JP2001003157A - Film forming material of optical thin film and film forming method - Google Patents

Film forming material of optical thin film and film forming method

Info

Publication number
JP2001003157A
JP2001003157A JP11176209A JP17620999A JP2001003157A JP 2001003157 A JP2001003157 A JP 2001003157A JP 11176209 A JP11176209 A JP 11176209A JP 17620999 A JP17620999 A JP 17620999A JP 2001003157 A JP2001003157 A JP 2001003157A
Authority
JP
Japan
Prior art keywords
niobium
thin film
film
optical thin
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11176209A
Other languages
Japanese (ja)
Other versions
JP2001003157A5 (en
JP4298067B2 (en
Inventor
Tokiko Matsuda
時子 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Optron Inc
Original Assignee
Canon Inc
Optron Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Optron Inc filed Critical Canon Inc
Priority to JP17620999A priority Critical patent/JP4298067B2/en
Publication of JP2001003157A publication Critical patent/JP2001003157A/en
Publication of JP2001003157A5 publication Critical patent/JP2001003157A5/ja
Application granted granted Critical
Publication of JP4298067B2 publication Critical patent/JP4298067B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the quality and productivity of a niobium pentaoxide thin film. SOLUTION: Since, in vacuum deposition using a sintered body, or the like, of a niobium pentaoxide simple substance as an evaporating source, because of a large amt. of gas to be released at the time of premelt, long time is taken for stabilization, and the productivity is low, therefore, instead, an evaporating source obtained by mixing niobium pentaoxide with metallic niobium in the ratio of 99.5:0.5 to 45:55 and executing sintering or melting or by melting and decomposing niobium pentaoxide into a compsn. composed of 0.9 to 2.48 mol oxygen atoms to 1 mol of niobium is used. The amt. of the gas to be released at the time of premelt becomes small, and the compositional variation of the evaporating source in the process of a film forming stage can be evaded as well.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に真空蒸着等に
よって五酸化ニオブ薄膜を成膜するための光学薄膜の成
膜材料および成膜方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material and a method for forming an optical thin film for forming a niobium pentoxide thin film, particularly by vacuum evaporation.

【0002】[0002]

【従来の技術】五酸化ニオブ薄膜は高い屈折率を有し、
かつ薄膜としての耐久性も良好であるため、ミラー、フ
ィルター、反射防止膜等の光学薄膜としての需要が多
い。
2. Description of the Related Art A niobium pentoxide thin film has a high refractive index,
In addition, since the thin film has good durability, there is a great demand for optical thin films such as mirrors, filters, and antireflection films.

【0003】一般的に、五酸化ニオブ薄膜の成膜におい
ては、出発材料である蒸発源となる成膜材料として五酸
化ニオブの焼結体を使用し、これを真空室内において電
子銃で溶融蒸発させ、基板上に薄膜として堆積する真空
蒸着法が主として用いられる。
[0003] Generally, in forming a niobium pentoxide thin film, a sintered body of niobium pentoxide is used as a starting material as a film forming material to be an evaporation source, which is melted and evaporated by an electron gun in a vacuum chamber. Then, a vacuum deposition method of depositing a thin film on a substrate is mainly used.

【0004】ところが、従来から使用されてきた五酸化
ニオブの焼結体は、電子銃等によって溶融する際に、成
膜材料の溶融過程で大量の放出ガスが発生し、これがお
さまるまでに時間がかかる。すなわち、蒸発源の安定化
のために多くの時間を必要とする。
However, when a conventionally used sintered body of niobium pentoxide is melted by an electron gun or the like, a large amount of outgas is generated in the process of melting the film-forming material, and it takes a long time for this to subside. Take it. That is, much time is required for stabilizing the evaporation source.

【0005】従って、生産効率が悪く、しかも、蒸発源
が安定した溶融状態になるまでのプリメルトの段階で発
生する輻射熱が、特に、プラスティック基板等を使用す
る場合に、熱による変形や変質を起こしやすい。また、
五酸化ニオブの焼結体は、溶解・成膜を繰り返していく
うちに分解されて脱酸素化を起こすため、成膜回数が多
くなると組成が変化してしまい、光学薄膜の品質が安定
しない傾向がある。
[0005] Therefore, the production efficiency is low, and the radiant heat generated in the pre-melt stage until the evaporation source becomes a stable molten state causes deformation and deterioration due to heat, especially when a plastic substrate or the like is used. Cheap. Also,
Since the niobium pentoxide sintered body is decomposed and deoxygenated during repeated melting and film formation, the composition changes as the number of film formation increases, and the quality of the optical thin film tends to be unstable. There is.

【0006】[0006]

【発明が解決しようとする課題】このように、従来から
使用されてきた五酸化ニオブの焼結体は、蒸着源を溶融
するプリメルトの段階で大量にガスが放出されるため、
時間がかかるという未解決の課題がある。これは生産性
を悪くするばかりでなく、同時に大量の輻射熱を発生さ
せ、熱に弱いプラスティック基板に成膜する場合には、
基板に変形等の悪影響を及ぼすおそれがあり、さらに、
成膜中においてもガス量が安定せず、従って安定した光
学特性を得るのが難しい。
As described above, the conventionally used niobium pentoxide sintered body emits a large amount of gas during the pre-melt stage in which the evaporation source is melted.
There is an unsolved problem that it takes time. This not only deteriorates productivity, but also generates a large amount of radiant heat at the same time, and when forming a film on a plastic substrate that is weak to heat,
There is a risk of adverse effects such as deformation on the substrate,
Even during the film formation, the gas amount is not stable, and thus it is difficult to obtain stable optical characteristics.

【0007】本発明は上記従来の技術の有する未解決の
課題に鑑みてなされたものであり、放出ガスの発生とこ
れに伴なう幅射熱を抑えて、生産性が高く、しかも、組
成変動がなくて再現性のよい安定した成膜を行なうこと
のできる光学薄膜の成膜材料および成膜方法を提供する
ことを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and suppresses the generation of outgassing and the accompanying radiant heat, thereby increasing the productivity and the composition. It is an object of the present invention to provide a film forming material and a film forming method for an optical thin film capable of performing stable film formation with good reproducibility without fluctuation.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め本発明の光学薄膜の成膜材料は、ニオブ1molに対
して酸素原子0.9〜2.48molで構成される組成
を有することを特徴とする。
Means for Solving the Problems In order to achieve the above object, the film forming material for the optical thin film of the present invention has a composition comprising 0.9 to 2.48 mol of oxygen atoms per 1 mol of niobium. Features.

【0009】五酸化ニオブと金属ニオブを99.5:
0.5〜45:55の割合で混合して焼結したものであ
るとよい。
Niobium pentoxide and metal niobium are 99.5:
It is good to mix and sinter at a ratio of 0.5 to 45:55.

【0010】五酸化ニオブと金属ニオブを99.5:
0.5〜45:55の割合で混合して溶融したものでも
よい。
[0010] Niobium pentoxide and niobium metal are 99.5:
It may be mixed and melted at a ratio of 0.5 to 45:55.

【0011】五酸化ニオブをニオブ1molに対して酸
素原子0.9〜2.48molで構成される組成になる
ように脱酸素分解したものでもよい。
Niobium pentoxide may be deoxygenated to give a composition composed of 0.9 to 2.48 mol of oxygen atoms per mol of niobium.

【0012】[0012]

【作用】ニオブ1molに対して酸素原子0.9〜2.
48molで構成される組成を有することを特徴とする
成膜材料を蒸発源として用いることで、プリメルト等に
おける放出ガスの発生を抑制する。これによって、再現
性が良好で安定した光学特性をもつ五酸化ニオブの光学
薄膜を高収率で成膜できる。
[Effect] Oxygen atom 0.9-2.
By using a deposition material characterized by having a composition of 48 mol as an evaporation source, generation of outgassing in premelt or the like is suppressed. As a result, an optical thin film of niobium pentoxide having good reproducibility and stable optical characteristics can be formed at a high yield.

【0013】[0013]

【発明の実施の形態】本発明の実施の形態を説明する。Embodiments of the present invention will be described.

【0014】本発明の一実施の形態によれば、粒状ある
いは粉末状の五酸化ニオブと金属ニオブを用意して、両
者を混合比99.5:0.5〜45:55で混合し、焼
結または溶融する。あるいは、五酸化ニオブを脱酸素分
解することで、ニオブ1molに対して酸素原子0.9
〜2.48molで構成される組成を有する成膜材料を
製作し、これを蒸発源として真空密着等の成膜方法によ
って光学薄膜である五酸化ニオブ薄膜を成膜する。
According to one embodiment of the present invention, niobium pentoxide and niobium metal in the form of particles or powder are prepared, and the two are mixed at a mixing ratio of 99.5: 0.5 to 45:55. Knots or melts. Alternatively, niobium pentoxide is deoxygenated and decomposed to obtain an oxygen atom of 0.9 mol per mol of niobium.
A film-forming material having a composition of about 2.48 mol is manufactured, and a niobium pentoxide thin film, which is an optical thin film, is formed by using this as an evaporation source by a film-forming method such as vacuum adhesion.

【0015】混合材料としての五酸化ニオブおよび金属
ニオブは特に制限はなく、粒状、粉末状以外のものでも
使用できるが、混合しやすいように適度の粒度の粉末状
のものが望ましい。これらの平均粒径としては、五酸化
ニオブは0.3〜1.5μm程度で、金属ニオブは15
0μm以下程度であることが好ましい。また、五酸化ニ
オブと金属ニオブを焼結または溶融する前に、予め混合
しておくことが望ましい。混合方法としてはボールミル
を用いる方法等がある。
The niobium pentoxide and niobium metal as the mixed material are not particularly limited, and may be used in a form other than a granular or powdery form. However, a powdery form having an appropriate particle size is desirable so as to be easily mixed. The average particle size of niobium pentoxide is about 0.3 to 1.5 μm, and that of metallic niobium is about 15 μm.
It is preferably about 0 μm or less. In addition, it is desirable that niobium pentoxide and niobium metal be mixed before sintering or melting. Examples of the mixing method include a method using a ball mill.

【0016】五酸化ニオブと金属ニオブの配合割合は、
上記のように、五酸化ニオブに対して金属ニオブを9
9.5:0.5〜45:55の比率とするものである。
この場合、金属ニオブの重量比が0.5以下であると、
プリメルト時等におけるガス放出に対する効果があまり
無い。また、金属ニオブの重量比が55以上であると、
成膜した光学薄膜の光吸収率が増加してしまうため好ま
しくない。
The mixing ratio of niobium pentoxide and niobium metal is
As described above, 9 niobium metal is added to niobium pentoxide.
The ratio is 9.5: 0.5 to 45:55.
In this case, when the weight ratio of the metal niobium is 0.5 or less,
There is not much effect on gas release during premelt or the like. When the weight ratio of metal niobium is 55 or more,
It is not preferable because the optical absorptivity of the formed optical thin film increases.

【0017】上記の割合の混合物は、直接あるいは焼結
または溶融して、光学薄膜を成膜するための蒸発源とす
るものである。焼結する場合は、蒸着に使用しやすい形
状にプレス形状したうえで焼成するとよい。顆粒状にて
使用する場合には、混合物をプレス後目的の大きさに粉
砕したり、あるいは、焼成後に粉砕してもよい。
The mixture having the above ratio is used directly or by sintering or melting to form an evaporation source for forming an optical thin film. In the case of sintering, it is preferable to sinter after pressing into a shape easy to use for vapor deposition. When used in the form of granules, the mixture may be pulverized to a desired size after pressing, or may be pulverized after firing.

【0018】また、焼結や溶融を行なう場合は、不活性
雰囲気が望ましいため、真空中またはN2 やAr中で加
熱を行なう。加熱温度は金属ニオブの配合割合によって
も異なるが、800〜1300℃とすることが望まし
い。また、加熱時間は4〜6時間程度である。蒸発源と
して用いるときの形状としては、顆粒状、ペレット状、
板状等があげられるが、これらに限定するものではな
い。
When sintering or melting, an inert atmosphere is desirable, so that heating is performed in a vacuum or in N 2 or Ar. The heating temperature varies depending on the mixing ratio of niobium metal, but is preferably 800 to 1300 ° C. The heating time is about 4 to 6 hours. When used as an evaporation source, the shape may be granular, pellet,
Examples thereof include a plate shape and the like, but are not limited thereto.

【0019】(実施例1)五酸化ニオブ粉末(平均粒径
0.6μm)と、該五酸化ニオブに対して金属ニオブ粉
末(平均粒径20μm)を85:15の割合で混合し顆
粒状に成形した後、真空中で約5時間1000℃で焼結
し、蒸発源とした。これを真空槽(シンクロン製BMC
850)の中に配置された電子銃(日本電子製JEBG
102)のハースにセットし、装置内を2×10-6To
rrになるまで排気した後、電子ビームによって蒸発源
を溶解し蒸発させた。材料溶解時の真空槽の全圧の経時
変化を図1のグラフに示す。このグラフから解るよう
に、蒸発源からの放出ガスは少なかった。
Example 1 Niobium pentoxide powder (average particle size: 0.6 μm) and niobium pentoxide metal niobium powder (average particle size: 20 μm) were mixed at a ratio of 85:15 to form granules. After being formed, it was sintered at 1000 ° C. for about 5 hours in a vacuum to obtain an evaporation source. This is placed in a vacuum chamber (Syncron BMC)
850) (JEBG made by JEOL)
102) and set the inside of the device to 2 × 10 -6 To
After evacuating to rr, the evaporation source was dissolved and evaporated by an electron beam. FIG. 1 is a graph showing the change over time in the total pressure of the vacuum chamber when the material is melted. As can be seen from this graph, the amount of gas released from the evaporation source was small.

【0020】通常五酸化ニオブを材料として蒸着を行な
う場合には、成膜する薄膜の光吸収防止のために真空槽
の残余圧1×10-4torr以下の圧力で十分に安定さ
せ、酸素を1×10-4torrまで導入して成膜する。
本実施例においても同様に酸素を導入し、1×10-4
orrの圧力の条件下で70℃に加熱したガラス平板に
光学膜厚nd=125nm堆積させた結果、屈折率は
2.27であり、通常の五酸化ニオブを蒸発した場合と
なんら変わりはなかった。特に、成膜材料からの放出ガ
スが少ないため、真空槽の残余圧が1×10-4Torr
を越えることがなく、成膜条件が安定していた。
Usually, when vapor deposition is performed using niobium pentoxide as a material, the residual pressure in the vacuum chamber is sufficiently stabilized at a pressure of 1 × 10 −4 torr or less to prevent light absorption of the thin film to be formed, and oxygen is reduced. The film is formed by introducing up to 1 × 10 −4 torr.
Also in this embodiment, oxygen is introduced in the same manner, and 1 × 10 −4 T
As a result of depositing an optical film thickness nd = 125 nm on a glass flat plate heated to 70 ° C. under the condition of orr pressure, the refractive index was 2.27, which was no different from the case where normal niobium pentoxide was evaporated. . In particular, since the amount of gas released from the film forming material is small, the residual pressure in the vacuum chamber is 1 × 10 −4 Torr.
And the film forming conditions were stable.

【0021】(実施例2)五酸化ニオブ粉末(平均粒径
0.6μm)と、該五酸化ニオブに対して金属ニオブ粉
末(平均粒径20μm)を99:1の割合で混合し顆粒
状に成形した後、実施例1と同様に真空中で約5時間1
000℃で焼結したものを蒸発源として同様な成膜を行
なったところ、溶融時にガスが発生したが、少量であ
り、五酸化ニオブ単体を蒸発源とした場合の54.4%
の放出量であった。
Example 2 Niobium pentoxide powder (average particle diameter 0.6 μm) and metal niobium powder (average particle diameter 20 μm) were mixed with the niobium pentoxide at a ratio of 99: 1 to form granules. After molding, the same as in Example 1 under vacuum for about 5 hours 1
When the same film was formed using the material sintered at 000 ° C. as an evaporation source, a gas was generated at the time of melting. However, the amount was small, and 54.4% of that when niobium pentoxide alone was used as the evaporation source.
Was the amount released.

【0022】(実施例3)五酸化ニオブ粉末(平均粒径
0.6μm)と、該五酸化ニオブに対して金属ニオブ粉
末(平均粒径20μm)を50:50の割合で混合し顆
粒状に成形した後、実施例1と同様に真空中で約5時間
1000℃で焼結したものを蒸発源として同様な成膜を
行なったところ、実施例1よりもさらに放出ガスが少な
かった。
Example 3 Niobium pentoxide powder (average particle size: 0.6 μm) and metal niobium powder (average particle size: 20 μm) were mixed with the niobium pentoxide at a ratio of 50:50 to form granules. After molding, a film was formed in the same manner as in Example 1 by sintering at 1000 ° C. for about 5 hours in a vacuum, and the same film was formed using the evaporation source.

【0023】(実施例4)五酸化ニオブ粉末(平均粒径
0.6μm)をペレット状に成形し、真空アーク式溶解
炉(大亜真空製ACM−01)にて溶融分解(脱酸素分
解)し、ニオブ1molに対して酸素原子0.9〜2.
48で構成される組成にしたのち、粉砕したものを蒸発
源として上記と同様な成膜を行なったところ、五酸化ニ
オブ単体の焼結材料よりもガスの放出量が少なかった。
Example 4 Niobium pentoxide powder (average particle size: 0.6 μm) was formed into pellets and melted and decomposed (deoxygenated) in a vacuum arc melting furnace (ACM-01 manufactured by Daia Vacuum). And oxygen atom 0.9-2.
After the composition of 48 was obtained, a film was formed in the same manner as above using the pulverized material as an evaporation source. As a result, the amount of released gas was smaller than that of the sintered material of niobium pentoxide alone.

【0024】 (実施例5)五酸化ニオブ粉末と、該五酸
化ニオブに対して金属ニオブ粉末85:15の割合の混
合顆粒状焼結体材料20gを真空槽(シンクロン製BM
C850)の中に配置された電子銃(日本電子製JEB
G102)のハースにセットし、装置内を1×10-5
orrになるまで排気した後、電子銃で溶解してベース
を3個作成した。これらのベースを蒸発源としてそれぞ
れ光学膜厚125nm、625nm、5000nmにな
るように蒸着した後、各ベースを大気中に取り出し、1
000℃にて完全に酸化させ、各ベースの酸化の前後の
重量変化を測定した結果を以下の表1に示す。この表か
ら解るように五酸化ニオブと金属ニオブの混合顆粒状焼
結体材料においては蒸発時間によって重量変化量に差は
ほとんどみられなかった。
[0024] (Example 5) Niobium pentoxide powder and said pentaacid
Mixture of niobium metal and niobium metal powder in a ratio of 85:15
20 g of the mixed granulated sintered material is placed in a vacuum chamber (BM made by SYNCHRON)
C850) (JEB manufactured by JEOL Ltd.)
G102) and set the inside of the device to 1 × 10-FiveT
After exhausting to orr, melt with an electron gun and base
Were created. Using these bases as evaporation sources
Optical film thickness of 125 nm, 625 nm, and 5000 nm.
After vapor deposition, remove each base into the atmosphere
Complete oxidation at 000 ° C, before and after oxidation of each base
The results of measuring the weight change are shown in Table 1 below. This table
As shown in the figure, mixed granulation of niobium pentoxide and niobium metal
In the consolidated material, the difference in weight change depending on the evaporation time is
Almost never.

【0025】[0025]

【表1】 [Table 1]

【0026】(比較例1)五酸化ニオブ単体の粉末(平
均粒径0.6μm)を顆粒状に成形した後、実施例1と
同様に真空中で約5時間1200℃で焼結し、蒸発源と
して同様な成膜を行なったところ、図2のグラフで示す
ように、放出ガスが非常に多く、また材料の飛散も激し
く、プリメルトに時間がかかった。
(Comparative Example 1) A powder of niobium pentoxide alone (average particle size: 0.6 μm) was formed into granules, which were then sintered in a vacuum at 1200 ° C. for about 5 hours in the same manner as in Example 1, and evaporated. When the same film was formed as a source, as shown in the graph of FIG. 2, the amount of released gas was very large, and the material was scattered sharply.

【0027】 (比較例2)五酸化ニオブ単体の顆粒状焼
結体材料20gに対し実施例5と同様の試験を行ないベ
ースの酸化前後の重量変化を測定した。上記の表1に示
すように、五酸化ニオブ単体では使用時間により材料の
酸素含有量が大きく変化し組成変動を起こしていた。蒸
発源の組成が安定するまでさらに蒸着を続けたところ非
常に時間がかかった。
[0027] (Comparative Example 2) Granular firing of niobium pentoxide alone
The same test as in Example 5 was performed on 20 g of the consolidated material.
The weight change before and after the oxidation of the base was measured. As shown in Table 1 above
As such, niobium pentoxide alone may not
The oxygen content changed greatly, causing compositional fluctuations. Steaming
Further deposition was continued until the composition of the source became stable.
It always took time.

【0028】[0028]

【発明の効果】本発明は上述のとおり構成されているの
で、以下に記載するような効果を奏する。
Since the present invention is configured as described above, the following effects can be obtained.

【0029】ニオブ1molに対して酸素原子0.9〜
2.48molで構成される成膜材料を蒸発源として用
いることで、プリメルト等における放出ガスを抑制し、
成膜時間を大幅に短縮できる。また、輻射熱による基板
への影響を低減し、蒸発源の組成変動を回避して、光学
薄膜の品質と再現性の向上に貢献できる。
Oxygen atom 0.9 to 1 mol of niobium
By using a film-forming material composed of 2.48 mol as an evaporation source, it is possible to suppress outgassing in premelt and the like,
The film formation time can be significantly reduced. In addition, it is possible to reduce the influence of the radiation heat on the substrate, avoid the composition fluctuation of the evaporation source, and contribute to the improvement of the quality and reproducibility of the optical thin film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1によるプリメルト時の圧力変化を示す
グラフである。
FIG. 1 is a graph showing a pressure change during premelt according to Example 1.

【図2】一従来例によるプリメルト時の圧力変化を示す
グラフである。
FIG. 2 is a graph showing a pressure change at the time of pre-melt according to a conventional example.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H042 DA12 DC02 2H048 GA03 GA60 2K009 AA02 BB02 CC03 DD03 4K029 BA02 BA43 BA64 BC07 CA01 DB04 DB05 DB10 DB21  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H042 DA12 DC02 2H048 GA03 GA60 2K009 AA02 BB02 CC03 DD03 4K029 BA02 BA43 BA64 BC07 CA01 DB04 DB05 DB10 DB21

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ニオブ1molに対して酸素原子0.9
〜2.48molで構成される組成を有することを特徴
とする光学薄膜の成膜材料。
1. An oxygen atom of 0.9 mol per 1 mol of niobium.
A film forming material for an optical thin film, characterized by having a composition of from 2.48 mol to 2.48 mol.
【請求項2】 五酸化ニオブと金属ニオブを99.5:
0.5〜45:55の割合で混合した混合物であること
を特徴とする光学薄膜の成膜材料。
2. Niobium pentoxide and niobium metal are 99.5:
A film forming material for an optical thin film, which is a mixture mixed at a ratio of 0.5 to 45:55.
【請求項3】 五酸化ニオブと金属ニオブを99.5:
0.5〜45:55の割合で混合して焼結したことを特
徴とする光学薄膜の成膜材料。
3. Niobium pentoxide and niobium metal are 99.5:
A film forming material for an optical thin film, which is mixed and sintered at a ratio of 0.5 to 45:55.
【請求項4】 五酸化ニオブと金属ニオブを99.5:
0.5〜45:55の割合で混合して溶融したことを特
徴とする光学薄膜の成膜材料。
4. Niobium pentoxide and niobium metal are 99.5:
A film forming material for an optical thin film, which is mixed and melted at a ratio of 0.5 to 45:55.
【請求項5】 五酸化ニオブを脱酸素分解することで、
ニオブ1molに対して酸素原子0.9〜2.48mo
lで構成される組成にしたことを特徴とする光学薄膜の
成膜材料。
5. The deoxygenation of niobium pentoxide by deoxygenation,
Oxygen atom 0.9 to 2.48 mo per 1 mol of niobium
1. A film forming material for an optical thin film, wherein the material has a composition of l.
【請求項6】 連続的に成膜を行なっても組成変動を起
こさないことを特徴とする請求項1ないし4いずれか1
項記載の光学薄膜の成膜材料。
6. The method according to claim 1, wherein the composition does not change even when the film is continuously formed.
The film forming material for the optical thin film according to the above item.
【請求項7】 成膜中の真空度の変化が少なくて光学薄
膜の光学特性の再現性が良好であることを特徴とする請
求項1ないし4いずれか1項記載の光学薄膜の成膜材
料。
7. A film forming material for an optical thin film according to claim 1, wherein a change in the degree of vacuum during film formation is small and reproducibility of optical characteristics of the optical thin film is good. .
【請求項8】 請求項1ないし7いずれか1項記載の光
学薄膜の成膜材料を蒸発源として光学薄膜を成膜する工
程を有する成膜方法。
8. A film forming method comprising a step of forming an optical thin film using the material for forming an optical thin film according to claim 1 as an evaporation source.
【請求項9】 請求項1ないし7いずれか1項記載の光
学薄膜の成膜材料を蒸発源として真空蒸着によって光学
薄膜を成膜する工程を有する成膜方法。
9. A film forming method comprising the step of forming an optical thin film by vacuum vapor deposition using the film forming material for an optical thin film according to claim 1 as an evaporation source.
JP17620999A 1999-06-23 1999-06-23 Method for forming optical thin film Expired - Lifetime JP4298067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17620999A JP4298067B2 (en) 1999-06-23 1999-06-23 Method for forming optical thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17620999A JP4298067B2 (en) 1999-06-23 1999-06-23 Method for forming optical thin film

Publications (3)

Publication Number Publication Date
JP2001003157A true JP2001003157A (en) 2001-01-09
JP2001003157A5 JP2001003157A5 (en) 2005-10-20
JP4298067B2 JP4298067B2 (en) 2009-07-15

Family

ID=16009540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17620999A Expired - Lifetime JP4298067B2 (en) 1999-06-23 1999-06-23 Method for forming optical thin film

Country Status (1)

Country Link
JP (1) JP4298067B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111974A (en) * 2004-10-14 2006-04-27 Merck Patent Gmbh Vapor-deposition material for production of layer of high refractive index
JP2009235563A (en) * 2008-03-03 2009-10-15 Toho Titanium Co Ltd Vapor-deposition material of metal oxide, production method therefor, and method for producing vapor-deposition film of metal oxide
JP2012031065A (en) * 2003-02-26 2012-02-16 Cabot Corp Method of forming oxygen-reduced valve metal oxide phase

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031065A (en) * 2003-02-26 2012-02-16 Cabot Corp Method of forming oxygen-reduced valve metal oxide phase
JP2006111974A (en) * 2004-10-14 2006-04-27 Merck Patent Gmbh Vapor-deposition material for production of layer of high refractive index
JP2009235563A (en) * 2008-03-03 2009-10-15 Toho Titanium Co Ltd Vapor-deposition material of metal oxide, production method therefor, and method for producing vapor-deposition film of metal oxide

Also Published As

Publication number Publication date
JP4298067B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP2010180449A (en) Target material of composite tungsten oxide, and method for manufacturing the same
JPH05311412A (en) Production of feed material for vapor deposition and transparent barrier film
US20130299753A1 (en) Oxide sintered body and tablets obtained by processing same
CN1792929A (en) Vapor-deposition material for production of layer of high refractive index
JP2001003157A (en) Film forming material of optical thin film and film forming method
US5776847A (en) Stabilized vapour-deposition materials based on titanium oxide
JP3069403B2 (en) Method for producing titanium suboxide
JP3039721B2 (en) Vapor deposition material and method for producing optical thin film using the vapor deposition material
JP5358430B2 (en) Vapor deposition material and optical thin film obtained therefrom
JP3160309B2 (en) Thin film formation method
JP4269830B2 (en) Vapor deposition material
JPS6128027B2 (en)
JP3472169B2 (en) Evaporation material for optical thin film with intermediate refractive index and optical thin film using the evaporation material
JPH0667001A (en) Material for vapor deposition
JP5426136B2 (en) Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film
JP5426137B2 (en) Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film
JP3853591B2 (en) Light-shielding film, low-reflection film and applications
JP2005068507A (en) Sputtering target for oxide film formation and production method of oxide film using the same
JPS59148002A (en) Zirconium oxide composition for vapor deposition and sputtering and production of optical thin film using said composition
JP3186788B2 (en) Method for producing titanium suboxide
JP2007100173A (en) Evaporation material, method for producing the same, and method for storing the same
JP3781398B2 (en) I. T.A. O sintered body, production method thereof, and I.I. T.A. O thin film
JP4763962B2 (en) Sputtering target for forming oxide film and manufacturing method of oxide film using the same
JP2005162553A (en) Titanium oxide sintered compact and method of manufacturing the same
JP2010180431A (en) Vapor deposition material, optical thin film and production method therefor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090415

R150 Certificate of patent or registration of utility model

Ref document number: 4298067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

EXPY Cancellation because of completion of term