JP4783032B2 - Sintered high speed steel, its manufacturing method and sliding parts made of the sintered high speed steel - Google Patents

Sintered high speed steel, its manufacturing method and sliding parts made of the sintered high speed steel Download PDF

Info

Publication number
JP4783032B2
JP4783032B2 JP2005036302A JP2005036302A JP4783032B2 JP 4783032 B2 JP4783032 B2 JP 4783032B2 JP 2005036302 A JP2005036302 A JP 2005036302A JP 2005036302 A JP2005036302 A JP 2005036302A JP 4783032 B2 JP4783032 B2 JP 4783032B2
Authority
JP
Japan
Prior art keywords
speed steel
cooling
tempering
sintered high
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005036302A
Other languages
Japanese (ja)
Other versions
JP2005264325A (en
Inventor
晶紀 秋山
宏典 汐入
康平 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2005036302A priority Critical patent/JP4783032B2/en
Publication of JP2005264325A publication Critical patent/JP2005264325A/en
Application granted granted Critical
Publication of JP4783032B2 publication Critical patent/JP4783032B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

この発明は、耐摩摺動部材用の材料として好適な焼結高速度鋼の製造方法、詳しくは、耐摩耗性に優れる焼結高速度鋼を寸法精度の悪化を抑えて低コストで製造するための方法と、その方法で得られる焼結高速度鋼及びその焼結高速度鋼で作られる摺動部品に関する。   The present invention relates to a method for producing sintered high-speed steel suitable as a material for wear-resistant sliding members, and more specifically, to produce sintered high-speed steel excellent in wear resistance at a low cost while suppressing deterioration of dimensional accuracy. And a sintered high speed steel obtained by the method and a sliding part made of the sintered high speed steel.

優れた耐摩耗性を有する一方で相手攻撃性の低いコンプレッサ用鉄基焼結羽根として、本出願人は、鉄をベースとするマトリックス中に平均粒径が5μm以下の硬質炭化物が均一に分散した、理論密度比が80〜90%、ロックウエル硬さがHC10〜45の焼結高速度鋼によって形成された羽根を下記特許文献1によって提案している。
特公平7−26629号公報
As an iron-based sintered vane for compressors that has excellent wear resistance and low attack resistance, the present applicant has uniformly dispersed hard carbides having an average particle size of 5 μm or less in an iron-based matrix. theoretical density ratio 80-90%, has proposed a vane Rockwell hardness is formed by sintering high speed steel of H R C10~45 by Patent Document 1 below.
Japanese Patent Publication No. 7-26629

このコンプレッサ用鉄基焼結羽根は、耐摩耗性を向上させるために焼結後に焼き入れ、焼き戻しを行っているが、従来の熱処理では冷却速度が速すぎるために(例えば、油で急冷するときの冷却速度は10℃/sec以上)製品に大きな歪が生じて寸法精度、特に、平面度が悪くなると言う問題があった。   This compressor-based iron-based sintered blade is quenched and tempered after sintering in order to improve wear resistance. However, the conventional heat treatment has a cooling rate that is too fast (for example, quenching with oil) When the cooling rate is 10 ° C./sec or more), there is a problem in that large distortion occurs in the product, resulting in poor dimensional accuracy, particularly flatness.

また、急冷によって材料中の残留オーステナイト量が多くなる(30wt%以上になる)ため、焼き戻しの条件が厳しくなると言う問題もあった。   Moreover, since the amount of retained austenite in the material increases due to rapid cooling (30 wt% or more), there is a problem that the tempering conditions become severe.

例えば、冷凍機用コンプレッサの部品は、−60℃にも達するような極低温の環境下で使用され、この様な特殊用途の部品については、残留オーステナイトが低温でマルテンサイトに変態して膨張すること(そのために摺動クリアランスを確保できなくなること)が原因となって起こる使用時のロッキング現象などを防止するために、材料の高速度鋼中の残留オーステナイト量を可及的に0%に近づける(1wt%以下にする)ことが望まれる。また、チラー用部品や除湿器用部品などとして0℃以上の温度下で使用される一般用途の高速度鋼も、残留オーステナイト量を5wt%以下にすることが望まれる。   For example, a compressor component for a refrigerator is used in an extremely low temperature environment that reaches as high as −60 ° C. For such a special purpose component, the residual austenite is transformed into martensite at a low temperature and expands. In order to prevent rocking phenomenon during use due to the fact that the sliding clearance cannot be secured for that reason, the amount of retained austenite in the high-speed steel of the material is made as close to 0% as possible. It is desired to be (1 wt% or less). Further, high-speed steel for general use used at a temperature of 0 ° C. or higher as a chiller part or a dehumidifier part is also desired to have a retained austenite amount of 5 wt% or less.

30wt%以上も残留しているオーステナイトを、上記の要求に応えられるところまで減少させるには、従来の方法では焼き戻しを2〜3回実施する必要がある。これに加えて、従来の焼き戻し処理では、加熱工程と加熱後に室温まで冷却する工程を繰り返しており、そのこともあって、熱処理の時間が長くなっている。   In order to reduce the austenite remaining at 30 wt% or more to a point where the above-mentioned requirement can be met, it is necessary to perform tempering 2-3 times in the conventional method. In addition to this, in the conventional tempering process, the heating process and the process of cooling to room temperature after the heating are repeated, and for this reason, the time for the heat treatment becomes longer.

また、焼き戻しは、ワークを1回1回炉から出しながら行っており、さらに、加熱、冷却の均一化のために処理対象部品を整列させて炉に導入せざるを得なかったために1バッチ当たりの処理量も少なく、熱処理の効率が良くなかった。   In addition, tempering is performed while the work is taken out from the furnace once, and the parts to be processed must be aligned and introduced into the furnace for uniform heating and cooling. The amount of the heat treatment was small, and the heat treatment efficiency was not good.

このほかにも、焼結後に更に真空中で焼き入れ、焼き戻しの熱処理を行うため、熱効率や生産性が悪く、製造コストが高くなると言う問題や、水や油による冷却を行うと寸法精度、特に平面度が悪くなり、極端な場合には製品の割れが発生すると言う問題もあった。   In addition to this, since the heat treatment of further tempering and tempering is performed after sintering, the thermal efficiency and productivity are poor, the manufacturing cost is increased, and dimensional accuracy is achieved by cooling with water or oil. In particular, there is a problem that the flatness is deteriorated and the product is cracked in an extreme case.

なお、上記特許文献1は、焼結後に1150℃からNガス焼き入れを行うことを述べているが、そのガス焼き入れ法を採用しても上記の問題が生じていた。 The above Patent Document 1, although stated to carry out N 2 gas quenching from 1150 ° C. After sintering, the above problems have occurred also employ the gas quenching method.

この発明は、特許文献1が開示している組成の焼結高速度鋼を大きな歪を発生させずに作れる製造方法及び残留オーステナイト量の低減を、焼き戻し回数を減少させて実現できる製造方法と、それらの方法によって製造される高硬度で歪の少ない焼結高速度鋼と、その焼結高速度鋼で形成された寸法精度の良い摺動部品を提供することを課題としている。   The present invention provides a production method capable of producing a sintered high-speed steel having the composition disclosed in Patent Document 1 without generating a large strain, and a production method capable of realizing a reduction in the amount of retained austenite by reducing the number of tempers. It is an object of the present invention to provide a sintered high-speed steel with high hardness and low strain produced by these methods, and a sliding part with good dimensional accuracy formed from the sintered high-speed steel.

上記の課題を解決するため、この発明においては、焼結後の冷却時に焼結された鋼材(高速度鋼、以下製品とも言う)を0.3℃/sec以上、3.5℃/sec以下の速度、より好ましくは0.3℃/sec以上、2.0℃/sec以下の速度で冷却して焼結後の冷却時に焼き入れを行い、さらに、その焼き入れを行った後に焼き戻しを実施し、その焼き戻しの回数を2回にし、かつ、1回目の焼き戻しでの冷却温度を100℃〜180℃、より好ましくは100℃〜150℃の範囲とする焼結高速度鋼の製造方法を提供する。 In order to solve the above-described problems, in the present invention, a steel material (high speed steel, hereinafter also referred to as a product) sintered during cooling after sintering is 0.3 ° C./sec or more and 3.5 ° C./sec or less. speed, more preferably 0.3 ° C. / sec or higher, have rows quenching by cooling at a rate 2.0 ° C. / sec upon cooling after sintering, further tempered after the hardening And the number of times of tempering is set to 2 and the cooling temperature in the first tempering is 100 ° C to 180 ° C, more preferably 100 ° C to 150 ° C. A manufacturing method is provided.

この方法によって、この発明の焼結高速度鋼を製造する。なお、残留オーステナイト量が1〜5wt%の焼結高速度鋼は、一般用途の摺動部品(例えば、チラーや除湿器用の部品)の材料として好適に利用でき、また、残留オーステナイト量が1wt%以下の焼結高速度鋼は、0℃以下の温度下で使用される特殊用途の摺動部品(例えば、冷凍機用摺動部品)の材料として好適に利用できる。 By this method, the sintered high speed steel of the present invention is produced. Note that sintered high-speed steel having a retained austenite amount of 1 to 5 wt% can be suitably used as a material for sliding parts for general use (for example, parts for chillers and dehumidifiers), and the retained austenite amount is 1 wt%. The following sintered high speed steel can be suitably used as a material for sliding parts for special applications (for example, sliding parts for refrigerators) used at a temperature of 0 ° C. or lower.

焼結後の製品の冷却は、窒素ガス、アルゴンガスなどの不活性ガスで行うと好ましい。不活性ガスに水素を含ませたガスを用いてもよいが、水素は高価であるので、水素の使用量は上限を5%程度に止めるのがよい。また、この不活性ガスによる冷却は、熱源を持たない独立した冷却ゾーンを有する製造設備を用いて行うと好ましい。   The product after sintering is preferably cooled with an inert gas such as nitrogen gas or argon gas. A gas in which hydrogen is included in an inert gas may be used. However, since hydrogen is expensive, the upper limit of the amount of hydrogen used is preferably about 5%. The cooling with the inert gas is preferably performed using a production facility having an independent cooling zone having no heat source.

この発明は、脱ガスゾーンと焼結ゾーンと、この脱ガスゾーン及び焼結ゾーンから独立した熱源を持たない冷却ゾーンを有し、前記冷却ゾーンにおいて、導入した高速度鋼を不活性ガス、または、不活性ガスに水素を5%以下含ませた混合ガスを使用して、0.3℃/sec以上、3.5℃/sec以下の速度で冷却できるようにした焼結高速度鋼の製造設備を用いて、上記の方法で製造された、マトリックス中に平均粒径が5μm以下の硬質炭化物が均一に分散している焼結高速度鋼も併せて提供する。その焼結高速度鋼は、重量比でC:0.7〜1.5%、Cr:3.0〜5.0%、Mo:0〜10%、W:1〜20%、V:0.5〜6.0%、Co:0〜15%、残部Feと不可避不純物から成り、理論密度比が80〜90%で、ロックウエル硬さがHRC20〜45になっている。 The present invention has a degassing zone, a sintering zone, and a cooling zone that does not have a heat source independent of the degassing zone and the sintering zone, and the introduced high-speed steel is an inert gas in the cooling zone, or Production of sintered high-speed steel that can be cooled at a rate of 0.3 ° C./sec or more and 3.5 ° C./sec or less using a mixed gas containing 5% or less of hydrogen in an inert gas Also provided is a sintered high speed steel produced by the above method using equipment and having a hard carbide having an average particle size of 5 μm or less uniformly dispersed in the matrix. The sintered high speed steel has a weight ratio of C: 0.7 to 1.5%, Cr: 3.0 to 5.0%, Mo: 0 to 10%, W: 1 to 20%, V: 0 0.5 to 6.0%, Co: 0 to 15%, balance Fe and inevitable impurities, the theoretical density ratio is 80 to 90%, and the Rockwell hardness is HRC20 to 45.

この発明は、その焼結高速度鋼で作られた摺動部品も提供する。   The invention also provides a sliding part made of the sintered high speed steel.

熱処理時の冷却速度が速すぎると、製品の熱分布が不均一になり、各部の膨張、収縮量に差が生じて歪が発生するが、この発明においては、高速度鋼を焼結し、その焼結後の冷却速度を3.5℃/sec以下にして焼き入れを行うため、製品の熱分布のばらつきが抑制され、寸法精度の良い製品が得られる。   If the cooling rate during the heat treatment is too fast, the heat distribution of the product becomes non-uniform, and there is a difference in the amount of expansion and contraction of each part, resulting in distortion.In this invention, the high-speed steel is sintered, Since quenching is performed at a cooling rate of 3.5 ° C./sec or less after the sintering, variation in product heat distribution is suppressed, and a product with good dimensional accuracy can be obtained.

なお、冷却速度を0.3℃/sec以上とすることで、所望の特性(例えば硬度がHRC20以上)を満たす製品が得られる。また、その冷却速度を3.5℃/sec以下とすることで製品の寸法精度が十分に高くなる。 In addition, the product which satisfy | fills a desired characteristic (for example, hardness is HRC20 or more) is obtained by setting a cooling rate to 0.3 degrees C / sec or more. Further, the dimensional accuracy of the product that sufficiently high by the cooling rate 3.5 ° C. / sec or less.

また、処理する高速度鋼が、マトリックス中に平均粒径が5μm以下の微細な硬質炭化物が均一に分散している組織をもった焼結材であれば、上記の冷却速度で焼き入れを行ってロックウエル硬さがHC20〜45の材料を得ることができる。 If the high-speed steel to be processed is a sintered material having a structure in which fine hard carbides having an average particle size of 5 μm or less are uniformly dispersed in the matrix, quenching is performed at the above cooling rate. Thus, a material having a Rockwell hardness of H R C20-45 can be obtained.

この発明の方法によれば、焼き入れが焼結後、その冷却時に行われるため、焼結後に一旦冷えた製品の再加熱も不要になる。これにより、熱効率が向上し、工程も短縮されて製品コストを低減することが可能になる。   According to the method of the present invention, since quenching is performed after the sintering and cooling, it is not necessary to reheat the product once cooled after the sintering. As a result, the thermal efficiency is improved, the process is shortened, and the product cost can be reduced.

さらに、焼結後の冷却を不活性ガスや不活性ガスに水素を5%以下含ませたガスで行う方法によれば、製品の酸化を防止することができる。また、ガス冷却であれば冷却速度を要求範囲に制御するのも容易である。 Furthermore, according to the method of cooling after sintering with an inert gas or a gas containing 5% or less of hydrogen in an inert gas, oxidation of the product can be prevented. Moreover, if it is gas cooling, it is easy to control a cooling rate to a required range.

また、この発明の方法で焼結高速度鋼を焼き入れすると、残留オーステナイトの量が従来に比べて減少し、そのために、焼き戻しの回数を減少させることも可能になる。従来は、残留オーステナイト量を1wt%以下となす場合にはその焼き戻しを3回実施していたが、この発明の方法で焼き入れを行ったものは、従来30wt%以上あった残留オーステナイト量が10wt%程度に減少し、そのために、2回の焼き戻しで残留オーステナイト量を1wt%以下に減少させることができる。 Further, when the sintered high speed steel is quenched by the method of the present invention, the amount of retained austenite is reduced as compared with the conventional case, and therefore, the number of times of tempering can be reduced. Conventionally, had conducted back its tempered three times when forming the residual austenite amount less 1 wt%, the amount of retained austenite having been subjected to the quenching in a way, that was conventionally 30 wt% or more of the invention Therefore , the amount of retained austenite can be reduced to 1 wt% or less by tempering twice .

また、焼き戻しを2回行うため、1回目の焼き戻しでの冷却温度を室温まで下げる必要がなく、処理時間の短縮効果がより顕著に現れる。1回目の焼き戻しでの冷却温度は、部品の冷却が均一になされていれば、部品中の最高温度部の温度が180℃でもマルテンサイト変態が起こる。ただし、焼き入れの条件(焼き入れの仕方や部品の形状など)によっては、加熱、冷却がばらつくことが考えられるので、それを考慮して冷却温度は低めに設定するのがよい。例えば、部品をバラ詰めして焼き入れする場合には、加熱、冷却が特にばらつきやすいが、このような場合にも120〜150℃程度まで部品を冷却すれば、安定した焼き戻しが行える。なお、1回目の焼き戻しでの冷却温度を不必要に下げると処理時間短縮の効果が薄れるので、冷却温度の下限は100℃程度に止めるのがよい。 Further, tempering twice row Utame, first bake is not necessary to lower to room cooling temperature in the return, the effect of reducing the processing time more remarkable. As for the cooling temperature in the first tempering, if the cooling of the part is made uniform, the martensitic transformation occurs even if the temperature of the highest temperature part in the part is 180 ° C. However, depending on the quenching conditions (such as quenching method and part shape), heating and cooling may vary. Therefore, it is preferable to set the cooling temperature lower in consideration of this. For example, when the parts are packed and quenched, heating and cooling are particularly likely to vary, but even in such a case, if the parts are cooled to about 120 to 150 ° C., stable tempering can be performed. Note that if the cooling temperature in the first tempering is lowered unnecessarily, the effect of shortening the processing time is diminished, so the lower limit of the cooling temperature is preferably limited to about 100 ° C.

この発明の方法で製造される焼結高速度鋼は、高硬度で耐摩耗性に優れ、また、熱処理時の歪が小さくて寸法精度にも優れる。   The sintered high-speed steel produced by the method of the present invention has high hardness and excellent wear resistance, and has small distortion during heat treatment and excellent dimensional accuracy.

また、この高速度鋼で形成された摺動部品は優れた耐久性を発揮する一方で相手攻撃性は低く、さらに、寸法精度が良くなっているために機械加工時の取り代が少なくて済む利点も生じる。   In addition, the sliding parts made of this high-speed steel exhibit excellent durability while being low in attacking the other party. Furthermore, because the dimensional accuracy is improved, the machining allowance during machining is small. There are also benefits.

−実施例1−
重量比でC:1.1%、W:6.1%、Mo:5.0%、Cr:4.0%、V:2.0%、残部Feと不可避不純物から成る平均粒径が100メッシュの合金粉末に、成形助剤として0.8%のステアリン酸亜鉛を混合し、これを882MPaの圧力で成形し、成形体を脱ガス処理後に真空中で、1180℃で1時間焼結した。
Example 1
By weight ratio, C: 1.1%, W: 6.1%, Mo: 5.0%, Cr: 4.0%, V: 2.0%, the average particle size consisting of the balance Fe and inevitable impurities is 100 The mesh alloy powder was mixed with 0.8% zinc stearate as a forming aid, formed at a pressure of 882 MPa, and the formed body was degassed and sintered in vacuum at 1180 ° C. for 1 hour. .

次いで、焼結後の冷却を、不活性ガス、冷却油及び冷却水を用いて0.15℃/sec、0.30℃/sec、1.75℃/sec、2.0℃/sec、3.5℃/sec、20〜80℃/sec、80〜140℃/secの各速度で行い、その後、580℃で2回焼戻しを行い、縦33mm×横30mm×厚み5mmのテストピースを得た。焼戻しの雰囲気は製品の光輝性を考慮すれば不活性ガス中がよいが大気中でも問題ない。   Next, cooling after sintering is performed using an inert gas, cooling oil, and cooling water at 0.15 ° C./sec, 0.30 ° C./sec, 1.75 ° C./sec, 2.0 ° C./sec, 3 ° C. .5 ° C./sec, 20-80 ° C./sec, 80-140 ° C./sec, then tempered twice at 580 ° C. to obtain a test piece of 33 mm length × 30 mm width × 5 mm thickness . The atmosphere of tempering is preferably in an inert gas considering the brightness of the product, but there is no problem even in the air.

成形体の脱ガス処理、焼結、及び焼結後の冷却は、図1に示すように、脱ガスゾーン1、焼結ゾーン2、熱源の無い冷却ゾーン3が各々独立している3槽構造の炉を用いて行った。この炉のように、冷却ゾーン3を、熱源を持たない独立のゾーンとして不活性ガスで冷却すると、焼結高速度鋼を安価に製造できる。なお、図1の4は真空ポンプ、5は冷却ガス、6は冷却ファン、7は脱ガス、8はキャリアガスである。ここで、冷却ゾーンを独立に設けているが、ここで云う独立の意味は、焼結ゾーンと冷却ゾーンは断熱されていればよく、例えば、焼結ゾーンと冷却ゾーンを断熱材で断熱して連続的に形成してもよい。   As shown in FIG. 1, the degassing treatment, sintering, and cooling after sintering of the molded body is a three-tank structure in which a degassing zone 1, a sintering zone 2, and a cooling zone 3 without a heat source are independent from each other. The furnace was used. As in this furnace, when the cooling zone 3 is cooled with an inert gas as an independent zone having no heat source, sintered high-speed steel can be manufactured at low cost. In FIG. 1, 4 is a vacuum pump, 5 is a cooling gas, 6 is a cooling fan, 7 is degassing, and 8 is a carrier gas. Here, the cooling zone is provided independently, but the independent meaning here is that the sintering zone and the cooling zone may be insulated from each other. For example, the sintering zone and the cooling zone are insulated by a heat insulating material. You may form continuously.

こうして得られた理論密度比85%の各テストピースの平面度とロックウエル硬さを測定した。   The flatness and Rockwell hardness of each test piece having a theoretical density ratio of 85% thus obtained were measured.

平面度は、テストピースの端面の反り量を求めた。その結果を表1にまとめて示す。   For flatness, the amount of warpage of the end face of the test piece was determined. The results are summarized in Table 1.

Figure 0004783032
Figure 0004783032

この表1からわかるように、この発明の条件を満たす速度で冷却したものは、目標とするHC20以上の硬度が得られ、また、冷却速度が0.30〜2.0℃/secの範囲にあるものは特に、20℃/secを越えるものに比べて平面度が非常に良くなっている。 As can be seen from Table 1, which was cooled with satisfying rate of the present invention, H R C20 or higher hardness is obtained as a target, also the cooling rate of .30-2.0 ° C. / sec Especially in the range, the flatness is much better than that exceeding 20 ° C./sec.

−実施例2−
実施例1と同一条件で同一組成の焼結高速度鋼を製造し、次いで、焼結後の冷却を、不活性ガスを用いて3.5℃/secの速度で行って残留オーステナイト量が約10wt%の発明品Iを得た。また、従来法で焼結後に一旦室温まで徐冷して製造した焼結材(発明品Iと同一組成)を、1150℃まで加熱後、冷却して焼き入れを行った比較品I、IIも準備した。比較品Iは、焼き入れでの冷却を、不活性ガスを用いて3.5℃/sec以上の速度で、また、比較品IIは、焼き入れでの冷却を、油を用いて10℃/sec以上の速度で各々行った。この比較品I、IIは、いずれも残留オーステナイト量が30wt%以上であった。残留オーステナイト量の測定は、X線回折装置にて行った。
-Example 2-
A sintered high-speed steel having the same composition was produced under the same conditions as in Example 1, and then cooling after sintering was performed at a rate of 3.5 ° C./sec using an inert gas so that the amount of retained austenite was about 10 wt% of Invention I was obtained. In addition, comparative products I and II in which a sintered material (same composition as that of Invention Product I) manufactured by gradually cooling to room temperature after sintering by the conventional method was heated to 1150 ° C. and then cooled and quenched were also obtained. Got ready. Comparative product I is cooled by quenching at a rate of 3.5 ° C./sec or more using an inert gas, and comparative product II is cooled by quenching at 10 ° C./second using oil. Each was performed at a speed of at least sec. In these comparative products I and II, the amount of retained austenite was 30 wt% or more. The amount of retained austenite was measured with an X-ray diffractometer.

次に、発明品Iと比較品I、IIについて焼き戻しを行った。焼き戻しは、発明品については1回および2回実施し、比較品については、2回及び3回実施した。焼き戻しでの加熱温度は、いずれも580℃、加熱温度の保持時間は1.5時間とした。また、比較品は、各回の焼き戻しでの冷却を室温までとしたのに対し、発明品の2回焼き戻しでは、1回目の焼き戻しでの冷却温度を120℃とし、その後再度580℃に加熱してその後に室温まで冷却した。冷却は自然冷却で行い、室温から580℃までの昇温時間は1時間、120℃から580℃までの昇温時間は0.8時間、580℃から室温までの冷却時間は3時間、580℃から120℃までの冷却時間は約1.5時間であった。その比較試験の結果を表2にまとめる。   Next, the invention product I and the comparison products I and II were tempered. Tempering was performed once and twice for the inventive product and twice and three times for the comparative product. The heating temperature during tempering was 580 ° C., and the heating temperature was held for 1.5 hours. The comparative product was cooled to room temperature in each tempering, while the second tempering of the invention product was set to 120 ° C. and then again to 580 ° C. Heated and then cooled to room temperature. Cooling is performed by natural cooling, the temperature rising time from room temperature to 580 ° C. is 1 hour, the temperature rising time from 120 ° C. to 580 ° C. is 0.8 hours, the cooling time from 580 ° C. to room temperature is 3 hours, 580 ° C. The cooling time from 120 ° C. to 120 ° C. was about 1.5 hours. The results of the comparative test are summarized in Table 2.

Figure 0004783032
Figure 0004783032

表2からわかるように、この発明の方法で焼き入れを行うと、焼き入れ段階でのワークの残留オーステナイト量が従来法に比べて大きく減少する。また、その残留オーステナイト量が、従来法では2回の焼き戻しで5wt%以下、3回の焼き戻しで1wt%以下となるのに対し、この発明の方法では1回の焼き戻しで5wt%以下、2回の焼き戻しで1wt%以下に減少し、工程数と熱処理時間の短縮が図れる。また、従来法では、均一冷却のためにワークをパレット上に列並べして焼き戻しを行う必要があったが、この発明の方法では、パレットにワークを2倍の密度でバラ詰めして焼き戻しを行うことができ、生産性の大幅向上も図れた。それでありながら、焼き入れ、焼き戻し後のワークは、従来法と大差のない硬度が得られている。   As can be seen from Table 2, when quenching is performed by the method of the present invention, the amount of retained austenite of the workpiece at the quenching stage is greatly reduced as compared with the conventional method. In addition, the amount of retained austenite is 5 wt% or less after two tempers in the conventional method, and 1 wt% or less after three tempers, whereas the amount of retained austenite is 5 wt% or less after one tempering. The number of steps and heat treatment time can be shortened by reducing the number of steps to 1 wt% or less by tempering twice. Further, in the conventional method, it was necessary to perform tempering by arranging the workpieces on a pallet for uniform cooling. However, in the method of the present invention, the workpieces are packed on the pallet at a double density and baked. It was possible to return, and productivity was greatly improved. Nevertheless, the workpiece after quenching and tempering has a hardness that is not significantly different from the conventional method.

−実施例3−
図2に、1回目の焼き戻しでの冷却温度を120℃とするこの発明の方法と、各回の焼き戻しでの冷却を室温までとする従来方法でそれぞれ焼き戻しを2回行ったときに費やした時間を比較して示す。焼き戻しでの加熱温度、加熱後の温度保持時間、及び自然冷却による室温までの冷却時間と120℃までの冷却時間は実施例2と同じである。
-Example 3-
FIG. 2 shows that the cooling temperature at the first tempering is 120 ° C. and the conventional method in which the cooling at each tempering is performed to room temperature, and each tempering is performed twice. Comparison time is shown. The heating temperature in tempering, the temperature holding time after heating, the cooling time to room temperature by natural cooling, and the cooling time to 120 ° C. are the same as in Example 2.

この比較試験では、従来法での焼き戻しの処理時間が11時間に対し、この発明の方法ではその処理時間が9.3時間に短縮された。従来法では、残留オーステナイト量を1wt%以下とする場合には3回の焼き戻しが必要であるので、焼き戻しに要する時間はトータルで16.5時間となる。従って、同一炉を使用してほぼ同一特性の焼結高速度鋼を製造するならば、この発明の方法での処理時間は従来法に比べてほぼ半減することになる。   In this comparative test, the processing time for tempering in the conventional method was 11 hours, whereas in the method of the present invention, the processing time was reduced to 9.3 hours. In the conventional method, when the amount of retained austenite is 1 wt% or less, tempering is required three times, so the total time required for tempering is 16.5 hours. Therefore, if sintered high-speed steel having substantially the same characteristics is produced using the same furnace, the processing time in the method of the present invention is almost halved compared with the conventional method.

なお、この発明の方法で製造する焼結高速度鋼は、実施例に示した組成のものに限定されない。重量比でC:0.7〜1.5%、Cr:3.0〜5.0%、Mo:0〜10%、W:1〜20%、V:0.5〜6.0%、Co:0〜15%、残部Feと不可避不純物から成り、粉末成形を例えば490〜980MPa(5〜10Tonf/cm)の圧力で行って成形後の理論密度比を80〜90%となし、それを焼結後の冷却時に規定範囲の速度で冷却すれば、好ましくは更に焼戻しを行えば、高硬度で寸法精度にも優れた焼結高速度鋼が得られる。 The sintered high speed steel produced by the method of the present invention is not limited to the composition shown in the examples. C: 0.7 to 1.5%, Cr: 3.0 to 5.0%, Mo: 0 to 10%, W: 1 to 20%, V: 0.5 to 6.0% by weight ratio, Co: 0 to 15%, balance Fe and inevitable impurities, powder forming is performed at a pressure of 490 to 980 MPa (5 to 10 Tonf / cm 2 ), for example, and the theoretical density ratio after forming is 80 to 90%. If the steel is cooled at a speed within a specified range at the time of cooling after sintering, preferably sintered, a high-speed sintered steel having high hardness and excellent dimensional accuracy can be obtained.

また、この発明の焼結高速度鋼で形成される摺動部品は、耐摩耗性に優れ、長期使用に耐える。また、相手攻撃性が低く、相手摺動部品の摩耗が抑えられる。さらに、寸法精度が高まっているため、機械加工時の取り代が従来品に比べて少なく、加工の効率化、それによるコスト低減が図れる。従って、ベーンなどのコンプレッサ用摺動部品に適する。   In addition, the sliding part formed of the sintered high speed steel of the present invention has excellent wear resistance and can withstand long-term use. Further, the opponent's aggression is low, and wear of the opponent sliding part is suppressed. Furthermore, since the dimensional accuracy is increased, the machining allowance at the time of machining is less than that of the conventional product, so that the processing efficiency can be improved and the cost can be reduced accordingly. Therefore, it is suitable for a sliding part for a compressor such as a vane.

この発明の製造設備のゾーン配置の一例を示す図The figure which shows an example of zone arrangement | positioning of the manufacturing equipment of this invention この発明の方法での2回焼き戻しと従来法での2回焼き戻しの所要時間を比較した図The figure which compared the time required for twice tempering by the method of this invention and twice tempering by the conventional method

符号の説明Explanation of symbols

1 脱ガスゾーン
2 焼結ゾーン
3 冷却ゾーン
4 真空ポンプ
5 冷却ガス
6 冷却ファン
7 脱ガス
8 キャリアガス
1 Degassing Zone 2 Sintering Zone 3 Cooling Zone 4 Vacuum Pump 5 Cooling Gas 6 Cooling Fan 7 Degassing 8 Carrier Gas

Claims (6)

焼結された高速度鋼を焼結後の冷却時に0.3℃/sec以上、3.5℃/sec以下の速度で冷却して焼き入れを行い、さらに、その焼き入れを行った後に焼き戻しを実施し、その焼き戻しの回数を2回にし、かつ、1回目の焼き戻しでの冷却温度を100℃〜180℃の範囲にして残留オーステナイト量が0〜5wt%の高速度鋼を得ることを特徴とする焼結高速度鋼の製造方法。 The sintered high speed steel during cooling after sintering 0.3 ° C. / sec or higher, have rows quenching by cooling at a rate 3.5 ° C. / sec, further, after the hardening Tempering is performed, the number of times of tempering is set to 2 times, and the cooling temperature in the first tempering is set in a range of 100 ° C. to 180 ° C. A method for producing sintered high-speed steel, characterized in that it is obtained . 焼結後の高速度鋼の冷却を0.3℃/sec以上、2.0℃/sec以下の速度で行う請求項1に記載の焼結高速度鋼の製造方法。   The method for producing a sintered high-speed steel according to claim 1, wherein the high-speed steel after sintering is cooled at a rate of 0.3 ° C / sec to 2.0 ° C / sec. 脱ガスゾーンと焼結ゾーンと、この脱ガスゾーン及び焼結ゾーンから独立した熱源を持たない冷却ゾーンを備える製造設備を用い、焼結後の前記冷却ゾーンにおける鋼材の冷却を、不活性ガス、または、不活性ガスに水素を5%以下含ませた混合ガスで行う請求項1または2に記載の焼結高速度鋼の製造方法。   Using a production facility comprising a degassing zone, a sintering zone, and a cooling zone that does not have a heat source independent of the degassing zone and the sintering zone, cooling of the steel material in the cooling zone after sintering is performed using an inert gas, Or the manufacturing method of the sintered high speed steel of Claim 1 or 2 performed by the mixed gas which contained 5% or less of hydrogen in the inert gas. 1回目の焼き戻しでの冷却温度を、100℃〜150℃の範囲とする請求項1乃至3のいずれかに記載の焼結高速度鋼の製造方法。   The method for producing a sintered high speed steel according to any one of claims 1 to 3, wherein a cooling temperature in the first tempering is in a range of 100C to 150C. 請求項1乃至4のいずれかの製造方法で得られる、マトリックス中に平均粒径が5μm以下の硬質炭化物が均一に分散しているロックウエル硬さがHRC20〜45である焼結高速度鋼。   A sintered high-speed steel having a Rockwell hardness of HRC 20 to 45 obtained by the production method according to any one of claims 1 to 4, wherein hard carbides having an average particle size of 5 µm or less are uniformly dispersed in a matrix. 請求項5に記載の焼結高速度鋼で作られた摺動部品。   A sliding part made of the sintered high speed steel according to claim 5.
JP2005036302A 2004-02-18 2005-02-14 Sintered high speed steel, its manufacturing method and sliding parts made of the sintered high speed steel Expired - Fee Related JP4783032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005036302A JP4783032B2 (en) 2004-02-18 2005-02-14 Sintered high speed steel, its manufacturing method and sliding parts made of the sintered high speed steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004041421 2004-02-18
JP2004041421 2004-02-18
JP2005036302A JP4783032B2 (en) 2004-02-18 2005-02-14 Sintered high speed steel, its manufacturing method and sliding parts made of the sintered high speed steel

Publications (2)

Publication Number Publication Date
JP2005264325A JP2005264325A (en) 2005-09-29
JP4783032B2 true JP4783032B2 (en) 2011-09-28

Family

ID=35089171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005036302A Expired - Fee Related JP4783032B2 (en) 2004-02-18 2005-02-14 Sintered high speed steel, its manufacturing method and sliding parts made of the sintered high speed steel

Country Status (1)

Country Link
JP (1) JP4783032B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013001246A1 (en) * 2013-01-25 2014-07-31 Gkn Sinter Metals Holding Gmbh Method for producing a wing for a vane pump, wings for a vane pump and vane pump
CN103667873B (en) * 2013-12-30 2016-02-24 长沙市萨普新材料有限公司 P/m high speed steel and preparation method thereof
JP6332798B2 (en) * 2014-06-25 2018-05-30 住友電工焼結合金株式会社 Sinter hardening method and sintered hardening parts
JP6350866B2 (en) * 2014-11-11 2018-07-04 住友電工焼結合金株式会社 Sinter hardening method
JP6515417B2 (en) 2015-02-18 2019-05-22 三菱重工コンプレッサ株式会社 Method of manufacturing hollow part and method of manufacturing rotary machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845304A (en) * 1981-09-11 1983-03-16 Sumitomo Electric Ind Ltd Continuous vacuum sintering furnace
JPS61104046A (en) * 1984-10-25 1986-05-22 Hitachi Metals Ltd Manufacture of iron-base sintered material
JP2953663B2 (en) * 1988-08-03 1999-09-27 日立金属株式会社 Tool steel for hot working
JPH0726629B2 (en) * 1989-04-28 1995-03-29 住友電気工業株式会社 Iron-based sintered blades for compressors
JP3399972B2 (en) * 1992-03-17 2003-04-28 株式会社リケン Sintered high-speed steel with excellent seizure resistance and method for producing the same
JP3032995B2 (en) * 1992-06-16 2000-04-17 株式会社クボタ High-speed steel-based sintered alloy for steel roll, roll body and manufacturing method
JPH0790508A (en) * 1993-09-13 1995-04-04 Mitsubishi Materials Corp Sliding member made of fe-base sintered alloy for compressor excellent in wear resistance

Also Published As

Publication number Publication date
JP2005264325A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
CN102264921B (en) The quenching method of steel
CN111793762B (en) Intermetallic compound and carbonitride jointly-strengthened hardening powder metallurgy high-speed steel and preparation method thereof
WO2012115025A1 (en) Manufacturing method for cold-working die
JP4783032B2 (en) Sintered high speed steel, its manufacturing method and sliding parts made of the sintered high speed steel
CN109735777B (en) Anti-oxidation hot-work die steel and preparation method thereof
CN104152916A (en) Thermal treatment and plasma nitrocarburizing surface treatment process method for special wear-resistant die steel with ultrahigh heat conductivity for hot stamping
US4121930A (en) Nitrogen containing high speed steel obtained by powder metallurgical process
JP2021143421A (en) Precipitation-strengthened carburizable and nitridable steel alloys
JP2012214833A (en) Cold tool steel
JP2020026567A (en) Hot stamp die steel, hot stamp die and method for producing the same
US20230366055A1 (en) Method for preparing bainite hot-working die
CN1040778C (en) Steel pipe perforating heading material
JP5904409B2 (en) Manufacturing method of steel materials for molds with excellent toughness
JP2021147624A (en) Steel for hot working die, hot working die, and method for manufacturing the same
JP5212772B2 (en) Hot work tool steel with excellent toughness and high temperature strength
KR20130115879A (en) Method of heat treatment on high speed steel and high speed steel thereby
KR20070053147A (en) Method for manufacturing high hardness and high toughness of hot-work tool steels
JPH07109021B2 (en) Tool steel for hot working
WO2020070917A1 (en) Hot work tool steel and hot work tool
JP2009221594A (en) Hot-working tool steel having excellent toughness
CN115029524B (en) Cryogenic treatment process for S51740 material
JP4310776B2 (en) Method for producing stainless steel member
CN1386883A (en) Matrix steel of diamond saw blade
CN113564444B (en) CrMnFeNi2Cu2Ti0.1 high-entropy alloy, preparation method and heat treatment method
CN109182926A (en) A kind of heat treatment process of high-speed steel

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4783032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees