JP5284822B2 - Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film - Google Patents

Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film Download PDF

Info

Publication number
JP5284822B2
JP5284822B2 JP2009042478A JP2009042478A JP5284822B2 JP 5284822 B2 JP5284822 B2 JP 5284822B2 JP 2009042478 A JP2009042478 A JP 2009042478A JP 2009042478 A JP2009042478 A JP 2009042478A JP 5284822 B2 JP5284822 B2 JP 5284822B2
Authority
JP
Japan
Prior art keywords
vapor deposition
tantalum oxide
deposition material
vacuum
oxide vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009042478A
Other languages
Japanese (ja)
Other versions
JP2009235564A (en
Inventor
智 菅原
松秀 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2009042478A priority Critical patent/JP5284822B2/en
Publication of JP2009235564A publication Critical patent/JP2009235564A/en
Application granted granted Critical
Publication of JP5284822B2 publication Critical patent/JP5284822B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、真空蒸着により基材に酸化タンタルの蒸着膜を形成させるために用いられる酸化タンタル蒸着材およびその製造方法、並びに該酸化タンタル蒸着材を真空蒸着の蒸着材として用いる酸化タンタル蒸着膜の製造方法に関する。   The present invention relates to a tantalum oxide vapor deposition material used for forming a vapor deposition film of tantalum oxide on a substrate by vacuum vapor deposition, a method for producing the same, and a tantalum oxide vapor deposition film using the tantalum oxide vapor deposition material as a vapor deposition material for vacuum vapor deposition. It relates to a manufacturing method.

高屈折率層形成用の蒸着材としては、酸化タンタル(Ta)(屈折率:n=2.1)、酸化ジルコニウム(ZrO)(屈折率:n=2.2)、酸化チタン(TiO)(屈折率:n=2.4)、酸化ニオブ(Nb)(屈折率:n=2.1)などが用いられている。 As a vapor deposition material for forming a high refractive index layer, tantalum oxide (Ta 2 O 5 ) (refractive index: n = 2.1), zirconium oxide (ZrO 2 ) (refractive index: n = 2.2), titanium oxide (TiO 2 ) (refractive index: n = 2.4), niobium oxide (Nb 2 O 5 ) (refractive index: n = 2.1), and the like are used.

中でも、蒸着材として酸化タンタルを用いて形成した蒸着膜は、屈折率が高く、硬度が高い。例えば、フィルター・ダイクロイックミラー、ブラスチックレンズ等の多層膜の高屈折物質として使用されている。通常の五酸化二タンタル蒸着材は、五酸化二タンタル粉末をプレス成形し焼結体としたペレットやターゲットが用いられる。   Especially, the vapor deposition film formed using tantalum oxide as a vapor deposition material has a high refractive index and high hardness. For example, it is used as a high refractive material for multilayer films such as filters, dichroic mirrors, and plastic lenses. As an ordinary tantalum pentoxide vapor deposition material, pellets or targets formed by pressing a tantalum pentoxide powder into a sintered body are used.

酸化タンタル蒸着膜は、通常、真空蒸着によって基材上に堆積される。この方法では、先ず、コーティングされるべき基材および蒸着材が入っている容器を、適切な真空蒸着装置内に設置し、次いで、装置内を排気し、真空にし、加熱および/または電子ビーム衝撃により、蒸着材を蒸発させ、薄膜の形状で基材表面に析出させる。   The tantalum oxide vapor deposition film is usually deposited on the substrate by vacuum vapor deposition. In this method, the container containing the substrate to be coated and the deposition material is first placed in a suitable vacuum deposition apparatus, then the apparatus is evacuated and evacuated, heated and / or electron beam bombarded. Thus, the vapor deposition material is evaporated and deposited on the substrate surface in the form of a thin film.

例えば、特開平4−325669号公報(特許文献1)、特開2006−111974号公報(特許文献2)には、酸化タンタル蒸着材が開示されている。   For example, JP-A-4-325669 (Patent Document 1) and JP-A-2006-111974 (Patent Document 2) disclose tantalum oxide vapor deposition materials.

特開平4−325669号公報(特許請求の範囲)JP-A-4-325669 (Claims) 特開2006−111974号公報(特許請求の範囲)JP 2006-111974 A (Claims)

しかし、上記特許文献1、2の蒸着材には、(1)真空蒸着の際に脱酸素が起こり、真空蒸着装置内の真空度を落としてしまうため、真空度を安定させるための時間ロスが生じること、(2)真空蒸着の際に、スプラッシュが発生し、安定した成膜が困難であり、歩留りの低下や膜厚が不均一になる等の問題があった。   However, in the vapor deposition materials of Patent Documents 1 and 2 described above, (1) deoxygenation occurs during vacuum deposition, and the degree of vacuum in the vacuum deposition apparatus is reduced. Therefore, there is a time loss for stabilizing the degree of vacuum. (2) Splash occurred during vacuum deposition, and stable film formation was difficult, resulting in problems such as a decrease in yield and non-uniform film thickness.

従って、本発明の課題は、真空蒸着の際に、真空蒸着装置の真空度が落ち難く、且つ、スプラッシュ量が少ない酸化タンタル蒸着材およびその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a tantalum oxide vapor deposition material and a method for producing the same, in which the degree of vacuum of the vacuum vapor deposition apparatus is difficult to drop and the amount of splash is small during vacuum vapor deposition.

本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、蒸着材として、Ta相とTaO相とを含有する蒸着材を用いることにより、真空蒸着の際に、真空度が落ち難く、且つ、スプラッシュ量が少ないことを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above-described problems in the prior art, the present inventors have used a vapor deposition material containing a Ta 2 O 5 phase and a Ta 2 O phase as a vapor deposition material, thereby vacuum deposition. At that time, it was found that the degree of vacuum was difficult to drop and the amount of splash was small, and the present invention was completed.

すなわち、本発明(1)は、Ta相とTaO相とを含有し、粉末X線回折によるTaの(0012)面のピーク強度に対するTaOの(220)面のピーク強度の比(ITa2O/ITa2O5)が、0.02〜0.2であることを特徴とする酸化タンタル蒸着材を提供するものである。 That is, the present invention (1) contains a Ta 2 O 5 phase and Ta 2 O phase, Ta 2 O of (220) by powder X-ray diffraction to the peak intensity of the (0012) plane of the Ta 2 O 5 surface The ratio of the peak intensities (I Ta2O / I Ta2O5 ) is 0.02 to 0.2, and a tantalum oxide vapor deposition material is provided.

また、本発明(2)は、Taを、真空雰囲気下で電子ビーム溶解法によって溶解して、Ta 相とTa O相とを含有し、粉末X線回折によるTa の(0012)面のピーク強度に対するTa Oの(220)面のピーク強度の比(I Ta2O /I Ta2O5 )が、0.02〜0.2である酸化タンタル蒸着材を得ることを特徴とする酸化タンタル蒸着材の製造方法を提供するものである。 Further, the present invention (2) is a Ta 2 O 5, was dissolved by the electron beam melting method under a vacuum atmosphere, and contains a Ta 2 O 5 phase and Ta 2 O phase, Ta 2 by powder X-ray diffraction Obtaining a tantalum oxide deposition material in which the ratio of the peak intensity of the (220) plane of Ta 2 O to the peak intensity of the ( 5 ) plane of O 5 (I Ta2O / I Ta2O5 ) is 0.02 to 0.2. The manufacturing method of the tantalum oxide vapor deposition material characterized by the above is provided.

また、本発明(3)は、前記本発明(1)の酸化タンタル蒸着材を用いて、真空蒸着を行い、酸化タンタル蒸着膜を得ることを特徴とする酸化タンタル蒸着膜の製造方法を提供するものである。   Moreover, this invention (3) provides the manufacturing method of the tantalum oxide vapor deposition film characterized by performing vacuum vapor deposition using the tantalum oxide vapor deposition material of the said this invention (1), and obtaining a tantalum oxide vapor deposition film. Is.

本発明によれば、真空蒸着の際に、真空蒸着装置内の真空度が落ち難く、且つ、スプラッシュ量が少ない酸化タンタル蒸着材およびその製造方法を提供することができる。   According to the present invention, it is possible to provide a tantalum oxide vapor deposition material and a method for manufacturing the same, in which the degree of vacuum in the vacuum vapor deposition apparatus is difficult to drop and the amount of splash is small during vacuum vapor deposition.

本発明の酸化タンタル蒸着材は、Ta相とTaO相とを含有し、粉末X線回折によるTaの(0012)面のピーク強度に対するTaOの(220)面のピーク強度の比(ITa2O/ITa2O5)が、0.02〜0.2である酸化タンタル蒸着材であり、真空蒸着により、酸化タンタル蒸着膜を基材に形成させるために用いられる蒸着材である。 The tantalum oxide vapor deposition material of the present invention contains a Ta 2 O 5 phase and a Ta 2 O phase, and has a (220) face of Ta 2 O with respect to the peak intensity of the (0012) face of Ta 2 O 5 by powder X-ray diffraction. Is a tantalum oxide vapor deposition material having a peak intensity ratio (I Ta2O / I Ta2O5 ) of 0.02 to 0.2, and is used for forming a tantalum oxide vapor deposition film on a substrate by vacuum vapor deposition. It is.

本発明の酸化タンタル蒸着材は、Ta相とTaO相との混合相を主体とするものが好ましく、Ta相とTaO相との混合相が特に好ましい。なお、本発明の酸化タンタル蒸着材は、本発明の効果を損なわない範囲で、他の化合物、あるいは、不純物等を含んでいてもよいが、蒸着膜の光学特性、例えば、屈折率、透過率への影響を考慮すると、本発明の酸化タンタル蒸着材は、高純度であることが望ましい。 Tantalum oxide evaporation material of the present invention is preferably one mainly composed of mixed phases of Ta 2 O 5 phase and Ta 2 O phase, mixed phase of Ta 2 O 5 phase and Ta 2 O phase is particularly preferred. The tantalum oxide vapor deposition material of the present invention may contain other compounds or impurities as long as the effects of the present invention are not impaired, but the optical properties of the vapor deposition film, such as refractive index, transmittance, etc. In view of the influence on the tantalum oxide, it is desirable that the tantalum oxide vapor deposition material of the present invention has high purity.

本発明の酸化タンタル蒸着材は、粉末X線回折によるTa(正方晶)に対するTaO(立方晶)のXRDのピーク強度比(Taの29.6度付近の(0012)面のピーク強度に対するTaOの38度付近の(220)面のピーク強度の比(ITa2O/ITa2O5))が、0.02〜0.2であることが好ましい。該粉末X線回折によるピーク強度比が、上記範囲内にあることにより、真空蒸着の際に、真空蒸着装置内の真空度が落ち難く、且つ、スプラッシュ量が少ないという効果が高まる。なお、本発明において、XRDのピーク強度比は、各々のピーク高さの0.5乗からバックグランドの0.5乗を引いた値を、ピーク強度として計算される(各ピークのピーク強度=各ピークのピーク高さの0.5乗−バックグラウンドの0.5乗)。 Tantalum oxide evaporation material of the present invention, XRD peak intensity ratio of powder X-ray diffraction by Ta 2 O 5 Ta 2 for (tetragonal) O (cubic) (Ta 2 O 5 29.6 degrees near the (0012 The ratio of the peak intensity of the (220) plane in the vicinity of 38 degrees of Ta 2 O to the peak intensity of the () plane (I Ta2O / I Ta2O5 )) is preferably 0.02 to 0.2. When the peak intensity ratio by the powder X-ray diffraction is within the above range, the effect of reducing the degree of vacuum in the vacuum deposition apparatus and reducing the amount of splash during vacuum deposition is enhanced. In the present invention, the peak intensity ratio of XRD is calculated as the peak intensity by subtracting the 0.5th power of the background from the 0.5th power of each peak height (peak intensity of each peak = Peak height of each peak to the 0.5th power-0.5th power of the background).

本発明の酸化タンタル蒸着材としては、以下に示す本発明の酸化タンタル蒸着材の製造方法により製造されたものが、真空蒸着の際に、真空蒸着装置内の真空度が落ち難く、且つ、スプラッシュ量が少ないという効果が高まる点で好ましい。   As the tantalum oxide vapor deposition material of the present invention, those produced by the method for producing a tantalum oxide vapor deposition material of the present invention shown below, the vacuum degree in the vacuum vapor deposition apparatus is difficult to drop during vacuum deposition, and splash It is preferable in that the effect that the amount is small increases.

本発明の酸化タンタル蒸着材の製造方法は、Taを、真空雰囲気下で電子ビーム溶解法によって溶解して、酸化タンタル蒸着材を得る酸化タンタル蒸着材の製造方法である。 The method for producing a tantalum oxide vapor deposition material of the present invention is a method for producing a tantalum oxide vapor deposition material by dissolving Ta 2 O 5 by an electron beam melting method in a vacuum atmosphere to obtain a tantalum oxide vapor deposition material.

本発明の酸化タンタル蒸着材の製造方法において、電子ビームが照射されるTa(以下、原料Taとも記載)は、純度が可能な限り高いものが好ましい。また、該原料Taとして、市販のものを適宜使用できる。 In the method for producing a tantalum oxide vapor deposition material of the present invention, Ta 2 O 5 irradiated with an electron beam (hereinafter also referred to as raw material Ta 2 O 5 ) is preferably as high in purity as possible. Further, as the raw material Ta 2 O 5, commercially available ones may be used as appropriate.

該原料Taは、電子ビーム溶解の際に、該原料Taが飛散するのを防ぐために、粒状やペレット状等に成形されたものが好ましい。 The raw material Ta 2 O 5 is preferably formed into a granular shape or a pellet shape in order to prevent the raw material Ta 2 O 5 from scattering during electron beam melting.

そして、本発明の酸化タンタル蒸着材の製造方法では、該原料Taに、真空雰囲気下で、電子ビームを照射して該原料Taを溶解する、電子ビーム溶解法により該原料Taの溶解を行う。なお、該原料Taに、電子ビームを照射して該原料Taの溶解を行う際の真空雰囲気とは、1×10−4torr以下の真空度である。 In the method for producing a tantalum oxide vapor deposition material of the present invention, the raw material Ta 2 O 5 is irradiated with an electron beam in a vacuum atmosphere to dissolve the raw material Ta 2 O 5. Dissolve Ta 2 O 5 . Incidentally, the raw material Ta 2 O 5, and the vacuum atmosphere in which by irradiating an electron beam performs the dissolution of the raw material Ta 2 O 5, a degree of vacuum of 1 × 10 -4 torr.

本発明の酸化タンタル蒸着材の製造方法において、電子ビーム溶解法により該原料Taの溶解を行う方法としては、特に制限されず、通常、金属の溶解に用いられている電子ビーム溶解法を用いることができる。また、本発明の酸化タンタル蒸着材の製造方法において、電子ビーム溶解法を行うための装置としては、特に制限されず、通常、電子ビーム溶解法に用いられる装置を用いることができる。該原料Taの溶融時間は25秒以下で充分であり、短時間で製造が可能であるため、酸化タンタル蒸着材の生産性を向上することができ、スプラッシュの発生を少なくすることができる。 In the method for producing a tantalum oxide vapor deposition material of the present invention, the method for melting the raw material Ta 2 O 5 by the electron beam melting method is not particularly limited, and is usually an electron beam melting method used for melting a metal. Can be used. Moreover, in the manufacturing method of the tantalum oxide vapor deposition material of this invention, it does not restrict | limit especially as an apparatus for performing an electron beam melting method, The apparatus normally used for an electron beam melting method can be used. Since the melting time of the raw material Ta 2 O 5 is 25 seconds or less and can be produced in a short time, the productivity of the tantalum oxide vapor deposition material can be improved and the occurrence of splash can be reduced. it can.

また、電子ビーム溶解法による該原料Taの溶解を繰り返し行ってもよい。また、新しい該原料Taへ、電子ビーム溶解法により該原料Taを溶解して得たTaを加えた後、両者の混合物を電子ビーム溶解法により溶解してもよい。粉末X線回折によるTaの(0012)面のピーク強度に対するTaOの(220)面のピーク強度の比(ITa2O/ITa2O5)は、溶解時間や繰り返しの溶解回数により変動する。溶解時間を短くすることにより、該ピーク強度の比(ITa2O/ITa2O5)を0.02まで小さくすることができる。しかし、0.02より小さくすることは困難である。また、電子ビーム溶解法により該原料Taを溶解して得たTaを、再度、電子ビーム溶解法により溶解するように、電子ビーム溶解法による溶解を繰り返し行う(溶解時間を長くする)と、該ピーク強度の比(ITa2O/ITa2O5)は増加する。溶解時間を25秒以下とすると、Taのピーク強度の比(ITa2O/ITa2O5)が0.2以下とすることができる。原料Taの溶融時間が25秒を越える場合、Taのピーク強度の比(ITa2O/ITa2O5)が0.2を越えることがあり、この場合、蒸着膜を製造する際、スプラッシュの発生量が多くなる傾向となる。 Further, the raw material Ta 2 O 5 may be repeatedly dissolved by the electron beam melting method. Moreover, the new raw material Ta 2 O 5, was added to Ta 2 O 5 obtained by dissolving the raw material Ta 2 O 5 by an electron beam melting method, even if the mixture thereof was dissolved by the electron beam melting method Good. The ratio of the peak intensity of the (220) plane of Ta 2 O to the peak intensity of the (0012) plane of Ta 2 O 5 by powder X-ray diffraction (I Ta2O / I Ta2O5 ) varies depending on the dissolution time and the number of repeated dissolutions. . By shortening the dissolution time, the ratio of the peak intensity (I Ta2O / I Ta2O5) can be reduced to 0.02. However, it is difficult to make it smaller than 0.02. In addition, Ta 2 O 5 obtained by melting the raw material Ta 2 O 5 by the electron beam melting method is repeatedly melted by the electron beam melting method so that the Ta 2 O 5 is melted again by the electron beam melting method (the melting time is reduced). The ratio of peak intensities (I Ta2O / I Ta2O5 ) increases with increasing length . When the dissolution time is 25 seconds or less, the Ta 2 O 5 peak intensity ratio (I Ta2O / I Ta2O5 ) can be 0.2 or less. When the melting time of the raw material Ta 2 O 5 exceeds 25 seconds, the ratio of the peak intensity of Ta 2 O 5 (I Ta2O / I Ta2O5 ) may exceed 0.2. In this case, when producing a deposited film The amount of splash generated tends to increase.

本発明の酸化タンタル蒸着材の製造方法では、該原料Taを電子ビーム溶解法により溶解する前に、該原料Taの吸着ガスを除去する、吸着ガス除去処理を行うことが、電子ビーム溶解法の溶解処理時間を短縮できる点および電子ビームのアークが安定する点で好ましい。更に、本発明の酸化タンタル蒸着材の製造方法では、該吸着ガス除去処理を、真空雰囲気下、200℃以上で該原料Taを加熱することにより行うことが特に好ましい。該吸着ガス除去処理を、真空雰囲気下、200℃以上で該原料Taを加熱して行う際の真空度は、1×10−2torr以下であり、加熱温度は、好ましくは200〜500℃であり、特に好ましくは300〜400℃であり、加熱時間は、特に制限されないが、1時間以上であれば十分である。また、吸着ガス除去処理を行った後、水等の吸着を防ぐために、吸着ガスが除去された該原料Taを、速やかにポリエチレンシート等で真空包装する。 In the method for producing a tantalum oxide vapor deposition material of the present invention, before the raw material Ta 2 O 5 is melted by the electron beam melting method, an adsorbed gas removing process for removing the adsorbed gas of the raw material Ta 2 O 5 can be performed. It is preferable in that the melting time of the electron beam melting method can be shortened and the arc of the electron beam is stabilized. Furthermore, in the method for producing a tantalum oxide vapor deposition material of the present invention, it is particularly preferable to perform the adsorption gas removal treatment by heating the raw material Ta 2 O 5 at 200 ° C. or higher in a vacuum atmosphere. The degree of vacuum when the adsorption gas removal treatment is performed by heating the raw material Ta 2 O 5 at 200 ° C. or higher in a vacuum atmosphere is 1 × 10 −2 torr or less, and the heating temperature is preferably 200 to 200 ° C. It is 500 ° C., particularly preferably 300 to 400 ° C., and the heating time is not particularly limited, but one hour or more is sufficient. In addition, after performing the adsorption gas removal treatment, the raw material Ta 2 O 5 from which the adsorption gas has been removed is quickly vacuum-packed with a polyethylene sheet or the like in order to prevent adsorption of water or the like.

そして、本発明の酸化タンタル蒸着材の製造方法では、該原料Taを、真空雰囲気下で電子ビーム溶解法により溶解した後、不活性ガス雰囲気中で炉冷することにより、Ta相とTaO相との混合相である酸化タンタル蒸着材が得られる。 Then, in the manufacturing method of the tantalum oxide evaporation materials of the present invention, the raw material Ta 2 O 5, was dissolved by electron beam melting method under a vacuum atmosphere, by furnace cooling in an inert gas atmosphere, Ta 2 O A tantalum oxide vapor deposition material that is a mixed phase of the five phases and the Ta 2 O phase is obtained.

本発明の酸化タンタル蒸着材の製造方法により得られる酸化タンタル蒸着材は、粉末X線回折によるTaの(0012)面のピーク強度に対するTaOの(220)面のピーク強度の比(ITa2O/ITa2O5)が、0.02〜0.2である。 The ratio of tantalum oxide evaporation materials of the production method by the resulting tantalum oxide evaporation material is, Ta 2 O of (220) by powder X-ray diffraction to the peak intensity of the (0012) plane of the Ta 2 O 5 surface of the peak intensity of the present invention (I Ta2O / I Ta2O5) is 0.02 to 0.2.

本発明の酸化タンタル蒸着材膜の製造方法は、蒸着材として前記本発明の酸化タンタル蒸着材を用いて、真空蒸着により酸化タンタルの蒸着を行い、基材に酸化タンタル蒸着膜を形成させる酸化タンタル蒸着膜の製造方法である。   The method for producing a tantalum oxide vapor deposition material film according to the present invention comprises using the tantalum oxide vapor deposition material according to the present invention as a vapor deposition material, depositing tantalum oxide by vacuum deposition, and forming a tantalum oxide vapor deposition film on the substrate. It is a manufacturing method of a vapor deposition film.

本発明の酸化タンタル蒸着材膜の製造方法において、蒸着膜が形成される該基材としては、特に制限されず、通常、酸化タンタルの蒸着に用いられる基材が挙げられる。   In the method for producing a tantalum oxide vapor deposition material film of the present invention, the substrate on which the vapor deposition film is formed is not particularly limited, and a substrate usually used for vapor deposition of tantalum oxide can be mentioned.

本発明の酸化タンタル蒸着材膜の製造方法において、真空蒸着を行う方法としては、特に制限されず、通常、酸化タンタル蒸着膜を形成するための真空蒸着方法を用いることができ、例えば、真空雰囲気下で該蒸着材を加熱する方法、真空雰囲気下で例えば水冷銅ルツボに充填された該蒸着材に電子ビームを照射する方法、真空雰囲気下で該蒸着材を加熱しつつ該蒸着材に電子ビームを照射する方法等が挙げられる。なお、該真空蒸着を行う際の真空雰囲気とは、1×10−4torr以下の真空度である。 In the method for producing a tantalum oxide vapor deposition material film of the present invention, the method for performing vacuum vapor deposition is not particularly limited, and a vacuum vapor deposition method for forming a tantalum oxide vapor deposition film can be usually used. A method of heating the vapor deposition material under a vacuum atmosphere, a method of irradiating the vapor deposition material filled in, for example, a water-cooled copper crucible under a vacuum atmosphere, and an electron beam applied to the vapor deposition material while heating the vapor deposition material under a vacuum atmosphere. And the like. In addition, the vacuum atmosphere at the time of performing this vacuum vapor deposition is a vacuum degree of 1 × 10 −4 torr or less.

本発明の酸化タンタル蒸着膜の製造方法において、真空蒸着を行う装置としては、特に制限されず、通常、酸化タンタルの真空蒸着に用いられる装置を用いることができる。   In the method for producing a tantalum oxide vapor deposition film of the present invention, the apparatus for performing vacuum vapor deposition is not particularly limited, and an apparatus usually used for vacuum vapor deposition of tantalum oxide can be used.

本発明の酸化タンタル蒸着膜の製造方法は、(i)蒸着材として溶製材(一旦溶解した材料)を用いるため、蒸着装置内での溶解性がよく、短時間で成膜準備を行うことができ、(ii)蒸着時の均一性が向上し、蒸着で歩留が向上すること及び蒸着装置内での真空劣化が生じ難いことで、処理時間の短縮が図れ、(iii)スプラッシュの発生が少ないため、電子ビームガン等への損傷が少なくなり、(iv)比較的安定した成膜レート(速度)を保持でき、(v)TaOが存在するため、イオン銃等を用いた酸素導入等を行うイオンアシスト法の使用を好ましく適用できる等の特徴を有する。 The method for producing a tantalum oxide vapor deposition film according to the present invention uses (i) a melted material (a material once dissolved) as a vapor deposition material, so that the solubility in the vapor deposition apparatus is good and preparation for film formation can be performed in a short time. (Ii) Uniformity at the time of vapor deposition is improved, the yield is improved by vapor deposition, and vacuum deterioration in the vapor deposition apparatus is less likely to occur, so that the processing time can be shortened, and (iii) occurrence of splash occurs. for small, damage to the electronic beam gun or the like is reduced, (iv) relatively stable to hold the film formation rate (speed) of, (v) for Ta 2 O is present, the introduction of oxygen or the like using an ion gun or the like The use of an ion assist method for performing the above is preferable.

そして、本発明の酸化タンタル蒸着膜の製造方法を行うことにより、該基材に酸化タンタル蒸着膜が形成される。このようにして得られる酸化タンタル蒸着膜は、膜厚等の均一性が高く、優れた光学特性を有する蒸着膜である。   And the tantalum oxide vapor deposition film is formed in this base material by performing the manufacturing method of the tantalum oxide vapor deposition film of this invention. The tantalum oxide vapor-deposited film thus obtained is a vapor-deposited film having high uniformity such as film thickness and having excellent optical characteristics.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

[実施例1]
(蒸着材の製造)
平均粒径1μm以下のTa粉末(純度99.9%以上)を、プレス成形装置を用い、直径φ100mm、厚さ50mmの錠剤形ペレットとした。次いで、このペレットを銅製の水冷るつぼにセットした後、炉内真空度が10−5torr台となるまで真空引きを行った。次いで、このペレットを電子ビーム溶解法により溶解し、蒸着材を得た。このとき、電子ビームをペレットの端部より徐々に照射し、該成形体を溶解した。該ペレットの電子ビーム照射部分の溶融時間は約30秒であった。
得られた蒸着材を粉末X線回折法により以下の測定条件で測定した。その結果、該蒸着材は、Ta(正方晶)とTaO(立方晶)との混合相であった。Taの29.6度付近の(0012)面のピーク強度(ピークの高さの0.5乗からバックグランドの0.5乗を引いた値)に対する、TaOの38度付近の(220)面のピーク強度(ピークの高さの0.5乗からバックグランドの0.5乗を引いた値)の比(ITa2O/ITa2O5)は0.13であった。
<X線回折測定条件>
回折装置 RAD−1C(株式会社リガク製)
X線管球 Cu
管電圧・管電流 40kV、30mA
スリット DS-SS:1度、RS:0.15mm
モノクロメータ グラファイト
測定間隔 0.002度
計数方法 定時計数法
[Example 1]
(Manufacture of vapor deposition material)
Ta 2 O 5 powder (purity 99.9% or more) having an average particle size of 1 μm or less was formed into tablet-shaped pellets having a diameter of 100 mm and a thickness of 50 mm using a press molding apparatus. Next, after setting the pellets in a copper water-cooled crucible, vacuuming was performed until the degree of vacuum in the furnace reached 10 −5 torr. Next, this pellet was melted by an electron beam melting method to obtain a vapor deposition material. At this time, an electron beam was gradually irradiated from the end of the pellet to dissolve the molded body. The melting time of the electron beam irradiated portion of the pellet was about 30 seconds.
The obtained vapor deposition material was measured by the powder X-ray diffraction method under the following measurement conditions. As a result, the vapor deposition material was a mixed phase of Ta 2 O 5 (tetragonal) and Ta 2 O (cubic). For Ta 2 O in the vicinity of 29.6 degrees 5 (0012) plane of the peak intensity (minus the square root of the background from 0.5 square of the peak heights), around 38 degrees Ta 2 O The ratio (I Ta2O / I Ta2O5 ) of the peak intensity of (220) plane (the value obtained by subtracting the 0.5th power of the background from the 0.5th power of the peak height) was 0.13.
<X-ray diffraction measurement conditions>
Diffraction device RAD-1C (manufactured by Rigaku Corporation)
X-ray tube Cu
Tube voltage / tube current 40kV, 30mA
Slit DS-SS: 1 degree, RS: 0.15mm
Monochromator Graphite Measurement interval 0.002 degree Counting method Constant clock method

(蒸着膜の製造)
次いで、該蒸着材を粉砕し、粉砕後の蒸着材を真空蒸着装置内に設置した。次いで、水冷された銅製るつぼへ粉砕した蒸着材12gを投入後、真空度10−5torrまで減圧し、その後、電流400mA、電圧6kVの出力にて、電子銃(日本電子株式会社製)で、蒸着材に電子ビームを照射することにより、ライナ中で溶解してベースを作成し、石英ガラス基板上に真空蒸着して蒸着膜の成膜を行った。真空蒸着の際のスプラッシュの発生状態、真空状態の劣化を溶解中の圧力変動(Pa)により評価した。結果を表1に示す。
なお、スプラッシュの発生状態を、以下のようにして評価した。焼結体(比較例2)を「2:スプラッシュ発生多い。」とし、「5:スプラッシュ発生なし。」、「4:スプラッシュ発生少ない。」、「3:スプラッシュ発生やや多い。」、「2:スプラッシュ発生多い。」、「1:スプラッシュ発生かなり多い。」のように、相対的評価を行った。
(Manufacture of evaporated film)
Next, the vapor deposition material was pulverized, and the pulverized vapor deposition material was placed in a vacuum vapor deposition apparatus. Next, 12 g of the vapor-deposited material was put into a water-cooled copper crucible, and then the pressure was reduced to a vacuum degree of 10 −5 torr. By irradiating the vapor deposition material with an electron beam, it was dissolved in a liner to form a base, and a vapor deposition film was formed by vacuum vapor deposition on a quartz glass substrate. The state of occurrence of splash during vacuum deposition and the deterioration of the vacuum state were evaluated by pressure fluctuation (Pa) during dissolution. The results are shown in Table 1.
In addition, the occurrence state of splash was evaluated as follows. For the sintered body (Comparative Example 2), “2: Splash generation is high”, “5: Splash generation is low”, “4: Splash generation is low”, “3: Splash generation is high”, “2: Splash generation is low”. Relative evaluations were made, such as “Many occurrences of splash” and “1: Many occurrences of splash”.

[比較例1]
(蒸着材の製造)
平均粒径10μm 以下のTa粉末(純度99.9%以上)を、プレス成形装置を用い、直径φ60mm、厚さ20mmの円柱状の成形体とした。次いで、この成形体を非消耗アーク炉の銅製の水冷ハースに100g充填し、炉内をアルゴンガスで完全に置換した後、アルゴンによって大気圧より若干加圧状態で保持ししつつ、電流550A、電圧55V を印加して20分間アーク溶解し、その後、炉内の雰囲気をそのまま保持して炉冷し、蒸着材を得た。粉末X線回折法で測定した結果、該蒸着材はTa(正方晶)であった。
(蒸着膜の製造)
上記のようにして得られた蒸着材を用いて、実施例1と同様の方法で行った。結果を表1に示す。
[Comparative Example 1]
(Manufacture of vapor deposition material)
Ta 2 O 5 powder (purity 99.9% or more) having an average particle size of 10 μm or less was formed into a cylindrical molded body having a diameter of 60 mm and a thickness of 20 mm using a press molding apparatus. Next, 100 g of this compact was filled in a copper water-cooled hearth of a non-consumable arc furnace, and the inside of the furnace was completely replaced with argon gas. A voltage of 55 V was applied for arc melting for 20 minutes, and then the atmosphere in the furnace was kept as it was and the furnace was cooled to obtain a vapor deposition material. As a result of measurement by a powder X-ray diffraction method, the vapor deposition material was Ta 2 O 5 (tetragonal crystal).
(Manufacture of evaporated film)
It carried out by the method similar to Example 1 using the vapor deposition material obtained as mentioned above. The results are shown in Table 1.

[比較例2]
(蒸着材)
市販のTa焼結体を蒸着材とした。粉末X線回折法で測定した結果、該市販のTa焼結体は、Ta(正方晶)であった。
(蒸着膜の製造)
市販のTa焼結体を用いて、実施例1と同様の方法で行った。結果を表1に示す。
[Comparative Example 2]
(Vapor deposition material)
A commercially available Ta 2 O 5 sintered body was used as a vapor deposition material. As a result of measurement by a powder X-ray diffraction method, the commercially available Ta 2 O 5 sintered body was Ta 2 O 5 (tetragonal crystal).
(Manufacture of evaporated film)
Using a commercially available Ta 2 O 5 sintered body was obtained in the same manner as in Example 1. The results are shown in Table 1.

[比較例3]
(蒸着材の製造)
比較例1の平均粒径10μm以下のTa粉末(純度99.9%以上)の代わりに、Ta粉末(純度99.9%以上)と金属Ta粉末(純度99.9%以上)を質量比で100:5の割合で混合した混合粉末を用い、比較例1と同様の方法で行って、蒸着材を得た。
(蒸着膜の製造)
上記のようにして得られた蒸着材を用いて、実施例1と同様の方法で行った。結果を表1に示す。
[Comparative Example 3]
(Manufacture of vapor deposition material)
Instead of the average particle diameter of 10μm or less of Ta 2 O 5 powder of Comparative Example 1 (purity 99.9%), Ta 2 O 5 powder (purity 99.9%) and the metal Ta powder (purity 99.9% The above was performed in the same manner as in Comparative Example 1 using a mixed powder obtained by mixing the above at a mass ratio of 100: 5 to obtain a vapor deposition material.
(Manufacture of evaporated film)
It carried out by the method similar to Example 1 using the vapor deposition material obtained as mentioned above. The results are shown in Table 1.

[比較例4]
(蒸着材の製造)
比較例1の平均粒径10μm以下のTa粉末(純度99.9%以上)の代わりに、Ta粉末(純度99.9%以上)と金属Ta粉末(純度99.9%以上)を質量比で100:15の割合で混合した混合粉末を用い、比較例1と同様の方法で行って、蒸着材を得た。
(蒸着膜の製造)
上記のようにして得られた蒸着材を用いて、実施例1と同様の方法で行った。結果を表1に示す。
[Comparative Example 4]
(Manufacture of vapor deposition material)
Instead of the average particle diameter of 10μm or less of Ta 2 O 5 powder of Comparative Example 1 (purity 99.9%), Ta 2 O 5 powder (purity 99.9%) and the metal Ta powder (purity 99.9% The above was carried out in the same manner as in Comparative Example 1 using a mixed powder obtained by mixing 100) at a mass ratio of 100: 15 to obtain a vapor deposition material.
(Manufacture of evaporated film)
It carried out by the method similar to Example 1 using the vapor deposition material obtained as mentioned above. The results are shown in Table 1.

[比較例5]
(蒸着材の製造)
比較例1の平均粒径10μm以下のTa粉末(純度99.9%以上)の代わりに、Ta粉末(純度99.9%以上)と金属Ta粉末(純度99.9%以上)を質量比で100:20の割合で混合した混合粉末を用い、比較例1と同様の方法で行って、蒸着材を得た。
(蒸着膜の製造)
上記のようにして得られた蒸着材を用いて、実施例1と同様の方法で行った。結果を表1に示す。
[Comparative Example 5]
(Manufacture of vapor deposition material)
Instead of the average particle diameter of 10μm or less of Ta 2 O 5 powder of Comparative Example 1 (purity 99.9%), Ta 2 O 5 powder (purity 99.9%) and the metal Ta powder (purity 99.9% The above was performed in the same manner as in Comparative Example 1 using a mixed powder obtained by mixing 100) at a mass ratio of 100: 20 to obtain a vapor deposition material.
(Manufacture of evaporated film)
It carried out by the method similar to Example 1 using the vapor deposition material obtained as mentioned above. The results are shown in Table 1.

Figure 0005284822
Figure 0005284822

1)スプラッシュ量の評価:「5:スプラッシュ発生なし。」、「4:スプラッシュ発生少ない。」、「3:スプラッシュ発生やや多い。」、「2:スプラッシュ発生多い。」、「1:スプラッシュ発生かなり多い。」 1) Evaluation of the splash amount: “5: Splash does not occur”, “4: Splash does not occur”, “3: Splash occurs slightly”, “2: Splash occurs”, “1: Splash occurs considerably Many. "

実施例1の蒸着材を用いると、スプラッシュ量が少なく、また、真空度を高く保つこと
ができる。
When the vapor deposition material of Example 1 is used, the amount of splash is small and the degree of vacuum can be kept high.

[実施例2]
(蒸着材の製造)
平均粒径10μm以下のTa粉末(純度99.9%以上)を、プレス成形装置を用い、直径φ60mm、厚さ20mmの円柱状成形体とした。このTaの成形体を真空加熱炉にて、真空度:1×10−2Torr、処理温度:300℃、処理時間:1時間で加熱し、吸着ガス除去処理を行った。その後、処理物した該成形体をアルミニウム蒸着されたポリエチレンシートで真空包装を行い保管した。
次いで、該成形体をポリエチレンシートより取り出し、銅製の水冷るつぼにセットした後、炉内真空度が10−5torr台となるまで真空引きを行った。次いで、該成形体を電子ビーム溶解法により溶解し、蒸着材を得た。このとき、電子ビームを成形体の端部より徐々に照射し、該成形体を溶解した。該成形体の電子ビーム照射部分の溶融時間は約5秒であった。そのときの該成形体全体の溶解時間、真空劣化の有無、アーキングの状態を評価した。アーキング状態とは、電子ビームを安定して連続的に照射できるか否かを評価したものである。
(蒸着膜の製造)
上記のようにして得られた蒸着材を用いて、実施例1と同様の方法で行った。結果を表2に示す。
[Example 2]
(Manufacture of vapor deposition material)
Ta 2 O 5 powder (purity 99.9% or more) having an average particle size of 10 μm or less was formed into a cylindrical molded body having a diameter of 60 mm and a thickness of 20 mm using a press molding apparatus. The molded body of Ta 2 O 5 was heated in a vacuum heating furnace at a degree of vacuum of 1 × 10 −2 Torr, a processing temperature of 300 ° C., and a processing time of 1 hour to perform an adsorption gas removal process. Then, the processed product was vacuum-packed with an aluminum-deposited polyethylene sheet and stored.
Next, the molded body was taken out from the polyethylene sheet, set in a copper water-cooled crucible, and then evacuated until the degree of vacuum in the furnace reached 10 −5 torr. Next, the compact was melted by an electron beam melting method to obtain a vapor deposition material. At this time, the electron beam was gradually irradiated from the end of the molded body to melt the molded body. The melting time of the electron beam irradiated portion of the molded body was about 5 seconds. The melting time of the whole molded body at that time, the presence or absence of vacuum deterioration, and the state of arcing were evaluated. The arcing state is an evaluation of whether or not an electron beam can be stably irradiated continuously.
(Manufacture of evaporated film)
It carried out by the method similar to Example 1 using the vapor deposition material obtained as mentioned above. The results are shown in Table 2.

[実施例3]
(蒸着材の製造)
吸着ガス除去処理において、処理時間を6時間とする以外は、実施例2と同様の方法で行った。なお、該成形体の電子ビーム照射部分の溶融時間は約5秒であった。
(蒸着膜の製造)
上記のようにして得られた蒸着材を用いて、実施例1と同様の方法で行った。結果を表2に示す。
[Example 3]
(Manufacture of vapor deposition material)
The adsorption gas removal treatment was performed in the same manner as in Example 2 except that the treatment time was 6 hours. The melting time of the electron beam irradiated portion of the molded body was about 5 seconds.
(Manufacture of evaporated film)
It carried out by the method similar to Example 1 using the vapor deposition material obtained as mentioned above. The results are shown in Table 2.

[実施例4]
(蒸着材の製造)
吸着ガス除去処理において、処理温度を500℃とする以外は、実施例2と同様の方法で行った。なお、該成形体の電子ビーム照射部分の溶融時間は約5秒であった。
(蒸着膜の製造)
上記のようにして得られた蒸着材を用いて、実施例1と同様の方法で行った。結果を表2に示す。
[Example 4]
(Manufacture of vapor deposition material)
The adsorption gas removal treatment was performed in the same manner as in Example 2 except that the treatment temperature was 500 ° C. The melting time of the electron beam irradiated portion of the molded body was about 5 seconds.
(Manufacture of evaporated film)
It carried out by the method similar to Example 1 using the vapor deposition material obtained as mentioned above. The results are shown in Table 2.

[実施例5]
(蒸着材の製造)
吸着ガス除去処理において、処理温度を100℃とする以外は、実施例2と同様の方法で行った。なお、該成形体の電子ビーム照射部分の溶融時間は約5秒であった。
(蒸着膜の製造)
上記のようにして得られた蒸着材を用いて、実施例1と同様の方法で行った。結果を表2に示す。
[Example 5]
(Manufacture of vapor deposition material)
The adsorption gas removal treatment was performed in the same manner as in Example 2 except that the treatment temperature was 100 ° C. The melting time of the electron beam irradiated portion of the molded body was about 5 seconds.
(Manufacture of evaporated film)
It carried out by the method similar to Example 1 using the vapor deposition material obtained as mentioned above. The results are shown in Table 2.

[実施例6]
(蒸着材の製造)
吸着ガス除去処理を行わなかったこと以外は、実施例2と同様の方法で行った。なお、該成形体の電子ビーム照射部分の溶融時間は約5秒であった。
(蒸着膜の製造)
上記のようにして得られた蒸着材を用いて、実施例1と同様の方法で行った。結果を表2に示す。
[Example 6]
(Manufacture of vapor deposition material)
The same method as in Example 2 was performed except that the adsorption gas removal treatment was not performed. The melting time of the electron beam irradiated portion of the molded body was about 5 seconds.
(Manufacture of evaporated film)
It carried out by the method similar to Example 1 using the vapor deposition material obtained as mentioned above. The results are shown in Table 2.

Figure 0005284822
Figure 0005284822

実施例2〜6の電子ビーム溶解により得られた蒸着材の組成は、実施例1と同様に、Ta(正方晶)とTaOとの混合相であり、Taの29.6度付近の(0012)面のピーク強度に対する、TaOの38度付近の(220)面のピーク強度(ピークの高さの0.5乗からバックグランドの0.5乗を引いた値)の比(ITa2O/ITa2O5)は0.13であった。また、真空蒸着時のスプラッシュも実施例1と同様に少なく、真空度の劣化も実施例1と同様であった。その中で、実施例2〜4の蒸着材は、安定して短時間に電子ビーム溶解法により溶解を行うことができ、製造工程の時間短縮が可能である。 The composition of the resulting vapor deposition material by electron beam melting of Examples 2-6, in the same manner as in Example 1, a mixed phase of Ta 2 O 5 and (tetragonal) and Ta 2 O, the Ta 2 O 5 The peak intensity of (220) plane near 38 degrees of Ta 2 O with respect to the peak intensity of (0012) plane near 29.6 degrees (the 0.5th power of the background is subtracted from the 0.5th power of the peak height). ratio value) (I ta2O / I Ta2O5) was 0.13. Moreover, the splash at the time of vacuum deposition was also small as in Example 1, and the degree of vacuum was also the same as in Example 1. Among them, the vapor deposition materials of Examples 2 to 4 can be stably dissolved by the electron beam melting method in a short time, and the manufacturing process time can be shortened.

[実施例7]
(蒸着材の製造)
実施例2の蒸着材を再度、銅製の水冷るつぼにセットした後、炉内真空度が10−5torr台となるまで真空引きを行い、次いで、該成形体を電子ビーム溶解法により溶解、冷却した。さらにこの電子ビーム溶解法による溶解を行い、蒸着材を得た。このとき、電子ビームを成形体の端部より徐々に照射し、該成形体を溶解した。該成形体の電子ビーム照射部分の溶融時間は約5秒(1回の溶解において)であった。すなわち、実施例7は3回の繰り返し電子ビーム溶解を行なったものである。
得られた蒸着材を粉末X線回折法により以下の測定条件で測定した。その結果、該蒸着材は、Ta(正方晶)とTaO(立方晶)との混合相であった。Taの29.6度付近の(0012)面のピーク強度に対する、TaOの38度付近の(220)面のピーク強度の比(ITa2O/ITa2O5)は0.20であった。
(蒸着膜の製造)
上記のようにして得られた蒸着材を用いて、実施例1と同様の方法で行った。結果を表3に示す。
[Example 7]
(Manufacture of vapor deposition material)
After the vapor deposition material of Example 2 was again set in a copper water-cooled crucible, vacuuming was performed until the degree of vacuum in the furnace reached the 10 −5 torr level, and then the compact was melted and cooled by an electron beam melting method. did. Further, melting by this electron beam melting method was performed to obtain a vapor deposition material. At this time, the electron beam was gradually irradiated from the end of the molded body to melt the molded body. The melting time of the electron beam irradiated portion of the molded body was about 5 seconds (in one melting). That is, Example 7 is obtained by performing electron beam melting three times.
The obtained vapor deposition material was measured by the powder X-ray diffraction method under the following measurement conditions. As a result, the vapor deposition material was a mixed phase of Ta 2 O 5 (tetragonal) and Ta 2 O (cubic). The ratio (I Ta2O / I Ta2O5 ) of the peak intensity of the (220) plane near 38 degrees of Ta 2 O to the peak intensity of the (0012) plane near 29.6 degrees of Ta 2 O 5 was 0.20. It was.
(Manufacture of evaporated film)
It carried out by the method similar to Example 1 using the vapor deposition material obtained as mentioned above. The results are shown in Table 3.

[実施例8]
(蒸着材の製造)
実施例7の蒸着材を再度、銅製の水冷るつぼにセットした後、炉内真空度が10−5torr台となるまで真空引きを行い、次いで、該成形体を電子ビーム溶解法により溶解、冷却した。さらにこの電子ビーム溶解法による溶解を行い、蒸着材を得た。このとき、電子ビームを成形体の端部より徐々に照射し、該成形体を溶解した。該成形体の電子ビーム照射部分の溶融時間は約5秒(1回の溶解において)であった。すなわち、実施例8は5回の繰り返し電子ビーム溶解を行なったものである。
得られた蒸着材を粉末X線回折法により以下の測定条件で測定した。その結果、該蒸着材は、Ta(正方晶)とTaO(立方晶)との混合相であった。Taの29.6度付近の(0012)面のピーク強度に対する、TaOの38度付近の(220)面のピーク強度の比(ITa2O/ITa2O5)は0.20であった。
(蒸着膜の製造)
上記のようにして得られた蒸着材を用いて、実施例1と同様の方法で行った。結果を表3に示す。
[実施例9]
(蒸着材の製造)
電子ビーム照射部分の溶融時間約5秒に代えて、約1秒とした以外は、実施例2と同様な方法で行った。
得られた蒸着材を粉末X線回折法により以下の測定条件で測定した。その結果、該蒸着材は、Ta(正方晶)とTaO(立方晶)との混合相であった。Taの29.6度付近の(0012)面のピーク強度に対する、TaOの38度付近の(220)面のピーク強度の比(ITa2O/ITa2O5)は0.02であった。
(蒸着膜の製造)
上記のようにして得られた蒸着材を用いて、実施例1と同様の方法で行った。結果を表3に示す。

Figure 0005284822
1)スプラッシュ量の評価:「5:スプラッシュ発生なし。」、「4:スプラッシュ発生少ない。」、「3:スプラッシュ発生やや多い。」、「2:スプラッシュ発生多い。」、「1:スプラッシュ発生かなり多い。」
[Example 8]
(Manufacture of vapor deposition material)
After the vapor deposition material of Example 7 was again set in a copper water-cooled crucible, vacuuming was performed until the degree of vacuum in the furnace reached the 10 −5 torr level, and then the compact was melted and cooled by an electron beam melting method. did. Further, melting by this electron beam melting method was performed to obtain a vapor deposition material. At this time, the electron beam was gradually irradiated from the end of the molded body to melt the molded body. The melting time of the electron beam irradiated portion of the molded body was about 5 seconds (in one melting). That is, in Example 8, the electron beam melting was repeated 5 times.
The obtained vapor deposition material was measured by the powder X-ray diffraction method under the following measurement conditions. As a result, the vapor deposition material was a mixed phase of Ta 2 O 5 (tetragonal) and Ta 2 O (cubic). The ratio (I Ta2O / I Ta2O5 ) of the peak intensity of the (220) plane near 38 degrees of Ta 2 O to the peak intensity of the (0012) plane near 29.6 degrees of Ta 2 O 5 was 0.20. It was.
(Manufacture of evaporated film)
It carried out by the method similar to Example 1 using the vapor deposition material obtained as mentioned above. The results are shown in Table 3.
[Example 9]
(Manufacture of vapor deposition material)
The same procedure as in Example 2 was performed, except that the melting time of the electron beam irradiated portion was about 1 second instead of about 5 seconds.
The obtained vapor deposition material was measured by the powder X-ray diffraction method under the following measurement conditions. As a result, the vapor deposition material was a mixed phase of Ta 2 O 5 (tetragonal) and Ta 2 O (cubic). The ratio of the peak intensity of (220) plane near 38 degrees of Ta 2 O (I Ta2O / I Ta2O5 ) to the peak intensity of (0012) plane near 29.6 degrees of Ta 2 O 5 was 0.02. It was.
(Manufacture of evaporated film)
It carried out by the method similar to Example 1 using the vapor deposition material obtained as mentioned above. The results are shown in Table 3.
Figure 0005284822
1) Evaluation of the splash amount: “5: Splash does not occur”, “4: Splash does not occur”, “3: Splash occurs slightly”, “2: Splash occurs”, “1: Splash occurs considerably Many. "

本発明によれば、真空蒸着の際に、真空蒸着装置の真空度が落ち難く、且つ、スプラッシュ量を少なくできるので、基材に酸化タンタル蒸着膜が蒸着された材料を、工業的に有利に製造できる。   According to the present invention, the degree of vacuum of the vacuum deposition apparatus is difficult to drop and the amount of splash can be reduced at the time of vacuum deposition. Therefore, the material in which the tantalum oxide deposition film is deposited on the substrate is industrially advantageous. Can be manufactured.

Claims (5)

Ta相とTaO相とを含有し、粉末X線回折によるTaの(0012)面のピーク強度に対するTaOの(220)面のピーク強度の比(ITa2O/ITa2O5)が、0.02〜0.2であることを特徴とする酸化タンタル蒸着材。 Ta 2 contains an O 5 phase and a Ta 2 O phase, the Ta 2 O 5 by powder X-ray diffraction (0012) of the peak intensity of the (220) plane of the Ta 2 O to the peak intensity of the plane ratio (I ta2o / I Ta2 O5) is tantalum oxide evaporation material, characterized in that 0.02 to 0.2. Taを、真空雰囲気下で電子ビーム溶解法によって溶解して、Ta 相とTa O相とを含有し、粉末X線回折によるTa の(0012)面のピーク強度に対するTa Oの(220)面のピーク強度の比(I Ta2O /I Ta2O5 )が、0.02〜0.2である酸化タンタル蒸着材を得ることを特徴とする酸化タンタル蒸着材の製造方法。 Ta 2 O 5 is melted by an electron beam melting method in a vacuum atmosphere , contains Ta 2 O 5 phase and Ta 2 O phase, Ta 2 O 5 peak of (0012) plane by powder X-ray diffraction Production of a tantalum oxide vapor deposition material, characterized in that a tantalum oxide vapor deposition material having a ratio of the peak intensity of the (220) face of Ta 2 O to the strength (I Ta2O / I Ta2O5 ) of 0.02 to 0.2 is obtained. Method. Taを吸着ガス除去処理し、次いで、真空雰囲気下で電子ビーム溶解法によって溶解して、Ta 相とTa O相とを含有し、粉末X線回折によるTa の(0012)面のピーク強度に対するTa Oの(220)面のピーク強度の比(I Ta2O /I Ta2O5 )が、0.02〜0.2である酸化タンタル蒸着材を得ることを特徴とする請求項2記載の酸化タンタル蒸着材の製造方法。 Ta 2 O 5 is subjected to adsorption gas removal treatment, and then dissolved by an electron beam melting method in a vacuum atmosphere to contain a Ta 2 O 5 phase and a Ta 2 O phase, and Ta 2 O 5 by powder X-ray diffraction. The ratio of the peak intensity of the (220) plane of Ta 2 O to the peak intensity of the (0012) plane (I Ta2O / I Ta2O5 ) of 0.02 to 0.2 is obtained. The manufacturing method of the tantalum oxide vapor deposition material of Claim 2. Taを、真空雰囲気下、200℃以上で加熱して、前記吸着ガス除去処理を行うことを特徴とする請求項3記載の酸化タンタル蒸着材の製造方法。 The method for producing a tantalum oxide vapor deposition material according to claim 3, wherein the adsorption gas removal treatment is performed by heating Ta 2 O 5 at 200 ° C or higher in a vacuum atmosphere. 請求項1記載の酸化タンタル蒸着材を用いて、真空蒸着を行い、酸化タンタル蒸着膜を得ることを特徴とする酸化タンタル蒸着膜の製造方法。   A method for producing a tantalum oxide vapor deposition film, wherein the tantalum oxide vapor deposition material according to claim 1 is vacuum-deposited to obtain a tantalum oxide vapor deposition film.
JP2009042478A 2008-03-03 2009-02-25 Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film Expired - Fee Related JP5284822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009042478A JP5284822B2 (en) 2008-03-03 2009-02-25 Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008052236 2008-03-03
JP2008052236 2008-03-03
JP2009042478A JP5284822B2 (en) 2008-03-03 2009-02-25 Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film

Publications (2)

Publication Number Publication Date
JP2009235564A JP2009235564A (en) 2009-10-15
JP5284822B2 true JP5284822B2 (en) 2013-09-11

Family

ID=41249866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009042478A Expired - Fee Related JP5284822B2 (en) 2008-03-03 2009-02-25 Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film

Country Status (1)

Country Link
JP (1) JP5284822B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259448A (en) * 1986-04-14 1987-11-11 Nippon Telegr & Teleph Corp <Ntt> Formation of insulating film
JP3160309B2 (en) * 1991-04-25 2001-04-25 キヤノン株式会社 Thin film formation method
JP4445193B2 (en) * 2002-11-19 2010-04-07 株式会社東芝 Vapor deposition material
JP4269830B2 (en) * 2003-07-09 2009-05-27 日亜化学工業株式会社 Vapor deposition material
DE102004049996A1 (en) * 2004-10-14 2006-04-20 Merck Patent Gmbh Vapor deposition material for the production of high-index layers

Also Published As

Publication number Publication date
JP2009235564A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP5169888B2 (en) Composite tungsten oxide target material and manufacturing method thereof
JP5764828B2 (en) Oxide sintered body and tablet processed the same
EP1683883B1 (en) Molybdenum alloy
JP2013173658A (en) Tin oxide-based sintered body and method for manufacturing the same
KR20180121478A (en) Sputtering target, method of producing sputtering target, amorphous film, method of producing amorphous film, method of producing crystalline film and crystalline film
KR20140039627A (en) Manufacturing method of a high purity and refining ru alloy powder
WO2019092969A1 (en) Tungsten sputtering target and method for producing same
JP5284822B2 (en) Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film
WO2017199873A1 (en) Metal evaporation material
JP5296619B2 (en) Method for producing titanium suboxide
JP5301211B2 (en) Method for producing titanium suboxide
JP2023165778A (en) Sputtering target and method for manufacturing sputtering target
JP5886473B2 (en) Ti-Al alloy sputtering target
JP5426136B2 (en) Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film
JP5426137B2 (en) Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film
JP2017088465A (en) Sintered body and method for producing the same, sputtering target and method for producing the same, and oxide thin film and method for producing the same
JP2016069700A (en) Ti-Al alloy sputtering target
JP5284821B2 (en) Metal oxide vapor deposition material, method for producing the same, and method for producing metal oxide vapor deposited film
JP3186793B2 (en) Method for producing titanium suboxide
JPH04224113A (en) Production of titanium oxide for vapor deposition
JP2016191142A (en) Cu-Ga ALLOY SPUTTERING TARGET, AND MANUFACTURING METHOD FOR THE Cu-Ga ALLOY SPUTTERING TARGET
JP4363168B2 (en) Titanium oxide sintered body and manufacturing method thereof
WO2014021374A1 (en) Oxide sintered body and tablet obtained by processing same
JP3160309B2 (en) Thin film formation method
JPH1161392A (en) Production of sputtering target for forming ru thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130530

R150 Certificate of patent or registration of utility model

Ref document number: 5284822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees