JP4784977B2 - Radical generator - Google Patents

Radical generator Download PDF

Info

Publication number
JP4784977B2
JP4784977B2 JP2005284381A JP2005284381A JP4784977B2 JP 4784977 B2 JP4784977 B2 JP 4784977B2 JP 2005284381 A JP2005284381 A JP 2005284381A JP 2005284381 A JP2005284381 A JP 2005284381A JP 4784977 B2 JP4784977 B2 JP 4784977B2
Authority
JP
Japan
Prior art keywords
voltage
flat plate
holes
hole
radical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005284381A
Other languages
Japanese (ja)
Other versions
JP2007095536A (en
Inventor
勝 堀
浩之 加納
昭治 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Katagiri Engineering Co Ltd
NU Eco Engineering Co Ltd
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Katagiri Engineering Co Ltd
NU Eco Engineering Co Ltd
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Katagiri Engineering Co Ltd, NU Eco Engineering Co Ltd, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP2005284381A priority Critical patent/JP4784977B2/en
Publication of JP2007095536A publication Critical patent/JP2007095536A/en
Application granted granted Critical
Publication of JP4784977B2 publication Critical patent/JP4784977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、各種のラジカル源を供給して、各種のラジカルの発生を独立して制御することが可能なラジカル発生装置に関する。   The present invention relates to a radical generator capable of supplying various radical sources and independently controlling the generation of various radicals.

最近、プラズマを用いた、成膜、エッチングなどの技術が知られている。例えば、下記特許文献1に示されるように、ラジカルを発生して、そのラジカルで工作物の表面をコーティングする装置や方法が知られている。その特許文献1では、大気圧でラジカルを効率良く発生する装置として、マイクロホローカソードが用いられている。   Recently, techniques such as film formation and etching using plasma are known. For example, as shown in Patent Document 1 below, an apparatus and a method for generating radicals and coating the surface of a workpiece with the radicals are known. In Patent Document 1, a micro hollow cathode is used as an apparatus for efficiently generating radicals at atmospheric pressure.

特開2004−356558号公報JP 2004-356558 A

しかしながら、上記特許文献1によると、一種類のラジカルしか発生できないという問題がある。最近の複雑な処理においては、各種のラジカルを選択して発生させて、加工段階に応じた最適なラジカル種を用いたり、加工段階に応じて最適なラジカル種の最適な混合比での混合ラジカルを用いることが、精密な加工や成膜を行う上で必要となっている。   However, according to Patent Document 1, there is a problem that only one type of radical can be generated. In recent complicated treatments, various radicals are selected and generated to use the most suitable radical species according to the processing stage, or mixed radicals with the optimum mixing ratio of the most suitable radical species according to the processing stage. It is necessary to use this for precise processing and film formation.

ところが、従来の技術では、このようなラジカルの種類を制御したり、混合ラジカルの各ラジカル種の濃度比を制御することは困難であった。   However, in the conventional technique, it is difficult to control the type of such radicals or to control the concentration ratio of each radical type of the mixed radical.

本発明は、上記の課題を解決するために成されたものであり、その目的は、各種のラジカル種の発生を可変制御したり、ラジカル種の混合体の濃度比を可変制御できるようにすることである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to variably control the generation of various radical species and to variably control the concentration ratio of a mixture of radical species. That is.

本発明は、それぞれ異なる種類のガスを導入する多数の第1貫通孔を有し、それぞれの第1貫通孔にリング状のそれぞれの陽電極と、それぞれの陽電極に接続され独立して電圧を印加できる配線層とを配設した第1平板と、前記第1貫通孔と同軸に形成された多数の第2貫通孔を有し、それぞれの第2貫通孔にリング状の陰電極と、それぞれの陰電極に接触しアース電位が印加される配線層とを配設した、前記第1平板と電気的に絶縁分離され、前記第1平板と平行に配設された第2平板と、前記第1及び第2貫通孔と同軸に形成された多数の第3貫通孔を有し、それぞれの第3貫通孔にリング状の中性化電極と、それぞれの中性化電極に接続され独立して電圧を印加できる配線層とを配設した、前記第2平板に対して、電気的に絶縁分離された第3平板と、複数の貫通孔のそれぞれに対して前記陽電極と前記陰電極との間に、独立して電圧を印加する第1電圧印加手段と、複数の貫通孔のそれぞれに対して前記陰電極と前記中性化電極との間に、独立して電圧を印加する第2電圧印加手段とを有し、前記ガスの種類を制御することで、発生するラジカルの種類を制御し、前記第1電圧印加手段により印加される電圧と、前記第2電圧印加手段により印加される電圧とを制御することで、発生する混合ラジカルにおける各ラジカル種の濃度比を制御可能としたことを特徴とするラジカル発生装置である。 The present invention has a number of first through-hole for introducing different kinds of gases, respectively, and each of the positive electrodes of the ring-shaped to each of the first through-hole, a connected to each of the positive electrode independently Voltage a first flat plate is disposed to the wiring layer can be applied, having a first through-hole and the plurality of second through-hole formed coaxially with each of the second through-hole in a ring-shaped cathode, respectively A second flat plate electrically insulatively separated from the first flat plate and disposed in parallel with the first flat plate, and a wiring layer to which a ground potential is applied in contact with the negative electrode of the first flat plate; A plurality of third through-holes formed coaxially with the first and second through-holes, each of the third through-holes being connected to a ring-shaped neutralization electrode and each of the neutralization electrodes independently. were provided with a wiring layer can be applied a voltage relative to the second plate, it is electrically insulated and isolated A third flat plate was, between the positive electrode and the negative electrode with respect to each of the plurality of through holes, a first voltage application means for applying a voltage independently for each of the plurality of through-holes A second voltage applying means for independently applying a voltage between the negative electrode and the neutralizing electrode, and controlling the type of the gas to control the type of radical generated; The concentration ratio of each radical species in the generated mixed radical can be controlled by controlling the voltage applied by the first voltage applying unit and the voltage applied by the second voltage applying unit. It is a radical generator.

本発明によれば、複数の貫通孔に配設されたそれぞれの電極には、独立して、電圧を印加することができる。したがって、貫通孔の、それぞれに、異なる種類のガスを供給することで、そのガスによって生じるラジカルの種類を独立して制御することができる。また、複数種類のラジカルの混合を発生させる場合には、そられの濃度比を制御することが可能となる。   According to the present invention, a voltage can be applied independently to each electrode disposed in the plurality of through holes. Therefore, by supplying different types of gas to each of the through holes, the types of radicals generated by the gas can be controlled independently. In addition, when a mixture of a plurality of types of radicals is generated, the concentration ratio can be controlled.

本発明を実施するための最良の形態について説明する。実施の形態は、発明概念の理解を容易にするために、具体的に説明するのであって、本発明は、以下の実施例に限定して解釈されるべきではない。   The best mode for carrying out the present invention will be described. The embodiments will be specifically described in order to facilitate understanding of the inventive concept, and the present invention should not be construed as being limited to the following examples.

図1はラジカル発生装置20の構成を示した断面図である。第1平板11、第2平板12、第3平板13が平行に配置されている。これらの平板はセラミックスからなり、第1平板11には多数の第1貫通孔31a、31b、31cが形成されている。同様に、第2平板12には多数の第2貫通孔32a、32b、32cが形成されている。同様に、第3平板13には、多数の第3貫通孔33a、33b、33cが形成されている。また、第1平板11と第2平板12の間には、セラミックスから成る絶縁板14が設けられており、それには、多数の貫通孔34a、34b、34cが形成されている。同様に、第2平板12と第3平板13との間には、絶縁板15が設けられており、その絶縁板15には、多数の貫通孔35a、35b、35cが形成されている。   FIG. 1 is a cross-sectional view showing the configuration of the radical generator 20. The 1st flat plate 11, the 2nd flat plate 12, and the 3rd flat plate 13 are arrange | positioned in parallel. These flat plates are made of ceramics, and a plurality of first through holes 31a, 31b, 31c are formed in the first flat plate 11. Similarly, a large number of second through holes 32a, 32b, 32c are formed in the second flat plate 12. Similarly, the third flat plate 13 is formed with a large number of third through holes 33a, 33b, 33c. Further, an insulating plate 14 made of ceramics is provided between the first flat plate 11 and the second flat plate 12, and a plurality of through holes 34a, 34b, 34c are formed therein. Similarly, an insulating plate 15 is provided between the second flat plate 12 and the third flat plate 13, and a plurality of through holes 35 a, 35 b, and 35 c are formed in the insulating plate 15.

そして、第1貫通孔31a、第2貫通孔32a、第3貫通孔33a、貫通孔34a、35aは、それぞれ、同軸に配列されており、これらが繋がって、一つの貫通孔が形成されている。同様に、第1貫通孔31b、第2貫通孔32b、第3貫通孔33b、貫通孔34b、35bは、それぞれ、同軸に配列されており、これらが繋がって、一つの貫通孔が形成されている。同様に、第1貫通孔31c、第2貫通孔32c、第3貫通孔33c、貫通孔34c、35cは、それぞれ、同軸に配列されており、これらが繋がって、一つの貫通孔が形成されている。   And the 1st through-hole 31a, the 2nd through-hole 32a, the 3rd through-hole 33a, and the through-holes 34a and 35a are each arrange | positioned coaxially, These are connected and one through-hole is formed. . Similarly, the first through-hole 31b, the second through-hole 32b, the third through-hole 33b, and the through-holes 34b and 35b are arranged coaxially and are connected to form one through-hole. Yes. Similarly, the first through-hole 31c, the second through-hole 32c, the third through-hole 33c, and the through-holes 34c and 35c are arranged coaxially and are connected to form one through-hole. Yes.

また、図2は、多数の貫通孔のうち、代表して3つの貫通孔だけを表示した図である。第1貫通孔31a、31b、31cの内周面には、リング状の陽電極41a、41b、41cが、それぞれ、配設されている。同様に、第2貫通孔32a、32b、32cの内周面には、リング状の陰電極42a、42b、42cが、それぞれ、配設されている。同様に、第3貫通孔33a、33b、33cの内周面には、リング状の中性化電極43a、43b、43cが、それぞれ、配設されている。また、第1平板11の陽電極41a、41b、41cの端面と接触して配線層51a、51b、51cが形成されいる。この配線層は、第1平板11の側面に引き出されており、その端子から電圧が、それぞれに、独立して印加できるように構成されている。   FIG. 2 is a diagram showing only three through holes as representatives among the many through holes. Ring-shaped positive electrodes 41a, 41b, and 41c are disposed on the inner peripheral surfaces of the first through holes 31a, 31b, and 31c, respectively. Similarly, ring-shaped negative electrodes 42a, 42b, and 42c are disposed on the inner peripheral surfaces of the second through holes 32a, 32b, and 32c, respectively. Similarly, ring-shaped neutralization electrodes 43a, 43b, and 43c are disposed on the inner peripheral surfaces of the third through holes 33a, 33b, and 33c, respectively. In addition, wiring layers 51a, 51b, 51c are formed in contact with the end faces of the positive electrodes 41a, 41b, 41c of the first flat plate 11. The wiring layer is drawn out to the side surface of the first flat plate 11, and is configured such that a voltage can be applied independently from each terminal.

また、図3に示すように、第2平板12の陰電極42a、42b、42cの端面と接触し、第2平板12の面上に一様に、配線層52が形成されている。そして、第2平板12の端面に引き出された配線層52の端面にアース電位が印加されるように構成されている。   As shown in FIG. 3, the wiring layer 52 is uniformly formed on the surface of the second flat plate 12 in contact with the end surfaces of the negative electrodes 42 a, 42 b, 42 c of the second flat plate 12. The ground potential is applied to the end face of the wiring layer 52 drawn to the end face of the second flat plate 12.

また、図4に示すように、第3平板13の中性化電極43a、43b、43cの端面と接触して配線層53a、53b、53cが形成されている。この配線層は、第3平板13の側面に引き出されており、その端子から電圧が、それぞれに、独立して印加できるように構成されている。   Also, as shown in FIG. 4, wiring layers 53a, 53b, and 53c are formed in contact with the end faces of the neutralization electrodes 43a, 43b, and 43c of the third flat plate 13. This wiring layer is drawn out to the side surface of the third flat plate 13, and is configured such that a voltage can be applied independently from each terminal.

陽電極41a、41b、41c、陰電極42a、42b、42c、中性化電極43a、43b、43c、内径は、それぞれ、直径0.1mm程度である。すなわち、これらの電極の内面で構成される貫通孔はマイクロホローと言われるものである。   The positive electrodes 41a, 41b, 41c, the negative electrodes 42a, 42b, 42c, the neutralization electrodes 43a, 43b, 43c, and the inner diameter are about 0.1 mm in diameter. In other words, the through holes formed by the inner surfaces of these electrodes are called micro hollows.

上記の構成において、第1平板11の貫通孔31a、31b、31cから、それぞれ、異なる種類のガスが導入される。また、各電極間には、各ガスをプラズマ化して目的とするラジカル種とその濃度を得るのに最適な大きさの電圧が印加される。反応室60は、筒状の筐体61を有し、その筐体61の上部に、本ラジカル発生装置20が設置される。反応室60には、プラズマ処理する物体を設置する基板ステージ62が設けられており、第3平板13の下方に設けられたメッシュ電極16との間で交流電圧が印加される。また、反応室60は外部に排気されている。   In the above configuration, different types of gases are introduced from the through holes 31a, 31b, 31c of the first flat plate 11, respectively. In addition, a voltage having an optimum magnitude is applied between the electrodes so as to obtain a target radical species and its concentration by converting each gas into plasma. The reaction chamber 60 has a cylindrical casing 61, and the radical generator 20 is installed on the upper portion of the casing 61. The reaction chamber 60 is provided with a substrate stage 62 on which an object to be plasma-treated is placed, and an alternating voltage is applied to the mesh electrode 16 provided below the third flat plate 13. The reaction chamber 60 is exhausted to the outside.

各種のガスを反応室60に流しながら、陽電極41a、41b、41cと、陰電極42a、42b、42cのそれぞれの間に、直流電圧が印加されると、陰電極42a、42b、42c(マイクロホローカソード)の内部において放電が発生してプラズマが得られる。このプラズマ粒子は、第3平板13の有する中性化電極43a、43b、43cの内部空間を通過するときに、電子は捕獲され、イオンは中性化される。このようにして、中性化電極43a、43b、43cを通過する粒子をラジカル粒子とすることができ、各種のラジカルを選択的に反応室60に供給して、所望の加工や処理をすることができる。また、この時、陽電極41a、41b、41cと陰電極42a、42b、42cの間に印加される電圧の大きさを調整することで、各陰電極42a、42b、42cを通過するラジカルの濃度を調整することができる。勿論、ガス流量を制御することでも、供給されるラジカルの量を制御することができる。   When a DC voltage is applied between the positive electrodes 41a, 41b, 41c and the negative electrodes 42a, 42b, 42c while flowing various gases into the reaction chamber 60, the negative electrodes 42a, 42b, 42c (micro A discharge is generated inside the hollow cathode) to obtain plasma. When the plasma particles pass through the internal spaces of the neutralization electrodes 43a, 43b, and 43c of the third flat plate 13, electrons are captured and ions are neutralized. In this way, particles passing through the neutralization electrodes 43a, 43b, and 43c can be made radical particles, and various radicals can be selectively supplied to the reaction chamber 60 to perform desired processing and processing. Can do. At this time, the concentration of radicals passing through each negative electrode 42a, 42b, 42c is adjusted by adjusting the magnitude of the voltage applied between the positive electrode 41a, 41b, 41c and the negative electrode 42a, 42b, 42c. Can be adjusted. Of course, the amount of radicals supplied can also be controlled by controlling the gas flow rate.

本発明は、成膜、エッチング、クリーニングなど、ラジカル反応を用いた物体の処理に有効である。   The present invention is effective for the treatment of an object using radical reaction such as film formation, etching, and cleaning.

本発明の具体的な実施例に係るラジカル発生装置の構成を示した構成図。The block diagram which showed the structure of the radical generator which concerns on the specific Example of this invention. 同ラジカル発生装置に用いられている第1平板の構成を示した平面図。The top view which showed the structure of the 1st flat plate used for the radical generator. 同ラジカル発生装置に用いられている第2平板の構成を示した平面図。The top view which showed the structure of the 2nd flat plate used for the radical generator. 同ラジカル発生装置に用いられている第3平板の構成を示した平面図。The top view which showed the structure of the 3rd flat plate used for the radical generator.

11…第1平板
12…第2平板
13…第3平板
31a、31b、31c…第1貫通孔
32a、32b、32c…第2貫通孔
33a、33b、33c…第3貫通孔
35a、35b、35c…貫通孔
14、15…絶縁板
41a、41b、41c…陽電極
42a、42b、42c…陰電極
43a、43b、43c…中性化電極
51a、51b、51c…配線層
52…配線層
53a、53b、53c…配線層
DESCRIPTION OF SYMBOLS 11 ... 1st flat plate 12 ... 2nd flat plate 13 ... 3rd flat plate 31a, 31b, 31c ... 1st through-hole 32a, 32b, 32c ... 2nd through-hole 33a, 33b, 33c ... 3rd through-hole 35a, 35b, 35c ... through holes 14, 15 ... insulating plates 41a, 41b, 41c ... positive electrodes 42a, 42b, 42c ... negative electrodes 43a, 43b, 43c ... neutralization electrodes 51a, 51b, 51c ... wiring layers 52 ... wiring layers 53a, 53b 53c ... wiring layer

Claims (1)

それぞれ異なる種類のガスを導入する多数の第1貫通孔を有し、それぞれの第1貫通孔にリング状のそれぞれの陽電極と、それぞれの陽電極に接続され独立して電圧を印加できる配線層とを配設した第1平板と、
前記第1貫通孔と同軸に形成された多数の第2貫通孔を有し、それぞれの第2貫通孔にリング状の陰電極と、それぞれの陰電極に接触しアース電位が印加される配線層とを配設した、前記第1平板と電気的に絶縁分離され、前記第1平板と平行に配設された第2平板と、
前記第1及び第2貫通孔と同軸に形成された多数の第3貫通孔を有し、それぞれの第3貫通孔にリング状の中性化電極と、それぞれの中性化電極に接続され独立して電圧を印加できる配線層とを配設した、前記第2平板に対して、電気的に絶縁分離された第3平板と、
複数の貫通孔のそれぞれに対して前記陽電極と前記陰電極との間に、独立して電圧を印加する第1電圧印加手段と、
複数の貫通孔のそれぞれに対して前記陰電極と前記中性化電極との間に、独立して電圧を印加する第2電圧印加手段と
を有し、
前記ガスの種類を制御することで、発生するラジカルの種類を制御し、前記第1電圧印加手段により印加される電圧と、前記第2電圧印加手段により印加される電圧とを制御することで、発生する混合ラジカルにおける各ラジカル種の濃度比を制御可能とした
ことを特徴とするラジカル発生装置。
Has a number of first through-hole for introducing different kinds of gases, respectively, and each of the first through-hole in a ring-shaped respective anode wiring layer can be applied a voltage and connected to each of the positive electrode independently A first flat plate on which is disposed;
Has a number of second through-hole formed in said first through hole coaxial with a ring-shaped cathode in each of the second through hole, the wiring layer ground potential contact with the respective negative electrodes are applied A second flat plate electrically insulated from the first flat plate and disposed in parallel with the first flat plate,
A plurality of third through-holes formed coaxially with the first and second through-holes, each of the third through-holes being connected to a ring-shaped neutralization electrode and each of the neutralization electrodes independently; A third flat plate that is electrically insulated and separated from the second flat plate , wherein a wiring layer to which a voltage can be applied is disposed ;
First voltage applying means for independently applying a voltage between the positive electrode and the negative electrode for each of a plurality of through holes;
A second voltage applying means for independently applying a voltage between the negative electrode and the neutralization electrode for each of a plurality of through holes;
Have
By controlling the type of gas, the type of radical generated is controlled, and the voltage applied by the first voltage application unit and the voltage applied by the second voltage application unit are controlled, Controllable concentration ratio of each radical species in the generated mixed radical
A radical generator characterized by that .
JP2005284381A 2005-09-29 2005-09-29 Radical generator Active JP4784977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005284381A JP4784977B2 (en) 2005-09-29 2005-09-29 Radical generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005284381A JP4784977B2 (en) 2005-09-29 2005-09-29 Radical generator

Publications (2)

Publication Number Publication Date
JP2007095536A JP2007095536A (en) 2007-04-12
JP4784977B2 true JP4784977B2 (en) 2011-10-05

Family

ID=37980973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005284381A Active JP4784977B2 (en) 2005-09-29 2005-09-29 Radical generator

Country Status (1)

Country Link
JP (1) JP4784977B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5869502B2 (en) * 2013-02-06 2016-02-24 三井造船株式会社 Film forming apparatus and film forming method
US20170092470A1 (en) * 2015-09-28 2017-03-30 Applied Materials, Inc. Plasma reactor for processing a workpiece with an array of plasma point sources

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173881A (en) * 1984-09-19 1986-04-16 Fuji Electric Co Ltd Vapor growth device
JPH0145067Y2 (en) * 1985-07-12 1989-12-26
JPH0266941A (en) * 1988-08-31 1990-03-07 Nec Corp Etching apparatus
JP3069700B1 (en) * 1999-07-22 2000-07-24 静岡大学長 Discharge vessel and plasma radical generator provided with the discharge vessel
JP3842159B2 (en) * 2002-03-26 2006-11-08 株式会社半導体エネルギー研究所 Doping equipment
JP4076890B2 (en) * 2003-03-27 2008-04-16 株式会社半導体エネルギー研究所 A plasma generation apparatus, an etching apparatus, a sputtering apparatus, and a film formation apparatus.
JP2004353066A (en) * 2003-05-30 2004-12-16 Toshio Goto Plasma source and plasma treatment system
JP2005072347A (en) * 2003-08-26 2005-03-17 Toshio Goto Treating device

Also Published As

Publication number Publication date
JP2007095536A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP7175339B2 (en) Process chamber for periodic and selective material removal and etching
TWI670783B (en) Methods and systems to enhance process uniformity
JP4451684B2 (en) Vacuum processing equipment
TW202333294A (en) System for coupling a voltage to portions of a substrate
CN105379428B (en) Plasma processing apparatus and method of plasma processing
JP2004006574A (en) Plasma processing apparatus
KR20100007160A (en) Apparatus for generating hollow cathode plasma and apparatus for treating a large area substrate by hollow cathode plasma
KR20010071535A (en) Semiconductor process chamber electrode and method for making the same
KR20180094109A (en) An atomic layer etch system with a remote plasma source and a DC electrode
KR102202347B1 (en) Film forming apparatus
US20130098873A1 (en) Overhead electron beam source for plasma ion generation in a workpiece processing region
JP4784977B2 (en) Radical generator
JP2006236772A (en) Neutral particle beam source and neutral particle beam processing apparatus
JP2004353066A (en) Plasma source and plasma treatment system
JP4984285B2 (en) High density plasma processing equipment
JP5961899B2 (en) Atmospheric pressure plasma generator
JP2010074065A5 (en) Substrate cleaning processing apparatus, substrate cleaning processing method, and method for forming gate insulating film in MOS structure
JPS62273731A (en) Plasma processor
JP2004349375A (en) Gas dispersing plate of dry etching apparatus
JP2010050004A (en) Plasma generating electrode
JP2003077904A5 (en)
KR101094644B1 (en) Apparatus for generating hollow cathode plasma and apparatus for treating substrate by hollow cathode plasma
CN109767967B (en) Substrate processing method and substrate processing apparatus
JP2000353693A (en) Plasma processing system
JP4090841B2 (en) Electrode for plasma CVD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

R150 Certificate of patent or registration of utility model

Ref document number: 4784977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250