JP4298067B2 - Method for forming optical thin film - Google Patents
Method for forming optical thin film Download PDFInfo
- Publication number
- JP4298067B2 JP4298067B2 JP17620999A JP17620999A JP4298067B2 JP 4298067 B2 JP4298067 B2 JP 4298067B2 JP 17620999 A JP17620999 A JP 17620999A JP 17620999 A JP17620999 A JP 17620999A JP 4298067 B2 JP4298067 B2 JP 4298067B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- niobium
- evaporation source
- optical thin
- niobium pentoxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Optical Filters (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Physical Vapour Deposition (AREA)
- Optical Elements Other Than Lenses (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、特に真空蒸着等によって五酸化ニオブ薄膜を成膜するための光学薄膜の成膜方法に関するものである。
【0002】
【従来の技術】
五酸化ニオブ薄膜は高い屈折率を有し、かつ薄膜としての耐久性も良好であるため、ミラー、フィルター、反射防止膜等の光学薄膜としての需要が多い。
【0003】
一般的に、五酸化ニオブ薄膜の成膜においては、出発材料である蒸発源となる成膜材料として五酸化ニオブの焼結体を使用し、これを真空室内において電子銃で溶融蒸発させ、基板上に薄膜として堆積する真空蒸着法が主として用いられる。
【0004】
ところが、従来から使用されてきた五酸化ニオブの焼結体は、電子銃等によって溶融する際に、成膜材料の溶融過程で大量の放出ガスが発生し、これがおさまるまでに時間がかかる。すなわち、蒸発源の安定化のために多くの時間を必要とする。
【0005】
従って、生産効率が悪く、しかも、蒸発源が安定した溶融状態になるまでのプリメルトの段階で発生する輻射熱が、特に、プラスティック基板等を使用する場合に、熱による変形や変質を起こしやすい。また、五酸化ニオブの焼結体は、溶解・成膜を繰り返していくうちに分解されて脱酸素化を起こすため、成膜回数が多くなると組成が変化してしまい、光学薄膜の品質が安定しない傾向がある。
【0006】
【発明が解決しようとする課題】
このように、従来から使用されてきた五酸化ニオブの焼結体は、蒸着源を溶融するプリメルトの段階で大量にガスが放出されるため、時間がかかるという未解決の課題がある。これは生産性を悪くするばかりでなく、同時に大量の輻射熱を発生させ、熱に弱いプラスティック基板に成膜する場合には、基板に変形等の悪影響を及ぼすおそれがあり、さらに、成膜中においてもガス量が安定せず、従って安定した光学特性を得るのが難しい。
【0007】
本発明は上記従来の技術の有する未解決の課題に鑑みてなされたものであり、放出ガスの発生とこれに伴なう幅射熱を抑えて、生産性が高く、しかも、組成変動がなくて再現性のよい安定した成膜を行なうことのできる光学薄膜の成膜方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
上記の目的を達成するため本発明の第1の光学薄膜の成膜方法は、五酸化ニオブと金属ニオブとを99.5:0.5〜45:55の重量比で混合した混合物を蒸発源とし、該蒸発源を溶融し蒸発させることで基板に光学薄膜を真空蒸着させることを特徴とする。
【0009】
第2の光学薄膜の成膜方法は、五酸化ニオブと金属ニオブとを99.5:0.5〜45:55の重量比で混合して焼結した混合物を蒸発源とし、該蒸発源を溶融し蒸発させることで基板に光学薄膜を真空蒸着させることを特徴とする。
【0010】
第3の光学薄膜の成膜方法は、五酸化ニオブと金属ニオブとを99.5:0.5〜45:55の重量比で混合して溶融した混合物を蒸発源とし、該蒸発源を蒸発させることで基板に光学薄膜を真空蒸着させることを特徴とする。
【0011】
【0012】
【作用】
五酸化ニオブと金属ニオブとを99.5:0.5〜45:55の重量比で混合した混合物を蒸発源とし、該蒸発源を溶融し蒸発させることで基板に光学薄膜を真空蒸着させることを特徴とする成膜材料を蒸発源として用いることで、プリメルト等における放出ガスの発生を抑制する。これによって、再現性が良好で安定した光学特性をもつ五酸化ニオブの光学薄膜を高収率で成膜できる。
【0013】
【発明の実施の形態】
本発明の実施の形態を説明する。
【0014】
本発明の一実施の形態によれば、粒状あるいは粉末状の五酸化ニオブと金属ニオブを用意して、両者を混合比99.5:0.5〜45:55で混合し、焼結または溶融する。あるいは、五酸化ニオブを脱酸素分解することで、ニオブ1molに対して酸素原子0.9〜2.48molで構成される組成を有する成膜材料を製作し、これを蒸発源として真空密着等の成膜方法によって光学薄膜である五酸化ニオブ薄膜を成膜する。
【0015】
混合材料としての五酸化ニオブおよび金属ニオブは特に制限はなく、粒状、粉末状以外のものでも使用できるが、混合しやすいように適度の粒度の粉末状のものが望ましい。これらの平均粒径としては、五酸化ニオブは0.3〜1.5μm程度で、金属ニオブは150μm以下程度であることが好ましい。また、五酸化ニオブと金属ニオブを焼結または溶融する前に、予め混合しておくことが望ましい。混合方法としてはボールミルを用いる方法等がある。
【0016】
五酸化ニオブと金属ニオブの配合割合は、上記のように、五酸化ニオブに対して金属ニオブを99.5:0.5〜45:55の比率とするものである。この場合、金属ニオブの重量比が0.5以下であると、プリメルト時等におけるガス放出に対する効果があまり無い。また、金属ニオブの重量比が55以上であると、成膜した光学薄膜の光吸収率が増加してしまうため好ましくない。
【0017】
上記の割合の混合物は、直接あるいは焼結または溶融して、光学薄膜を成膜するための蒸発源とするものである。焼結する場合は、蒸着に使用しやすい形状にプレス形状したうえで焼成するとよい。顆粒状にて使用する場合には、混合物をプレス後目的の大きさに粉砕したり、あるいは、焼成後に粉砕してもよい。
【0018】
また、焼結や溶融を行なう場合は、不活性雰囲気が望ましいため、真空中またはN2やAr中で加熱を行なう。加熱温度は金属ニオブの配合割合によっても異なるが、800〜1300℃とすることが望ましい。また、加熱時間は4〜6時間程度である。蒸発源として用いるときの形状としては、顆粒状、ペレット状、板状等があげられるが、これらに限定するものではない。
【0019】
(実施例1)
五酸化ニオブ粉末(平均粒径0.6μm)と、該五酸化ニオブに対して金属ニオブ粉末(平均粒径20μm)を85:15の割合で混合し顆粒状に成形した後、真空中で約5時間1000℃で焼結し、蒸発源とした。これを真空槽(シンクロン製BMC850)の中に配置された電子銃(日本電子製JEBG102)のハースにセットし、装置内を2×10-6Torrになるまで排気した後、電子ビームによって蒸発源を溶解し蒸発させた。材料溶解時の真空槽の全圧の経時変化を図1のグラフに示す。このグラフから解るように、蒸発源からの放出ガスは少なかった。
【0020】
通常五酸化ニオブを材料として蒸着を行なう場合には、成膜する薄膜の光吸収防止のために真空槽の残余圧1×10-4torr以下の圧力で十分に安定させ、酸素を1×10-4torrまで導入して成膜する。本実施例においても同様に酸素を導入し、1×10-4Torrの圧力の条件下で70℃に加熱したガラス平板に光学膜厚nd=125nm堆積させた結果、屈折率は2.27であり、通常の五酸化ニオブを蒸発した場合となんら変わりはなかった。特に、成膜材料からの放出ガスが少ないため、真空槽の残余圧が1×10-4Torrを越えることがなく、成膜条件が安定していた。
【0021】
(実施例2)
五酸化ニオブ粉末(平均粒径0.6μm)と、該五酸化ニオブに対して金属ニオブ粉末(平均粒径20μm)を99:1の割合で混合し顆粒状に成形した後、実施例1と同様に真空中で約5時間1000℃で焼結したものを蒸発源として同様な成膜を行なったところ、溶融時にガスが発生したが、少量であり、五酸化ニオブ単体を蒸発源とした場合の54.4%の放出量であった。
【0022】
(実施例3)
五酸化ニオブ粉末(平均粒径0.6μm)と、該五酸化ニオブに対して金属ニオブ粉末(平均粒径20μm)を50:50の割合で混合し顆粒状に成形した後、実施例1と同様に真空中で約5時間1000℃で焼結したものを蒸発源として同様な成膜を行なったところ、実施例1よりもさらに放出ガスが少なかった。
【0023】
(実施例4)
五酸化ニオブ粉末(平均粒径0.6μm)をペレット状に成形し、真空アーク式溶解炉(大亜真空製ACM−01)にて溶融分解(脱酸素分解)し、ニオブ1molに対して酸素原子0.9〜2.48で構成される組成にしたのち、粉砕したものを蒸発源として上記と同様な成膜を行なったところ、五酸化ニオブ単体の焼結材料よりもガスの放出量が少なかった。
【0024】
(実施例5)
五酸化ニオブ粉末と、該五酸化ニオブに対して金属ニオブ粉末85:15の割合の混合顆粒状焼結体材料20gを真空槽(シンクロン製BMC850)の中に配置された電子銃(日本電子製JEBG102)のハースにセットし、装置内を1×10-5Torrになるまで排気した後、電子銃で溶解してベースを3個作成した。これらのベースを蒸発源としてそれぞれ光学膜厚125nm、625nm、5000nmになるように蒸着した後、各ベースを大気中に取り出し、1000℃にて完全に酸化させ、各ベースの酸化の前後の重量変化を測定した結果を以下の表1に示す。この表から解るように五酸化ニオブと金属ニオブの混合顆粒状焼結体材料においては蒸発時間によって重量変化量に差はほとんどみられなかった。
【0025】
【表1】
【0026】
(比較例1)
五酸化ニオブ単体の粉末(平均粒径0.6μm)を顆粒状に成形した後、実施例1と同様に真空中で約5時間1200℃で焼結し、蒸発源として同様な成膜を行なったところ、図2のグラフで示すように、放出ガスが非常に多く、また材料の飛散も激しく、プリメルトに時間がかかった。
【0027】
(比較例2)
五酸化ニオブ単体の顆粒状焼結体材料20gに対し実施例5と同様の試験を行ないベースの酸化前後の重量変化を測定した。上記の表1に示すように、五酸化ニオブ単体では使用時間により材料の酸素含有量が大きく変化し組成変動を起こしていた。蒸発源の組成が安定するまでさらに蒸着を続けたところ非常に時間がかかった。
【0028】
【発明の効果】
本発明は上述のとおり構成されているので、以下に記載するような効果を奏する。
【0029】
五酸化ニオブと金属ニオブとを99.5:0.5〜45:55の重量比で混合した混合物で構成される成膜材料を蒸発源として用いることで、プリメルト等における放出ガスを抑制し、成膜時間を大幅に短縮できる。また、輻射熱による基板への影響を低減し、蒸発源の組成変動を回避して、光学薄膜の品質と再現性の向上に貢献できる。
【図面の簡単な説明】
【図1】 実施例1によるプリメルト時の圧力変化を示すグラフである。
【図2】 一従来例によるプリメルト時の圧力変化を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a film forming method of the optical thin film, particularly for forming a niobium pentoxide film by vacuum deposition or the like.
[0002]
[Prior art]
A niobium pentoxide thin film has a high refractive index and good durability as a thin film, so that there is a great demand for optical thin films such as mirrors, filters, and antireflection films.
[0003]
In general, in the formation of a niobium pentoxide thin film, a sintered body of niobium pentoxide is used as a film forming material as an evaporation source, which is a starting material, and this is melted and evaporated by an electron gun in a vacuum chamber. A vacuum evaporation method in which a thin film is deposited thereon is mainly used.
[0004]
However, when the niobium pentoxide sintered body that has been used conventionally is melted by an electron gun or the like, a large amount of released gas is generated in the process of melting the film forming material, and it takes time until this is settled. That is, it takes a lot of time to stabilize the evaporation source.
[0005]
Therefore, the production efficiency is low, and the radiant heat generated in the pre-melt stage until the evaporation source is in a stable molten state is likely to be deformed or altered by heat, particularly when a plastic substrate is used. Also, the niobium pentoxide sintered body is decomposed and deoxygenated during repeated dissolution and film formation, so the composition changes as the number of film formation increases, resulting in stable optical thin film quality. There is a tendency not to.
[0006]
[Problems to be solved by the invention]
Thus, the niobium pentoxide sintered body that has been used conventionally has an unresolved problem that it takes time because a large amount of gas is released at the pre-melt stage of melting the vapor deposition source. This not only deteriorates productivity, but also generates a large amount of radiant heat at the same time, and when forming a film on a plastic substrate that is vulnerable to heat, there is a risk of adverse effects such as deformation on the substrate. However, the gas amount is not stable, and it is difficult to obtain stable optical characteristics.
[0007]
The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and suppresses the generation of emitted gas and the accompanying radiant heat, resulting in high productivity and no composition variation. it is an object to provide a film forming method of the optical thin film capable of forming a film which has good stability reproducible Te.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a first optical thin film deposition method of the present invention is a vaporization source comprising a mixture of niobium pentoxide and metal niobium mixed at a weight ratio of 99.5: 0.5 to 45:55. And the evaporation source is melted and evaporated to vacuum deposit the optical thin film on the substrate .
[0009]
Method of forming the second optical thin film, a niobium pentoxide and metallic niobium 99.5: 0.5 to 45: are mixed in a weight ratio of 55 and the evaporation source a mixture sintered, the the evaporated evaporation source An optical thin film is vacuum-deposited on a substrate by melting and evaporating .
[0010]
Method of forming the third optical film is a niobium pentoxide and metallic niobium 99.5: 0.5 to 45: The mixture was melted and mixed at a weight ratio of 55 and the evaporation source, the evaporated evaporation source An optical thin film is vacuum-deposited on the substrate by evaporating .
[0011]
[0012]
[Action]
The niobium pentoxide and metallic niobium 99.5: 0.5 to 45: The mixture was mixed in a weight ratio of 55 and the evaporation source, Ru vacuum deposited optical thin film on a substrate by causing melting the evaporation source evaporates By using the film-forming material characterized by the above as an evaporation source, generation of released gas in a premelt or the like is suppressed. As a result, an optical thin film of niobium pentoxide having good reproducibility and stable optical characteristics can be formed in high yield.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described.
[0014]
According to one embodiment of the present invention, granular or powdered niobium pentoxide and metallic niobium are prepared, and both are mixed at a mixing ratio of 99.5: 0.5 to 45:55, and sintered or melted. To do. Alternatively, by deoxidizing and decomposing niobium pentoxide, a film-forming material having a composition composed of 0.9 to 2.48 mol of oxygen atoms with respect to 1 mol of niobium is manufactured, and this is used as an evaporation source for vacuum adhesion or the like. A niobium pentoxide thin film, which is an optical thin film, is formed by a film forming method.
[0015]
Niobium pentoxide and metal niobium as the mixed material are not particularly limited, and those other than granular and powder can be used. However, a powder having an appropriate particle size is desirable for easy mixing. As these average particle diameters, niobium pentoxide is preferably about 0.3 to 1.5 μm, and metal niobium is preferably about 150 μm or less. Further, it is desirable to mix niobium pentoxide and metallic niobium in advance before sintering or melting. Examples of the mixing method include a method using a ball mill.
[0016]
As described above, the mixing ratio of niobium pentoxide and metal niobium is such that the metal niobium is in the ratio of 99.5: 0.5 to 45:55 with respect to niobium pentoxide. In this case, if the weight ratio of niobium metal is 0.5 or less, there is not much effect on gas release during pre-melting. Further, if the weight ratio of niobium metal is 55 or more, the optical absorptance of the deposited optical thin film increases, which is not preferable.
[0017]
The mixture in the above proportion is used as an evaporation source for forming an optical thin film directly or by sintering or melting. In the case of sintering, it is preferable to perform firing after forming into a shape easy to use for vapor deposition. When used in the form of granules, the mixture may be pulverized to the desired size after pressing, or pulverized after firing.
[0018]
Further, when sintering or melting, an inert atmosphere is desirable, and thus heating is performed in a vacuum or in N 2 or Ar. Although heating temperature changes also with the compounding ratio of niobium metal, it is desirable to set it as 800-1300 degreeC. The heating time is about 4 to 6 hours. Examples of the shape when used as an evaporation source include granules, pellets, and plates, but are not limited thereto.
[0019]
Example 1
After mixing niobium pentoxide powder (average particle size 0.6 μm) and niobium pentoxide in a ratio of 85:15 to metal niobium powder (average particle size 20 μm) and forming into granules, about Sintering was performed at 1000 ° C. for 5 hours to obtain an evaporation source. This is set in a hearth of an electron gun (JEBG102 manufactured by JEOL Ltd.) placed in a vacuum chamber (SYNCRON BMC850), the inside of the apparatus is exhausted to 2 × 10 −6 Torr, and then an evaporation source is generated by an electron beam. Was dissolved and evaporated. The graph of FIG. 1 shows the change over time of the total pressure in the vacuum chamber during material dissolution. As can be seen from this graph, the gas released from the evaporation source was small.
[0020]
Usually, when vapor deposition is performed using niobium pentoxide as a material, in order to prevent light absorption of the thin film to be formed, the residual pressure of the vacuum chamber is sufficiently stabilized at a pressure of 1 × 10 −4 torr or less, and oxygen is 1 × 10 -4 Torr is introduced to form a film. Also in this example, oxygen was similarly introduced, and an optical film thickness nd = 125 nm was deposited on a glass plate heated to 70 ° C. under a pressure of 1 × 10 −4 Torr. As a result, the refractive index was 2.27. Yes, it was no different from normal niobium pentoxide evaporated. In particular, since the gas released from the film forming material is small, the residual pressure in the vacuum chamber does not exceed 1 × 10 −4 Torr, and the film forming conditions are stable.
[0021]
(Example 2)
After mixing niobium pentoxide powder (average particle size 0.6 μm) and niobium pentoxide in a ratio of 99: 1 with metal niobium powder (average particle size 20 μm) and forming into granules, Example 1 Similarly, when the same film was formed using a material sintered at 1000 ° C. for about 5 hours in a vacuum as an evaporation source, gas was generated at the time of melting, but a small amount of niobium pentoxide alone was used as the evaporation source. The amount released was 54.4%.
[0022]
(Example 3)
Example 1 after mixing niobium pentoxide powder (average particle size 0.6 μm) and niobium pentoxide in a ratio of 50:50 to metal niobium powder (average particle size 20 μm), Similarly, when a similar film was formed using a material sintered at 1000 ° C. for about 5 hours in vacuum as an evaporation source, the amount of released gas was smaller than that in Example 1.
[0023]
(Example 4)
Niobium pentoxide powder (average particle size 0.6 μm) is formed into pellets, melt-decomposed (deoxygenated and decomposed) in a vacuum arc melting furnace (ACM-01 manufactured by Daia Vacuum), and oxygen is added to 1 mol of niobium. After forming a composition composed of atoms 0.9 to 2.48 and using the pulverized material as the evaporation source, the same film formation as described above was performed. As a result, the amount of released gas was higher than that of the sintered material of niobium pentoxide alone. There were few.
[0024]
(Example 5)
An electron gun (manufactured by JEOL Ltd.) in which a niobium pentoxide powder and 20 g of a mixed granular sintered body material in a ratio of metal niobium powder 85:15 to the niobium pentoxide are placed in a vacuum chamber (BMC 850 manufactured by SYNCHRON) JEBG102) was set in a hearth and the inside of the apparatus was evacuated to 1 × 10 −5 Torr, and then melted with an electron gun to prepare three bases. After these bases are evaporated as evaporation sources so that the optical film thickness is 125 nm, 625 nm and 5000 nm, respectively, each base is taken out into the atmosphere and completely oxidized at 1000 ° C., and the weight change before and after the oxidation of each base The results of measuring are shown in Table 1 below. As can be seen from this table, in the mixed granular sintered material of niobium pentoxide and metal niobium, there was almost no difference in the amount of weight change depending on the evaporation time.
[0025]
[Table 1]
[0026]
(Comparative Example 1)
After forming niobium pentoxide single powder (average particle size 0.6 μm) into granules, it was sintered in a vacuum at 1200 ° C. for about 5 hours in the same manner as in Example 1, and the same film was formed as an evaporation source. As a result, as shown in the graph of FIG. 2, the amount of released gas was very large, and the material was severely scattered.
[0027]
(Comparative Example 2)
The same test as in Example 5 was performed on 20 g of a granular sintered body material of niobium pentoxide alone, and the change in weight before and after oxidation of the base was measured. As shown in Table 1 above, with niobium pentoxide alone, the oxygen content of the material varied greatly with the time of use, causing composition fluctuations. It took a very long time to continue the deposition until the composition of the evaporation source was stabilized.
[0028]
【The invention's effect】
Since this invention is comprised as mentioned above, there exists an effect as described below.
[0029]
By using a film-forming material composed of a mixture of niobium pentoxide and metal niobium in a weight ratio of 99.5: 0.5 to 45:55 as an evaporation source, the emission gas in the premelt or the like is suppressed, The film formation time can be greatly shortened. In addition, the influence of the radiant heat on the substrate can be reduced, the composition variation of the evaporation source can be avoided, and the quality and reproducibility of the optical thin film can be improved.
[Brief description of the drawings]
1 is a graph showing pressure changes during premelting according to Example 1. FIG.
FIG. 2 is a graph showing a pressure change during pre-melt according to a conventional example.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17620999A JP4298067B2 (en) | 1999-06-23 | 1999-06-23 | Method for forming optical thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17620999A JP4298067B2 (en) | 1999-06-23 | 1999-06-23 | Method for forming optical thin film |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2001003157A JP2001003157A (en) | 2001-01-09 |
JP2001003157A5 JP2001003157A5 (en) | 2005-10-20 |
JP4298067B2 true JP4298067B2 (en) | 2009-07-15 |
Family
ID=16009540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17620999A Expired - Lifetime JP4298067B2 (en) | 1999-06-23 | 1999-06-23 | Method for forming optical thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4298067B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7655214B2 (en) * | 2003-02-26 | 2010-02-02 | Cabot Corporation | Phase formation of oxygen reduced valve metal oxides and granulation methods |
DE102004049996A1 (en) * | 2004-10-14 | 2006-04-20 | Merck Patent Gmbh | Vapor deposition material for the production of high-index layers |
JP5284821B2 (en) * | 2008-03-03 | 2013-09-11 | 東邦チタニウム株式会社 | Metal oxide vapor deposition material, method for producing the same, and method for producing metal oxide vapor deposited film |
-
1999
- 1999-06-23 JP JP17620999A patent/JP4298067B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001003157A (en) | 2001-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4298067B2 (en) | Method for forming optical thin film | |
JP3343938B2 (en) | Materials for vacuum deposition | |
JP3039721B2 (en) | Vapor deposition material and method for producing optical thin film using the vapor deposition material | |
JP3069403B2 (en) | Method for producing titanium suboxide | |
JP3160309B2 (en) | Thin film formation method | |
JPH1192212A (en) | Magnesium oxide sintered compact, its production and magnesium oxide thin film | |
JPS6128027B2 (en) | ||
JPH0667001A (en) | Material for vapor deposition | |
JP4269830B2 (en) | Vapor deposition material | |
JPS59148002A (en) | Zirconium oxide composition for vapor deposition and sputtering and production of optical thin film using said composition | |
JPH0641729A (en) | Material for vapor deposition | |
JP3472169B2 (en) | Evaporation material for optical thin film with intermediate refractive index and optical thin film using the evaporation material | |
JP5426136B2 (en) | Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film | |
JP3186788B2 (en) | Method for producing titanium suboxide | |
JPS6148563A (en) | Source for vacuum deposition | |
JP2004176135A (en) | Material for sputtering target, and sintered compact thereof | |
Stoner Jr | Stacked tungsten–carbon targets | |
JP2005162553A (en) | Titanium oxide sintered compact and method of manufacturing the same | |
JPH0881763A (en) | Indium-tin oxide material for vapor deposition | |
JP3723620B2 (en) | Transparent intermediate refractive index material for vapor deposition | |
JPS6151281B2 (en) | ||
JPH0158267B2 (en) | ||
JP2636577B2 (en) | Method of forming titanium nitride film | |
JPH07145478A (en) | Ito sputtering target | |
JPH0293061A (en) | Production of heat-absorbing film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050616 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050616 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080610 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090414 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090415 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4298067 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120424 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140424 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |