JP4781950B2 - Composite sensor element - Google Patents

Composite sensor element Download PDF

Info

Publication number
JP4781950B2
JP4781950B2 JP2006251594A JP2006251594A JP4781950B2 JP 4781950 B2 JP4781950 B2 JP 4781950B2 JP 2006251594 A JP2006251594 A JP 2006251594A JP 2006251594 A JP2006251594 A JP 2006251594A JP 4781950 B2 JP4781950 B2 JP 4781950B2
Authority
JP
Japan
Prior art keywords
terminal
sensor element
composite sensor
terminals
electrochemical cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006251594A
Other languages
Japanese (ja)
Other versions
JP2007010686A (en
Inventor
章夫 田中
太輔 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2006251594A priority Critical patent/JP4781950B2/en
Publication of JP2007010686A publication Critical patent/JP2007010686A/en
Application granted granted Critical
Publication of JP4781950B2 publication Critical patent/JP4781950B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は,被測定ガス中の複数種類の特定ガス濃度を検出可能な複合ガスセンサ素子に関する。   The present invention relates to a composite gas sensor element capable of detecting a plurality of types of specific gas concentrations in a gas to be measured.

自動車エンジンの排気系に,酸素濃度,NOx濃度,エンジン燃焼室の空燃比等を測定可能に構成したガスセンサを設置することがある。その際に,設置スペースの節約,故障確率の削減等を目的として,一本で複数種類の特定ガス濃度等を測定可能な複合ガスセンサ素子を上記ガスセンサに用いることがある。複合センサ素子は各特定ガス濃度検出に対応した電気化学セルを備えており,各電気化学セルに対する出力取出用の端子,各電気化学セルを作動させるための入力を行う端子が設けてある。   A gas sensor configured to measure oxygen concentration, NOx concentration, engine combustion chamber air-fuel ratio, and the like may be installed in an exhaust system of an automobile engine. At that time, a composite gas sensor element capable of measuring a plurality of types of specific gas concentrations or the like may be used for the gas sensor for the purpose of saving installation space and reducing the failure probability. The composite sensor element includes an electrochemical cell corresponding to each specific gas concentration detection, and is provided with a terminal for outputting an output to each electrochemical cell and a terminal for performing an input for operating each electrochemical cell.

各電気化学セルの出力電流や電圧,入力電流や電圧はセルの種類によって大きく異なる。そのため,端子間に発生するリーク電流が問題となることがある。
本発明は,かかる従来の問題点に鑑みてなされたもので,端子間の絶縁を確保し,より正確なガス濃度の検出を行うことができる複合センサ素子を提供しようとするものである。
The output current and voltage, input current and voltage of each electrochemical cell vary greatly depending on the cell type. Therefore, a leakage current generated between the terminals may be a problem.
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a composite sensor element capable of ensuring insulation between terminals and detecting gas concentration more accurately.

第1の発明は,複数の電気化学セルにそれぞれ電気的に接続される、各電気化学セルの出力を取り出す端子と上記電気化学セルに電力を入力する端子とが複合センサ素子の表面および該表面の反対面の幅方向で対向してなる一対の端子を表面および反対面の各面に複数有する複合センサ素子において,各面において隣接する全ての一対の端子は、面の幅方向および長手方向にずらして配置されることを特徴とする複合センサ素子にある(請求項1)。第2の発明は,複数の電気化学セルにそれぞれ電気的に接続される、各電気化学セルの出力を取り出す端子と上記電気化学セルに電力を入力する端子と,発熱体に電力を付与する端子とが複合センサ素子の表面および該表面の反対面の幅方向で対向してなる一対の端子を表面および反対面の各面に複数有する複合センサ素子において,各面において隣接する全ての一対の端子は、面の幅方向および長手方向にずらして配置されることを特徴とする複合センサ素子にある(請求項2)。
According to a first aspect of the present invention, there are provided a surface of a composite sensor element and a surface of the surface of the composite sensor element, each of which is electrically connected to a plurality of electrochemical cells and takes out an output of each electrochemical cell and a terminal for inputting electric power to the electrochemical cell. in more with integrated sensor elements a pair of terminals opposing comprising in the width direction of the opposite surface on each side of the surface and the opposite surface of, all of the pair of adjacent terminals on each side, the width direction and the longitudinal direction of each plane The composite sensor element is arranged so as to be shifted from each other (claim 1). The second invention is a terminal for taking out the output of each electrochemical cell, a terminal for inputting electric power to the electrochemical cell, and a terminal for applying electric power to the heating element, which are electrically connected to a plurality of electrochemical cells, respectively. In a composite sensor element having a plurality of terminals on each surface of the surface and the opposite surface, a pair of terminals adjacent to each other in the width direction of the surface of the composite sensor element and the opposite surface of the surface. is the integrated sensor device characterized by being staggered in the width direction and the longitudinal direction of each surface (claim 2).

第1及び第2の発明における複合センサ素子において,(発熱体の端子も含めて)隣接する端子を複合センサ素子の同一平面において、長手方向にずらして配置する。よって,各端子間の十分な絶縁性を確保し,各端子間に生じるリーク電流を防止して,正確なガス濃度の検出を実現することができる。   In the composite sensor element according to the first and second inventions, adjacent terminals (including the terminal of the heating element) are arranged shifted in the longitudinal direction on the same plane of the composite sensor element. Therefore, sufficient insulation between the terminals can be ensured, leakage current generated between the terminals can be prevented, and accurate gas concentration detection can be realized.

以上,本発明によれば,端子間の絶縁を確保し,より正確なガス濃度の検出を行うことができる複合センサ素子を提供することができる。   As described above, according to the present invention, it is possible to provide a composite sensor element that can ensure insulation between terminals and perform more accurate gas concentration detection.

第1及び第2の発明に記載された電気化学セルは,固体電解質体と該固体電解質体に設けた一対の電極よりなる。各セルは濃淡起電力式や限界電流式の検出セルとして機能する。例えば,被測定ガス中の酸素濃度を測定できる電気化学セル,被測定ガス中のHC,CO,NOx等の各種ガス濃度を測定できる電気化学セル,素子内部に設けた被測定ガス室等に対しガスのポンピング(ガスの出し入れ)ができる電気化学セル等が第1及び第2の発明における電気化学セルの具体例である。   The electrochemical cell described in the first and second inventions comprises a solid electrolyte body and a pair of electrodes provided on the solid electrolyte body. Each cell functions as a gray electromotive force type or limit current type detection cell. For example, for an electrochemical cell that can measure the oxygen concentration in the gas to be measured, an electrochemical cell that can measure the concentration of various gases such as HC, CO, and NOx in the gas to be measured, a gas chamber to be measured provided inside the device, etc. An electrochemical cell or the like capable of gas pumping (gas in / out) is a specific example of the electrochemical cell in the first and second inventions.

また,特に内燃機関の排気系で利用される複合センサ素子の場合は,内燃機関の燃焼室における空燃比を測定可能な電気化学セルを持つことがある。さらに,上記電気化学セルの作動を制御するために被測定ガスの状態を監視する電気化学セルも上記具体例として挙げることができる。なお,各電気化学セルは一般にセンサセル,モニタセル,ポンプセルなどと呼ばれることがある。   In particular, a composite sensor element used in an exhaust system of an internal combustion engine may have an electrochemical cell capable of measuring the air-fuel ratio in the combustion chamber of the internal combustion engine. Furthermore, an electrochemical cell that monitors the state of the gas to be measured in order to control the operation of the electrochemical cell can be given as the specific example. Each electrochemical cell may be generally called a sensor cell, a monitor cell, or a pump cell.

また,上記固体電解質体は一般に電解質として利用される各種の材料を使用することができる。また,上記電極は一般に電極として利用される各種の導電材料よりなるものを使用することができる。後述する実施例では,酸素イオン導電性のジルコニアセラミックと貴金属電極を使用したが,これに限定されずに公知の材料を使用することができる。また,各電気化学セルと各電気化学セルに対応する端子との間は導電性のリード部や導電性スルーホール等によって電気的に接続される。   The solid electrolyte body can use various materials generally used as an electrolyte. Moreover, what consists of various electrically-conductive materials generally utilized as an electrode can be used for the said electrode. In the examples described later, oxygen ion conductive zirconia ceramics and noble metal electrodes are used, but known materials can be used without being limited thereto. In addition, each electrochemical cell and a terminal corresponding to each electrochemical cell are electrically connected by a conductive lead portion, a conductive through hole, or the like.

また,第2発明にかかる複合センサ素子は発熱体を備えているが,この発熱体はヒータとして機能する。一部の電気化学セルは活性化温度以上に加熱しなければ正常に作動しないため,低温環境で使用する場合,ヒータで電気化学セルを強制加熱する構成を採用することがある。この場合,発熱体に電力を付与する端子が必要であり,第2の発明に記載した端子は通電用の端子である。この端子についても,電気化学セルの端子と同様に,0.5ミリ以上の端子間距離を確保する。   The composite sensor element according to the second aspect of the invention includes a heating element, and this heating element functions as a heater. Since some electrochemical cells do not operate normally unless heated to an activation temperature or higher, a configuration in which the electrochemical cell is forcibly heated with a heater may be employed when used in a low temperature environment. In this case, a terminal for applying electric power to the heating element is required, and the terminal described in the second invention is a terminal for energization. This terminal also secures a distance between terminals of 0.5 mm or more like the terminal of the electrochemical cell.

特に発熱体に付与する電圧,電流は電気化学セルに入出力される電圧や電流と比較して大であることが多いため,発熱体の端子は他の端子より特に離れた位置に設置することが好ましい。   In particular, the voltage and current applied to the heating element are often larger than the voltage and current input and output to and from the electrochemical cell. Is preferred.

各端子間の距離が0.5ミリ未満の場合は,次のような問題が生じる。隣接する端子間で,一方の端子(仮に端子xとする)が高電位に保持され,大電流が流れ,他方の端子(仮に端子yとする)が低電位に保持され,微小電流が流れる場合,端子xから端子yに向けてリーク電流が発生する。そのため,端子yの電位は端子xが存在しなかった場合と比較して高くなり,より大電流が流れるようになる。   When the distance between each terminal is less than 0.5 mm, the following problem occurs. Between adjacent terminals, one terminal (tentatively referred to as terminal x) is held at a high potential, a large current flows, the other terminal (tentatively referred to as terminal y) is held at a low potential, and a minute current flows , A leakage current is generated from the terminal x toward the terminal y. For this reason, the potential of the terminal y becomes higher than that in the case where the terminal x does not exist, and a larger current flows.

また,一方の端子(仮に端子uとする)の電位や電流が時間的に大きく変動し,他方の端子(仮に端子vとする)の電位や電流が定常状態にある場合,端子uでの電圧,電流の時間変動がリーク電流を通じて端子vに影響し,端子v側の電圧,電流が時間変動を起こすようになる。従って,端子yや端子vと電気的に導通した状態にある電気化学セルによる測定が不正確になる。   In addition, when the potential or current of one terminal (assumed to be terminal u) greatly fluctuates in time and the potential or current of the other terminal (tentatively assumed to be terminal v) is in a steady state, the voltage at terminal u The time variation of the current affects the terminal v through the leak current, and the voltage and current on the terminal v side cause the time variation. Therefore, the measurement by the electrochemical cell that is in electrical conduction with the terminal y and the terminal v becomes inaccurate.

また,各端子間距離は特に1ミリ以上とすることで,より確実に端子間の絶縁を確保して,正確な検出を行うことができる。   In addition, when the distance between the terminals is particularly 1 mm or more, the insulation between the terminals can be more reliably ensured and accurate detection can be performed.

また,端子からの出力を素子の外部に取出すため,端子に外部から入力するために接触させるコネクタ等に製造バラツキから位置ズレ等が生じることがあるが,この位置ズレを原因とする短絡を防止することができる。そして,端子間距離の上限は素子体格の大型化防止のために素子短辺方向を10ミリ,素子長辺方向を20ミリとすることが好ましい。   In addition, since the output from the terminal is taken out of the element, misalignment or the like may occur due to manufacturing variations in the connector to be contacted for inputting to the terminal from the outside. Preventing short circuit caused by this misalignment can do. The upper limit of the distance between terminals is preferably 10 mm in the element short side direction and 20 mm in the element long side direction in order to prevent an increase in the size of the element.

また,端子間距離は,電流の流れる経路長を考慮して定義される。後述する実施例1に示されるような単純に素子の同一平面上に隣接して端子が配置される場合は,端子の最短の端部間距離である。しかし,後述する実施例4等のように例えば素子側面に端子を設ける場合等は,図7に示すように,素子の表面をなぞってある端子から異なる端子へと到達する経路長を端子間距離とする。   The distance between terminals is defined in consideration of the path length through which the current flows. When the terminals are simply arranged adjacent to each other on the same plane of the element as shown in Example 1 described later, the distance is the shortest distance between the terminals. However, for example, when a terminal is provided on the side surface of an element as in Example 4 described later, as shown in FIG. 7, the length of a path from one terminal tracing the surface of the element to a different terminal is expressed as the distance between terminals. And

また,隣接する端子を複合センサ素子の長手方向にずらして配置することが好ましい。幅の細い体格の小さな素子であっても,隣接する端子を長手方向にずらして配置することで,隣接する端子間の距離を離して充分に両端子を絶縁することができる。   In addition, it is preferable that adjacent terminals are shifted in the longitudinal direction of the composite sensor element. Even in the case of an element with a small width and a small physique, by disposing adjacent terminals in the longitudinal direction, the two terminals can be sufficiently insulated by separating the distance between the adjacent terminals.

また,隣接する端子の間に溝部を設けることが好ましい。(請求項4)。端子間に生じるリーク電流は素子表面をつたって流れるため,溝部を設けることで端子間の経路長をより長くすることができると共に,素子の体格を大型化することなく,端子間の絶縁を確保することができる。なお,上記溝部は,端子間の素子表面を凹部に加工して形成することが好ましい。または,素子表面に端子を形成すべき凸部を設けて,凸部間が溝部状態となるよう構成することもできる(図5(a),(b)参照)。   Moreover, it is preferable to provide a groove part between adjacent terminals. (Claim 4). Leakage current generated between the terminals flows through the element surface, so providing a groove can increase the path length between the terminals and ensure insulation between the terminals without increasing the size of the element. can do. The groove is preferably formed by processing the element surface between the terminals into a recess. Alternatively, it is possible to provide a convex portion where a terminal is to be formed on the surface of the element so that a gap is formed between the convex portions (see FIGS. 5A and 5B).

なお,上記溝部は溝幅を0.5ミリ以上,溝部の深さを0.1ミリ以上とすることが好ましい。これにより,絶縁性の確保と素子の小型化を実現することができる。溝幅や溝部の深さが上述の範囲より小さい場合は,絶縁性が低下するおそれがある。   In addition, it is preferable that the groove part has a groove width of 0.5 mm or more and a groove part depth of 0.1 mm or more. As a result, it is possible to achieve insulation and reduce the size of the element. If the groove width or the groove depth is smaller than the above range, the insulating property may be lowered.

また,上記複合センサ素子における検出側を幅細に構成することが好ましい(請求項5)。複合センサ素子において,その他の部分よりも検出側を幅細に構成することで,検出側近傍を小型化することができ,発熱体への投入電力を小さくして,小電力の素子を得ることができる。なお,複合ガスセンサ素子における検出側とは,電気化学セルが設けてある箇所,また特に電気化学セルを構成する電極が設けてある箇所をさしている。通常は図3や図6に示すごとく,素子の先端側となる。   In addition, it is preferable that the detection side of the composite sensor element is narrow. In the composite sensor element, the detection side can be made narrower than the other parts, so that the vicinity of the detection side can be reduced in size, and the input power to the heating element can be reduced to obtain a low-power element. Can do. Note that the detection side in the composite gas sensor element refers to a location where an electrochemical cell is provided, and particularly a location where an electrode constituting the electrochemical cell is provided. Usually, as shown in FIG. 3 and FIG.

また,上記複合センサ素子における素子幅は4ミリ以上であることが好ましい(請求項6)。この場合には,本請求項にかかる複合センサ素子を設置する空燃比センサ,Oセンサ,A/Fセンサ等を,既に実用化されている空燃比センサ,Oセンサ,A/Fセンサ等とアッシー構造を類似化でき,これらのセンサと多くの部品を共通化できる。また,既に実用化されている空燃比センサ,Oセンサ,A/Fセンサ等にそのまま本請求項にかかる複合センサ素子を置き換えて設置することもできる。また,素子の強度を高めることができる。素子幅が4ミリ未満である場合は,複合センサ素子の体格が細くなり,強度が脆弱となって耐久性が低下するおそれがある。 The element width of the composite sensor element is preferably 4 mm or more. In this case, the air-fuel ratio sensor, the O 2 sensor, the A / F sensor, etc., in which the composite sensor element according to the present invention is installed, are already put into practical use, such as the air-fuel ratio sensor, the O 2 sensor, the A / F sensor, etc. The assembly structure can be made similar, and many parts can be shared with these sensors. Further, the composite sensor element according to the present invention can be installed as it is in an air-fuel ratio sensor, an O 2 sensor, an A / F sensor or the like that has already been put into practical use. In addition, the strength of the element can be increased. When the element width is less than 4 mm, the composite sensor element is thin, the strength is weak, and the durability may be reduced.

また,素子幅の上限は10ミリとすることが好ましい。これより素子が大きくなると,素子の体格が大型化して,素子を組みつけるセンサ等の体格も大きくなり,車両搭載性が悪化するおそれがある。また素子が大きくなった分,素子の熱容量も大きくなり,ヒータの電力を増加させなければ充分に素子を加熱することができなくなるおそれがある。   The upper limit of the element width is preferably 10 mm. If the element becomes larger than this, the physique of the element becomes large, and the physique of the sensor or the like to which the element is assembled also becomes large, which may deteriorate the vehicle mountability. In addition, as the element becomes larger, the heat capacity of the element also increases, and there is a possibility that the element cannot be sufficiently heated unless the power of the heater is increased.

また,上記端子の幅は0.5ミリ以上であることが好ましい(請求項)。端子からの出力を素子の外部に取出したり,端子に外部から入力してやるために接触させるコネクタ等との間の接触抵抗を小さくすることができるので,両者の導通不良が生じ難くなる。
Further, it is preferable that the width of the terminal is not less than 0.5 mm (claim 7). Since the output from the terminal can be taken out of the element or the contact resistance between the terminal and the connector to be contacted for inputting to the terminal from the outside can be reduced, the poor conduction between the two is less likely to occur.

なお端子の幅とは,素子の長手方向と直行する幅方向と平行な方向に沿った端子の長さである。上記端子の幅が0.5ミリ未満である場合は,端子からの出力を素子の外部に取出すため,端子に外部から入力してやるために接触させるコネクタ等との間に導通不良が生じやすくなり,端子での電気抵抗が増大するおそれがある。また,素子の幅の上限は,該素子の体格大型化を防ぐために2ミリとすることが好ましい。   The terminal width is the length of the terminal along a direction parallel to the width direction perpendicular to the longitudinal direction of the element. If the width of the terminal is less than 0.5 mm, the output from the terminal is taken out of the element, and it is likely to cause poor conduction between the terminal and the connector to be contacted for external input. There is a risk that the electrical resistance at the terminal increases. Further, the upper limit of the width of the element is preferably 2 mm in order to prevent an increase in the size of the element.

また,上記端子の長さは1ミリ以上であることが好ましい(請求項)。端子からの出力を素子の外部に取出したり,端子に外部から入力するために接触させるコネクタ等との間の接触抵抗を小さくすることができるので,両者の導通不良が生じ難くなる。なお端子の長さとは,素子の長手方向と平行な方向に沿った端子の長さである。
Further, it is preferable that the length of the terminal is not less than 1 mm (claim 8). Since the output from the terminal can be taken out of the element or the contact resistance between the terminal and the connector to be contacted for inputting from the outside can be reduced, poor conduction between the two is less likely to occur. The length of the terminal is the length of the terminal along the direction parallel to the longitudinal direction of the element.

上記端子の長さが1ミリ未満である場合は,端子からの出力を素子の外部に取出すため,端子に外部から入力してやるために接触させるコネクタ等との間に導通不良が生じやすくなり,端子での電気抵抗が増大するおそれがある。また,端子の長さの上限は,該素子の体格大型化を防ぐために10ミリとすることが好ましい。   If the length of the terminal is less than 1 mm, the output from the terminal is taken out of the element, so it is likely to cause poor continuity with the connector that is in contact with the terminal for input from the outside. There is a risk that the electrical resistance at the end increases. Further, the upper limit of the terminal length is preferably 10 mm in order to prevent the device from becoming large.

また,上記発熱体の表面を含むヒータ面よりもっとも離れた複合センサ素子の表面には上記端子を4個以上設けてあることが好ましい(請求項)。発熱体からのリーク電流の影響の受け難い離れた位置に多くの端子が設けてあるため,より正確な検出を行うことができる複合センサ素子を得ることができる。4個未満の場合は,リーク電流の影響を受ける端子が増えるため,複合センサ素子の検出精度が低下するおそれがある。
Further, it is preferable that the surface of the farthest integrated sensor element than the heater surface including the surface of the heating element is provided over four said terminal (claim 9). Since many terminals are provided at remote positions that are not easily affected by the leakage current from the heating element, a composite sensor element capable of more accurate detection can be obtained. If the number is less than 4, the number of terminals affected by the leakage current increases, and the detection accuracy of the composite sensor element may be reduced.

以下に,図面を用いて本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施例1)
本発明にかかる複合センサ素子について,図1〜図3を用いて説明する。図1〜図3に示すごとく,本例のガスセンサ素子1は,複数の電気化学セルを備え,該電気化学セルの出力を取り出す端子,上記電気化学セルに電力を付与する端子を有し,また,発熱体と該発熱体に電力を付与する端子を有し,端子間距離は0.5ミリ以上である。
Example 1
The composite sensor element according to the present invention will be described with reference to FIGS. As shown in FIGS. 1 to 3, the gas sensor element 1 of this example includes a plurality of electrochemical cells, has a terminal for taking out the output of the electrochemical cell, a terminal for applying electric power to the electrochemical cell, and , A heating element and a terminal for applying electric power to the heating element, and the distance between the terminals is 0.5 mm or more.

以下,詳細に説明する。本例の複合センサ素子は自動車エンジンの排気系に取付けて排ガス中の大気汚染物質となるNOx濃度の測定,エンジンにおけるλ特性と空燃比の検出を兼用する素子である。   This will be described in detail below. The composite sensor element of this example is an element that is attached to the exhaust system of an automobile engine and combines the measurement of NOx concentration, which is an air pollutant in the exhaust gas, and the detection of the λ characteristic and the air-fuel ratio in the engine.

複合センサ素子1は,図1に示すごとく,ヒータ15,スペーサ56,第2固体電解質板55,スペーサ54,第1固体電解質板53,多孔質板51,スペーサ52よりなる。各スペーサ52,54,56はアルミナセラミック板,第1及び第2固体電解質板53,55は酸素イオン導電性のジルコニアセラミックよりなる。また,上記ヒータ15は絶縁性のアルミナセラミックよりなるヒータ基板151と被覆板152の間に発熱体150を内蔵したセラミックヒータである。なお,発熱体150の表面のヒータ面159は,ほぼヒータ基板151と被覆板152との境目付近に位置する。   As shown in FIG. 1, the composite sensor element 1 includes a heater 15, a spacer 56, a second solid electrolyte plate 55, a spacer 54, a first solid electrolyte plate 53, a porous plate 51, and a spacer 52. Each of the spacers 52, 54 and 56 is made of an alumina ceramic plate, and the first and second solid electrolyte plates 53 and 55 are made of oxygen ion conductive zirconia ceramic. The heater 15 is a ceramic heater in which a heating element 150 is built between a heater substrate 151 made of insulating alumina ceramic and a cover plate 152. The heater surface 159 on the surface of the heating element 150 is located approximately near the boundary between the heater substrate 151 and the cover plate 152.

第1固体電解質板53には第1拡散抵抗通路110となる貫通孔が設けてあり,多孔質板51はこの拡散通路110を覆うよう設けてある。多孔質板51に隣接してスペーサ52が設けてあり,このスペーサ52と第1固体電解質板53とによって,第1基準ガス室13を形成する。   The first solid electrolyte plate 53 is provided with a through hole that becomes the first diffusion resistance passage 110, and the porous plate 51 is provided so as to cover the diffusion passage 110. A spacer 52 is provided adjacent to the porous plate 51, and the first reference gas chamber 13 is formed by the spacer 52 and the first solid electrolyte plate 53.

第1被測定ガス室11,第2被測定ガス室12は第1固体電解質板53,スペーサ54,第2固体電解質板55により囲まれた空間よりなる。第2基準ガス室14は第2固体電解質板55とスペーサ56により囲まれた空間よりなる。図1及び図2に示すごとく,第1被測定ガス室11と第2被測定ガス室12との間は細い第2拡散抵抗通路120により連通する。   The first measured gas chamber 11 and the second measured gas chamber 12 are formed of a space surrounded by the first solid electrolyte plate 53, the spacer 54, and the second solid electrolyte plate 55. The second reference gas chamber 14 is a space surrounded by the second solid electrolyte plate 55 and the spacer 56. As shown in FIGS. 1 and 2, the first measured gas chamber 11 and the second measured gas chamber 12 communicate with each other through a thin second diffusion resistance passage 120.

本例の第3電気化学セル4は酸素濃淡起電力式電池として機能する。第3電気化学セル4を構成する被測定ガス側酸素センサ電極41は第1固体電解質板53と多孔質板51との間に配置し,基準酸素センサ電極42は第1基準ガス室13と対面して設ける。第3電気化学セル4は電圧計451を有する酸素センサ回路45に接続する。電圧計451は両電極41及び42の間の起電力(この起電力は,複合センサ素子外部の被測定ガス雰囲気と第1基準ガス室雰囲気との酸素濃淡によって発生する。)を測定する。この起電力が第3電気化学セル4の出力である。   The third electrochemical cell 4 of this example functions as an oxygen concentration electromotive force type battery. The measured gas side oxygen sensor electrode 41 constituting the third electrochemical cell 4 is disposed between the first solid electrolyte plate 53 and the porous plate 51, and the reference oxygen sensor electrode 42 faces the first reference gas chamber 13. Provide. The third electrochemical cell 4 is connected to an oxygen sensor circuit 45 having a voltmeter 451. The voltmeter 451 measures an electromotive force between the electrodes 41 and 42 (this electromotive force is generated by oxygen concentration in the gas atmosphere to be measured outside the composite sensor element and the first reference gas chamber atmosphere). This electromotive force is the output of the third electrochemical cell 4.

本例の第1電気化学セル2はポンプセルとして機能する。第4電気化学セル6の電流計651の電流値によってフィードバック制御された電源252から電圧を印加し,この印加電圧に対応した酸素を第1被測定ガス室11と第2基準ガス室14との間で出し入れするよう機能する。また,ポンプ電流に応じて予め設定されたマップからフィードバック制御してもよい。   The first electrochemical cell 2 of this example functions as a pump cell. A voltage is applied from a power source 252 that is feedback-controlled by the current value of the ammeter 651 of the fourth electrochemical cell 6, and oxygen corresponding to this applied voltage is supplied to the first measured gas chamber 11 and the second reference gas chamber 14. It functions to move in and out. Further, feedback control may be performed from a map set in advance according to the pump current.

第1電気化学セル2は第2固体電解質板55に設け,第1被測定ガス室11と対面した被測定ガス側ポンプ電極21と第2基準ガス室14と対面した基準ポンプ電極22とより構成し,両電極21,22との間には電流計251,電源252が接続されたポンプ回路25を設ける。また,後述する電流計651と電源252との間はフィードバック回路655を設ける。   The first electrochemical cell 2 is provided on the second solid electrolyte plate 55 and includes a measured gas side pump electrode 21 facing the first measured gas chamber 11 and a reference pump electrode 22 facing the second reference gas chamber 14. A pump circuit 25 to which an ammeter 251 and a power source 252 are connected is provided between the electrodes 21 and 22. A feedback circuit 655 is provided between an ammeter 651 and a power source 252 described later.

ポンプ電流は第1被測定ガス室11内の酸素濃度に対応しており,フィードバック回路655を利用して第4電気化学セル6の電流が常に一定値をとるように電源252を制御する。この制御で第1電気化学セル2は第1被測定ガス室11内,ひいては第1被測定ガス室11と連通する第2被測定ガス室12の酸素濃度を一定に保持することができる。なお,被測定ガス側ポンプ電極21はNOxを分解しない,NOxに対して不活性な電極である。   The pump current corresponds to the oxygen concentration in the first gas chamber 11 to be measured, and the power supply 252 is controlled using the feedback circuit 655 so that the current in the fourth electrochemical cell 6 always takes a constant value. With this control, the first electrochemical cell 2 can maintain a constant oxygen concentration in the first measured gas chamber 11, and hence in the second measured gas chamber 12 communicating with the first measured gas chamber 11. The measured gas side pump electrode 21 is an electrode that does not decompose NOx and is inert to NOx.

本例の第2電気化学セル3は定電圧(時間的に変動しない)が加えられ,該定電圧によって発生する酸素イオン電流を利用してNOx濃度を測定する。第2電気化学セル3は第1固体電解質板53に設け第2被測定ガス室12と対面した被測定ガス側センサ電極31と第1基準ガス室13とに対面した基準センサ電極32とより構成する。両電極31,32との間には電流計351と電源352とを有するセンサ回路35を設ける。なお,上記基準センサ電極32は,後述する基準酸素センサ電極42及び62と一体的に設ける。   A constant voltage (which does not vary with time) is applied to the second electrochemical cell 3 of this example, and the NOx concentration is measured using an oxygen ion current generated by the constant voltage. The second electrochemical cell 3 includes a measurement gas side sensor electrode 31 provided on the first solid electrolyte plate 53 and facing the second measurement gas chamber 12 and a reference sensor electrode 32 facing the first reference gas chamber 13. To do. A sensor circuit 35 having an ammeter 351 and a power source 352 is provided between the electrodes 31 and 32. The reference sensor electrode 32 is provided integrally with reference oxygen sensor electrodes 42 and 62 described later.

被測定ガス側センサ電極31はNOxを窒素と酸素とに分解可能な活性電極である。第2電気化学セル3に電圧を印加することで,酸素イオンが被測定ガス側センサ電極31表面で発生し,該酸素イオンは第1固体電解質板53をイオン電流となって流通する。電流計351がイオン電流を測定する。このイオン電流は第1電気化学セル3の被測定ガス側ポンプ電極21がNOxを分解しなければ,被測定ガス中のNOx濃度に比例するため,電流計351から読み取れる値がNOx濃度となる。   The measured gas side sensor electrode 31 is an active electrode capable of decomposing NOx into nitrogen and oxygen. By applying a voltage to the second electrochemical cell 3, oxygen ions are generated on the surface of the measured gas side sensor electrode 31, and the oxygen ions flow through the first solid electrolyte plate 53 as an ionic current. An ammeter 351 measures the ion current. This ionic current is proportional to the NOx concentration in the measured gas unless the measured gas side pump electrode 21 of the first electrochemical cell 3 decomposes the NOx, so the value readable from the ammeter 351 becomes the NOx concentration.

なお,被測定ガス側センサ電極31上では被測定ガス中の酸素も分解するが,被測定ガス中の酸素濃度は第1電気化学セル2によって略一定に保たれているので,あらかじめNOx濃度が0の際の電流計351の値を測定しておくことで,正しくNOx由来のイオン電流の大きさを測定することができる。または,第4電気化学セル6の電流値,すなわちチャンバ12内の残留酸素濃度の補正を引き算することで正しく測定できる。   Although oxygen in the measurement gas is also decomposed on the measurement gas side sensor electrode 31, the oxygen concentration in the measurement gas is kept substantially constant by the first electrochemical cell 2, so that the NOx concentration is preliminarily maintained. By measuring the value of the ammeter 351 at 0, the magnitude of the ion current derived from NOx can be measured correctly. Alternatively, it can be measured correctly by subtracting the current value of the fourth electrochemical cell 6, that is, the correction of the residual oxygen concentration in the chamber 12.

また,本例の第4電気化学セル6は酸素ポンプセルとして機能し,第2被測定ガス室12内の酸素濃度を測定する。第4電気化学セル6は第1固体電解質板53に設けられ,第2被測定ガス室12と対面した被測定ガス側センサ電極61と第1基準ガス室13と対面した基準センサ電極62とより構成し,両電極61,62との間には電流計651,電源652が接続されたセンサ回路65を設ける。また,電流計651と前述した電源252との間はフィードバック回路655を設ける。   The fourth electrochemical cell 6 of this example functions as an oxygen pump cell, and measures the oxygen concentration in the second measured gas chamber 12. The fourth electrochemical cell 6 is provided on the first solid electrolyte plate 53, and includes a measured gas side sensor electrode 61 facing the second measured gas chamber 12 and a reference sensor electrode 62 facing the first reference gas chamber 13. A sensor circuit 65 to which an ammeter 651 and a power source 652 are connected is provided between the electrodes 61 and 62. A feedback circuit 655 is provided between the ammeter 651 and the power source 252 described above.

被測定ガス側センサ電極61はNOxに対する不活性電極である。第4電気化学セル6は,第2被測定ガス室12の酸素濃度に対応した電流が生じ,この電流を電流計651において検知することで,フィードバック回路655を利用し,第1電気化学セル2のポンピングを制御する。   The measured gas side sensor electrode 61 is an inert electrode for NOx. In the fourth electrochemical cell 6, a current corresponding to the oxygen concentration in the second gas chamber 12 to be measured is generated, and this current is detected by the ammeter 651, whereby the feedback circuit 655 is used and the first electrochemical cell 2 Control pumping.

このように構成された複合センサ素子1の第1〜第4の電気化学セル2,3,4,6にかかる端子は,図2,図3に示すごとく,複合センサ素子1の表面109や該表面109の反対面108に露出形成する。   Terminals applied to the first to fourth electrochemical cells 2, 3, 4 and 6 of the composite sensor element 1 configured in this way are the surface 109 of the composite sensor element 1 and the terminals as shown in FIGS. An exposed surface 108 is formed opposite to the surface 109.

特に第2と第3の電気化学セル3,4にかかる端子711〜714は,図3に示すような位置関係で複合センサ素子1の表面109に設ける。図4に示すごとく,他のセル2,6及びヒータ15の発熱体150と電気的に接続された端子721〜726は表面109の反対面108に設ける。   In particular, the terminals 711 to 714 for the second and third electrochemical cells 3 and 4 are provided on the surface 109 of the composite sensor element 1 in the positional relationship as shown in FIG. As shown in FIG. 4, terminals 721 to 726 electrically connected to the other cells 2 and 6 and the heating element 150 of the heater 15 are provided on the opposite surface 108 of the surface 109.

つまり,図3(a),(b)に示すごとく,端子711及び712は,複合センサ素子1の取出側の端部に設け,該端子711,712と素子長手方向に距離をおいて端子713,714を設ける。   That is, as shown in FIGS. 3A and 3B, the terminals 711 and 712 are provided at the end of the composite sensor element 1 on the take-out side, and the terminals 713 and 712 are spaced apart from the terminals 711 and 712 in the longitudinal direction of the element. , 714 are provided.

図3(a)に示すごとく,端子711,712が設けられた取出側の端部における素子の幅はAである。端子712と端子714との素子の長手方向に沿った距離,つまり両端子の端部間の距離がBである。また,端子713と端子714との幅方向に沿った距離がCである。なお,反対面108に設けた端子721から726についても同様の寸法関係が成立する(図4参照)。   As shown in FIG. 3A, the width of the element at the end on the extraction side where the terminals 711 and 712 are provided is A. The distance between the terminals 712 and 714 along the longitudinal direction of the element, that is, the distance between the ends of both terminals is B. A distance along the width direction between the terminal 713 and the terminal 714 is C. The same dimensional relationship is established for the terminals 721 to 726 provided on the opposite surface 108 (see FIG. 4).

本例にかかる複合センサ素子1は,A=4.8ミリ,B=3.6ミリ,C=3.6ミリに構成する。また,各端子711〜714,721〜726はすべて同形状で,幅E=1.2ミリ,長さD=3.2ミリである。また,各端子711〜714を設けた表面109はヒータ面159よりもっとも離れた面である。   The composite sensor element 1 according to this example is configured to have A = 4.8 mm, B = 3.6 mm, and C = 3.6 mm. Each of the terminals 711 to 714 and 721 to 726 has the same shape, a width E = 1.2 mm, and a length D = 3.2 mm. The surface 109 provided with the terminals 711 to 714 is a surface farthest from the heater surface 159.

本例の作用効果について説明する。本例の複合センサ素子1において,第1〜第4の電気化学セル2,3,4,6及び発熱体150に導通する端子711〜714,721〜726の端子間は間隔を0.5ミリ以上離す。よって,各端子間の十分な絶縁性を確保し,各端子間に生じるリーク電流を防止して,正確なガス濃度の検出を実現することができる。   The effect of this example will be described. In the composite sensor element 1 of this example, the distance between the terminals 711 to 714 and 721 to 726 conducting to the first to fourth electrochemical cells 2, 3, 4, 6 and the heating element 150 is 0.5 mm. Release more. Therefore, sufficient insulation between the terminals can be ensured, leakage current generated between the terminals can be prevented, and accurate gas concentration detection can be realized.

以上,本例によれば,端子間の絶縁を確保し,より正確なガス濃度の検出を行うことができる複合センサ素子を提供することができる。   As described above, according to this example, it is possible to provide a composite sensor element capable of ensuring insulation between terminals and detecting gas concentration more accurately.

また,本例は,端子711と713,端子712と714等のように複合センサ素子1の長手方向にずらして端子を配置することで,端子間に充分な距離を確保して端子間に高い絶縁性を確保することができる。   Further, in this example, the terminals are shifted in the longitudinal direction of the composite sensor element 1 such as the terminals 711 and 713, the terminals 712 and 714, etc., so that a sufficient distance between the terminals is ensured and the terminals are high. Insulation can be ensured.

また,本例は素子幅Aが4ミリ以上としたため,素子の強度を高めることができる。また,各端子の幅Eは0.5ミリ以上,各端子の長さDは1ミリ以上であるため,各端子からの出力を取出したり,各端子に入力するために接触させるコネクタ等との間の接触抵抗を小さくし,該コネクタと安定した導通を確保できる。   In addition, since the element width A is 4 mm or more in this example, the strength of the element can be increased. In addition, since the width E of each terminal is 0.5 mm or more and the length D of each terminal is 1 mm or more, it is possible to take out an output from each terminal or to contact a connector to input to each terminal. It is possible to reduce the contact resistance between them and ensure stable conduction with the connector.

(実施例2)
本例の複合センサ素子1における端子711,712間には,図5に示すごとく,溝部75を設ける。図5(a)に示すごとく,端子711,712間における複合ガスセンサ素子1の表面109に凹部を設ける。この凹部が溝部75となる。または,図5(b)に示すごとく,複合ガスセンサ素子1の表面109に端子711,712形成用の凸部710を設ける。この上に端子711,712が形成されるため,端子711と712との間に溝部75が形成される。その他詳細は実施例1と同様である。
(Example 2)
As shown in FIG. 5, a groove 75 is provided between the terminals 711 and 712 in the composite sensor element 1 of this example. As shown in FIG. 5A, a recess is provided on the surface 109 of the composite gas sensor element 1 between the terminals 711 and 712. This recess becomes the groove 75. Alternatively, as shown in FIG. 5B, a convex portion 710 for forming terminals 711 and 712 is provided on the surface 109 of the composite gas sensor element 1. Since the terminals 711 and 712 are formed thereon, a groove 75 is formed between the terminals 711 and 712. Other details are the same as those in the first embodiment.

本例にかかる複合センサ素子1は,端子711,712の間に溝部75が設けてある。矢線Rに示すごとく,端子711,712間に生じるリーク電流は素子表面を経由して流れるため,溝部75を設けることで端子間の経路長をより長くすることができる。また,素子の体格を大型化することなく,端子間の絶縁を確保することができる。その他詳細は実施例1と同様の作用効果を有する。   In the composite sensor element 1 according to this example, a groove 75 is provided between the terminals 711 and 712. As indicated by the arrow R, the leakage current generated between the terminals 711 and 712 flows through the element surface, so that the path length between the terminals can be made longer by providing the groove 75. In addition, insulation between terminals can be ensured without increasing the size of the element. Other details have the same effects as those of the first embodiment.

(実施例3)
本例の複合センサ素子1は,実施例1と同様の構成を有する複合センサ素子である。ただし,図6に示すごとく,第1〜第4電気化学セル(図示略)を設けた検出側を幅細に構成する。同図にかかる複合センサ素子1の取出側における素子の幅Mは4.8ミリ,検出側における素子の幅Nは4ミリである。
(Example 3)
The composite sensor element 1 of this example is a composite sensor element having the same configuration as that of the first embodiment. However, as shown in FIG. 6, the detection side provided with the first to fourth electrochemical cells (not shown) is configured to be narrow. The element width M on the extraction side of the composite sensor element 1 according to the figure is 4.8 mm, and the element width N on the detection side is 4 mm.

この複合センサ素子1は,ヒータへの投入電力を小さくすることができる。従って,ヒータに内蔵された発熱体へ投入する電力を小さくすることができ,発熱体に接続された端子にからのリーク電流をより小さくすることができる。その他詳細は実施例1と同様の作用効果を有する。   The composite sensor element 1 can reduce the input power to the heater. Therefore, it is possible to reduce the electric power supplied to the heating element built in the heater, and to further reduce the leakage current from the terminal connected to the heating element. Other details have the same effects as those of the first embodiment.

参考例
参考例の複合センサ素子は、図7に示すごとく,素子表面109,108以外に側面107に対しても端子764,768を設ける。この複合センサ素子1は全部で8個の端子761〜768を有し,表面109に3個つ端子761〜763,765〜767を,側面107に1個つ端子764,768を設ける。側面107まで端子の形成箇所を拡大することで,所定の間隔を開けてより多くの端子の配置が可能となる
( Reference example )
As shown in FIG. 7, the composite sensor element of this reference example is provided with terminals 764 and 768 on the side surface 107 in addition to the element surfaces 109 and 108. The composite sensor element 1 has eight terminals 761-768 in total, the One not a three to surface 109 terminal 761~763,765~767, providing terminals 764,768 One not a one to the side surface 107. By enlarging the location where the terminals are formed up to the side surface 107, more terminals can be arranged with a predetermined interval .

実施例1における,複合センサ素子の検出側近傍の断面説明図。FIG. 3 is a cross-sectional explanatory view of the vicinity of the detection side of the composite sensor element in the first embodiment. 実施例1における,複合センサ素子における第1被測定ガス室及び第2被測定ガス室の平面図。The top view of the 1st to-be-measured gas chamber and the 2nd to-be-measured gas chamber in a composite sensor element in Example 1. FIG. 実施例1における,(a)複合センサ素子の表面の検出側近傍の平面図,(b)複合センサ素子の斜視図。In Example 1, (a) The top view of the detection side vicinity of the surface of a composite sensor element, (b) The perspective view of a composite sensor element. 実施例1における,図3と反対側の表面の検出側近傍の平面図。The top view of the detection side vicinity of the surface on the opposite side to FIG. 3 in Example 1. FIG. 実施例2における,隣接する端子の間に溝部を設けた複合センサ素子の説明図。FIG. 6 is an explanatory diagram of a composite sensor element in which a groove is provided between adjacent terminals in the second embodiment. 実施例3における,検出側が幅細となった複合センサ素子の平面図。The top view of the composite sensor element in which the detection side became narrow in Example 3. FIG. 参考例における,側面に対しても端子が設けられた複合センサ素子の説明図。Explanatory drawing of the composite sensor element in which the terminal was provided also to the side surface in a reference example .

符号の説明Explanation of symbols

1...複合センサ素子,
109,108...表面,
150...発熱体,
2,3,4,6...第1〜第4電気化学セル,
711〜714...端子,
1. . . Composite sensor elements,
109,108. . . surface,
150. . . Heating element,
2,3,4,6. . . First to fourth electrochemical cells,
711-714. . . Terminal,

Claims (11)

複数の電気化学セルにそれぞれ電気的に接続される、前記各電気化学セルの出力を取り出す端子と上記電気化学セルに電力を入力する端子とが複合センサ素子の表面および該表面の反対面の幅方向で対向してなる一対の端子を前記表面および前記反対面の各面に複数有する複合センサ素子において,
前記各面において隣接する全ての前記一対の端子は、前記各面の幅方向および長手方向にずらして配置されることを特徴とする複合センサ素子。
The width of the surface of the composite sensor element and the opposite surface of the surface are a terminal for extracting the output of each electrochemical cell and a terminal for inputting electric power to the electrochemical cell, which are electrically connected to a plurality of electrochemical cells, respectively. In the composite sensor element having a plurality of terminals facing each other in the direction on each of the surface and the opposite surface ,
All of the pair of terminals adjacent to each other in the respective surfaces are arranged so as to be shifted in the width direction and the longitudinal direction of the respective surfaces .
複数の電気化学セルにそれぞれ電気的に接続される、前記各電気化学セルの出力を取り出す端子と上記電気化学セルに電力を入力する端子と,発熱体に電力を付与する端子とが複合センサ素子の表面および該表面の反対面の幅方向で対向してなる一対の端子を前記表面および前記反対面の各面に複数有する複合センサ素子において,
前記各面において隣接する全ての前記一対の端子は、前記各面の幅方向および長手方向にずらして配置されることを特徴とする複合センサ素子。
A composite sensor element comprising: a terminal for taking out an output of each electrochemical cell, a terminal for inputting electric power to the electrochemical cell, and a terminal for applying electric power to the heating element, each electrically connected to a plurality of electrochemical cells In a composite sensor element having a plurality of terminals on each surface of the surface and the opposite surface, a plurality of terminals facing each other in the width direction of the surface and the opposite surface of the surface ,
All of the pair of terminals adjacent to each other in the respective surfaces are arranged so as to be shifted in the width direction and the longitudinal direction of the respective surfaces .
請求項1または2において,前記端子間距離は0.5ミリ以上であることを特徴とする複合センサ素子。 3. The composite sensor element according to claim 1, wherein the distance between the terminals is 0.5 mm or more. 請求項1〜3のいずれか1項において,隣接する端子の間に溝部を設けることを特徴とする複合センサ素子。 4. The composite sensor element according to claim 1, wherein a groove is provided between adjacent terminals. 請求項1〜4のいずれか1項において,上記複合センサ素子における検出側を幅細に構成することを特徴とする複合センサ素子。 5. The composite sensor element according to claim 1, wherein the detection side of the composite sensor element is narrowly configured. 請求項1〜5のいずれか1項において,上記複合センサ素子における素子幅は4ミリ以上であることを特徴とする複合センサ素子。 6. The composite sensor element according to claim 1, wherein an element width of the composite sensor element is 4 mm or more. 請求項1〜6のいずれか一項において,上記端子の幅は0.5ミリ以上であることを特徴とする複合センサ素子。 7. The composite sensor element according to claim 1, wherein the terminal has a width of 0.5 mm or more . 請求項1〜7のいずれか一項において,上記端子の長さは1ミリ以上であることを特徴とする複合センサ素子。 8. The composite sensor element according to claim 1, wherein the terminal has a length of 1 mm or more . 請求項〜8のいずれか一項において,上記発熱体の表面を含むヒータ面よりもっとも離れた複合センサ素子の表面には上記端子を4個以上設けてあることを特徴とする複合センサ素子。 9. The composite sensor element according to claim 2 , wherein four or more terminals are provided on the surface of the composite sensor element farthest from the heater surface including the surface of the heating element. 請求項2〜9のいずれか一項において,上記電気化学セルの端子は、上記発熱体の端子と反対側の面に設けてあることを特徴とする複合センサ素子。 10. The composite sensor element according to claim 2, wherein the terminal of the electrochemical cell is provided on a surface opposite to the terminal of the heating element. 請求項〜10のいずれか一項において,上記電気化学セルの端子は、素子内部に設けた被測定ガス室に対してガスのポンピングができるポンプセルを含み,ポンプセル以外の電気化学セルの端子は,ポンプセルの端子と反対側の面に設けてあることを特徴とする複合センサ素子。 The terminal of the electrochemical cell according to any one of claims 1 to 10, including a pump cell capable of pumping a gas with respect to a gas chamber to be measured provided in the element, and a terminal of the electrochemical cell other than the pump cell is A composite sensor element provided on a surface opposite to the terminal of the pump cell .
JP2006251594A 2006-09-15 2006-09-15 Composite sensor element Expired - Lifetime JP4781950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006251594A JP4781950B2 (en) 2006-09-15 2006-09-15 Composite sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006251594A JP4781950B2 (en) 2006-09-15 2006-09-15 Composite sensor element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001350549A Division JP2003149202A (en) 2001-11-15 2001-11-15 Composite sensor element

Publications (2)

Publication Number Publication Date
JP2007010686A JP2007010686A (en) 2007-01-18
JP4781950B2 true JP4781950B2 (en) 2011-09-28

Family

ID=37749351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006251594A Expired - Lifetime JP4781950B2 (en) 2006-09-15 2006-09-15 Composite sensor element

Country Status (1)

Country Link
JP (1) JP4781950B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5296031B2 (en) * 2010-09-27 2013-09-25 日本特殊陶業株式会社 Gas sensor
JP6491016B2 (en) * 2014-05-12 2019-03-27 日本特殊陶業株式会社 Gas sensor
JP6876552B2 (en) * 2017-07-07 2021-05-26 日本特殊陶業株式会社 Gas sensor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082952A (en) * 1983-10-14 1985-05-11 Hitachi Ltd Oxygen concentration detector
JP3486960B2 (en) * 1994-06-08 2004-01-13 株式会社デンソー Oxygen sensor
JP3624498B2 (en) * 1995-10-27 2005-03-02 株式会社デンソー Air-fuel ratio sensor
JP3760573B2 (en) * 1997-06-11 2006-03-29 株式会社デンソー NOx sensor manufacturing method and NOx sensor
JP3873381B2 (en) * 1997-06-19 2007-01-24 株式会社デンソー Stacked air-fuel ratio sensor
JPH11237366A (en) * 1997-11-27 1999-08-31 Nippon Soken Inc Gas sensor
JP3855483B2 (en) * 1998-08-25 2006-12-13 株式会社デンソー Stacked air-fuel ratio sensor element
JP2000208178A (en) * 1999-01-20 2000-07-28 Mitsubishi Electric Corp Semiconductor application device and its production

Also Published As

Publication number Publication date
JP2007010686A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP6393722B2 (en) Gas sensor
EP0144185B1 (en) Electrochemical device
EP0188900B1 (en) Electrochemical device
EP0281378B1 (en) Electrochemical device having a heater
US6866517B2 (en) Contact slidable structure with a high durability
US9816958B2 (en) Gas sensor, NOx sensor and method of manufacturing gas sensor
JPH0786498B2 (en) Heating type oxygen sensor
JP3587290B2 (en) NOx gas sensor
EP0227257B1 (en) Electrochemical device
JP4781950B2 (en) Composite sensor element
US6348140B1 (en) Gas sensor with a high combined resistance to lead wire resistance ratio
US20090242403A1 (en) Sensor element and gas sensor
JP2004157063A (en) Gas sensor element and its manufacturing method
JP2003149202A (en) Composite sensor element
JP4625261B2 (en) Sensor element of gas sensor
JP4563601B2 (en) Composite laminated sensor element
JP4563606B2 (en) Multilayer sensor element
JP3846386B2 (en) Gas sensor element
US20170219517A1 (en) Gas sensor unit
JP2004151017A (en) Multilayer gas sensing element
JP2002328112A (en) Gas sensor element
KR20160054706A (en) A nitrogen oxide sensor
JP2004239916A (en) Nox sensor
US20230314367A1 (en) Gas sensor and concentration measurement method using gas sensor
JP2004093200A (en) Gas sensor element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4781950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term