッシュ量の評価:「5:スプラッシュ発生なし。」、「4:スプラッシュ発生少ない。」、「3:スプラッシュ発生やや多い。」、「2:スプラッシュ発生多い。」、「1:スプラッシュ発生かなり多い。」
真空度の劣化:「3:圧力変動小さい」、「2:基準と同程度」、「1:圧力変動大きい」
Evaluation of the splash amount: “5: Splash is not generated”, “4: Splash is low”, “3: Splash is slightly high”, “2: Splash is high”, “1: Splash is high. "
Deterioration of vacuum degree: “3: Small pressure fluctuation”, “2: Same as standard”, “1: Large pressure fluctuation”

実施例1〜2の蒸着材の製造方法により、EB溶解装置内での溶解性がよく、短時間で溶解することができる。また、実施例1〜2の蒸着材の製造方法により得られた蒸着材は、蒸着時のスプラッシュ量が少なく、また、真空度を高く保つことができる。   By the manufacturing method of the vapor deposition material of Examples 1-2, the solubility in an EB melt | dissolution apparatus is good, and it can melt | dissolve in a short time. Moreover, the vapor deposition material obtained by the manufacturing method of the vapor deposition material of Examples 1-2 has little splash amount at the time of vapor deposition, and can maintain a high degree of vacuum.

本発明によれば、EB溶解装置内での溶解性がよく、短時間で溶解することができるので、工業的に有利な蒸着材を製造できる。また、真空蒸着の際に、真空蒸着装置の真空度が落ち難く、且つ、スプラッシュ量を少なくできるので、基材に酸化タンタル蒸着膜が蒸着された材料を、工業的に有利に製造できる。   According to the present invention, since the solubility in the EB melting apparatus is good and the melting can be performed in a short time, an industrially advantageous vapor deposition material can be manufactured. Further, since the degree of vacuum of the vacuum deposition apparatus is difficult to drop and the amount of splash can be reduced during vacuum deposition, a material in which a tantalum oxide deposition film is deposited on a base material can be produced industrially advantageously.

Claims (3)

Taを1200℃以上で焼成し、次いで、真空雰囲気下で電子ビーム溶解法によって溶解した後、冷却することにより得られる酸化タンタル蒸着材。 A tantalum oxide vapor-deposited material obtained by firing Ta 2 O 5 at 1200 ° C. or higher, and then melting it by an electron beam melting method in a vacuum atmosphere, followed by cooling . Taを1200℃以上で焼成するI工程と、
I工程で得られた焼結体を真空雰囲気下で電子ビーム溶解法によって溶解した後、冷却することにより酸化タンタル蒸着材を得るII工程
を有することを特徴とする酸化タンタル蒸着材の製造方法。
I step of firing Ta 2 O 5 at 1200 ° C. or higher;
After dissolving by electron beam melting method under vacuum sintered body obtained in step I, and II to obtain a tantalum oxide evaporation material by cooling,
The manufacturing method of the tantalum oxide vapor deposition material characterized by having.
請求項1の酸化タンタル蒸着材を用いて、真空蒸着を行い、酸化タンタル蒸着膜を得ることを特徴とする酸化タンタル蒸着膜の製造方法。   A method for producing a tantalum oxide vapor deposition film, wherein the tantalum oxide vapor deposition material according to claim 1 is vacuum-deposited to obtain a tantalum oxide vapor deposition film.
JP2008267226A 2008-10-16 2008-10-16 Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film Active JP5426137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267226A JP5426137B2 (en) 2008-10-16 2008-10-16 Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267226A JP5426137B2 (en) 2008-10-16 2008-10-16 Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film

Publications (2)

Publication Number Publication Date
JP2010095755A JP2010095755A (en) 2010-04-30
JP5426137B2 true JP5426137B2 (en) 2014-02-26

Family

ID=42257640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267226A Active JP5426137B2 (en) 2008-10-16 2008-10-16 Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film

Country Status (1)

Country Link
JP (1) JP5426137B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4328937B2 (en) * 2001-06-29 2009-09-09 日本ゼオン株式会社 Deposition method
JP4445193B2 (en) * 2002-11-19 2010-04-07 株式会社東芝 Vapor deposition material

Also Published As

Publication number Publication date
JP2010095755A (en) 2010-04-30

Similar Documents

Publication Publication Date Title
EP1683883B1 (en) Molybdenum alloy
JP5764828B2 (en) Oxide sintered body and tablet processed the same
JP5634575B2 (en) Sintered body target and method for producing sintered body
JP4885274B2 (en) Amorphous composite oxide film, crystalline composite oxide film, method for producing amorphous composite oxide film, and method for producing crystalline composite oxide film
JP2010180449A (en) Target material of composite tungsten oxide, and method for manufacturing the same
JP4957968B2 (en) Cu-In-Ga ternary sintered alloy sputtering target and method for producing the same
JP2009120863A (en) MANUFACTURING METHOD OF Cu-In-Ga TERNARY SINTERED ALLOY SPUTTERING TARGET
JP6697073B2 (en) Metal evaporation material
JP5296619B2 (en) Method for producing titanium suboxide
JP5301211B2 (en) Method for producing titanium suboxide
JP3069403B2 (en) Method for producing titanium suboxide
JP5426137B2 (en) Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film
JP2023165778A (en) Sputtering target and method for manufacturing sputtering target
JP5886473B2 (en) Ti-Al alloy sputtering target
JP5426136B2 (en) Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film
JP5284822B2 (en) Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film
JP4269830B2 (en) Vapor deposition material
JP2004043955A (en) MgO VAPOR DEPOSITION MATERIAL AND ITS MANUFACTURING PROCESS, MANUFACTURING PROCESS OF MgO DEPOSITION FILM
JP4363168B2 (en) Titanium oxide sintered body and manufacturing method thereof
JP5284821B2 (en) Metal oxide vapor deposition material, method for producing the same, and method for producing metal oxide vapor deposited film
JP2939359B2 (en) Method for producing titanium suboxide
JP7020123B2 (en) Sputtering target
JPH04325669A (en) Material for vacuum deposition
JP2008274442A (en) MgO VAPOR DEPOSITION MATERIAL AND METHOD FOR MANUFACTURING THE SAME
JP2001003157A (en) Film forming material of optical thin film and film forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5426137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250