JPH08321397A - Atmospheric plasma generator and atmospheric plasma generation method using the generator - Google Patents

Atmospheric plasma generator and atmospheric plasma generation method using the generator

Info

Publication number
JPH08321397A
JPH08321397A JP7125408A JP12540895A JPH08321397A JP H08321397 A JPH08321397 A JP H08321397A JP 7125408 A JP7125408 A JP 7125408A JP 12540895 A JP12540895 A JP 12540895A JP H08321397 A JPH08321397 A JP H08321397A
Authority
JP
Japan
Prior art keywords
atmospheric pressure
electrode
electrode pair
generator
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7125408A
Other languages
Japanese (ja)
Other versions
JP3078466B2 (en
Inventor
Koji Sawada
康志 澤田
Masuhiro Kokoma
益弘 小駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP07125408A priority Critical patent/JP3078466B2/en
Publication of JPH08321397A publication Critical patent/JPH08321397A/en
Application granted granted Critical
Publication of JP3078466B2 publication Critical patent/JP3078466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Plasma Technology (AREA)

Abstract

PURPOSE: To provide an atmospheric plasma generator as well as an atmospheric plasma generation method, having the capability of generating a homogeneous glow discharge under the application of extremely small power even when such gases as air, nitrogen and oxygen are used, and ensuring high energy efficiency as well as high reaction efficiency. CONSTITUTION: This atmospheric plasma generator has an electrode pair 1 formed out of an electrode 1a connected to an AC power supply 5 and an earth electrode 1b, and AC electrical field is applied across the pair 1 in the presence of gases to generate a glow discharge plasma under the atmospheric pressure. Regarding the generator so formed, the gap of the electrode pair 1 is filled with particle type materials 4 made of a conductor covered with an insulator all around. In this case, the conductor 4 is metal and the insulator is an inorganic dielectric substance. Also, the electrode pair 1 is a metallic net. Furthermore, AC electrical field is applied across the pair 1 in the presence of gases, using the generator, thereby generating a glow discharge plasma under the atmospheric pressure. Also, the gases are mainly composed of the air.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大気圧下で空気中でも
安定したグロー放電を発生させることができる大気圧プ
ラズマ発生装置及びその装置を用いた大気圧プラズマ発
生方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an atmospheric pressure plasma generating apparatus capable of generating a stable glow discharge even in air under atmospheric pressure and an atmospheric pressure plasma generating method using the apparatus.

【0002】[0002]

【従来の技術】従来、大気圧下で放電を発生させる方法
は数多く開発されている。例えば、コロナ処理装置や無
声放電、沿面放電によるオゾナイザー等が挙げられる。
コロナ放電は、尖った放電電極となめらかな電極とを向
かい合わせて直流高電圧を加えると、気体の局所的な絶
縁破壊が起こり、気体がプラズマ化することによって発
生する。これはストリーマ状であり気体中できわめて電
流密度の高い部分と放電が生じていない部分とが混在し
た状態である。また沿面放電は、セラミック等の無機物
表面と内部に電極を形成し、交流電界を印加するとセラ
ミック表面に放電が発生するもので、極めて部分的な放
電である。特開昭63−50478号公報に開示されて
いるように、均一な放電であるグロー放電を大気圧下で
発生させる方法も近年開発されているが、ヘリウムやア
ルゴン等の高価なガスが必要であるという欠点があっ
た。また、特開平5−155605号公報又は特開平6
−119995号公報に開示されているように、電極の
工夫により、空気や窒素等のグロー放電を発生させる方
法もあるが、放電空間が極めて小さく、また放電の安定
化にも問題があった。また、誘電体セラミックを金網状
電極間に充填し交流電界を印加することにより強い部分
放電を発生する方法も報告されているが、無機物を充填
する必要性のため、極めて高い印加電圧を必要とすると
いう問題があった。
2. Description of the Related Art Conventionally, many methods for generating electric discharge under atmospheric pressure have been developed. For example, a corona treatment device, an silent discharge, an ozonizer by creeping discharge, and the like can be used.
Corona discharge is generated by causing a local dielectric breakdown of gas when a high DC voltage is applied with a sharp discharge electrode and a smooth electrode facing each other and the gas is turned into plasma. This is a streamer-like state in which a portion having a very high current density and a portion in which no discharge occurs are mixed in the gas. In addition, creeping discharge is an extremely partial discharge, in which an electrode is formed on the surface of an inorganic material such as ceramics and an internal electrode is applied to generate a discharge on the surface of the ceramic. As disclosed in Japanese Patent Laid-Open No. 63-50478, a method of generating a glow discharge that is a uniform discharge under atmospheric pressure has been developed in recent years, but an expensive gas such as helium or argon is required. There was a drawback. Further, JP-A-5-155605 or JP-A-6-155605
As disclosed in Japanese Patent Laid-Open No. 119995, there is a method of generating a glow discharge of air, nitrogen, etc. by devising an electrode, but the discharge space is extremely small and there is a problem in stabilizing the discharge. Although a method of generating a strong partial discharge by filling a dielectric ceramic between wire mesh electrodes and applying an alternating electric field has been reported, an extremely high applied voltage is required due to the need to fill an inorganic material. There was a problem of doing.

【0003】[0003]

【発明が解決しようとする課題】本発明は前記の事実に
鑑みてなされたもので、その目的とするところは、空気
や窒素、酸素等のガスを使用しても、均質なグロー放電
を極めて小さい印加電力で発生させることができ、エネ
ルギー効率、反応効率に優れた大気圧プラズマ発生装置
及びその装置を用いた大気圧プラズマ発生方法を提供す
ることにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above facts, and an object of the present invention is to achieve a uniform glow discharge even when a gas such as air, nitrogen or oxygen is used. An object of the present invention is to provide an atmospheric pressure plasma generation apparatus that can be generated with a small applied power and is excellent in energy efficiency and reaction efficiency, and an atmospheric pressure plasma generation method using the apparatus.

【0004】[0004]

【課題を解決するための手段】本発明の請求項1に係る
大気圧プラズマ発生装置は、交流電源5と接続される電
極1aと接地電極1bとから成る電極対1を設けて、ガ
スの存在下で、前記電極対1間に交流電界を印加して、
大気圧下でグロー放電プラズマを発生させる大気圧プラ
ズマ発生装置において、前記電極対1間に、導電体2の
全面に絶縁体3を被覆して形成した粒状体4を充填する
ことを特徴とする。
An atmospheric pressure plasma generator according to claim 1 of the present invention is provided with an electrode pair 1 consisting of an electrode 1a connected to an AC power source 5 and a ground electrode 1b, and the presence of gas. Below, by applying an alternating electric field between the electrode pair 1,
An atmospheric pressure plasma generator for generating glow discharge plasma under atmospheric pressure is characterized in that a space between the electrode pair 1 is filled with a granular body 4 formed by covering an entire surface of a conductor 2 with an insulator 3. .

【0005】本発明の請求項2に係る大気圧プラズマ発
生装置は、前記導電体2が金属であり、絶縁体3が無機
誘電体であることを特徴とする。
The atmospheric pressure plasma generator according to a second aspect of the present invention is characterized in that the conductor 2 is a metal and the insulator 3 is an inorganic dielectric.

【0006】本発明の請求項3に係る大気圧プラズマ発
生装置は、前記電極対1が金属網であることを特徴とす
る。
An atmospheric pressure plasma generator according to a third aspect of the present invention is characterized in that the electrode pair 1 is a metal net.

【0007】本発明の請求項4に係る大気圧プラズマ発
生方法は、請求項1乃至請求項3のいずれかに記載の大
気圧プラズマプラズマ発生装置を用いて、ガスの存在下
で、前記電極対1間に交流電界を印加して、大気圧下で
グロー放電プラズマを発生させることを特徴とする。
According to a fourth aspect of the present invention, there is provided an atmospheric pressure plasma generation method using the atmospheric pressure plasma generation apparatus according to any one of the first to third aspects, in the presence of gas, the electrode pair. An alternating electric field is applied between the two to generate glow discharge plasma under atmospheric pressure.

【0008】本発明の請求項5に係る大気圧プラズマ発
生方法は、前記ガスが空気を主成分とすることを特徴と
する。
The atmospheric pressure plasma generating method according to a fifth aspect of the present invention is characterized in that the gas contains air as a main component.

【0009】[0009]

【作用】本発明の請求項1に係る大気圧プラズマ発生装
置は、交流電源5と接続される電極1aと接地電極1b
とから成る電極対1を設けて、ガスの存在下で、前記電
極対1間に交流電界を印加して、大気圧下でグロー放電
プラズマを発生させる大気圧プラズマ発生装置におい
て、前記電極対1間に、導電体2の全面に絶縁体3を被
覆して形成した粒状体4を充填するので、粒状体4中の
導電体2が小さい電極を構成し、また、絶縁体3が誘電
体バリアを構成し、いわゆる誘電体バリア放電により、
粒状体4と粒状体4との間隙でガスがプラズマ化する。
この粒状体4の間隙が小さいので、酸素や窒素などの放
電開始電圧の大きいガスであっても、極めて小さい印加
電力で均質なグロー放電を発生させることができ、プラ
ズマ化できる。
In the atmospheric pressure plasma generator according to claim 1 of the present invention, the electrode 1a connected to the AC power source 5 and the ground electrode 1b are connected.
In the atmospheric pressure plasma generator for generating glow discharge plasma under atmospheric pressure by providing an electrode pair 1 composed of and, in the presence of gas, an AC electric field is applied between the electrode pair 1. Since the entire surface of the conductor 2 is filled with the granular body 4 formed by covering the insulating body 3, the conductive body 2 in the granular body 4 constitutes an electrode having a small size, and the insulating body 3 serves as a dielectric barrier. And by so-called dielectric barrier discharge,
The gas is turned into plasma in the gap between the granular bodies 4.
Since the gap between the granular bodies 4 is small, a homogeneous glow discharge can be generated with a very small applied power and a plasma can be generated even with a gas having a large discharge starting voltage such as oxygen or nitrogen.

【0010】本発明の請求項2に係る大気圧プラズマ発
生装置は、前記導電体2が金属であり、絶縁体3が無機
誘電体であるので、耐久性、耐熱性に優れる。
In the atmospheric pressure plasma generator according to claim 2 of the present invention, since the conductor 2 is a metal and the insulator 3 is an inorganic dielectric, it is excellent in durability and heat resistance.

【0011】本発明の請求項3に係る大気圧プラズマ発
生装置は、前記電極対1が金属網であるので、ガスが電
極対1を通過することができる。
In the atmospheric pressure plasma generator according to claim 3 of the present invention, since the electrode pair 1 is a metal net, gas can pass through the electrode pair 1.

【0012】本発明の請求項4に係る大気圧プラズマ発
生方法は、請求項1乃至請求項3のいずれかに記載の大
気圧プラズマプラズマ発生装置を用いて、ガスの存在下
で、前記電極対1間に交流電界を印加して、大気圧下で
グロー放電プラズマを発生させるので、粒状体4と粒状
体4との間隙でガスがプラズマ化する。
According to a fourth aspect of the present invention, there is provided an atmospheric pressure plasma generation method using the atmospheric pressure plasma generation apparatus according to any one of the first to third aspects, in the presence of gas, the electrode pair. Since an AC electric field is applied between the two to generate glow discharge plasma under atmospheric pressure, the gas is turned into plasma in the gap between the granular bodies 4.

【0013】本発明の請求項5に係る大気圧プラズマ発
生方法は、前記ガスが空気を主成分とするので、オゾン
が生成されるため、空気中に微量の不純物ガスが存在す
る場合には、この不純物ガスが分解される。
In the atmospheric pressure plasma generation method according to the fifth aspect of the present invention, since the gas contains air as a main component, ozone is generated. Therefore, when a slight amount of impurity gas is present in the air, This impurity gas is decomposed.

【0014】[0014]

【実施例】以下本発明を実施例に係る図面に基づいて説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings related to the embodiments.

【0015】図1(a)及び図1(b)は、本発明に係
る大気圧プラズマ発生装置の一実施例の概略図である。
1 (a) and 1 (b) are schematic views of an embodiment of an atmospheric pressure plasma generator according to the present invention.

【0016】本発明に係る大気圧プラズマ発生装置は、
図1(a)及び図1(b)に示すように、交流電源5と
接続される電極1aと接地電極1bとから成る電極対1
を設けて、ガスの存在下で、前記電極対1間に交流電界
を印加して、大気圧下でグロー放電プラズマを発生させ
て、例えば、各種の表面処理やオゾン発生、排ガス処理
等を行うことができるものである。前記電極対1間に、
図2(a)に示すように、導電体2の全面に絶縁体3を
被覆して形成した粒状体4を充填する。前記導電体2と
しては、ステンレス、銅、真鍮、アルミニウム、鉄、タ
ングステン、ニッケル、タンタル等の金属又はカーボン
等が挙げられるが、耐久性、耐熱性を必要とする場合に
は、金属が優れている。また、絶縁体3としてはナイロ
ン、ポリエステル、ポリイミド、テフロン、ポリサルフ
ォン、エポキシ等の有機物又は無機物いずれも使用でき
るが、耐久性、耐熱性を必要とする場合には、ガラス、
セラミックス、ほうろう等の無機誘電体が優れている。
導電体2の全面に絶縁体3を被覆する方法としては特に
限定されないが、例えば、溶射法、ゾルゲル溶液のコー
ティング及び加熱硬化、さらに、高融点金属を使用する
場合には、焼成法等が挙げられる。また、導電体2の全
面に絶縁体3として有機材料を被覆する場合には、例え
ば、加熱硬化により樹脂等の有機材料を導電体2の回り
に被覆する。導電体2と絶縁体3との間は出来るだけ間
隙なく密着させることが、放電効率を上げるために好ま
しい。前記粒状体4は、図2(b)に示すように、絶縁
体3の内部に導電体2が複数個存在するものであっても
よい。すなわち、導電体2が絶縁体3の中に分散されて
いてもよい。粒状体4の大きさとしては、用途により異
なるが、一般的には0. 1mmから数十mmのオーダー
である。形状は球状、角状又は不定形状いずれでもよく
限定されない。また、被覆厚みは粒状体、被覆方法によ
り異なる。
The atmospheric pressure plasma generator according to the present invention comprises:
As shown in FIGS. 1A and 1B, an electrode pair 1 including an electrode 1a connected to an AC power source 5 and a ground electrode 1b.
By providing an AC electric field between the electrode pair 1 in the presence of gas to generate glow discharge plasma under atmospheric pressure, various surface treatments, ozone generation, exhaust gas treatment, etc. are performed. Is something that can be done. Between the electrode pair 1,
As shown in FIG. 2A, the entire surface of the conductor 2 is filled with the granular body 4 formed by covering the insulator 3. Examples of the conductor 2 include metals such as stainless steel, copper, brass, aluminum, iron, tungsten, nickel and tantalum, and carbon, but when durability and heat resistance are required, the metal is excellent. There is. Further, as the insulator 3, any organic or inorganic substance such as nylon, polyester, polyimide, Teflon, polysulfone, or epoxy can be used, but when durability and heat resistance are required, glass,
Inorganic dielectrics such as ceramics and enamels are excellent.
The method of coating the entire surface of the conductor 2 with the insulator 3 is not particularly limited. To be When the entire surface of the conductor 2 is coated with the organic material as the insulator 3, for example, an organic material such as a resin is coated around the conductor 2 by heat curing. It is preferable that the conductor 2 and the insulator 3 are brought into close contact with each other with as little space as possible in order to improve discharge efficiency. As shown in FIG. 2B, the granular body 4 may have a plurality of conductors 2 inside an insulator 3. That is, the conductor 2 may be dispersed in the insulator 3. The size of the granular body 4 varies depending on the use, but is generally on the order of 0.1 mm to several tens of mm. The shape may be spherical, angular, or indefinite, and is not limited. The coating thickness varies depending on the granular material and the coating method.

【0017】電極1aと接地電極1bとから成る電極対
1の材料は金属の平板あるいは金属網が好ましい。金属
網の場合、ガスの種類により異なるが、0.01〜0.
5mm程度の太さの金属細線より構成されたものが好ま
しい。この金属網の材質としては、ステンレス、銅、真
鍮、アルミニウム、鉄、タングステン、ニッケル、タン
タル等が例示される。この金属網の織り方としては、例
えば、平織、綾織、畳織り等の各種の方法を採用するこ
とができる。
The material of the electrode pair 1 consisting of the electrode 1a and the ground electrode 1b is preferably a metal flat plate or a metal mesh. In the case of a metal net, 0.01 to 0.
It is preferable that the wire is made of a thin metal wire having a thickness of about 5 mm. Examples of the material of this metal net include stainless steel, copper, brass, aluminum, iron, tungsten, nickel, tantalum and the like. Various methods such as plain weave, twill weave, and tatami weave can be adopted as the weaving method of the metal net.

【0018】前記電極1aと接地電極1bとを略平行に
設置し、前記粒状体4を充填して、ガスの存在下で、前
記電極対1間に交流電界を印加することにより、大気圧
下で、粒状体4間に均質なグロー放電プラズマが発生す
る。このグロー放電プラズマ発生の機構は次のように考
えられる。すなわち、粒状体4中の導電体2が小さい電
極を構成し、また、絶縁体3が誘電体バリアを構成し、
いわゆる誘電体バリア放電により粒状体4間隙でガスが
プラズマ化する。粒状体4の間隙が小さいので、酸素や
窒素などの放電開始電圧の大きいガスであっても、均質
なグロー放電を極めて小さい印加電力で発生させること
ができ、プラズマ化できる。従って、空気でも放電でき
る。また水素、アルゴン、ヘリウムなどの放電開始電圧
の小さいガスは当然のことながらプラズマ化できる。前
述のように前記粒状体4が小さい誘電体バリアを構成す
るために、電極間隔及び電極サイズは任意に取ることが
出来るが、放電維持電圧はサイズに応じて高くなる。
By placing the electrode 1a and the ground electrode 1b substantially in parallel, filling the granular body 4 and applying an AC electric field between the electrode pair 1 in the presence of gas, the atmospheric pressure is maintained. Then, a uniform glow discharge plasma is generated between the granular bodies 4. The mechanism of this glow discharge plasma generation is considered as follows. That is, the conductor 2 in the granular body 4 constitutes a small electrode, and the insulator 3 constitutes a dielectric barrier.
The so-called dielectric barrier discharge causes the gas to become plasma in the gaps between the granular bodies 4. Since the gap between the granular bodies 4 is small, a homogeneous glow discharge can be generated with an extremely small applied power and a plasma can be generated even with a gas having a large discharge starting voltage such as oxygen or nitrogen. Therefore, even air can be discharged. In addition, gases having a low discharge starting voltage such as hydrogen, argon, and helium can naturally be turned into plasma. As described above, since the granular body 4 constitutes the small dielectric barrier, the electrode interval and the electrode size can be arbitrarily set, but the discharge sustaining voltage becomes higher according to the size.

【0019】放電に必要な交流周波数は50Hz商用周
波数から高周波(MHz)の範囲で使用できる。本方法
を各種の処理に利用することが出来る。例えば、表面処
理として、プラズマ空間の下流に被処理物を設置する
と、プラズマ中でラジカル化したガスがまだ消滅しない
で残存し被処理物表面に作用して、いわゆる低温プラズ
マ処理が出来る。また、ガスが空気の場合には、空気が
放電空間を通過することによって、オゾンが生成され
る。本発明に係る大気圧プラズマ発生方法によると、放
電空間が大きいため、従来法と比べて発生効率が大きく
なる。また、アンモニアや硫化水素などの悪臭成分を含
んだガスを通過させることにより、これらの悪臭成分を
分解し、無害化出来る。これは放電が均一であるため、
従来法と比べて分解効率が高くなる。
The AC frequency required for discharge can be used in the range of 50 Hz commercial frequency to high frequency (MHz). The method can be used for various processes. For example, as the surface treatment, when the object to be treated is installed in the downstream of the plasma space, the gas radicalized in the plasma remains without disappearing and acts on the surface of the object to be treated, so-called low temperature plasma treatment can be performed. Further, when the gas is air, ozone is generated by the air passing through the discharge space. According to the atmospheric pressure plasma generation method of the present invention, since the discharge space is large, the generation efficiency is higher than that of the conventional method. Further, by passing a gas containing a malodorous component such as ammonia or hydrogen sulfide, these malodorous components can be decomposed and rendered harmless. This is because the discharge is uniform,
The decomposition efficiency is higher than that of the conventional method.

【0020】以下に本発明の大気圧プラズマ発生装置を
用いて大気圧プラズマを発生する方法の一例を挙げる。
An example of a method for generating atmospheric pressure plasma using the atmospheric pressure plasma generator of the present invention will be described below.

【0021】(実施例1)図1(a)に示す大気圧プラ
ズマ発生装置において、交流電源5と接続されるステン
レス製の電極1aと接地電極1bとから成る平行平板の
電極対1を3cmの間隔で設置した。直径3mmの銅粒
体のまわりにアルミナを溶射により100μmの厚みで
形成した粒状体4を前記電極対1の空間に充填した。こ
の電極対1の両端に60Hz、5KVの電圧を印加し乾
燥空気(窒素79%、酸素21%)を前記空間に10リ
ットル/分の流量で流通させてプラズマを発生させた。
プラズマ空間の下流(図示せず)に高密度ポリエチレン
フィルムを1分間設置した。このプラズマ処理を施した
高密度ポリエチレンフィルムをエポキシ接着剤を介して
アルミニウム板と張り合わせし、接着強度(剪断応力試
験)を測定したところ、プラズマ未処理品の接着強度が
500psiであるのに対して、プラズマ処理品の接着
強度は、2800psiであり、プラズマ未処理品と比
べてプラズマ処理品は、接着強度が大きく向上した。
(Embodiment 1) In the atmospheric pressure plasma generator shown in FIG. 1 (a), a parallel plate electrode pair 1 consisting of a stainless steel electrode 1a and a ground electrode 1b connected to an AC power source 5 is set to 3 cm. Installed at intervals. The space of the electrode pair 1 was filled with the granules 4 formed by spraying alumina around the copper granules with a diameter of 3 mm to a thickness of 100 μm. A voltage of 60 Hz and 5 KV was applied to both ends of the electrode pair 1, and dry air (79% nitrogen, 21% oxygen) was passed through the space at a flow rate of 10 l / min to generate plasma.
A high density polyethylene film was placed for 1 minute downstream of the plasma space (not shown). The plasma-treated high-density polyethylene film was bonded to an aluminum plate via an epoxy adhesive, and the adhesive strength (shear stress test) was measured. It was found that the plasma-untreated product had an adhesive strength of 500 psi. The adhesive strength of the plasma-treated product was 2800 psi, and the adhesive strength of the plasma-treated product was significantly improved as compared with the plasma-untreated product.

【0022】(実施例2)図1(b)に示す大気圧プラ
ズマ発生装置において、交流電源5と接続される線径
0.035mmで325メッシュのステンレス金網を電
極1aと接地電極1bとから成る電極対1として用い、
乾燥空気(窒素79%、酸素21%)を送入し、60H
z、5KVの電圧を印加してプラズマを発生させた。こ
のときのオゾン生成エネルギー効率を調べた。オシロス
コープで電流電圧特性を測定し、リサジュー図形を作成
して放電エネルギーを調べた結果、従来の無声放電によ
るオゾンの生成エネルギー効率に比べて効率が35%程
度向上することが確認できた。
(Embodiment 2) In the atmospheric pressure plasma generator shown in FIG. 1B, a stainless wire mesh of 325 mesh with a wire diameter of 0.035 mm, which is connected to an AC power source 5, is composed of an electrode 1a and a ground electrode 1b. Used as electrode pair 1,
Inject dry air (79% nitrogen, 21% oxygen) for 60H
A voltage of z and 5 KV was applied to generate plasma. The ozone generation energy efficiency at this time was investigated. As a result of measuring the current-voltage characteristics with an oscilloscope, creating a Lissajous figure, and examining the discharge energy, it was confirmed that the efficiency was improved by about 35% as compared with the conventional energy efficiency of ozone generation by silent discharge.

【0023】(実施例3)実施例2において、アンモニ
アガスを100ppm含有した乾燥空気(窒素79%、
酸素21%)をプラズマ空間に10リットル/分の流量
で流通させた。これに60Hz、5KVの電圧を印加し
てプラズマを発生させた。出口ガスの濃度をガス検知管
で分析した結果、アンモニア濃度が5ppmまで減少し
た。
(Example 3) In Example 2, the dry air containing 100 ppm of ammonia gas (nitrogen 79%,
Oxygen 21%) was passed through the plasma space at a flow rate of 10 l / min. A voltage of 60 Hz and 5 KV was applied to this to generate plasma. As a result of analyzing the concentration of the outlet gas with a gas detector tube, the ammonia concentration was reduced to 5 ppm.

【0024】なお、実施例1乃至実施例3において、粒
状体4が導電体2の全面に絶縁体3を被覆して形成した
ものではなく、絶縁体3のみで形成した粒状体4を用い
た場合には、60Hz、5KVではもちろんのこと、6
0Hz、15KVの電圧を印加しても、プラズマが発生
しなかった。
In Examples 1 to 3, the granular body 4 was not formed by covering the entire surface of the conductor 2 with the insulator 3, but the granular body 4 formed by only the insulator 3 was used. In case of 60Hz, 5KV, of course, 6
Plasma was not generated even when a voltage of 0 Hz and 15 KV was applied.

【0025】[0025]

【発明の効果】本発明の請求項1に係る大気圧プラズマ
発生装置によると、酸素、窒素又は空気等の放電開始電
圧の大きいガスであっても、極めて小さい印加電力で均
質なグロー放電を発生させることができるので、大気圧
下で空気中でも安定したグロー放電を発生させることが
でき、エネルギー効率、反応効率に優れた大気圧プラズ
マを発生させることができる。
According to the atmospheric pressure plasma generator of the first aspect of the present invention, even in the case of gas such as oxygen, nitrogen or air having a high discharge start voltage, a uniform glow discharge is generated with an extremely small applied power. As a result, stable glow discharge can be generated even in air under atmospheric pressure, and atmospheric pressure plasma having excellent energy efficiency and reaction efficiency can be generated.

【0026】本発明の請求項2に係る大気圧プラズマ発
生装置によると、前記導電体2が金属であり、絶縁体3
が無機誘電体であるので、前記に加えて、耐久性、耐熱
性に優れる。
According to the atmospheric pressure plasma generator of the second aspect of the present invention, the conductor 2 is a metal and the insulator 3 is a metal.
Since it is an inorganic dielectric, it has excellent durability and heat resistance in addition to the above.

【0027】本発明の請求項3に係る大気圧プラズマ発
生装置よると、前記電極対1が金属網であるので、ガス
が電極対1を通過することができるので、さらに、エネ
ルギー効率、反応効率に優れる。
According to the atmospheric pressure plasma generator of the third aspect of the present invention, since the electrode pair 1 is a metal mesh, gas can pass through the electrode pair 1, and therefore energy efficiency and reaction efficiency can be further improved. Excellent in.

【0028】本発明の請求項4に係る大気圧プラズマ発
生方法によると、請求項1乃至請求項3のいずれかに記
載の大気圧プラズマプラズマ発生装置を用いて、ガスの
存在下で、前記電極対1間に交流電界を印加して、大気
圧下でグロー放電プラズマを発生させるので、粒状体4
と粒状体4との間隙でガスがプラズマ化するので、極め
て小さい印加電力で均質なグロー放電を発生させること
ができるので、大気圧下で空気中でも安定したグロー放
電を発生させることができ、エネルギー効率、反応効率
に優れる。
According to the atmospheric pressure plasma generation method of the fourth aspect of the present invention, the electrode is formed in the presence of gas by using the atmospheric pressure plasma plasma generation apparatus of any one of the first to third aspects. Since an AC electric field is applied between pair 1 to generate glow discharge plasma under atmospheric pressure, the granular material 4
Since the gas is turned into plasma in the gap between the granular body 4 and the granular body 4, a uniform glow discharge can be generated with an extremely small applied power, and thus a stable glow discharge can be generated even in air under atmospheric pressure. Excellent in efficiency and reaction efficiency.

【0029】本発明の請求項5に係る大気圧プラズマ発
生方法によると、オゾンが生成されるので、オゾンの生
成エネルギー効率が向上し、空気中の不純物ガスが分解
されるため、排ガス等の汚染物質を浄化できる。
According to the atmospheric pressure plasma generation method of the fifth aspect of the present invention, ozone is generated, the efficiency of ozone generation energy is improved, and the impurity gas in the air is decomposed, so that the exhaust gas is polluted. Can purify substances.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る大気圧プラズマ発生装置
の概略説明図であり、(a)は電極対の材料が金属の平
板である大気圧プラズマ発生装置の要部断面図、(b)
は電極対の材料が金属網である大気圧プラズマ発生装置
の要部断面図である。
FIG. 1 is a schematic explanatory view of an atmospheric pressure plasma generation device according to an embodiment of the present invention, FIG. 1 (a) is a sectional view of a main part of the atmospheric pressure plasma generation device in which a material of an electrode pair is a flat metal plate, and FIG. )
FIG. 3 is a cross-sectional view of a main part of an atmospheric pressure plasma generator in which a material of an electrode pair is a metal mesh.

【図2】本発明の実施例に係る大気圧プラズマ発生装置
に用いる粒状体の断面図であり、(a)は導電体の全面
に絶縁体を被覆して形成した粒状体の断面図、(b)は
絶縁体の内部に導電体が複数個存在する粒状体の断面図
である。
FIG. 2 is a sectional view of a granular body used in an atmospheric pressure plasma generator according to an embodiment of the present invention, (a) is a sectional view of the granular body formed by coating the entire surface of a conductor with an insulator, b) is a cross-sectional view of a granular body in which a plurality of conductors exist inside an insulator.

【符号の説明】[Explanation of symbols]

1 電極対 1a 電極 1b 接地電極 2 導電体 3 絶縁体 4 粒状体 5 交流電源 1 Electrode pair 1a Electrode 1b Grounding electrode 2 Conductor 3 Insulator 4 Granular body 5 AC power supply

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 交流電源(5)と接続される電極(1
a)と接地電極(1b)とから成る電極対(1)を設け
て、ガスの存在下で、前記電極対(1)間に交流電界を
印加して、大気圧下でグロー放電プラズマを発生させる
大気圧プラズマ発生装置において、前記電極対(1)間
に、導電体(2)の全面に絶縁体(3)を被覆して形成
した粒状体(4)を充填することを特徴とする大気圧プ
ラズマ発生装置。
1. An electrode (1) connected to an AC power source (5)
An electrode pair (1) including a) and a ground electrode (1b) is provided, and an AC electric field is applied between the electrode pair (1) in the presence of gas to generate glow discharge plasma under atmospheric pressure. In the atmospheric pressure plasma generator, the granular body (4) formed by covering the entire surface of the conductor (2) with the insulator (3) is filled between the electrode pair (1). Atmospheric pressure plasma generator.
【請求項2】 前記導電体(2)が金属であり、絶縁体
(3)が無機誘電体であることを特徴とする請求項1記
載の大気圧プラズマ発生装置。
2. The atmospheric pressure plasma generator according to claim 1, wherein the conductor (2) is a metal and the insulator (3) is an inorganic dielectric.
【請求項3】 前記電極対(1)が金属網であることを
特徴とする請求項1又は請求項2記載の大気圧プラズマ
発生装置。
3. The atmospheric pressure plasma generator according to claim 1, wherein the electrode pair (1) is a metal net.
【請求項4】 請求項1乃至請求項3のいずれかに記載
の大気圧プラズマプラズマ発生装置を用いて、ガスの存
在下で、前記電極対(1)間に交流電界を印加して、大
気圧下でグロー放電プラズマを発生させることを特徴と
する大気圧プラズマ発生方法。
4. An atmospheric pressure plasma plasma generator according to claim 1 is used to apply an AC electric field between the electrode pair (1) in the presence of gas, A method for generating atmospheric pressure plasma, characterized in that glow discharge plasma is generated under atmospheric pressure.
【請求項5】 前記ガスが空気を主成分とすることを特
徴とする請求項4記載の大気圧プラズマ発生方法。
5. The atmospheric pressure plasma generation method according to claim 4, wherein the gas contains air as a main component.
JP07125408A 1995-05-24 1995-05-24 Atmospheric pressure plasma generating apparatus and atmospheric pressure plasma generating method using the apparatus Expired - Fee Related JP3078466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07125408A JP3078466B2 (en) 1995-05-24 1995-05-24 Atmospheric pressure plasma generating apparatus and atmospheric pressure plasma generating method using the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07125408A JP3078466B2 (en) 1995-05-24 1995-05-24 Atmospheric pressure plasma generating apparatus and atmospheric pressure plasma generating method using the apparatus

Publications (2)

Publication Number Publication Date
JPH08321397A true JPH08321397A (en) 1996-12-03
JP3078466B2 JP3078466B2 (en) 2000-08-21

Family

ID=14909380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07125408A Expired - Fee Related JP3078466B2 (en) 1995-05-24 1995-05-24 Atmospheric pressure plasma generating apparatus and atmospheric pressure plasma generating method using the apparatus

Country Status (1)

Country Link
JP (1) JP3078466B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621227B1 (en) 2000-02-08 2003-09-16 Canon Kabushiki Kaisha Discharge generating apparatus and discharge generating method
US6635996B1 (en) 1999-03-26 2003-10-21 Canon Kabushiki Kaisha Plasma generating apparatus, plasma generating method and gas processing method by plasma reaction
KR100464902B1 (en) * 2001-02-12 2005-01-05 (주)에스이 플라즈마 Apparatus for generating low temperature plasama at atmospheric pressure
KR100488361B1 (en) * 2002-04-10 2005-05-11 주식회사 플라즈마트 Atmospheric Pressure Parallel Plate Plasma generator
US7514377B2 (en) 2002-12-27 2009-04-07 Hitachi Kokusai Electric Inc. Plasma generator, ozone generator, substrate processing apparatus and manufacturing method of semiconductor device
JP2010050004A (en) * 2008-08-22 2010-03-04 Hitachi Kokusai Electric Inc Plasma generating electrode
CN103458600A (en) * 2013-07-31 2013-12-18 华中科技大学 System producing atmospheric pressure dispersion discharging non-equilibrium plasma
CN108541124A (en) * 2018-04-27 2018-09-14 浙江大维高新技术股份有限公司 A kind of honeycomb low temperature plasma generating means and its application method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635996B1 (en) 1999-03-26 2003-10-21 Canon Kabushiki Kaisha Plasma generating apparatus, plasma generating method and gas processing method by plasma reaction
US6621227B1 (en) 2000-02-08 2003-09-16 Canon Kabushiki Kaisha Discharge generating apparatus and discharge generating method
KR100464902B1 (en) * 2001-02-12 2005-01-05 (주)에스이 플라즈마 Apparatus for generating low temperature plasama at atmospheric pressure
KR100488361B1 (en) * 2002-04-10 2005-05-11 주식회사 플라즈마트 Atmospheric Pressure Parallel Plate Plasma generator
US7514377B2 (en) 2002-12-27 2009-04-07 Hitachi Kokusai Electric Inc. Plasma generator, ozone generator, substrate processing apparatus and manufacturing method of semiconductor device
JP2010050004A (en) * 2008-08-22 2010-03-04 Hitachi Kokusai Electric Inc Plasma generating electrode
CN103458600A (en) * 2013-07-31 2013-12-18 华中科技大学 System producing atmospheric pressure dispersion discharging non-equilibrium plasma
CN108541124A (en) * 2018-04-27 2018-09-14 浙江大维高新技术股份有限公司 A kind of honeycomb low temperature plasma generating means and its application method

Also Published As

Publication number Publication date
JP3078466B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
JP3990285B2 (en) A device that generates low-temperature plasma at atmospheric pressure
CA2104355C (en) Method and apparatus for ozone generation and treatment of water
JPH0817171B2 (en) Plasma generator and etching method using the same
JP2013519188A (en) Apparatus and method for generating discharge in hollow body
JP3078466B2 (en) Atmospheric pressure plasma generating apparatus and atmospheric pressure plasma generating method using the apparatus
Abdel-Salam et al. Characteristics of corona and silent discharges as influenced by geometry of the discharge reactor
JP3142660B2 (en) Glow discharge plasma generating electrode and reactor using this electrode
KR20200091167A (en) APPARATUS FOR GENERATING ATMOSPHERIC PRESSURE Dielectric barrier discharge PLASMA
AU633623B2 (en) Apparatus and method for treatment of gas
US3842286A (en) Apparatus for producing ozone
JP4036600B2 (en) Plasma decomposition apparatus and gas plasma decomposition method
JP5008622B2 (en) Plasma generating electrode and plasma generating method
JP2000348896A (en) Plasma generating method, plasma generating device, and gas treatment method in plasma reaction
Farooq et al. Nanosecond pulsed plasma discharge in oxygen–water mixture: effect of discharge parameters on pre-and post-breakdown characteristics
JP3121105B2 (en) Glow discharge plasma generating electrode and reactor using this electrode
JP2929768B2 (en) Cylindrical plasma generator
JPH07211654A (en) Plasma generating system and operating method thereof
JP3173754B2 (en) Plasma generator
WO1994014303A1 (en) Method and apparatus for atmospheric pressure glow discharge plasma treatment
CN110677970B (en) Flat plate type plasma generating device based on mixed type plasma structure
Rogers et al. Barrier discharge optimization for nitric oxide destruction
RU208008U1 (en) Device for generating ozone in an electric discharge
Jung et al. Effective ozone generation with a wire–wire-type nonthermal plasma reactor with a slit barrier
US20070063654A1 (en) Method and apparatus for ionization treatment of gases
Ussenov et al. Investigation of electrical and optical properties of dielectric barrier discharge

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees