JP2010050004A - Plasma generating electrode - Google Patents

Plasma generating electrode Download PDF

Info

Publication number
JP2010050004A
JP2010050004A JP2008214606A JP2008214606A JP2010050004A JP 2010050004 A JP2010050004 A JP 2010050004A JP 2008214606 A JP2008214606 A JP 2008214606A JP 2008214606 A JP2008214606 A JP 2008214606A JP 2010050004 A JP2010050004 A JP 2010050004A
Authority
JP
Japan
Prior art keywords
plasma
dielectric layer
electrode
electrodes
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008214606A
Other languages
Japanese (ja)
Other versions
JP5008622B2 (en
Inventor
Takashi Koshimizu
隆史 小清水
Noriyoshi Sato
徳芳 佐藤
Hiroshi Mase
寛 真瀬
Takuya Urayama
卓也 浦山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Adtec Plasma Technology Co Ltd
Original Assignee
Hitachi Kokusai Electric Inc
Adtec Plasma Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc, Adtec Plasma Technology Co Ltd filed Critical Hitachi Kokusai Electric Inc
Priority to JP2008214606A priority Critical patent/JP5008622B2/en
Publication of JP2010050004A publication Critical patent/JP2010050004A/en
Application granted granted Critical
Publication of JP5008622B2 publication Critical patent/JP5008622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Plasma Technology (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma generating electrode enabling to generate a uniform plasma by charging uniformly electric charges on a surface of a dielectric and reduce a plasma discharge starting voltage as well. <P>SOLUTION: The plasma generating electrode is provided with at least a pair of counter electrodes 1, 1' arranged to face each other with a uniform gap each other, wherein plasma is generated between the counter electrodes 1, 1' by impressing high frequency power on these counter electrodes 1, 1'. On at least one electrode surface of the pair of the counter electrodes 1, 1', a uniformly thick dielectric layer 2 is provided, and in the dielectric layer 2, a plenty of conductive small pieces 7 are dispersed and embedded uniformly along with a face direction of the surface of the dielectric layer 2 with a gap of the size of the conductive small piece. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、平行に配置された対向電極に高周波電圧を印加することにより、両電極間に導入されるガス状処理物をプラズマ化するプラズマ発生電極に関するものであり、特に、オゾン生成、排ガス処理、表面処理、薄膜形成等の処理に用いられるプラズマ発生電極に関するものである。   The present invention relates to a plasma generating electrode for converting a gaseous processing product introduced between both electrodes into a plasma by applying a high-frequency voltage to counter electrodes arranged in parallel. In particular, the present invention relates to ozone generation and exhaust gas processing. The present invention relates to a plasma generating electrode used for processing such as surface treatment and thin film formation.

プラズマは、ガス処理、表面処理、材料・デバイス製造工程において必要不可欠なツールとなっている。プラズマを生成する場合、相対向する一対の対向電極に高周波電源を接続し、高周波電圧を印加し、処理すべき被処理ガスを一対の対向電極間に導入する。電子が被処理ガスに衝突することで放電が発生し、プラズマを発生する。プラズマにより発生した電子、イオン、ラジカルは、基板処理装置、オゾン発生装置、生態分野の装置に利用される。
オゾン装置に利用すると被処理物の減菌が可能になり、基板処理装置に利用すると基板処理が可能になる。プラズマは、誘電体バリア放電、グロー放電、水中放電等に分類されており、誘電体バリア放電(Dielectric Barrier Discharge;DBD(オゾナイザー放電あるいは無声放電とも称されることもある))は大気圧あるいはそれに準じる高い動作気圧でプラズマを生成するための装置として多用されている。
Plasma has become an indispensable tool in gas processing, surface processing, and material / device manufacturing processes. In the case of generating plasma, a high frequency power source is connected to a pair of opposed electrodes opposed to each other, a high frequency voltage is applied, and a gas to be processed is introduced between the pair of opposed electrodes. When electrons collide with the gas to be processed, discharge is generated and plasma is generated. Electrons, ions, and radicals generated by the plasma are used in substrate processing apparatuses, ozone generators, and ecological devices.
When used in an ozone apparatus, it becomes possible to sterilize an object to be processed, and when used in a substrate processing apparatus, substrate processing becomes possible. Plasma is classified into dielectric barrier discharge, glow discharge, underwater discharge, etc., and dielectric barrier discharge (DBD (also sometimes referred to as ozonizer discharge or silent discharge)) is atmospheric pressure or it. It is widely used as a device for generating plasma at a high operating atmospheric pressure.

図1は、誘電体バリア放電(DBD)のプラズマ発生電極を示す。一対の対向電極1、1’は、大気圧の酸素雰囲気下に設置されており、それぞれ導波板あるいは同軸ケーブル等を介して交流電源4に接続される。一対の対向電極1、1’は数mm〜数cmの間隔を隔てて互いに対向されている。一対の対向電極1、1’の一方は、電極面全面が誘電体層2によりまんべんなく覆れており、一方の対向電極1’は軸3に支持され、軸3及びアース線5を介して接地されている。他方の対向電極は軸により支持(懸垂)される。プラズマ発生電極をオゾン発生装置のオゾン発生源として組み込み、酸素雰囲気下で一対の対向電極1,1’に高周波電力を供給すると、空間の放電(体積放電と称すこともある)と沿面放電によって、印加電圧の半サイクル毎に、直径50μm程度の幾つかの放電(マイクロ放電)が一対の対向電極の放電間隙に、ランダム且つ間歇的に発生し、酸素プラズマ6が発生する。酸素プラズマ6が発生すると、酸素プラズマ雰囲気中の酸素分子は、原子状酸素などの活性種に分解され、再結合によりオゾン分子となる。生成されたオゾンは、周知のように、減菌用として用いられる。   FIG. 1 shows a plasma generating electrode for dielectric barrier discharge (DBD). The pair of counter electrodes 1, 1 ′ is installed in an oxygen atmosphere at atmospheric pressure, and is connected to the AC power supply 4 via a waveguide plate, a coaxial cable, or the like. The pair of counter electrodes 1, 1 'are opposed to each other with an interval of several mm to several cm. One of the pair of counter electrodes 1, 1 ′ is entirely covered with the dielectric layer 2, and the one counter electrode 1 ′ is supported by the shaft 3 and grounded via the shaft 3 and the ground wire 5. Has been. The other counter electrode is supported (suspended) by a shaft. When a plasma generating electrode is incorporated as an ozone generating source of an ozone generating device and high frequency power is supplied to a pair of counter electrodes 1 and 1 'under an oxygen atmosphere, space discharge (sometimes referred to as volume discharge) and creeping discharge, Every half cycle of the applied voltage, several discharges (micro discharges) having a diameter of about 50 μm are randomly and intermittently generated in the discharge gap between the pair of counter electrodes, and oxygen plasma 6 is generated. When the oxygen plasma 6 is generated, oxygen molecules in the oxygen plasma atmosphere are decomposed into active species such as atomic oxygen and become ozone molecules by recombination. As is well known, the generated ozone is used for sterilization.

図2は、プラズマ発生電極の誘電体バリア放電における放電の様子を概略的に示すものである。
図2(a)に示すように、誘電体バリア放電では、誘電体層2表面(誘電体バリアともいう)の限られた面の一部が帯電するため、誘電体層2表面の電荷のクーロン反発力により、同時に近距離でマイクロ放電を起こすことが難しく、印加電圧半サイクル毎に限られた数の放電が空間的にランダムに生起される。また、プラズマ発生電極(誘電体バリア電極)を用いたオゾン生成装置では、オゾンの発生効率も著しく低下することも分かっている。
このため、空間的に一様な放電を生起させ、均一プラズマを生成することは極めて困難である。なお、交流印加電圧を増加させ、ある程度マイクロ放電の数を増加(放電領域を拡大)させることも検討したが、投入電力が増大すると誘電体バリアが加熱され、誘電体の外表面に変色や焦げ付きなどが発生して電極寿命が短くなる。
FIG. 2 schematically shows the state of discharge in the dielectric barrier discharge of the plasma generating electrode.
As shown in FIG. 2A, in the dielectric barrier discharge, a part of a limited surface of the surface of the dielectric layer 2 (also referred to as a dielectric barrier) is charged. Due to the repulsive force, it is difficult to cause micro-discharge at a short distance at the same time, and a limited number of discharges are generated randomly in each half cycle of the applied voltage. It has also been found that ozone generation efficiency significantly decreases in an ozone generator using a plasma generating electrode (dielectric barrier electrode).
For this reason, it is extremely difficult to generate a spatially uniform discharge and generate a uniform plasma. We also considered increasing the number of micro discharges (expanding the discharge area) to some extent by increasing the AC applied voltage, but as the applied power increased, the dielectric barrier was heated, causing discoloration and scorching on the outer surface of the dielectric. The electrode life is shortened.

そこで、先行技術を調査すると、特許文献1には、一方の対向電極に対して他方の対向電極の移動、揺動により、放電ムラ同士を重ね合わせ、重ね合わせの結果として放電ムラをなくす点が示されている。また、特許文献1及び2には、誘電体バリア電極一対の対向電極から構成される単位電極の電極面に誘導体内を設けた誘電体バリア放電電極において、誘電体内に導電膜を設け、導電膜に貫通孔を設けることによって、単位電極相互間に低い投入エネルギで安定なプラズマを発生させる点が示されている。
特開2005−203362号公報 再公表WO2004/114728号公報
Therefore, when investigating the prior art, Patent Document 1 discloses that discharge unevenness is superimposed on one counter electrode by moving and swinging the other counter electrode, and discharge unevenness is eliminated as a result of the overlap. It is shown. In Patent Documents 1 and 2, in a dielectric barrier discharge electrode in which a derivative is provided on the electrode surface of a unit electrode composed of a pair of opposing electrodes, a conductive film is provided in the dielectric. It is shown that a stable plasma is generated with low input energy between unit electrodes by providing a through-hole in each other.
JP 2005-203362 A Republished WO 2004/114728

また、特許文献1又は2の技術を検討すると、導電膜が、誘電体内に収容されているためにプラズマが導電体により汚染されることはないが、導電膜は一つの部材であり、導電膜に係る容量電流は均一になる。導電体の容量電流が均一になると、誘電体表面の電荷は不均一となってしまうので、単位電極間のプラズマは不均一化となる。従って、特許文献1、2の技術でも単位電極間に均一なプラズマを形成することは難しい。   Further, when the technique of Patent Document 1 or 2 is examined, the conductive film is housed in the dielectric, so that the plasma is not contaminated by the conductive material. The capacitance current related to is uniform. If the capacitance current of the conductor becomes uniform, the charge on the surface of the dielectric becomes non-uniform, so that the plasma between the unit electrodes becomes non-uniform. Therefore, it is difficult to form uniform plasma between the unit electrodes even with the techniques of Patent Documents 1 and 2.

本発明は、誘電体表面に電荷を均一帯電させることにより均一なプラズマの生成を可能にすると共に、プラズマ放電開始電圧の低減を可能にするプラズマ発生電極を提供することにある。   An object of the present invention is to provide a plasma generating electrode that enables uniform plasma generation by uniformly charging the surface of a dielectric, and also enables reduction of the plasma discharge starting voltage.

本発明の態様は、互いに均等な間隔を隔てて配置された対向配置された少なくとも一対の対向電極を備え、これら対向電極に高周波電力を印加することによって、対向電極間にプラズマを発生させるプラズマ発生電極であって、前記一対の対向電極の少なくとも一方の電極表面に一様な厚みに誘電体層が設けられ、該誘電体層中には、多数の導体小片が、誘電体層の表面の面方向に沿った方向に、当該導体小片サイズ程度の間隔を隔てて一様に分散されて埋設されたプラズマ発生電極を提供する。この場合、前記一対の対向電極が互いに平行に且つ、前記誘電体層がこれらの電極と平行に設けられていることが好ましい。また、前記導体小片が、平面視円形のパッチ電極又は粒子状のパッチ電極であり、隣接する導体小片同士が、誘導体により互いに絶縁されることが好ましい。   An aspect of the present invention includes at least a pair of opposed electrodes arranged at equal intervals, and generating plasma between the opposed electrodes by applying high-frequency power to the opposed electrodes. A dielectric layer having a uniform thickness is provided on at least one electrode surface of the pair of counter electrodes, and in the dielectric layer, a large number of conductor pieces are provided on the surface of the surface of the dielectric layer. Provided is a plasma generating electrode that is uniformly dispersed and embedded in the direction along the direction with an interval of about the size of the conductor piece. In this case, it is preferable that the pair of counter electrodes are provided in parallel with each other and the dielectric layer is provided in parallel with these electrodes. Moreover, it is preferable that the said conductor piece is a patch electrode or particle-like patch electrode with a planar view circular shape, and adjacent conductor pieces are insulated from each other by the derivative | guide_body.

本発明によれば、誘電体層表面に電荷が均一帯電させることができ、均一なプラズマの生成を可能にすることができる。また、プラズマ放電開始電圧の低減することができるので、エネルギの利用効率を向上させることができる。   According to the present invention, electric charges can be uniformly charged on the surface of the dielectric layer, and uniform plasma generation can be achieved. In addition, since the plasma discharge starting voltage can be reduced, the energy utilization efficiency can be improved.

以下に本発明の実施の形態を説明する。
図3はオゾン発生装置にオゾン発生源として本発明に係るプラズマ発生電極を組み込んだ示す概略図である。
プラズマ発生電極において、一対の対向電極1,1’間に、空間的に一様なプラズマを生成するには、一対の対向電極1,1’間に一様な放電を発生させる必要があり、一様な放電を発生させるには、放電の種である電子(電荷)を、誘電体層表面に一様に配置して誘電体層の表面を均一な誘電特性とする必要があり、誘電体層の表面を均一な誘電特性とするには、多数の金属の導体小片を、誘電体層2の表面にパッチ電極として配置することが有効である。
Embodiments of the present invention will be described below.
FIG. 3 is a schematic view showing that a plasma generating electrode according to the present invention is incorporated in an ozone generator as an ozone generating source.
In the plasma generating electrode, in order to generate a spatially uniform plasma between the pair of counter electrodes 1, 1 ′, it is necessary to generate a uniform discharge between the pair of counter electrodes 1, 1 ′. In order to generate a uniform discharge, it is necessary to uniformly dispose electrons (charges), which are the seeds of the discharge, on the surface of the dielectric layer so that the surface of the dielectric layer has uniform dielectric characteristics. In order to obtain uniform dielectric properties on the surface of the layer, it is effective to arrange a large number of metal conductor pieces as patch electrodes on the surface of the dielectric layer 2.

しかし、金属の導体小片7は、プラズマが導体小片7から飛び出した金属により汚染されてしまうこと、また、電荷(帯電粒子)が導体小片7の表面で自由に動くことができ、
電荷同士がクーロン力によって反発してしまうことにより、導体小片7端面のエッジ(端面外周縁)に集中してしまい、導体小片7を一様に帯電させることができないことから、パッチサイズの偏りによって放電の均一を欠くことになり、誘電体層2の表面に均一な電界を形成することはできない。
However, the metal conductor piece 7 is contaminated by the metal from which the plasma jumps out of the conductor piece 7, and the charge (charged particles) can move freely on the surface of the conductor piece 7,
The electric charges repel each other due to the Coulomb force, so that they are concentrated on the edge (end surface outer peripheral edge) of the conductor piece 7 and the conductor piece 7 cannot be uniformly charged. The discharge is not uniform, and a uniform electric field cannot be formed on the surface of the dielectric layer 2.

つまり、パッチ電極を導入すると、電荷が、導体小片の端面のエッジ(端面外周縁)に集中し、エッジの電界が強くなることを利用して誘電体層2表面に誘電特性の偏りをつけてプラズマの安定した立ち上げを可能にすると共に、放電開始電圧の低下、注入エネルギの増大、エネルギ効率の向上、すなわち、電圧を一定とした場合の電力値を小さくすることができるが、荷電粒子帯電の一様性には不利に作用することになる。   In other words, when the patch electrode is introduced, the electric charge is concentrated on the edge (end surface outer peripheral edge) of the end face of the conductor piece, and the electric field of the edge is strengthened so that the dielectric layer 2 has a biased dielectric property. While enabling stable start-up of the plasma, it is possible to decrease the discharge start voltage, increase the injection energy, improve the energy efficiency, that is, reduce the power value when the voltage is constant, but charged particle charging This will adversely affect the uniformity of.

ところが、金属の多数の導体小片7を、互いに所定の間隔を隔てて誘電体層2内の浅い位置に埋設し、隣接する導体小片7を誘導体によって絶縁すると、各導体小片7の外面にも電荷が分布するようになり、各導体小片7の端面を中心とした強く安定した電界を形成することができる。   However, when a large number of metal conductor pieces 7 are buried in shallow positions in the dielectric layer 2 with a predetermined distance from each other, and the adjacent conductor pieces 7 are insulated by a derivative, the outer surface of each conductor piece 7 is also charged. Can be distributed, and a strong and stable electric field can be formed around the end face of each conductor piece 7.

このため、本実施の形態では、一対の対向電極1,1’の少なくとも一方の電極表面に一様な厚みの誘電体層2を形成し、該誘電体層2中には、多数の導体小片7を、誘電体層2の表面に添った面方方向に当該導体小片サイズ程度の間隔を隔てて一様に分散させて埋設している。   For this reason, in this embodiment, a dielectric layer 2 having a uniform thickness is formed on the surface of at least one of the pair of counter electrodes 1 and 1 ′. 7 are embedded in the direction of the surface along the surface of the dielectric layer 2 so as to be uniformly dispersed with an interval of about the size of the conductor piece.

導体小片7の形状は、導体小片7毎に導体小片を中心とした均一な電界(誘導体層2側から見ると不均一な電界)を形成するために、平面円形の円盤状、球体状、又は粒子状としており、導体小片の埋設位置は、誘電体層2の表面電荷と導体小片7の静電容量C’が、導体小片7と一方の対向電極1’との間の静電容量Cよりも格段に大きくなる(C’>>C)浅い位置、例えば5μm〜100μmの位置としている。   In order to form a uniform electric field (non-uniform electric field when viewed from the side of the derivative layer 2) for each conductor piece 7, the shape of the conductor piece 7 is a planar circular disk, sphere, or The conductive piece is embedded in the form of particles, and the surface charge of the dielectric layer 2 and the capacitance C ′ of the conductor piece 7 are determined by the capacitance C between the conductor piece 7 and one counter electrode 1 ′. Is a shallow position (C ′ >> C), for example, a position of 5 μm to 100 μm.

また、誘電体層2の厚みは導体小片の埋設位置の100倍としている。誘電体の埋設位置の下限値を5μmとしたのは、これ以上浅くすると誘電体層2の上部がハード的に弱くなるからであり、上限値を50μmとしたのは、50μmを超えてしまうと、導体小片7と他方の対向電極1の電極面までの距離が長くなりすぎて、導体小片7に容量電流が流れなくなり、放電を発生させることができなくなるからである。   Further, the thickness of the dielectric layer 2 is set to 100 times the buried position of the conductor piece. The reason why the lower limit of the dielectric embedding position is set to 5 μm is that when the depth is further reduced, the upper part of the dielectric layer 2 is weakened in terms of hardware, and the upper limit is set to 50 μm when it exceeds 50 μm. This is because the distance between the conductor piece 7 and the electrode surface of the other counter electrode 1 becomes too long, so that no capacity current flows through the conductor piece 7 and no discharge can be generated.

また、各導体小片7の埋設位置は同じにしている。また、隣接する導体小片7,1’間の間隔は、導体小片サイズ程度、例えば、0.1〜3mmの中から選択したサイズとしている。これにより、誘導体層2の表面に各導体小片7の電界の形成の結果として、面内均一に電荷が分布させることができ、各導体小片の7静電容量が一様となって一対の対向電極1,1’間に一様なプラズマを生成することができる。   Further, the buried positions of the conductor pieces 7 are the same. Further, the interval between the adjacent conductor pieces 7 and 1 'is set to a size selected from about the conductor piece size, for example, 0.1 to 3 mm. Thereby, as a result of the formation of the electric field of each conductor piece 7 on the surface of the dielectric layer 2, electric charges can be distributed uniformly in the surface, and the seven electrostatic capacitances of each conductor piece 7 become uniform and a pair of opposing Uniform plasma can be generated between the electrodes 1 and 1 '.

なお、誘電体層2の材質は、ガラスやセラミックスが例示されるが、プラズマを汚染することのない誘導体であればよい。また、導体小片7の材質はSUS、銅、アルミ、SiCが例示されるが、導電性の良好な金属であればよい。一方の対向電極1と他方の対向電極1’との間隔を一定としてガスのイオン、ラジカル等として利用する場合(リモートプラズマ)、排気ガスをプラズマに処理し無害物として再結合させる場合、あるいは生態に対する医療用としてのガスとする場合は、一対の対向電極の電極形状は、例えば、図5(a)、(b)に示す如く円筒型としてもよいし図5(c)に示すように波型としてもよい。   The material of the dielectric layer 2 is exemplified by glass or ceramics, but may be a derivative that does not contaminate the plasma. Moreover, although the material of the conductor piece 7 is exemplified by SUS, copper, aluminum, and SiC, any metal having good conductivity may be used. When the distance between one counter electrode 1 and the other counter electrode 1 'is constant and used as gas ions, radicals, etc. (remote plasma), when exhaust gas is processed into plasma and recombined as harmless, or ecology For example, the electrode shape of the pair of counter electrodes may be a cylindrical shape as shown in FIGS. 5A and 5B or a wave shape as shown in FIG. It is good also as a type.

図4(a)〜(c)に、誘電体層に対する導体小片群の配列パターンの例を示す。
導体小片7はこれを中心として電界を形成するために、円盤状、球状、微粒子の形状と
するとよい。また、平面的な配置は、それぞれ誘電体層2に対して図4(a)の格子状、図4(b)に示すように蜂の巣状(正六角形)などに配列するとよい。また、導体小片7の形を、図4.(c)のような粒子状とし、粒径のサイズ:1〜10μm程度として誘電体層2に対する導体小片7の密度を上げると、誘導体層2の表面により均一に電荷を分布させることができ、均一なプラズマを形成することができる。
他の構成は、従来技術で説明した構成と同じである。この結果、図2(b)に示すように、均一な放電を形成することができるので、結果として均一なプラズマを形成することができる。
図5(a)は円筒型の外側の対向電極1の電極面に多数の金属片を埋め込んだ例を、(b)は円筒型の内側の対向電極1’の電極面に多数の金属片を埋め込んだ例を示し、(c)は相対向する対向電極1,1’を波型として互いに平行に対向させた例を示す。このように対向電極1,1’とても対向電極間,1’の間隙が一定となるので、均一な放電が可能となり、均一なプラズマの生成が可能となる。
4A to 4C show examples of arrangement patterns of conductor piece groups with respect to the dielectric layer.
In order to form an electric field around the conductor piece 7, it is preferable that the conductor piece 7 has a disk shape, a spherical shape or a fine particle shape. Further, the planar arrangement may be arranged in a lattice form in FIG. 4A and a honeycomb shape (regular hexagon) as shown in FIG. The shape of the conductor piece 7 is shown in FIG. When the particle size is as in (c) and the particle size is about 1 to 10 μm and the density of the conductor pieces 7 with respect to the dielectric layer 2 is increased, the charge can be distributed more uniformly on the surface of the dielectric layer 2, Uniform plasma can be formed.
Other configurations are the same as those described in the related art. As a result, a uniform discharge can be formed as shown in FIG. 2B, and as a result, a uniform plasma can be formed.
FIG. 5 (a) shows an example in which a large number of metal pieces are embedded in the electrode surface of the cylindrical outer counter electrode 1, and FIG. 5 (b) shows a large number of metal pieces on the electrode surface of the cylindrical inner counter electrode 1 ′. An example of embedding is shown, and (c) shows an example in which opposing electrodes 1 and 1 ′ facing each other are corrugated to face each other in parallel. As described above, since the gap between the counter electrodes 1 and 1 'is very constant between the counter electrodes and 1', uniform discharge can be performed, and uniform plasma can be generated.

このように、本発明の実施の形態では、導体小片7を誘電体層2の表面側の所定位置、すなわち、浅い位置に埋め込んで多数の導体小片7にそれぞれトリガー電極の役割を果たさせることにより、誘電体層2表面での放電のバラツキを抑制し、誘電体層2の表面(誘電体バリア表面)上の帯電電荷分布の平滑化により、空間的にムラのない一様な放電を生起させて、均一なプラズマが生成する。また、導体小片7を誘電体層2内に埋設して、放電開始時の放電開始電圧を低くする。なお、金属のパーティクルによるプラズマの汚染を嫌う場合、例えば基板処理装置では、誘電体層2を一方の対向電極1’だけでなく電極面の両方に設け、プラズマに導体小片7の金属不純物がパーティクルとして混入することを防止するとよい。また、誘電体層2の表面は凹凸のない滑らかな形状にするとよい。これにより、一対の対向電極1,1’の電極間の距離は、場所によらず一定となり、誘電体層2表面の凹凸に起因するプロセスの不均一性も解消される。また、本実施の形態に係るプラズマ発生電極は、導体小片7が誘電体層2内に埋め込まれていて互いに誘導体によって絶縁されており、局所的に不均一な電界が規則的に発生し、クーロン力が反発力として利用される結果、均一プラズマ生成に必要な放電開始電圧が低くなる。   As described above, in the embodiment of the present invention, the conductor piece 7 is embedded in a predetermined position on the surface side of the dielectric layer 2, that is, a shallow position, so that each of the plurality of conductor pieces 7 serves as a trigger electrode. This suppresses variations in the discharge on the surface of the dielectric layer 2 and smoothes the charge distribution on the surface of the dielectric layer 2 (dielectric barrier surface), thereby generating a uniform discharge with no spatial unevenness. Thus, a uniform plasma is generated. Further, the conductor piece 7 is embedded in the dielectric layer 2 to lower the discharge start voltage at the start of discharge. In the case where the contamination of the plasma by metal particles is disliked, for example, in the substrate processing apparatus, the dielectric layer 2 is provided not only on one counter electrode 1 ′ but also on the electrode surface, and the metal impurities of the conductor piece 7 are particles in the plasma. It is good to prevent it from mixing. Further, the surface of the dielectric layer 2 is preferably a smooth shape without unevenness. Thereby, the distance between the electrodes of the pair of counter electrodes 1 and 1 ′ is constant regardless of the place, and the process non-uniformity due to the unevenness on the surface of the dielectric layer 2 is also eliminated. Further, in the plasma generating electrode according to the present embodiment, the conductor pieces 7 are embedded in the dielectric layer 2 and insulated from each other by a derivative, and a locally non-uniform electric field is regularly generated. As a result of using the force as a repulsive force, the discharge start voltage required for generating uniform plasma is lowered.

以下、添付図面を参照して本発明の具体的な実施例を説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the accompanying drawings.

まず、図3を参照して本発明に係るプラズマ発生電極をゾン発生源として組み込んだオゾン発生装置について説明する。図3に示すように、平行平板型の対向電極1,1’は5mm〜数cmの一定の間隔を保って1000Pa〜大気圧の酸素雰囲気内に配置され、それぞれ導波板あるいは同軸ケーブル等を介して交流電源4に接続される。一方の対向電極1’はアース線5によって接地され、電極面には厚さ1〜3mm程度の厚みに前記誘電体層2が形成される。誘電体層2の内部には、誘電体層2の表面から10〜300μm程度の深さ位置に、前記したように、複数の導体小片7からなる導小片群が埋め込まれている。誘電体層2は軸3によって支持されている。交流電源4より交流高電圧を対向電極1と対向電極1’とに供給すると、両対向電極1,1’間で放電が発生し、酸素プラズマ6が生起される。大気圧下において、雰囲気中の酸素分子は放電によって原子状酸素などの活性種に分解され、再結合によってオゾン分子となる。   First, an ozone generator incorporating the plasma generating electrode according to the present invention as a zon generating source will be described with reference to FIG. As shown in FIG. 3, the parallel plate type counter electrodes 1 and 1 'are arranged in an oxygen atmosphere of 1000 Pa to atmospheric pressure at a constant interval of 5 mm to several centimeters. To the AC power source 4. One counter electrode 1 ′ is grounded by a ground wire 5, and the dielectric layer 2 is formed on the electrode surface to a thickness of about 1 to 3 mm. Inside the dielectric layer 2, a conductive piece group composed of a plurality of conductive pieces 7 is embedded at a depth position of about 10 to 300 μm from the surface of the dielectric layer 2 as described above. The dielectric layer 2 is supported by the shaft 3. When an AC high voltage is supplied from the AC power source 4 to the counter electrode 1 and the counter electrode 1 ′, a discharge is generated between the counter electrodes 1 and 1 ′, and oxygen plasma 6 is generated. Under atmospheric pressure, oxygen molecules in the atmosphere are decomposed into active species such as atomic oxygen by discharge and become ozone molecules by recombination.

図6は、前記プラズマ発生用電極を、オゾンプラズマにより合成樹脂シートの表面処理を行なうオゾン処理装置に適用した実施の形態を示す概略図である。
図6に示すように、合成樹脂製シート9は巻き取り用ローラー8で巻き取り可能に設けられ、オゾン生成装置の相対向する一対の対向電極は、合成樹脂製シート9を挟むように設けられる。オゾン処理生成装置を作動し、合成樹脂製シート9を巻き取り用ローラー8により巻き取っていくと、合成樹脂製シート9の両表面が放電している対向電極1と対向電極1’との間を通過する間にオゾンプラズマ6に晒されることによって表面処理が行な
われる。これにより、シート表面の塗料などに対する濡れ性を向上させることができる。
FIG. 6 is a schematic view showing an embodiment in which the plasma generating electrode is applied to an ozone treatment apparatus that performs surface treatment of a synthetic resin sheet with ozone plasma.
As shown in FIG. 6, the synthetic resin sheet 9 is provided so as to be able to be taken up by a take-up roller 8, and a pair of opposing electrodes of the ozone generator are provided so as to sandwich the synthetic resin sheet 9. . When the ozone treatment generator is operated and the synthetic resin sheet 9 is taken up by the take-up roller 8, the surface between the counter electrode 1 and the counter electrode 1 ′ where both surfaces of the synthetic resin sheet 9 are discharged is discharged. Surface treatment is performed by being exposed to the ozone plasma 6 while passing through. Thereby, the wettability with respect to the coating material etc. of the sheet | seat surface can be improved.

図7は、図5(a)で説明した円筒状のプラズマ生成用電極を大気圧放電により排気ガスを処理する排気ガス処理装置の排気処理部として組み込んだ排気ガス処理装置の概略図である。
図7に示すように、円筒状の対向電極1,1’に高周波電源4を接続し、一対の対向電極1,1’に高周波電力を印加した状態で、一対の対向電極1,1’の円筒の間隙に排気ガスを流すと、均一なプラズマが発生する。排気ガス中の有害分子、特に、CO,HC,NOx等はプラズマ6中で分解され、再結合によって無害な炭酸ガス(CO),窒素(N)、水蒸気(HO)、などの化合物に変化する。
FIG. 7 is a schematic diagram of an exhaust gas processing apparatus in which the cylindrical plasma generation electrode described in FIG. 5A is incorporated as an exhaust processing unit of an exhaust gas processing apparatus that processes exhaust gas by atmospheric pressure discharge.
As shown in FIG. 7, the high frequency power source 4 is connected to the cylindrical counter electrodes 1 and 1 ′, and the high frequency power is applied to the pair of counter electrodes 1 and 1 ′. When exhaust gas is passed through the gap between the cylinders, uniform plasma is generated. Hazardous molecules in exhaust gas, especially CO, HC, NOx, etc. are decomposed in the plasma 6 and are harmless by recombination, such as carbon dioxide (CO 3 ), nitrogen (N), water vapor (H 2 O), etc. To change.

図8は、前記プラズマ生成用電極を基板処理部として組み込んだ基板処理装置(半導体装置の製造装置)としてのプラズマCVD装置を示す概略図である。
図示されるように、相対向する対向電極1、1’は数mm〜数cmの一定の間隔を保って反応室13内に設置されており、それぞれ導波板あるいは同軸ケーブル等を介して交流電源4に接続されている。反応室を形成する反応容器11はアース線5によって接地されており、反応容器の上部、下部の絶縁ブロック12,12を介して一対の電極1、1’を支持している。一対の対向電極1,1’の相対向する電極面には誘電体層2によって被覆されている。誘導体層2内の少なくとも一方には、前記したように、多数の導体小片7が分散されて埋設されている。一方の対向電極1’は昇降軸3に支持されており、ベローズ15によって密閉されている。一対の対向電極1、1’の電極間距離は、昇降軸3を昇降により電極間距離が調節される。被処理基板10は、一方の対向電極1’の誘電体層2の上面に支持される。反応室13の排気口には真空ポンプ14が接続されている。
FIG. 8 is a schematic view showing a plasma CVD apparatus as a substrate processing apparatus (semiconductor device manufacturing apparatus) in which the plasma generating electrode is incorporated as a substrate processing section.
As shown in the figure, the opposing electrodes 1 and 1 'facing each other are installed in the reaction chamber 13 at a constant interval of several mm to several cm, and each of them is AC via a waveguide plate or a coaxial cable. Connected to power supply 4. A reaction vessel 11 forming a reaction chamber is grounded by a ground wire 5 and supports a pair of electrodes 1, 1 ′ via insulating blocks 12, 12 at the top and bottom of the reaction vessel. The opposing electrode surfaces of the pair of counter electrodes 1 and 1 ′ are covered with a dielectric layer 2. As described above, a large number of conductor pieces 7 are dispersed and embedded in at least one of the dielectric layers 2. One counter electrode 1 ′ is supported by the lifting shaft 3 and is sealed by a bellows 15. The distance between the electrodes of the pair of counter electrodes 1, 1 ′ is adjusted by moving the lifting shaft 3 up and down. The substrate 10 to be processed is supported on the upper surface of the dielectric layer 2 of one counter electrode 1 ′. A vacuum pump 14 is connected to the exhaust port of the reaction chamber 13.

基板処理の際は、真空ポンプ14の真空引きにより反応容器11内を真空引きに数Pa程度に減圧する。この後、基板処理に用いる反応性ガスをガスノズル16より処理室に供給しながら真空ポンプ14の排気により反応室13内の圧力を数10Pa程度に保持する。
次に、交流電源4より高電圧を対向電極1と対向電極1’とに印加する。すると対向電極1と対向電極1’の両電極間で放電が発生し、この放電によりプラズマ6が生起される。反応ガスとして成膜ガスを供給した場合は、反応性ガスの分解反応により発生したイオン、活性種により反応が促進されて、被処理基板10の表面に薄膜が生成される。原料ガスとして酸化ガスを形成した場合は、被処理基板10の表面を酸化することができる。
At the time of substrate processing, the inside of the reaction vessel 11 is evacuated to several Pa by vacuuming by the vacuum pump 14. Thereafter, the pressure in the reaction chamber 13 is maintained at about several tens of Pa by the exhaust of the vacuum pump 14 while the reactive gas used for substrate processing is supplied from the gas nozzle 16 to the processing chamber.
Next, a higher voltage than the AC power supply 4 is applied to the counter electrode 1 and the counter electrode 1 ′. Then, a discharge is generated between both the counter electrode 1 and the counter electrode 1 ′, and plasma 6 is generated by the discharge. When a deposition gas is supplied as a reaction gas, the reaction is promoted by ions and active species generated by the decomposition reaction of the reactive gas, and a thin film is generated on the surface of the substrate 10 to be processed. When an oxidizing gas is formed as the source gas, the surface of the substrate to be processed 10 can be oxidized.

<付記>
以下、本発明の好ましい態様を付記する。
<Appendix>
Hereinafter, preferred embodiments of the present invention will be additionally described.

本実施形態に係る態様は、均等な間隔をおいて対向配置された少なくとも一対の電極(平板型、円筒型、これらを変型した形状)を備え、これらの間に交流電圧を印加することによってプラズマを発生させることが可能なプラズマ発生電極において、少なくとも一方の電極の表面に誘電体層を設け、前記誘電体層中に、多数の導体の小片群を導体小片サイズ程度の間隔で面方向に一様に分散して埋め込み、それらの静電誘導効果により放電開始電圧の低減を図ると共に放電間隙空間に一様なプラズマを生成するプラズマ発生電極。   The aspect according to the present embodiment includes at least a pair of electrodes (a flat plate type, a cylindrical type, and a modified shape thereof) arranged to face each other at equal intervals, and plasma is generated by applying an alternating voltage therebetween. In a plasma generating electrode capable of generating a dielectric layer, a dielectric layer is provided on the surface of at least one of the electrodes, and a plurality of small pieces of conductors are arranged in the dielectric layer in the plane direction at intervals of about the size of the conductive piece. A plasma generating electrode that scatters and embeds in the same manner, reduces the discharge start voltage by the electrostatic induction effect, and generates uniform plasma in the discharge gap space.

前記導体の小片は、一定形状の円盤状パッチであり,それぞれの導体片は互いに電気的に独立とすると好ましい。
また、導体の小片は、粒子状であることが好ましい。
The small pieces of the conductor are preferably disk-shaped patches having a fixed shape, and the conductive pieces are preferably electrically independent from each other.
Moreover, it is preferable that the small piece of a conductor is a particulate form.

前記プラズマ発生電極を用いて大気圧の酸素ガス雰囲気にて放電させ、酸素分子を励起してオゾン分子を生成させるオゾンガス生成装置。
前記プラズマ発生電極を用いて大気圧の雰囲気にて排気ガス中の有害分子(CO,HC,NO等)を分解して無害化する排気ガス分解装置。及び有害分子を有用分子に変換することを目的にする排気処理装置。
An ozone gas generation device that discharges in an oxygen gas atmosphere at atmospheric pressure using the plasma generation electrode to excite oxygen molecules to generate ozone molecules.
Harmful molecules (CO, HC, NO x, etc.) exhaust gas decomposition apparatus for detoxifying decomposes in the exhaust gas in an atmosphere of atmospheric pressure by using the plasma generating electrode. And an exhaust treatment device for the purpose of converting harmful molecules into useful molecules.

前記プラズマ発生電極を用いて発生する活性粒子(ラジカル)を利用して被処理物(例えば、基板、フィルム、金属シート)の表面に薄膜を形成する薄膜生成装置。   A thin film generating apparatus that forms a thin film on the surface of an object to be processed (for example, a substrate, a film, or a metal sheet) using active particles (radicals) generated using the plasma generating electrode.

前記プラズマ発生電極を用いて被処理物の表面を改質(例えば、濡れ性)する表面処理装置。   A surface treatment apparatus for modifying (for example, wettability) the surface of an object to be treated using the plasma generating electrode.

前記プラズマ発生電極を用いてオゾン等の処理気体を形成し、処理気体により滅菌する減菌処理装置。   A sterilization treatment apparatus for forming a treatment gas such as ozone using the plasma generating electrode and sterilizing with the treatment gas.

前記プラズマ発生電極を用いて生体を処理する処理ガスを形成し、この処理ガスにより生体を処理する生体応用装置。 A biological application apparatus that forms a processing gas for processing a living body using the plasma generating electrode and processes the living body with the processing gas.

前記プラズマ発生電極を用いて1〜1000Paの反応性ガス雰囲気にて放電させ、反応性ガス分子を分解励起して基板表面と反応させて基板を処理する基板処理装置。   A substrate processing apparatus for processing a substrate by discharging in a reactive gas atmosphere of 1 to 1000 Pa using the plasma generating electrode, decomposing and exciting reactive gas molecules to react with the substrate surface.

均等な間隔をおいて少なくとも一対の電極(平板型、円筒型、これらを変型した形状)を平行に対向配置し、これら電極に交流電圧を印加することによってプラズマを発生させるプラズマ発生方法において、少なくとも一方の電極の表面を誘電体層によって覆うと共に、前記誘電体層中に、多数の導体の小片群を導体小片サイズ程度の間隔で面方向に一様に分散して埋め込むことにより、それらの静電誘導効果により放電開始電圧の低減し、放電間隙空間に一様なプラズマを生成するプラズマ発生方法。   In a plasma generation method of generating plasma by applying at least a pair of electrodes (flat plate shape, cylindrical shape, modified shape thereof) in parallel to each other at an equal interval and applying an alternating voltage to these electrodes, The surface of one of the electrodes is covered with a dielectric layer, and a plurality of small conductor groups are uniformly dispersed in the surface direction at intervals of about the size of the small conductor pieces in the dielectric layer, thereby statically burying them. A plasma generation method that generates a uniform plasma in a discharge gap space by reducing a discharge start voltage by an electric induction effect.

前記導体の小片は一定形状の円盤状パッチとして導体の小片を中心として電界を形成するようにしたプラズマ発生方法。   The method for generating plasma, wherein the conductor pieces are formed as disk patches having a fixed shape and an electric field is formed around the conductor pieces.

前記導体の小片は粒子状のパッチとして電界の小片を中点とする電界を形成するようにしたプラズマ発生方法。   The method for generating plasma, wherein the conductor pieces are formed as particulate patches to form an electric field centered on the electric field piece.

前記プラズマ発生方法を用いて大気圧の酸素ガス雰囲気にて放電させ、酸素分子を励起してオゾン分子を生成させるオゾンガス発生方法。   An ozone gas generation method in which discharge is performed in an oxygen gas atmosphere at atmospheric pressure using the plasma generation method to excite oxygen molecules to generate ozone molecules.

前記プラズマ発生方法を用いて大気圧の雰囲気にて排気ガス中の有害分子(CO,HC,NO等)を分解して無害化する排気ガスの分解方法。 Decomposition method of the exhaust gas harmless by decomposing the harmful molecules in the exhaust gas in an atmosphere of atmospheric pressure (CO, HC, NO x, etc.) by using the plasma generation process.

前記プラズマ発生方法を用いて大気圧の雰囲気にて排気ガス中の有害分子(CO,HC,NO等)を分解して再結合により無害化物質に変換する排気ガスの無害化方法。 Harmful molecules (CO, HC, NO x, etc.) the method of detoxifying the exhaust gas to be converted to harmless substances by recombination by decomposing the exhaust gas in an atmosphere of atmospheric pressure by using the plasma generation process.

前記プラズマ発生方法を用いて発生する活性粒子(ラジカル)中に被処理物(例えば、基板、フィルム、金属シート)を配置してその表面に薄膜を形成する薄膜生成方法。   A thin film generation method in which an object to be processed (for example, a substrate, a film, a metal sheet) is disposed in active particles (radicals) generated using the plasma generation method, and a thin film is formed on the surface thereof.

前記プラズマ発生方法を用いて被処理物の表面を改質(例えば、濡れ性)する表面処理装置。   A surface treatment apparatus for modifying (for example, wettability) the surface of an object to be treated using the plasma generation method.

前記プラズマ発生電極を用いてオゾン等の処理気体を形成し、処理気体により滅菌する減菌方法。   A sterilization method of forming a processing gas such as ozone using the plasma generating electrode and sterilizing with the processing gas.

前記プラズマ発生電極を用いて生体を処理する処理ガスを形成し、この処理ガスにより生体を処理する方法。   A method of forming a processing gas for processing a living body using the plasma generating electrode and processing the living body with the processing gas.

前記プラズマ方法を用いて1〜1000Paの反応性ガス雰囲気にて放電させ、反応性ガス分子を分解励起して基板表面と反応させて基板を処理する基板処理方法。   A substrate processing method for processing a substrate by discharging in a reactive gas atmosphere of 1 to 1000 Pa using the plasma method, decomposing and exciting reactive gas molecules to react with the substrate surface.

前記プラズマ発生電極を用いて大気圧の酸素ガス雰囲気にて放電させ、酸素分子を励起してオゾン分子を生成させるオゾンガス生成方法。   An ozone gas generation method in which discharge is performed in an oxygen gas atmosphere at atmospheric pressure using the plasma generation electrode to excite oxygen molecules to generate ozone molecules.

このように本発明は種々の変形が可能であり、本発明は、このような変形された発明に及ぶことは当然である。   As described above, the present invention can be variously modified, and the present invention naturally extends to such modified invention.

従来のプラズマ生成電極を示す概略図である。It is the schematic which shows the conventional plasma production electrode. 平行平板電極間に生起される放電の様子の模式図であり、(a)は従来のプラズマ生成電極を用いた場合、(b)は本発明に係るプラズマ生成電極を用いた場合の結果を示す図である。It is a schematic diagram of the state of the electric discharge produced between parallel plate electrodes, (a) shows the result when the conventional plasma generating electrode is used, and (b) shows the result when using the plasma generating electrode according to the present invention. FIG. 本発明に係るオゾン生成装置の構造を示す概略図である。It is the schematic which shows the structure of the ozone production | generation apparatus which concerns on this invention. 本発明に係るプラズマ発生電極の誘電体層に対する導体小片の配列パターンの例を示し、(a)は格子状、(b)は蜂の巣(正六角形)状、(c)は粒子状の配置パターンを示す。The example of the arrangement pattern of the conductor piece with respect to the dielectric material layer of the plasma generating electrode which concerns on this invention is shown, (a) is a grid | lattice form, (b) is a honeycomb (regular hexagon) form, (c) is a particulate arrangement pattern. Show. 本発明に係る電極構造の他の例を示し、(a)は円筒型の対向電極対の外側電極の電極面に多数の金属片を埋め込んだ例を、(b)は円筒型の対向電極対の内側の電極面に多数の金属片を埋め込んだ例を示し、(c)は対向電極を波型として互いに平行に対向させた例を示す図である。The other example of the electrode structure which concerns on this invention is shown, (a) is an example which embedded many metal pieces in the electrode surface of the outer side electrode of a cylindrical counter electrode pair, (b) is a cylindrical counter electrode pair. The example which embedded many metal pieces in the electrode surface inside is shown, (c) is a figure which shows the example which made the counter electrode parallel and mutually opposed with the waveform. 本発明に係るプラズマ発生用電極を用いて、オゾンプラズマにより合成樹脂シートの表面処理を行なうオゾン処理装置の概略図である。It is the schematic of the ozone treatment apparatus which performs the surface treatment of a synthetic resin sheet by ozone plasma using the electrode for plasma generation which concerns on this invention. 本発明に係るプラズマ発生電極を用いて大気圧プラズマ放電により排気ガスを処理する排気ガス処理装置の構造を示す概略図である。It is the schematic which shows the structure of the exhaust-gas processing apparatus which processes exhaust gas by atmospheric pressure plasma discharge using the plasma generation electrode which concerns on this invention. 本発明に係るプラズマ発生用電極を用いて基板を処理する基板処理装置、半導体装置の製造装置としてのプラズマCVD装置の構造を示す概略図である。It is the schematic which shows the structure of the plasma CVD apparatus as a substrate processing apparatus which processes a board | substrate using the electrode for plasma generation concerning this invention, and a manufacturing apparatus of a semiconductor device.

符号の説明Explanation of symbols

1 電極
1’ 電極
2 誘電体
3 軸
4 交流電源
7 導体小片
1 Electrode 1 'Electrode 2 Dielectric 3 Axis 4 AC Power Supply 7 Conductor Piece

Claims (3)

互いに均等な間隔を隔てて配置された対向配置された少なくとも一対の対向電極を備え、これら対向電極に高周波電力を印加することによって、対向電極間にプラズマを発生させるプラズマ発生電極であって、前記一対の対向電極の少なくとも一方の電極表面に一様な厚みに誘電体層が設けられ、該誘電体層中には、多数の導体小片が、誘電体層の表面の面方向に沿った方向に、当該導体小片サイズ程度の間隔を隔てて一様に分散されて埋設されたプラズマ発生電極。   A plasma generating electrode comprising at least a pair of opposed electrodes arranged at an equal interval from each other, and generating a plasma between the opposed electrodes by applying a high frequency power to the opposed electrodes, A dielectric layer having a uniform thickness is provided on at least one electrode surface of the pair of counter electrodes, and in the dielectric layer, a large number of conductor pieces are arranged in a direction along the surface direction of the surface of the dielectric layer. A plasma generating electrode embedded uniformly dispersed with an interval of about the size of the conductor piece. 前記一対の対向電極が互いに平行に且つ、前記誘電体層がこれらの電極と平行に設けられた請求項1記載のプラズマ発生電極。   The plasma generating electrode according to claim 1, wherein the pair of counter electrodes are provided in parallel with each other and the dielectric layer is provided in parallel with these electrodes. 前記導体小片が、平面視円形のパッチ電極又は粒子状のパッチ電極であり、隣接する導体小片同士が、誘導体により互いに絶縁された請求項1記載のプラズマ発生電極。   2. The plasma generating electrode according to claim 1, wherein the conductor pieces are patch electrodes or particle patch electrodes having a circular shape in plan view, and adjacent conductor pieces are insulated from each other by a derivative.
JP2008214606A 2008-08-22 2008-08-22 Plasma generating electrode and plasma generating method Active JP5008622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008214606A JP5008622B2 (en) 2008-08-22 2008-08-22 Plasma generating electrode and plasma generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008214606A JP5008622B2 (en) 2008-08-22 2008-08-22 Plasma generating electrode and plasma generating method

Publications (2)

Publication Number Publication Date
JP2010050004A true JP2010050004A (en) 2010-03-04
JP5008622B2 JP5008622B2 (en) 2012-08-22

Family

ID=42066909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008214606A Active JP5008622B2 (en) 2008-08-22 2008-08-22 Plasma generating electrode and plasma generating method

Country Status (1)

Country Link
JP (1) JP5008622B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019057363A (en) * 2017-09-19 2019-04-11 国立大学法人名古屋大学 Discharge reactor, and manufacturing method thereof
JP2019150805A (en) * 2018-03-06 2019-09-12 有限会社ヤマダ化成 Organic compound decomposition device and organic compound decomposition method
CN110662578A (en) * 2017-05-31 2020-01-07 奇诺格有限责任公司 Facial type application assembly
JP2021504044A (en) * 2017-11-29 2021-02-15 ソリン メディケア カンパニー リミテッド Skin treatment using fractional plasma

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321397A (en) * 1995-05-24 1996-12-03 Matsushita Electric Works Ltd Atmospheric plasma generator and atmospheric plasma generation method using the generator
JP2001314753A (en) * 2000-05-12 2001-11-13 Hokushin Ind Inc Plasma decomposing device and method for plasma decomposing gas
JP2004342331A (en) * 2003-05-12 2004-12-02 Sekisui Chem Co Ltd Plasma discharge electrode and plasma discharge treatment method
JP2005063973A (en) * 2003-08-14 2005-03-10 Fuji Photo Film Bv Device, method, and electrode for forming plasma
JP2007144360A (en) * 2005-11-30 2007-06-14 Ngk Insulators Ltd Electrode apparatus for plasma discharge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321397A (en) * 1995-05-24 1996-12-03 Matsushita Electric Works Ltd Atmospheric plasma generator and atmospheric plasma generation method using the generator
JP2001314753A (en) * 2000-05-12 2001-11-13 Hokushin Ind Inc Plasma decomposing device and method for plasma decomposing gas
JP2004342331A (en) * 2003-05-12 2004-12-02 Sekisui Chem Co Ltd Plasma discharge electrode and plasma discharge treatment method
JP2005063973A (en) * 2003-08-14 2005-03-10 Fuji Photo Film Bv Device, method, and electrode for forming plasma
JP2007144360A (en) * 2005-11-30 2007-06-14 Ngk Insulators Ltd Electrode apparatus for plasma discharge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662578A (en) * 2017-05-31 2020-01-07 奇诺格有限责任公司 Facial type application assembly
JP2019057363A (en) * 2017-09-19 2019-04-11 国立大学法人名古屋大学 Discharge reactor, and manufacturing method thereof
JP2021504044A (en) * 2017-11-29 2021-02-15 ソリン メディケア カンパニー リミテッド Skin treatment using fractional plasma
JP7026226B2 (en) 2017-11-29 2022-02-25 ソリン メディケア カンパニー リミテッド Skin treatment using fractional plasma
JP2019150805A (en) * 2018-03-06 2019-09-12 有限会社ヤマダ化成 Organic compound decomposition device and organic compound decomposition method

Also Published As

Publication number Publication date
JP5008622B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
Pappas Status and potential of atmospheric plasma processing of materials
US6764658B2 (en) Plasma generator
Ma et al. Study of SO2 removal using non-thermal plasma induced by dielectric barrier discharge (DBD)
CN103945627B (en) A kind of hand-held large area low temperature plasma generating means
US20080060579A1 (en) Apparatus of triple-electrode dielectric barrier discharge at atmospheric pressure
WO2008040154A1 (en) Diffusive plasma treatment and material procession
US6451252B1 (en) Odor removal system and method having ozone and non-thermal plasma treatment
JP5008622B2 (en) Plasma generating electrode and plasma generating method
US6576573B2 (en) Atmospheric pressure plasma enhanced abatement of semiconductor process effluent species
JP2010006678A (en) Carbon nanotube production apparatus, carbon nanotube production method, and radical production apparatus
EP3142467B1 (en) Large area, uniform, atmospheric pressure plasma processing device and method using the device
JP2009505342A (en) Plasma generating apparatus and plasma generating method
Lu et al. On the chronological understanding of the homogeneous dielectric barrier discharge
Kruszelnicki et al. Propagation of atmospheric pressure plasmas through interconnected pores in dielectric materials
Fang et al. Polyethylene terephthalate surface modification by filamentary and homogeneous dielectric barrier discharges in air
JP5340031B2 (en) Active particle generator
KR20200091167A (en) APPARATUS FOR GENERATING ATMOSPHERIC PRESSURE Dielectric barrier discharge PLASMA
KR101778120B1 (en) Plasma Discharge Source For Charging Particles
Abidat et al. Numerical simulation of atmospheric dielectric barrier discharge in helium gas using COMSOL Multiphysics
Ye et al. Dielectric barrier discharge in a two-phase mixture
WO2006004399A2 (en) Method and means for generation of a plasma at atmospheric pressure
Falkenstein Frequency dependence of photoresist ashing with dielectric barrier discharges in oxygen
KR101692218B1 (en) Dielectric barrier plasma generation device for removing volatile organic compounds and method for removing them using same
Yamamoto et al. Synthesis of ultrafine particles by surface discharge-induced plasma chemical process (SPCP) and its application
JP2006000699A (en) Gas treatment method and its apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120529

R150 Certificate of patent or registration of utility model

Ref document number: 5008622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250