JP4780664B2 - Composite metal plate and manufacturing method thereof - Google Patents

Composite metal plate and manufacturing method thereof Download PDF

Info

Publication number
JP4780664B2
JP4780664B2 JP2006258443A JP2006258443A JP4780664B2 JP 4780664 B2 JP4780664 B2 JP 4780664B2 JP 2006258443 A JP2006258443 A JP 2006258443A JP 2006258443 A JP2006258443 A JP 2006258443A JP 4780664 B2 JP4780664 B2 JP 4780664B2
Authority
JP
Japan
Prior art keywords
metal plate
composite
crests
troughs
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006258443A
Other languages
Japanese (ja)
Other versions
JP2008006496A (en
Inventor
喜光 織田
雅昭 石尾
敏明 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Neomaterial Ltd
Original Assignee
Neomax Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Materials Co Ltd filed Critical Neomax Materials Co Ltd
Priority to JP2006258443A priority Critical patent/JP4780664B2/en
Publication of JP2008006496A publication Critical patent/JP2008006496A/en
Application granted granted Critical
Publication of JP4780664B2 publication Critical patent/JP4780664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、二枚あるいはそれ以上の金属板の幅方向の端部同士が接合された複合金属板及びその製造方法に関する。 The present invention relates to a composite metal plate in which end portions in the width direction of two or more metal plates are joined to each other and a method for manufacturing the same.

従来、板幅方向に異種の金属板が接合された複合金属板の製造方法として、特開昭60−177981号公報(特許文献1)に記載されているように、側端部に適宜の傾斜面を設けた異種材料で形成された複数の金属板を準備し、これらの金属板をその側端部の傾斜面が係合するように平坦状に並べてロール圧下することにより、端部を接合する複合金属板の製造方法が知られている。この方法によると、銅材とアルミニウム材あるいは鉄材との組み合わせのように金属イオン結合して化合物を生成するような材料の組み合わせでも、端部同士を接合することができる。
特開昭60−177981号公報
Conventionally, as a method of manufacturing a composite metal plate in which different types of metal plates are joined in the plate width direction, as described in Japanese Patent Application Laid-Open No. 60-177981 (Patent Document 1), an appropriate inclination is provided at the side end. Prepare multiple metal plates made of dissimilar materials with surfaces, and align the edges by rolling the metal plates flat so that the inclined surfaces of the side edges engage with each other. A method for manufacturing a composite metal plate is known. According to this method, the end portions can be joined together by a combination of materials that form a compound by metal ion bonding, such as a combination of a copper material and an aluminum material or an iron material.
JP 60-177981 A

上記のように、金属板の端部同士を接合する方法としてロール圧接は、金属板の材質に左右されることなく適用することができる利点がある。しかし、端部を傾斜面として突き合わせてロール圧接する場合、板厚方向に圧下すると、圧下に伴って板幅方向(ロールの軸方向)に材料が離反するため、上下一対のロールで板厚方向に圧下するだけでは接合することができない。このため、ロール圧接を実施するには、上下一対のロールのみならず、板幅方向の離反を規制する左右一対のロールが必要となり、特許文献1に記載されているように特殊な圧延機が必要となる。また、平板状に並設した金属板の端部同士の圧接の際に、接合部のずれ、せり上がりを防止する必要があるため、圧延作業性が悪く、また接合部の接合強度も十分とは言えない。   As described above, the roll pressure welding has an advantage that it can be applied without depending on the material of the metal plate as a method of joining the end portions of the metal plate. However, in the case of roll pressing with the end faced as an inclined surface, if the material is rolled down in the plate thickness direction, the material separates in the plate width direction (roll axial direction) with the reduction, so the pair of upper and lower rolls in the plate thickness direction It is not possible to join by simply rolling down. For this reason, in order to perform the roll pressure contact, not only a pair of upper and lower rolls but also a pair of left and right rolls that regulate the separation in the plate width direction is necessary. As described in Patent Document 1, a special rolling mill is required. Necessary. In addition, when the ends of the metal plates arranged side by side in a flat plate shape are pressed against each other, it is necessary to prevent the displacement and rise of the joining portion, so that the rolling workability is poor and the joining strength of the joining portion is sufficient. I can't say that.

ところで、複合金属板は、配線材(接続部材)などの導電材料、リードフレームなどの電子部品材料、機械構造用材料などに使用されるが、近年、車両や電動工具類などに搭載される電池の配線材や電子部品においては、特に振動に対して十分な耐久性、信頼性が要求される。例えば、ハイブリット車に搭載される電池パックは、リチウムイオン電池が直列に接続され、さらに直列接続された電池群が並列接続されるため、電池同士を接続する配線材が多数使用される。前記リチウムイオン電池は、周知のように、正極がAl材で、負極がCu、Ni、Feなどの非Al材で形成されるため、直列接続する配線材としては、一端がAl材、他端が非Al材で形成された複合金属材が好適である。しかし、このような複合金属材を上記製造方法で製造すると、上記のとおり、圧接の際に傾斜面に沿って金属板が板幅方向にずれやすいため、その端部同士が十分に圧接され難く、十分な接合強度が得られず、その接合部の耐久性、信頼性が十分でない、という問題がある。   By the way, the composite metal plate is used as a conductive material such as a wiring material (connection member), an electronic component material such as a lead frame, and a material for a machine structure. In recent years, a battery mounted on a vehicle or a power tool or the like. In such wiring materials and electronic parts, sufficient durability and reliability with respect to vibration are particularly required. For example, in a battery pack mounted on a hybrid vehicle, a lithium ion battery is connected in series, and further, a group of batteries connected in series is connected in parallel, so that many wiring materials for connecting the batteries are used. As is well known, the lithium ion battery has a positive electrode made of an Al material and a negative electrode made of a non-Al material such as Cu, Ni, or Fe. Is preferably a composite metal material formed of a non-Al material. However, when such a composite metal material is manufactured by the above manufacturing method, as described above, the metal plate is likely to be displaced in the plate width direction along the inclined surface at the time of press contact, so that the end portions thereof are not easily pressed together. There is a problem that sufficient bonding strength cannot be obtained and the durability and reliability of the bonded portion are not sufficient.

本発明はかかる問題に鑑みなされたもので、通常の上下一対のロールで容易に圧接することができ、金属板の幅方向の端部同士を接合した接合部の接合強度が高く、耐久性に優れた複合金属板及びその製造方法を提供することを目的とする。 The present invention has been made in view of such a problem, and can be easily press-contacted by a pair of normal upper and lower rolls, and has a high bonding strength at a bonding portion obtained by bonding the end portions in the width direction of the metal plate , and is durable. It aims at providing the outstanding composite metal plate and its manufacturing method.

本発明の第1の複合金属板の製造方法は、第1金属板と、第2金属板とを準備し、前記第1金属板の幅方向の端部と第2金属板の幅方向の端部同士を接合する複合金属板の製造方法であって、前記第1金属板及び第2金属板はそれぞれ接合側端部において長さ方向に形成された山部と谷部を備え、前記第1金属板の山部及び谷部並びに第2金属板の山部及び谷部はそれぞれ30〜120度の角度をなす二つの傾斜面を有し、長さ方向に対して垂直な横断面における前記山部及び谷部の形状が前記二つの傾斜面によって凸状及び凹状をなすように形成され、さらに前記第1金属板の山部及び谷部は前記第2金属板の谷部及び山部にそれぞれ係合するように形成され、前記第1金属板の山部を前記第2金属板の谷部に、また前記第2金属板の山部を前記第1金属板の谷部にそれぞれ係合させて重ね合わせ、その重ね合わせ部を前記第1金属板及び第2金属板の長さ方向を圧延方向として一対のロールに通して圧下することによって圧接し、拡散焼鈍して接合する。 First method of manufacturing a composite metal sheet of the present invention includes a first metal plate, to prepare a second metal plate, the width direction of the end of the end portion and the second metal plate in the width direction of the first metal plate the method of manufacturing the composite metal plate for joining parts to each other, said first metal plate and the second metal plate is provided with peaks and valleys formed on Oite length direction, each joint end, said The crests and troughs of the first metal plate and the crests and troughs of the second metal plate each have two inclined surfaces that form an angle of 30 to 120 degrees, and in a cross section perpendicular to the length direction. The peaks and valleys are formed so that the two inclined surfaces are convex and concave, and the peaks and valleys of the first metal plate are the valleys and peaks of the second metal plate. to be formed so as to respectively engage, the valleys of the second metal plate crests of the first metal plate and crest portions of the second metal plate The combined I heavy respectively engaged engaged to valley of the first metal plate, to reduction through the pair of rolls the overlapping portion of the length direction of the first metal plate and a second metal plate as a rolling direction Pressure welding, diffusion annealing and joining .

本発明の第1の製造方法によると、第1金属板と第2金属板の幅方向の端部同士は、前記第1金属板の山部を前記第2金属板の谷部に、また前記第2金属板の山部を第1金属板の谷部にそれぞれ係合させて重ね合わせ、その重ね合わせ部が前記第1金属板及び第2金属板の長さ方向を圧延方向として一対のロールに通して圧下されるので、山部が谷部にくさび状に食い込みながら圧下される。このため、板厚方向の圧下を施すだけで、各金属板は端部が離反することなく圧接され、また上下一対のロールによって第1金属板と第2金属板の端部同士が簡単容易に強固に圧接される。さらに、圧接された複合金属板は、拡散焼鈍が施されるので、強固に圧接された圧接部が拡散接合され、優れた接合強度、耐久性が得られる。また、本発明の製造方法によって製造された複合金属板は、第1金属板の幅方向の端部と第2金属板の幅方向の端部との接合部が優れた接合強度を備え、これによって優れた耐久性、信頼性を有する。 According to the first manufacturing method of the present invention, the end portions in the width direction of the first metal plate and the second metal plate are formed such that the peak portion of the first metal plate is a trough portion of the second metal plate, and The crests of the second metal plate are respectively engaged with the troughs of the first metal plate and overlapped, and the overlapped part is a pair of rolls with the length direction of the first metal plate and the second metal plate as the rolling direction. Since it is crushed through , the mountain part is crushed into the valley part while wedged. For this reason, each metal plate is press-contacted without separating the end portions only by applying a reduction in the plate thickness direction, and the end portions of the first metal plate and the second metal plate are easily and easily separated by a pair of upper and lower rolls. It is pressed firmly. Further, the composite metal plate that has been press-contacted is subjected to diffusion annealing, so that the press-contact portion that has been press-contacted firmly is diffusion-bonded, and excellent bonding strength and durability can be obtained. Further, the composite metal plate manufactured by the manufacturing method of the present invention has an excellent bonding strength at the bonding portion between the end portion in the width direction of the first metal plate and the end portion in the width direction of the second metal plate. Excellent durability and reliability.

前記第1金属板及び第2金属板の山部及び谷部はそれぞれ前記横断面における形状が前記二つの傾斜面によって三角形の隣り合う二辺をなすように形成することができる。 The peaks and valleys of the first metal plate and the second metal plate may be shaped in the cross section, respectively formed so as to form two adjacent sides of the triangle by the previous SL two inclined surfaces.

また、前記第1金属板の端部と第2金属板の端部とを重ね合わせた状態において、前記第1金属板の山部の頂部と第2金属板の山部の頂部との板厚方向の間隔(引っ掛かり代)を、前記第1金属板及び第2金属板のそれぞれの板厚の20%以上とするのがよい。このような引っ掛かり代を設定することにより、圧接の際に第1、第2金属板の板幅方向の離反を確実に防止して、各金属板の山部を重ね合わせた他の金属板の谷部にくさび状に食い込ませることができ、圧接を安定的に行うことができる。   Moreover, in the state which the edge part of the said 1st metal plate and the edge part of the 2nd metal plate were piled up, plate | board thickness of the top part of the peak part of the said 1st metal plate, and the top part of the peak part of a 2nd metal plate It is preferable that the direction interval (hooking margin) is 20% or more of the thickness of each of the first metal plate and the second metal plate. By setting such a catch allowance, the first and second metal plates are reliably prevented from separating in the plate width direction during the pressure welding, and the other metal plates in which the ridges of the respective metal plates are overlapped are secured. It is possible to bite the valley portion like a wedge, and the pressure contact can be stably performed.

また、前記第1金属板あるいは第2金属板の一方の金属板を、純AlあるいはAl合金によって形成することができる。純AlあるいはAl合金は、自然酸化により表面に緻密な酸化膜が形成されるので、一般的にはこれらの金属板を他の金属板に圧接することは難しい。しかし、本発明によれば、板厚方向の圧下の際に、くさび効果によって山部と谷部を形成する傾斜面には強力な摩擦力が作用するため、純AlあるいはAl合金からなる金属板の表面に形成された酸化膜が除去されて新生面が露出し易い。このため、純AlあるいはAl合金からなる金属板と他の金属板とを容易に圧接することができる。   Further, one of the first metal plate and the second metal plate can be formed of pure Al or an Al alloy. Since pure Al or Al alloy forms a dense oxide film on the surface by natural oxidation, it is generally difficult to press these metal plates against other metal plates. However, according to the present invention, when the sheet is reduced in the thickness direction, a strong frictional force acts on the inclined surfaces forming the peaks and valleys due to the wedge effect, so that the metal plate made of pure Al or Al alloy is used. The oxide film formed on the surface is removed, and the new surface is easily exposed. For this reason, a metal plate made of pure Al or an Al alloy can be easily pressed against another metal plate.

また、前記第1金属板及び第2金属板の一方の金属板を、純Alあるいは導電率が10%IACS以上のAl合金によって形成し、他方の金属板を導電率が10%IACS以上の導電性金属によって形成することができる。このような材料の組み合わせにより、導電率が10%IACS以上の導電性複合金属板を容易に製造することができる。この形態の複合金属板は、リチウムイオン電池の配線材あるいはその素材として好適に用いることができる。特に、一方の金属板を純Alで、他方の金属板を純Cuで形成した複合金属板は導電性に優れる。 In addition, one of the first metal plate and the second metal plate is formed of pure Al or an Al alloy having a conductivity of 10% IACS or more, and the other metal plate is a conductive having a conductivity of 10% IACS or more. It can be formed of a conductive metal. By such a combination of materials, a conductive composite metal plate having an electrical conductivity of 10% IACS or more can be easily produced. The composite metal plate of this form can be suitably used as a wiring material of a lithium ion battery or its material. In particular, a composite metal plate in which one metal plate is made of pure Al and the other metal plate is made of pure Cu is excellent in conductivity.

また、本発明の第2の複合金属板の製造方法は、第1金属板、第2金属板及び第3金属板を準備し、前記第1金属板の幅方向の端部と前記第2金属板の幅方向の一方の端部を接合すると共に第2金属板の幅方向の他方の端部と第3金属板の幅方向の端部を接合する複合金属板の製造方法であって、前記第1金属板及び第3金属板はそれぞれ接合側端部において長さ方向に形成された山部と谷部を備え、前記第2金属板は一方及び他方の接合側端部において長さ方向に形成された山部と谷部を備え、前記第1金属板の山部及び谷部、第2金属板の山部及び谷部並びに第3金属板の山部及び谷部はそれぞれ30〜120度の角度をなす二つの傾斜面を有し、長さ方向に対して垂直な横断面における前記山部及び谷部の形状が前記二つの傾斜面によって凸状及び凹状をなすように形成され、さらに前記第1金属板の山部及び谷部は前記第2金属板の一方の端部に形成された谷部及び山部に、前記第3金属板の山部及び谷部は前記第2金属板の他方の端部に形成された谷部及び山部にそれぞれ係合するように形成され、前記第1金属板の山部及び谷部を前記第2金属板の一方の端部の谷部及び山部にそれぞれ係合させて重ね合わせると共に前記第3金属板の山部及び谷部を前記第2金属板の他方の端部の谷部及び山部にそれぞれ係合させて重ね合わせ、それらの重ね合わせ部を前記第1金属板、第2金属板及び第3金属板の長さ方向を圧延方向として一対のロールに通して圧下することによって圧接し、拡散焼鈍して接合する。前記第1金属板、第2金属板及び第3金属板の山部及び谷部はそれぞれ前記横断面における形状が前記二つの傾斜面によって三角形の隣り合う二辺をなすように形成することができる。 Moreover, the manufacturing method of the 2nd composite metal plate of this invention prepares the 1st metal plate, the 2nd metal plate, and the 3rd metal plate, the edge part of the width direction of the said 1st metal plate, and the said 2nd metal A method for producing a composite metal plate for joining one end portion in the width direction of a plate and joining the other end portion in the width direction of the second metal plate and an end portion in the width direction of the third metal plate, Each of the first metal plate and the third metal plate includes a crest and a trough formed in the length direction at the joining side end, and the second metal plate is arranged in the length direction at one and the other joining side end. The crests and troughs of the first metal plate, crests and troughs of the second metal plate, and crests and troughs of the third metal plate are 30 to 120 degrees, respectively. And the shape of the crests and troughs in a cross section perpendicular to the length direction is determined by the two inclined surfaces. In addition, the crests and troughs of the first metal plate are formed on the troughs and crests formed at one end of the second metal plate, and the third metal The crest and trough of the plate are formed to engage with the trough and crest formed at the other end of the second metal plate, respectively, and the crest and trough of the first metal plate are The second metal plate is engaged and overlapped with a valley and a peak at one end of the second metal plate, and the peak and valley of the third metal plate are overlapped with the valley at the other end of the second metal plate and By engaging each of the ridges and overlapping them, and rolling the overlapping parts through a pair of rolls with the length directions of the first metal plate, the second metal plate and the third metal plate as the rolling direction. Weld and weld by diffusion annealing. The crests and troughs of the first metal plate, the second metal plate, and the third metal plate can be formed so that the shape in the cross section forms two adjacent sides of the triangle by the two inclined surfaces. .

本発明の第2の製造方法によっても、前記本発明の第1の製造方法と同様、前記第1金属板の幅方向の端部と第2金属板の一方の幅方向の端部とが接合された接合部のみならず、前記第2金属板の他方の幅方向の端部と第3金属板の幅方向の端部とが接合された接合部がそれぞれ優れた接合強度、耐久性を備える複合金属板を簡単容易に製造することができる。 Also according to the second manufacturing method of the present invention, as in the first manufacturing method of the present invention, the end in the width direction of the first metal plate and the end in one width direction of the second metal plate are joined. not only the joint is, the bonding strength of the end of the other width direction and joints and the end portions in the width direction of the third metal plate is bonded and excellent respective second metal plate comprises a durable A composite metal plate can be manufactured easily and easily.

前記3枚の金属板から構成された複合金属板の製造方法において、前記第2金属板を純Cuあるいは熱伝導率がCuの60%以上のCu合金によって形成し、前記第1金属板および第3金属板をFeより熱膨張率の低いFe基合金によって形成することができる。これにより、中央の金属板が良好な熱伝導性を有し、左右の金属板が低熱膨張で良好な機械的強度を有する複合金属板を製造することができる。このような複合金属板は、中央部に半導体素子が、左右の両端部に接続用の足(ピン)部が形成されるリードフレーム用素材として好適に利用することができる。 In the method of manufacturing a composite metal plate composed of the three metal plates, the second metal plate is formed of pure Cu or a Cu alloy having a thermal conductivity of 60% or more of Cu, and the first metal plate and the first metal plate The three metal plates can be formed of an Fe-based alloy having a lower thermal expansion coefficient than Fe. As a result, a composite metal plate in which the central metal plate has good thermal conductivity and the left and right metal plates have low mechanical expansion and good mechanical strength can be manufactured . Such a composite metal plate can be suitably used as a lead frame material in which a semiconductor element is formed in the center portion and connecting leg (pin) portions are formed in both left and right end portions.

本発明の複合金属板の製造方法によれば、第1金属板及び第2金属板の内の一方の金属板の幅方向の端部に長さ方向に沿って形成された山部がそれぞれ他方の金属板の幅方向の端部に長さ方向に沿って形成された谷部に係合させて重ね合わせた重ね合わせ部を長さ方向を圧延方向として一対のロールに通して圧下するだけで、前記山部が谷部にくさび状に食い込みながら圧下されるので、一対のロールによって板厚方向の圧下を施すだけで、各金属板は端部が離反することなく強固に圧接され、さらにその圧接部が拡散焼鈍により拡散接合されるため、第1金属板及び第2金属の接合部は接合強度、耐久性に優れる。また、本発明の製造方法によって製造された複合金属板は、第1金属板及び第2金属板の幅方向の端部同士が凹凸状に係合されて強固に圧接され、拡散接合されるため、その接合部は優れた接合強度、耐久性を備える。 According to the method for manufacturing a composite metal plate of the present invention, the peak portions formed along the length direction at the end portion in the width direction of one of the first metal plate and the second metal plate are respectively the other. By simply rolling the overlapped portion, which is overlapped with the valley portion formed along the length direction at the end portion in the width direction of the metal plate , through a pair of rolls with the length direction as the rolling direction. The crests are squeezed while wedged into the troughs, so that each metal plate is firmly pressed without separation of the end portions by simply applying a reduction in the thickness direction with a pair of rolls. Since the pressure contact portion is diffusion bonded by diffusion annealing, the first metal plate and the second metal bonding portion are excellent in bonding strength and durability. Moreover, since the composite metal plate manufactured by the manufacturing method of the present invention has the first metal plate and the second metal plate in the width direction end portions engaged with each other in a concavo-convex shape to be firmly pressed and diffusion bonded. The joint has excellent joint strength and durability.

以下、図面を参照して本発明の第1実施形態にかかる複合金属板及びその製造方法について説明する。図3は、第1実施形態に係る、2枚の第1金属板1及び第2金属板2の幅方向の端部同士が接合された複合金属板を示しており、この複合金属板は以下の要領で製造される。以下、製造方法を説明するが、説明の便宜上、前記複合金属板の第1金属板等の素材となる金属板についても第1金属板等と表示し、同符号を用いる。 Hereinafter, a composite metal plate and a manufacturing method thereof according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 3 shows a composite metal plate in which end portions in the width direction of the two first metal plates 1 and the second metal plate 2 according to the first embodiment are joined to each other. It is manufactured in the manner of Hereinafter, although a manufacturing method is demonstrated, the metal plate used as raw materials, such as the 1st metal plate of the said composite metal plate, is also displayed as a 1st metal plate etc., and the same code | symbol is used for convenience of explanation.

図1〜図3は、第1実施形態に係る複合金属板の製造工程における第1金属板1及び第2金属板2をその長さ方向から見た正面図及び全体斜視図を示しており、先ず、図1に示すように、純Cuあるいは冷間加工性を有するCu合金(以下、特に断らない限り、これらの金属材を総称して「Cu系金属」という。)で形成された第1金属板1と、純Alあるいは冷間加工性を有するAl合金(以下、特に断らない限り、これらの金属材を総称して「Al系金属」という。)で形成された第2金属板2を準備する。   FIGS. 1-3 has shown the front view and whole perspective view which looked at the 1st metal plate 1 and the 2nd metal plate 2 in the manufacturing process of the composite metal plate which concerns on 1st Embodiment from the length direction, First, as shown in FIG. 1, the first is formed of pure Cu or a Cu alloy having cold workability (hereinafter, these metal materials are collectively referred to as “Cu-based metal” unless otherwise specified). A metal plate 1 and a second metal plate 2 formed of pure Al or an Al alloy having cold workability (hereinafter, these metal materials are collectively referred to as “Al-based metal” unless otherwise specified). prepare.

前記第1金属板1の接合側端部には、長さ方向に対して垂直な横断面における形状が二つの傾斜面13,14によって凸状に形成された山部11と、二つの傾斜面14,15によって凹状に形成された谷部12が前記端部の先端から金属板の幅方向(紙面の横方向)に連続して形成されている。前記山部11及び谷部12は、金属板の長さ方向(紙面に垂直な方向)に沿って同じ断面形状に形成されている。また前記第2金属板2の接合側端部にも、前記第1金属板1の山部11及び谷部12に係合するように、二つの傾斜面24,25により凹状に形成された谷部22と、二つの傾斜面23,24により凸状に形成された山部21が金属板の幅方向に連続し、かつ金属板の長さ方向に同断面形状をなすように設けられている。前記第1金属板1の山部11及び第2金属板2の谷部22を形成する傾斜面のなす角度θ1、及び前記第2金属板2の山部21及び第1金属板1の谷部12を形成する傾斜面のなす角度θ2は、それぞれ30°〜120°程度に形成されている。 At the joining side end portion of the first metal plate 1, a peak portion 11 in which a shape in a cross section perpendicular to the length direction is convexly formed by two inclined surfaces 13 and 14, and two inclined surfaces A valley 12 formed in a concave shape by 14 and 15 is formed continuously from the tip of the end in the width direction of the metal plate (lateral direction of the paper). The peak portion 11 and the valley portion 12 are formed in the same cross-sectional shape along the length direction of the metal plate (direction perpendicular to the paper surface). A trough formed in a concave shape by two inclined surfaces 24 and 25 so as to engage with the crest 11 and trough 12 of the first metal plate 1 also at the joining side end of the second metal plate 2. The peak portion 21 formed in a convex shape by the portion 22 and the two inclined surfaces 23 and 24 is provided so as to be continuous in the width direction of the metal plate and to have the same cross-sectional shape in the length direction of the metal plate. . The angle θ1 formed by the inclined surfaces forming the crest 11 of the first metal plate 1 and the trough 22 of the second metal plate 2, and the crest 21 of the second metal plate 2 and the trough of the first metal plate 1 The angles θ2 formed by the inclined surfaces forming 12 are each set to about 30 ° to 120 °.

この第1実施形態では、第1金属板1の端部と第2金属板2の端部は、紙面に垂直に立てた軸の周りに、一方の金属板を180度回転させれば、他方の金属板と同形になるように形成されている。所定端部を有する金属板は、プレス成形、押し出し成形により容易に成形することができる。また、金属板の端部は、機械加工により形成することができる。   In this first embodiment, the end portion of the first metal plate 1 and the end portion of the second metal plate 2 can be obtained by rotating one metal plate 180 degrees around an axis that stands vertically to the paper surface. It is formed to be the same shape as the metal plate. A metal plate having a predetermined end can be easily formed by press molding or extrusion molding. Moreover, the edge part of a metal plate can be formed by machining.

次に、前記第1金属板1と第2金属板2は、図2に示すように、第1金属板1の山部11と第2金属板2の谷部22、第1金属板1の谷部12と第2金属板2の山部21とを係合させて、端部同士を重ね合わせ、その重ね合わせ部を上下一対のロールに通して冷間(室温)あるいは温間で圧接する。   Next, as shown in FIG. 2, the first metal plate 1 and the second metal plate 2 include a peak portion 11 of the first metal plate 1, a valley portion 22 of the second metal plate 2, and the first metal plate 1. The valley portion 12 and the peak portion 21 of the second metal plate 2 are engaged with each other, the end portions are overlapped, and the overlapped portion is passed through a pair of upper and lower rolls to be cold-welded (room temperature) or warm. .

前記第1金属板1の接合側端部と第2金属板2の接合側端部とを重ね合わせた状態において、第1金属板1の山部11の先端部と、第2金属板2の山部21の先端部との板厚方向の間隔hが、板幅方向(圧延方向に対して直角方向)の引っ掛かり代となる。この実施形態では、山部11,21の先端部が谷部12,22の底部に当接するように係合しているので、前記引っ掛かり代hは、各金属板1,2における山部11,21の先端部と谷部12,22の底部との板厚方向の間隔に等しくなっている。   In a state where the joining side end of the first metal plate 1 and the joining side end of the second metal plate 2 are overlapped, the tip of the peak portion 11 of the first metal plate 1 and the second metal plate 2 The distance h in the thickness direction from the tip of the peak portion 21 becomes a catching margin in the width direction (perpendicular to the rolling direction). In this embodiment, since the front ends of the crests 11 and 21 are engaged with the bottoms of the troughs 12 and 22, the hooking h is the crests 11 and It is equal to the space | interval of the plate | board thickness direction of the front-end | tip part of 21 and the bottom part of the trough parts 12 and 22. FIG.

前記引っ掛かり代hは、第1金属板1の板厚t1及び第2金属板2の板厚t2の20%程度以上設けることが好ましい。また、Al系金属板からなる第2金属板2の谷部22の底部と底部側板表面との間隔d2は、第2金属板2の板厚t2の20%程度以上設けることが好ましい。d2がt2の20%程度を下回って薄くなると、重ね合わせ部をロール圧下する際、圧下率を低く設定しないと、Al系金属で形成した第2金属板2の谷部22の底部に亀裂が生じるおそれがある。一方、Cu系金属板からなる第1金属板1の谷部12の底部と底部側板表面との間隔d1は、Cu系金属がAl系金属よりも強度が2倍を超えて高いので、第1金属板1の板厚t1の10%程度以上あればよい。   It is preferable that the hooking h is about 20% or more of the plate thickness t1 of the first metal plate 1 and the plate thickness t2 of the second metal plate 2. Moreover, it is preferable that the distance d2 between the bottom of the valley portion 22 of the second metal plate 2 made of an Al-based metal plate and the surface of the bottom side plate is about 20% or more of the plate thickness t2 of the second metal plate 2. When d2 becomes thinner than about 20% of t2, when the overlap portion is roll-rolled, if the rolling reduction is not set low, a crack is generated at the bottom of the valley portion 22 of the second metal plate 2 made of Al-based metal. May occur. On the other hand, the distance d1 between the bottom of the valley 12 of the first metal plate 1 made of a Cu-based metal plate and the surface of the bottom side plate is higher than that of the Al-based metal by a strength of the Cu-based metal since It may be about 10% or more of the plate thickness t1 of the metal plate 1.

前記第1金属板1の接合側端部と第2金属板2の接合側端部とを圧接するには、その重ね合わせ部をロールにて圧下すればよい。もっとも、図3に示すように、複合金属板の板厚を全体的に一定にして平板状にするには、重ね合わせ部を含む、両金属板の全体に対してロール圧下を施せばよい。なお、図3において、矢印は圧延方向(金属板の長さ方向)を示しており、また圧接前の素材金属板と圧接後の金属板とは同一物ではないが、既述のとおり、同符号が付されている。   In order to press-contact the joining side end portion of the first metal plate 1 and the joining side end portion of the second metal plate 2, the overlapped portion may be reduced by a roll. However, as shown in FIG. 3, in order to make the thickness of the composite metal plate generally constant and flat, it is only necessary to roll-roll both the metal plates including the overlapping portion. In FIG. 3, the arrow indicates the rolling direction (length direction of the metal plate), and the material metal plate before press contact and the metal plate after press contact are not the same, but as described above, The code | symbol is attached | subjected.

圧接の際の重ね合わせ部における圧下率は、通常、60〜80%程度に設定される。前記第2金属板2の間隔d2がt2の20%を下回って薄い場合、先に説明したとおり、圧下率が高いと谷部22の底部が断裂するおそれがあるので、この場合は圧下率を下げて圧下すればよい。もっとも、ロール圧下の圧下率が40%程度を下回って低くなり過ぎると、重ね合わせ部の圧接が困難になる。   The rolling reduction at the overlapped portion at the time of pressure contact is usually set to about 60 to 80%. If the distance d2 between the second metal plates 2 is less than 20% of t2 and is thin, as described above, if the rolling reduction is high, the bottom of the valley 22 may be torn. In this case, the rolling reduction is reduced. What is necessary is just to lower and reduce the pressure. However, if the rolling reduction under the roll pressure is too low below about 40%, it is difficult to press the overlapped portion.

端部が圧接された両金属板1,2は、拡散焼鈍が施され、圧接部が拡散接合される。これにより、十分な接合強度が得られる。拡散焼鈍は、工業的には焼鈍温度をAl系金属の融点より100〜200℃程度低い温度(通常、450〜550℃程度)で、保持時間を0.5〜3min 程度として実施される。低圧下率で圧接した場合、保持時間はそれよりも長く、5〜15min 程度に設定することが望ましい。また、焼鈍温度をより低い温度としても拡散接合することができるが、焼鈍温度が低い場合は、保持時間を十分取る必要がある。例えば焼鈍温度を200℃程度とする場合、保持時間を3hr程度とすることで、圧接部を拡散接合することができる。   Both the metal plates 1 and 2 with the end portions pressed are subjected to diffusion annealing, and the press contact portions are diffusion bonded. Thereby, sufficient joint strength is obtained. Diffusion annealing is industrially performed at an annealing temperature of about 100 to 200 ° C. lower than the melting point of the Al-based metal (usually about 450 to 550 ° C.) and a holding time of about 0.5 to 3 min. In the case of pressure contact at a low pressure rate, the holding time is longer than that, and is preferably set to about 5 to 15 minutes. Further, diffusion bonding can be performed even when the annealing temperature is set to a lower temperature, but when the annealing temperature is low, it is necessary to take a sufficient holding time. For example, when the annealing temperature is about 200 ° C., the pressure contact portion can be diffusion-bonded by setting the holding time to about 3 hours.

上記第1実施形態において、第1金属板1を形成するCu合金としては、Cu−Ni合金、Cu−Zn合金、Cu−Sn合金、Cu−Fe−P合金、Cu−Be合金、Cu−Cr合金などの各種の冷間加工性を有するCu合金を用いることができる。具体的には、例えば、JIS C1020、C1100、C1201、C1220、C1221、C2100、C2600、C2801、C2200、C6140、C1401、C2051、C14500、Z3234に含まれるCu−Be合金,Cu−Cr合金を挙げることができる。なお、Cu合金という場合、主成分であるCuが50mass%(以下、「mass%」は単に「%」と表示する。)以上のものを意味する。   In the said 1st Embodiment, as Cu alloy which forms the 1st metal plate 1, Cu-Ni alloy, Cu-Zn alloy, Cu-Sn alloy, Cu-Fe-P alloy, Cu-Be alloy, Cu-Cr Cu alloys having various cold workability such as alloys can be used. Specific examples include Cu-Be alloys and Cu-Cr alloys included in JIS C1020, C1100, C1201, C1220, C1221, C2100, C2600, C2801, C2200, C6140, C1401, C2051, C14500, and Z3234. Can do. Note that the Cu alloy means that the main component Cu is 50 mass% (hereinafter, “mass%” is simply expressed as “%”) or more.

また前記第2金属板を形成するAl合金としては、耐食アルミニウム合金や高力アルミニウム合金などの各種の冷間加工性を有するAl合金を用いることができる。Al合金という場合、Cu合金と同様、主成分であるAlが50%以上含まれるものを意味する。前記耐食アルミニウム合金としては、Al−Mn合金、Al−Mg合金、Al−Mg−Mn合金、Al−Mg−Si合金などを挙げることができ、具体的には、JIS 1050、1060、1070、1080、1100、1200、3003、5005、6063、6101を例示することができる。   As the Al alloy forming the second metal plate, Al alloys having various cold workability such as a corrosion-resistant aluminum alloy and a high-strength aluminum alloy can be used. In the case of an Al alloy, it means an alloy containing 50% or more of Al as a main component, like a Cu alloy. Examples of the corrosion-resistant aluminum alloy include an Al—Mn alloy, an Al—Mg alloy, an Al—Mg—Mn alloy, an Al—Mg—Si alloy, and more specifically, JIS 1050, 1060, 1070, 1080. 1100, 1200, 3003, 5005, 6063, 6101 can be exemplified.

また、前記高力アルミニウム合金としては時効硬化性合金であるAl−Cu合金、Al−Cu−Mg合金、Al−Cu−Mn−Mg合金、Al−Si−Mg合金などを挙げることができる。具体的には、JIS 2011、7003を例示することができる。   Examples of the high-strength aluminum alloy include age-curable alloys such as Al—Cu alloy, Al—Cu—Mg alloy, Al—Cu—Mn—Mg alloy, and Al—Si—Mg alloy. Specifically, JIS 2011, 7003 can be illustrated.

第1、第2金属板を形成する金属材料としては、Cu系金属、Al系金属に限るものではなく、各種の冷間加工性を有する金属材から適宜の金属材を用いることができる。例えば、純NiやNi合金などのニッケル金属材、あるいは純Fe,Fe−(0.3%以下)C鋼(軟鋼),ステンレス鋼(例えば、SUS410,SUS304),Fe−Ni合金(例えば、Fe−36%Ni合金)、Fe−Ni−Co合金(例えば、Fe−30%Ni−16Co合金)などの各種鉄鋼材を挙げることができる。また、第1金属板と第2金属板とは同材質でもよく、例えばAl系金属板とAl系金属板とを組み合わせることができる。   The metal material for forming the first and second metal plates is not limited to Cu-based metal and Al-based metal, and an appropriate metal material can be used from various cold workable metal materials. For example, nickel metal material such as pure Ni or Ni alloy, or pure Fe, Fe- (0.3% or less) C steel (soft steel), stainless steel (for example, SUS410, SUS304), Fe-Ni alloy (for example, Fe -36% Ni alloy), Fe-Ni-Co alloy (for example, Fe-30% Ni-16Co alloy) and other various steel materials. The first metal plate and the second metal plate may be made of the same material. For example, an Al-based metal plate and an Al-based metal plate can be combined.

複合金属板を配線材等の導電性素材として用いる場合、Al系金属板を形成する金属材としては、純Alあるいは導電率が10%IACS以上、好ましくは20%以上の冷間加工性を有するAl合金を用いることが望ましい。以下、導電率の「%IACS(International Annealed Copper Standard)」は単に「%」と表示する。ある材料の導電率(%IACS)は下記式によって算出される。例えば、純Cuは100%、純Alは65%である。
導電率(%IACS)=標準軟銅(純銅)の体積抵抗率(1.7241μΩ・cm)/当該材料の体積抵抗率×100
When the composite metal plate is used as a conductive material such as a wiring material, the metal material for forming the Al-based metal plate is pure Al or has a cold workability of 10% IACS or more, preferably 20% or more. It is desirable to use an Al alloy. Hereinafter, “% IACS (International Annealed Copper Standard)” of conductivity is simply expressed as “%”. The conductivity (% IACS) of a material is calculated by the following formula. For example, pure Cu is 100% and pure Al is 65%.
Electrical conductivity (% IACS) = volume resistivity of standard annealed copper (pure copper) (1.7241 μΩ · cm) / volume resistivity of the material × 100

前記導電率が10%以上のAl合金としては、Al含有量が高いほど導電率も高くなり、好ましくは90%以上、より好ましくは95%以上のAl合金が望ましい。具体的には、JIS 1050、1060、1070、1080、1100、1200、3003、5005、6063、6101を例示することができる。例えば、前記5005合金は、Al−(0.5〜1.1%)Mnの固溶強化型合金であり、導電率は52%である。その他、適用可能なAl合金を以下に例示する。Al−(4〜5%)Mg合金(JISA5082、導電率約29%)、Al−(5〜6%)Cu合金(JISA2011、導電率約39%)、Al−(3.5〜4.5%)Cu−(0.4〜1.0%)Mn−(0.2〜0.8%)Mg(JISA2017、ジュラルミン、導電率約50%)、Al−(3.8〜4.9%)Cu−(0.3〜0.9%)Mn−(1.2〜1.8%)Mg(JISA2024、超ジュラルミン、導電率約30%)、Al−(11〜13.5%)Si−(0.8〜1.3%)Mg(JISA4032、導電率約40%)   As the Al alloy having an electric conductivity of 10% or more, the higher the Al content, the higher the electric conductivity, preferably 90% or more, more preferably 95% or more. Specifically, JIS 1050, 1060, 1070, 1080, 1100, 1200, 3003, 5005, 6063, and 6101 can be exemplified. For example, the 5005 alloy is a solid solution strengthened alloy of Al- (0.5 to 1.1%) Mn and has a conductivity of 52%. Other applicable Al alloys are exemplified below. Al- (4-5%) Mg alloy (JISA5082, conductivity about 29%), Al- (5-6%) Cu alloy (JISA2011, conductivity about 39%), Al- (3.5-4.5 %) Cu- (0.4-1.0%) Mn- (0.2-0.8%) Mg (JISA2017, duralumin, conductivity of about 50%), Al- (3.8-4.9% ) Cu- (0.3-0.9%) Mn- (1.2-1.8%) Mg (JISA2024, super duralumin, conductivity about 30%), Al- (11-13.5%) Si -(0.8 to 1.3%) Mg (JISA4032, conductivity about 40%)

また、前記Al系金属板に接合される他方の金属板を形成する金属材としては、導電率が10%以上の各種冷間加工性を有する金属材を用いることが望ましい。例えば、純Cuや導電率が10%以上、好ましくは20%以上のCu合金を挙げることができる。前記Cu合金は、Cu含有量が高いほど導電率も高くなるため、Cu量が好ましくは90%以上、より好ましくは95%以上のCu合金が望ましい。このようなCu合金としては、例えば、JIS C1020、C1100、C1201、C14500、Z3234に含まれるCu−Be合金,Cu−Cr合金を挙げることができる。その他、適用可能なCu合金を以下に例示する。Cu−2%Ni合金(導電率33%)、Cu−6%Ni合金(導電率17%)、Cu−9.5%Ni合金(導電率11%)、Cu−30%Zn合金(導電率27.4%)、Cu−34%Zn合金(導電率26.5%)、Cu−Fe−P(Fe+P:0.13%)合金(導電率93%)、Cu−Fe−P(Fe+P:2.48%)合金(導電率69%)、Cu−0.2%Zr合金(導電率93%)   Moreover, as a metal material which forms the other metal plate joined to the said Al type metal plate, it is desirable to use the metal material which has various cold work property whose electrical conductivity is 10% or more. For example, pure Cu or a Cu alloy having a conductivity of 10% or more, preferably 20% or more can be used. Since the Cu alloy has a higher conductivity as the Cu content is higher, a Cu alloy with a Cu content of preferably 90% or more, more preferably 95% or more is desirable. Examples of such Cu alloys include Cu—Be alloys and Cu—Cr alloys included in JIS C1020, C1100, C1201, C14500, and Z3234. Other applicable Cu alloys are exemplified below. Cu-2% Ni alloy (conductivity 33%), Cu-6% Ni alloy (conductivity 17%), Cu-9.5% Ni alloy (conductivity 11%), Cu-30% Zn alloy (conductivity 27.4%), Cu-34% Zn alloy (conductivity 26.5%), Cu-Fe-P (Fe + P: 0.13%) alloy (conductivity 93%), Cu-Fe-P (Fe + P: 2.48%) Alloy (conductivity 69%), Cu-0.2% Zr alloy (conductivity 93%)

また、前記導電率が10%以上の金属材として、純Ni(導電率21%)やNi合金、その他、純Fe(導電率13%),Fe−(0.1%以下)C鋼(導電率10%以上)などの鉄鋼材を用いることができる。前記Ni合金は、Ni含有量が高いほど導電率も高くなる。このため、Ni量が好ましくは90%以上、より好ましくは95%以上のNi合金が望ましい。適用可能なNi合金として、Ni−(2%以下)Cu合金(導電率16.7%以上)、Ni−(41%以下)Fe合金(導電率16.7%以上)を例示することができる。   Further, as a metal material having an electrical conductivity of 10% or more, pure Ni (conductivity 21%), Ni alloy, pure Fe (conductivity 13%), Fe- (0.1% or less) C steel (conductivity) Steel materials such as a rate of 10% or more can be used. The Ni alloy has higher conductivity as the Ni content is higher. Therefore, a Ni alloy having a Ni content of preferably 90% or more, more preferably 95% or more is desirable. Examples of applicable Ni alloys include Ni- (2% or less) Cu alloy (conductivity of 16.7% or more), Ni- (41% or less) Fe alloy (conductivity of 16.7% or more). .

また、上記第1実施形態では、第1金属板1、第2金属板2の山部11,21、谷部12,22は、断面が三角形状をしているが、例えば図4に示すように、三角形状の山部11,21の先端部を平坦状とし、これを三角形状の谷部に係合させるようにしてもよい。このように山部の先端部を平坦状にすることで、谷部への係合が容易になる。山部、谷部の断面形状はこれらに限るものではなく、図5に示すように、山部11,21の頂部、谷部12,22の底部が平坦面からなる台形状としてもよい。このような形状にすることで、Al系金属で形成した第2金属板のd2を薄くしても、圧接の際に谷部の底部に亀裂が入り難くなる。同図において、θ1、θ2は、図2と同様、第1金属板1の山部11(第2金属板2の谷部22)、第1金属板1の谷部12(第2金属板2の山部21)を形成する傾斜面の成す角度、hは引っ掛かり代である。また、さらに、図6に示すように、山部11,21が金属板1,2の表面より突き出るように形成されてもよい。   Moreover, in the said 1st Embodiment, although the cross section of the peak parts 11 and 21 and the trough parts 12 and 22 of the 1st metal plate 1 and the 2nd metal plate 2 has a triangular shape, as shown, for example in FIG. In addition, the tip portions of the triangular peak portions 11 and 21 may be flat and may be engaged with the triangular valley portion. Thus, by engaging the tip of the peak with a flat shape, engagement with the valley is facilitated. The cross-sectional shapes of the peaks and valleys are not limited to these, and as shown in FIG. 5, the tops of peaks 11 and 21 and the bottoms of valleys 12 and 22 may be trapezoidal. By adopting such a shape, even if d2 of the second metal plate made of an Al-based metal is thinned, cracks are unlikely to occur at the bottom of the trough during pressure welding. In the same figure, θ1 and θ2 are the peak 11 of the first metal plate 1 (the valley 22 of the second metal plate 2) and the valley 12 of the first metal plate 1 (the second metal plate 2), as in FIG. The angle formed by the inclined surface forming the peak portion 21), h, is a catching margin. Furthermore, as shown in FIG. 6, the peaks 11 and 21 may be formed so as to protrude from the surfaces of the metal plates 1 and 2.

また、上記第1実施形態では、2枚の金属板からなる複合金属板及びその製造方法を示したが、幅方向に接合される金属板の枚数はこれに限らない。図7は、3枚の金属板で構成された第2実施形態に係る複合金属板を示している。この複合金属板は、第1金属板1と、第2金属板2及び第3金属板3を備え、前記第2金属板2の幅方向の左方の端部に第1金属板1の端部が、前記第2金属板の右方の端部に第3金属板3の端部が接合されている。この複合金属板は以下の要領で製造される。なお、製造方法の説明において、説明の便宜上、第1実施形態と同様、前記複合金属板の第1金属板等の素材となる金属板についても第1金属板等と表示し、同符号を用いる。 Moreover, in the said 1st Embodiment, although the composite metal plate which consists of two metal plates, and its manufacturing method were shown, the number of the metal plates joined to the width direction is not restricted to this. FIG. 7 shows a composite metal plate according to the second embodiment constituted by three metal plates. The composite metal plate includes a first metal plate 1, a second metal plate 2, and a third metal plate 3, and the end of the first metal plate 1 is disposed at the left end in the width direction of the second metal plate 2. The end of the third metal plate 3 is joined to the right end of the second metal plate. This composite metal plate is manufactured as follows. In the description of the manufacturing method, for convenience of explanation, as in the first embodiment, a metal plate that is a material such as the first metal plate of the composite metal plate is also denoted as the first metal plate, and the same reference numerals are used. .

図8に示すように、前記複合金属板の各金属板の素材となる第1金属板1,第2金属板2,第3金属板3を準備する。前記第2金属板2の両端部には、それぞれ二つの傾斜面によって凸状に形成された山部21と二つの傾斜面によって凹状に形成された谷部22が設けられ、前記第1金属板1および第3金属板3のそれぞれの接合側端部に前記第2金属板2の一方および他方の端部に形成された山部21及び谷部22にそれぞれ係合する谷部12及び山部11が設けられている。   As shown in FIG. 8, the 1st metal plate 1, the 2nd metal plate 2, and the 3rd metal plate 3 used as the raw material of each metal plate of the said composite metal plate are prepared. At both ends of the second metal plate 2, there are provided a peak portion 21 formed in a convex shape by two inclined surfaces and a valley portion 22 formed in a concave shape by two inclined surfaces, respectively. A trough portion 12 and a crest portion respectively engaged with a crest portion 21 and a trough portion 22 formed at one end and the other end portion of the second metal plate 2 at each joining side end portion of the first metal plate 3 and the third metal plate 3. 11 is provided.

次に、前記第2金属板2の一方の端部の谷部22及び山部21にそれぞれ前記第1金属板1の山部11及び谷部12を、前記第2金属板2の他方の谷部22及び山部21にそれぞれ前記第3金属板3の山部11及び谷部12を係合させて端部同士を重ね合わせ、重ね合わせた第2金属板2の両端部を、第1実施形態と同様、長さ方向を圧延方向として冷間あるいは温間でロールによって圧下する。これにより、第1実施形態と同様、第2金属板2の両端部と第1金属板1及び第3金属板3の端部とが強固に圧接される。さらにこの圧接材に焼鈍を施すと、第2金属板2の両端の圧接部が拡散接合され、強固に接合された複合金属板が得られる。
Next, the peak portion 11 and the valley portion 12 of the first metal plate 1 are respectively connected to the valley portion 22 and the peak portion 21 of one end portion of the second metal plate 2, and the other valley of the second metal plate 2 is set. parts 22 and ridges 21 respectively engaged with the third ridges 11 and valleys 12 of the metal plate 3 on the superposed end portions, the second end portions of the metal plate 2 superimposed first embodiment As with the form, the length direction is the rolling direction, and the roll is rolled down with a roll in the cold or warm state. Thereby, like the first embodiment, both end portions of the second metal plate 2 and the end portions of the first metal plate 1 and the third metal plate 3 are firmly pressed against each other. Furthermore, when this pressure contact material is annealed, the pressure contact portions at both ends of the second metal plate 2 are diffusion-bonded to obtain a strongly bonded composite metal plate.

前記3枚構成の複合金属板の製造方法としては、上記方法に限らず、一つの金属板に他の金属板を順次接合するようにしてもよい。すなわち、図9に示すように、まず第1金属板1と第2金属板2とを接合し、この接合した2枚構成の複合金属板の端部に第3金属板3を接合するようにしてもよい。この方法は基本的に前記第1実施形態と同様であり、前記2枚構成の複合金属板が第1実施形態における第1金属板に、第3金属板が第1実施形態の第2金属板に相当する。   The method for manufacturing the three-piece composite metal plate is not limited to the above method, and another metal plate may be sequentially joined to one metal plate. That is, as shown in FIG. 9, the first metal plate 1 and the second metal plate 2 are first joined, and the third metal plate 3 is joined to the end of the joined composite metal plate having two sheets. May be. This method is basically the same as that of the first embodiment, the composite metal plate having the two-sheet structure is the first metal plate in the first embodiment, and the third metal plate is the second metal plate of the first embodiment. It corresponds to.

前記第2実施形態の複合金属板において、前記第1金属板1、第2金属板2、第3金属板3の材料として、適宜の金属材を用いることができる。例えば、この複合金属板を半導体素子を搭載するリードフレーム用素材として用いる場合、半導体素子が搭載されることになる前記第2金属板を純Cuあるいは熱伝導率がCuの60%以上、好ましくは80%以上である冷間加工性を有するCu合金によって形成し、接続用ピンに加工されることになる前記第1金属板および第3金属板をFeより熱膨張率が低い冷間加工性を有するFe基合金、例えばFe−(36〜50%)Ni合金、Fe−(20〜30%)Ni−(1〜20%)Co合金によって形成することができる。前記Cu合金としては、例えばCu−0.15%Sn合金、Cu−2.4%Fe−0.1%Zn合金、Cu−0.1%Fe合金が用いられ、前記Fe−Ni合金としては、例えばFe−42%Ni合金が用いられる。   In the composite metal plate of the second embodiment, an appropriate metal material can be used as the material of the first metal plate 1, the second metal plate 2, and the third metal plate 3. For example, when this composite metal plate is used as a lead frame material for mounting a semiconductor element, the second metal plate on which the semiconductor element is mounted is pure Cu or has a thermal conductivity of 60% or more of Cu, preferably The first metal plate and the third metal plate, which are formed of a Cu alloy having a cold workability of 80% or more and are processed into a connection pin, have a cold workability lower than that of Fe. It can be formed of an Fe-based alloy, for example, an Fe- (36-50%) Ni alloy, an Fe- (20-30%) Ni- (1-20%) Co alloy. Examples of the Cu alloy include a Cu-0.15% Sn alloy, a Cu-2.4% Fe-0.1% Zn alloy, and a Cu-0.1% Fe alloy. For example, an Fe-42% Ni alloy is used.

以下、本発明に係る複合金属板及びその製造方法について、実施例を挙げて具体的に説明するが、本発明はかかる実施例によって限定的に解釈されるものではない。   Hereinafter, the composite metal plate and the manufacturing method thereof according to the present invention will be specifically described with reference to examples. However, the present invention is not limited to the examples.

厚さ3mm、方形平面の純Cu板(第1金属板)及び同厚、同形の純Al板(第2金属板)を準備し、その側端部に図1に示すように、三角形断面の山部11,21、谷部12,22を機械加工により形成した。各部の寸法は、θ1=θ2=90°、d2=d1とし、hは表1に示す値とした。   A 3 mm thick, square plane pure Cu plate (first metal plate) and the same thickness, same shape pure Al plate (second metal plate) were prepared. As shown in FIG. The peaks 11 and 21 and the valleys 12 and 22 were formed by machining. The dimensions of each part were θ1 = θ2 = 90 °, d2 = d1, and h was a value shown in Table 1.

上記純Cu板、純Al板の側端部を山部11,21と谷部22,12が係合するように重ね合わせ、その重ね合わせた両金属板を室温にて上下一対のロールに通して重ね合わせ部が50%あるいは60%の圧下率となるように圧下し、同部を冷間圧接した。この際、重ね合わせ部における亀裂発生状況を観察した。その結果を表1に併せて示す。表1に示すように、試料No. 2を除き、重ね合わせ部が圧接された金属板を得ることができた。一方、試料No. 2では、重ね合わせ部において、純Al板の谷部の底側表面に圧延方向に亀裂が入り、重ね合わせ部を圧接することができなかった。試料No. 2とNo. 1では、形状条件が同一であるが、No. 1では圧下率を50%と下げたので亀裂は発生しなかった。   The side edges of the pure Cu plate and pure Al plate are overlapped so that the crests 11 and 21 and the troughs 22 and 12 are engaged, and the overlapped metal plates are passed through a pair of upper and lower rolls at room temperature. Then, the overlapped portion was reduced so as to have a reduction rate of 50% or 60%, and the same portion was cold-welded. At this time, the crack occurrence state in the overlapped portion was observed. The results are also shown in Table 1. As shown in Table 1, except for sample No. 2, it was possible to obtain a metal plate in which the overlapping portion was pressed. On the other hand, in sample No. 2, a crack occurred in the rolling direction on the bottom surface of the valley portion of the pure Al plate in the overlapping portion, and the overlapping portion could not be pressed. Samples No. 2 and No. 1 had the same shape conditions, but No. 1 had a reduction rate of 50%, and no cracks occurred.

このようにして側端部が圧接された第1、第2金属板に対して、表1に示す条件で拡散焼鈍を施した。そして拡散焼鈍後の複合金属板から圧延方向に対して直角方向(幅方向)に沿って幅10mmの引張試験片TPを採取した(図3参照)。これを用いて試験片が破断するまで引張試験を行ったところ、引張試験に供した全ての試料について接合部での破断はなく、全て純Al板側で破断した。表1では、このような純Al板側で破断が生じたものを合格と表示した。これより、圧接後、拡散焼鈍した接合部は、優れた接合強度を有することが確認された。   In this way, diffusion annealing was performed on the first and second metal plates whose side end portions were in pressure contact under the conditions shown in Table 1. Then, a tensile test piece TP having a width of 10 mm was taken along the direction perpendicular to the rolling direction (width direction) from the composite metal plate after diffusion annealing (see FIG. 3). When a tensile test was performed until the test piece broke using this, all the samples subjected to the tensile test were not broken at the joint, and all were broken on the pure Al plate side. In Table 1, those in which breakage occurred on the pure Al plate side were indicated as acceptable. From this, it was confirmed that the joint part which carried out the diffusion annealing after pressure welding has the outstanding joint strength.

Figure 0004780664
Figure 0004780664

本発明の第1実施形態にかかる複合金属板の素材である第1金属板、第2金属板の要部正面図である。It is a principal part front view of the 1st metal plate and 2nd metal plate which are the raw materials of the composite metal plate concerning 1st Embodiment of this invention. 第1、第2金属板の接合側端部を重ね合わせた状態を示す要部正面図である。It is a principal part front view which shows the state which piled up the junction side edge part of the 1st, 2nd metal plate. 第1、第2金属板の端部が圧接され、さらに拡散焼鈍された第1実施形態に係る複合金属板の斜視図を示す。The perspective view of the composite metal plate which concerns on 1st Embodiment by which the edge part of the 1st, 2nd metal plate was press-contacted and was further diffusion-annealed is shown. 先端部が平坦状とされた略三角形状の山部、三角形状の谷部を接合側端部に備えた第1、第2金属板を同部で重ね合わせた状態を示す要部正面図である。It is the principal part front view which shows the state which piled up the 1st, 2nd metal plate which equips the joint side edge part with the substantially triangular peak part with which the front-end | tip part was made flat, and the triangular trough part in the joint part. is there. 断面形状が台形の山部及び谷部を接合側端部に備えた第1、第2金属板を同部で重ね合わせた状態を示す要部正面図である。It is a principal part front view which shows the state which piled up the 1st, 2nd metal plate which provided the peak part and trough part whose cross-sectional shape is trapezoid in the joining side edge part in the same part. 板表面より突出した山部及び板表面より凹んだ谷部を接合側端部に備えた第1、第2金属板を同部で重ね合わせた状態を示す要部正面図である。It is a principal part front view which shows the state which piled up the 1st, 2nd metal plate which provided the peak part protruded from the plate surface, and the trough part recessed from the plate surface in the joining side edge part in the same part. 第2実施形態に係る、3枚の金属板が接合された複合金属板の斜視図を示す。The perspective view of the composite metal plate to which the three metal plates based on 2nd Embodiment were joined is shown. 第2実施形態に係る複合金属板の製造方法に用いる各素材の要部正面図である。It is a principal part front view of each raw material used for the manufacturing method of the composite metal plate which concerns on 2nd Embodiment. 第2実施形態に係る複合金属板の他の製造方法に用いる各素材の要部正面図である。It is a principal part front view of each raw material used for the other manufacturing method of the composite metal plate which concerns on 2nd Embodiment.

符号の説明Explanation of symbols

1 第1金属板
2 第2金属板
3 第3金属板
11,21 山部
12,22 谷部
DESCRIPTION OF SYMBOLS 1 1st metal plate 2 2nd metal plate 3 3rd metal plate 11,21 Mountain part 12,22 Valley part

Claims (11)

第1金属板と、第2金属板とを準備し、前記第1金属板の幅方向の端部と第2金属板の幅方向の端部同士を接合する複合金属板の製造方法であって、
前記第1金属板及び第2金属板はそれぞれ接合側端部において長さ方向に形成された山部と谷部を備え、前記第1金属板の山部及び谷部並びに第2金属板の山部及び谷部はそれぞれ30〜120度の角度をなす二つの傾斜面を有し、長さ方向に対して垂直な横断面における前記山部及び谷部の形状が前記二つの傾斜面によって凸状及び凹状をなすように形成され、さらに前記第1金属板の山部及び谷部は前記第2金属板の谷部及び山部にそれぞれ係合するように形成され、
前記第1金属板の山部を前記第2金属板の谷部に、前記第2金属板の山部を前記第1金属板の谷部にそれぞれ係合させて重ね合わせ、その重ね合わせ部を前記第1金属板及び第2金属板の長さ方向を圧延方向として一対のロールに通して圧下することによって圧接し、拡散焼鈍して接合する、複合金属板の製造方法。
A first metal plate and a second metal plate are prepared, and a method of manufacturing a composite metal plate in which end portions in the width direction of the first metal plate and end portions in the width direction of the second metal plate are joined to each other. ,
Wherein the first metal plate and a second metal plate provided with peaks and valleys formed on Oite length direction, each bonding end portion, ridges of the first metal plate and valleys and the second metal plate The crests and troughs each have two inclined surfaces forming an angle of 30 to 120 degrees, and the shape of the crests and troughs in the cross section perpendicular to the length direction is determined by the two inclined surfaces. It is formed so as to form a convex shape and a concave shape, and the crest and trough of the first metal plate are formed to engage with the trough and crest of the second metal plate, respectively .
The crests of the first metal plate to the valleys of the second metal plate, overlaid one mountain portion of the second metal plate respectively engaged engaged to valley of the first metal plate, the overlapping portion A method of manufacturing a composite metal plate, wherein the first metal plate and the second metal plate are pressed by passing through a pair of rolls with the length direction of the first metal plate and the second metal plate as the rolling direction, and are joined by diffusion annealing.
前記第1金属板及び第2金属板の山部及び谷部はそれぞれ前記横断面における形状が前記二つの傾斜面によって三角形の隣り合う二辺をなすように形成された、請求項1に記載した複合金属板の製造方法。 The peaks and valleys of the first metal plate and the second metal plate is formed so that each forms two sides of the shape in the cross section adjacent triangles by the previous SL two inclined surfaces, according to claim 1 Method for manufacturing a composite metal plate. 前記第1金属板の端部と第2金属板の端部とを重ね合わせた状態において、前記第1金属板の山部の頂部と第2金属板の山部の頂部との板厚方向の間隔が前記第1金属板及び第2金属板のそれぞれの板厚の20%以上である、請求項1又は2に記載した複合金属板の製造方法。 In the stacked state end to end of the second metal plate of the first metal plate, the thickness direction of the top of the crest of the top and second metal plate at the crest of the first metal plate The manufacturing method of the composite metal plate of Claim 1 or 2 whose space | interval is 20% or more of each plate thickness of the said 1st metal plate and a 2nd metal plate. 前記第1金属板及び第2金属板の一方の金属板が、純AlあるいはAl合金によって形成された、請求項1から3のいずれか項に記載した複合金属板の製造方法。 The method for producing a composite metal plate according to any one of claims 1 to 3, wherein one of the first metal plate and the second metal plate is formed of pure Al or an Al alloy. 前記第1金属板及び第2金属板の一方の金属板が純Alあるいは導電率が10%IACS以上のAl合金によって形成され、他方の金属板が導電率が10%IACS以上の導電性金属によって形成された、請求項1からのいずれか項に記載した複合金属板の製造方法。 One metal plate of the first metal plate and the second metal plate is made of pure Al or an Al alloy having a conductivity of 10% IACS or more, and the other metal plate is made of a conductive metal having a conductivity of 10% IACS or more. The manufacturing method of the composite metal plate as described in any one of Claim 1 to 3 formed. 一方の金属板が純Alによって形成され 他方の金属板が純Cuによって形成された、請求項5に記載した複合金属板の製造方法。The method for producing a composite metal plate according to claim 5, wherein one metal plate is made of pure Al and the other metal plate is made of pure Cu. 第1金属板、第2金属板及び第3金属板を準備し、前記第1金属板の幅方向の端部と前記第2金属板の幅方向の一方の端部を接合すると共に第2金属板の幅方向の他方の端部と第3金属板の幅方向の端部を接合する複合金属板の製造方法であって、A first metal plate, a second metal plate, and a third metal plate are prepared, and an end portion in the width direction of the first metal plate and one end portion in the width direction of the second metal plate are joined and a second metal A method for producing a composite metal plate for joining the other end in the width direction of the plate and the end in the width direction of the third metal plate,
前記第1金属板及び第3金属板はそれぞれ接合側端部において長さ方向に形成された山部と谷部を備え、前記第2金属板は一方及び他方の接合側端部において長さ方向に形成された山部と谷部を備え、前記第1金属板の山部及び谷部、第2金属板の山部及び谷部並びに第3金属板の山部及び谷部はそれぞれ30〜120度の角度をなす二つの傾斜面を有し、長さ方向に対して垂直な横断面における前記山部及び谷部の形状が前記二つの傾斜面によって凸状及び凹状をなすように形成され、さらに前記第1金属板の山部及び谷部は前記第2金属板の一方の端部に形成された谷部及び山部に、前記第3金属板の山部及び谷部は前記第2金属板の他方の端部に形成された谷部及び山部にそれぞれ係合するように形成され、  The first metal plate and the third metal plate each have a crest and a trough formed in the length direction at the joining side end, and the second metal plate is lengthwise at one and the other joining side end. The crests and troughs of the first metal plate, the crests and troughs of the second metal plate, and the crests and troughs of the third metal plate are 30 to 120 respectively. Two inclined surfaces forming an angle of degrees, and the shape of the peak and valley in a cross section perpendicular to the length direction is formed to be convex and concave by the two inclined surfaces, Further, the crests and troughs of the first metal plate are at troughs and crests formed at one end of the second metal plate, and the crests and troughs of the third metal plate are the second metal. Formed so as to engage with a valley and a peak formed on the other end of the plate,
前記第1金属板の山部及び谷部を前記第2金属板の一方の端部の谷部及び山部にそれぞれ係合させて重ね合わせると共に前記第3金属板の山部及び谷部を前記第2金属板の他方の端部の谷部及び山部にそれぞれ係合させて重ね合わせ、それらの重ね合わせ部を前記第1金属板、第2金属板及び第3金属板の長さ方向を圧延方向として一対のロールに通して圧下することによって圧接し、拡散焼鈍して接合する、複合金属板の製造方法。  The crests and troughs of the first metal plate are engaged and overlapped with the troughs and crests of one end of the second metal plate, respectively, and the crests and troughs of the third metal plate are overlapped with each other. The other end portions of the second metal plate are respectively engaged with the valley portions and the mountain portions and overlapped, and the overlapping portions are arranged in the length direction of the first metal plate, the second metal plate, and the third metal plate. A method for producing a composite metal plate, wherein the sheet is pressed by being passed through a pair of rolls as a rolling direction, and bonded by diffusion annealing.
前記第1金属板、第2金属板及び第3金属板の山部及び谷部はそれぞれ前記横断面における形状が前記二つの傾斜面によって三角形の隣り合う二辺をなすように形成された、請求項7に記載した複合金属板の製造方法。The crests and troughs of the first metal plate, the second metal plate, and the third metal plate are each formed such that the shape in the cross section forms two adjacent sides of a triangle by the two inclined surfaces. Item 8. A method for producing a composite metal plate according to Item 7. 前記第2金属板が純Cuあるいは熱伝導率がCuの60%以上のCu合金によって形成され、前記第1金属板および第3金属板がFeより熱膨張率の低いFe基合金によって形成された、請求項7又は8に記載した複合金属板の製造方法。The second metal plate is formed of pure Cu or a Cu alloy having a thermal conductivity of 60% or more of Cu, and the first metal plate and the third metal plate are formed of an Fe-based alloy having a lower thermal expansion coefficient than Fe. A method for producing a composite metal plate according to claim 7 or 8. 請求項1から6のいずれか一項に記載された複合金属板の製造方法によって製造された複合金属板であって、第1金属板と、第2金属板とを備え、前記第1金属板の幅方向の端部と前記第2金属板の幅方向の端部が接合された、複合金属板。 A composite metal plate manufactured by the method for manufacturing a composite metal plate according to claim 1, comprising a first metal plate and a second metal plate, wherein the first metal plate A composite metal plate in which an end in the width direction of the metal plate and an end in the width direction of the second metal plate are joined . 請求項7から9のいずれか一項に記載された複合金属板の製造方法によって製造された複合金属板であって、第1金属板、第2金属板及び第3金属板を備え、前記第1金属板の幅方向の端部に前記第2金属板の幅方向の一方の端部が接合されると共に前記第2金属板の幅方向の他方の端部にさらに前記第3金属板の幅方向の端部が接合された、複合金属板。 A composite metal plate produced by the method for producing a composite metal plate according to any one of claims 7 to 9, comprising a first metal plate, a second metal plate, and a third metal plate, One end in the width direction of the second metal plate is joined to the end in the width direction of one metal plate, and the width of the third metal plate is further added to the other end in the width direction of the second metal plate. Composite metal plate with directional ends joined .
JP2006258443A 2006-05-30 2006-09-25 Composite metal plate and manufacturing method thereof Active JP4780664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006258443A JP4780664B2 (en) 2006-05-30 2006-09-25 Composite metal plate and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006149235 2006-05-30
JP2006149235 2006-05-30
JP2006258443A JP4780664B2 (en) 2006-05-30 2006-09-25 Composite metal plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008006496A JP2008006496A (en) 2008-01-17
JP4780664B2 true JP4780664B2 (en) 2011-09-28

Family

ID=39065179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006258443A Active JP4780664B2 (en) 2006-05-30 2006-09-25 Composite metal plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4780664B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105083804A (en) * 2014-05-12 2015-11-25 广东新会中集特种运输设备有限公司 Splicing steel plates for container and manufacturing method thereof and container

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167019B1 (en) 2009-05-29 2012-07-24 가부시키가이샤 네오맥스 마테리아르 Clad plate
CN102883848A (en) * 2010-02-25 2013-01-16 技术材料公司 Methods for creating side-by-side metallic bonds between different materials using solid-phase bonding and the products produced thereby
CN102947043B (en) * 2010-06-08 2014-04-23 株式会社新王材料 Aluminum copper clad material and manufacture method thereof
US9350007B2 (en) 2011-01-27 2016-05-24 Neomax Materials Co., Ltd. Connection plate for battery terminals and method for manufacturing connection plate for battery terminals
JP6133286B2 (en) * 2012-06-22 2017-05-24 株式会社Uacj MIG welded joint structure of aluminum and steel
CN104347839A (en) * 2013-07-25 2015-02-11 浙江万向亿能动力电池有限公司 Preparation method for soft-packaged power lithium ion battery cathode composite tab structure
DE102013219404A1 (en) * 2013-09-26 2015-03-26 Heraeus Materials Technology Gmbh & Co. Kg Method for producing strips and strips of two metallic materials
DE102016122198A1 (en) * 2016-11-18 2018-05-24 Wickeder Westfalenstahl Gmbh Method for producing a composite material, and composite material
DE102017119677A1 (en) * 2017-08-28 2019-02-28 Doduco Solutions Gmbh Method for producing a lap-over composite material from sheet metal
EP4287384A1 (en) 2022-05-31 2023-12-06 Heraeus Deutschland GmbH & Co. KG Connector made of two metallic materials

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177981A (en) * 1984-02-24 1985-09-11 Hitachi Cable Ltd Production of edge lay and through-lay clad material
JPS61165286A (en) * 1985-01-14 1986-07-25 Ishikawajima Harima Heavy Ind Co Ltd Joining device for rolling material
JPS6448684A (en) * 1987-08-17 1989-02-23 Showa Aluminum Corp Production of aluminum-copper laminating material
JP2812898B2 (en) * 1995-06-08 1998-10-22 株式会社神戸製鋼所 Method for manufacturing clad plate with excellent formability
JP4313276B2 (en) * 2004-09-22 2009-08-12 住友軽金属工業株式会社 Metal plate splicing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105083804A (en) * 2014-05-12 2015-11-25 广东新会中集特种运输设备有限公司 Splicing steel plates for container and manufacturing method thereof and container

Also Published As

Publication number Publication date
JP2008006496A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP4780664B2 (en) Composite metal plate and manufacturing method thereof
JP4961508B2 (en) Clad plate
JP4961512B2 (en) Aluminum copper clad material
KR101178035B1 (en) Aluminum-bonding alloy, clad material having bonding alloy layer formed from the alloy, and composite material including bonded aluminum
JP6006805B2 (en) Method for joining dissimilar materials
US20120292080A1 (en) Composite Conductive Component and Method for Making it
US20160288248A1 (en) Method of producing aluminum clad member
JP2010257695A5 (en)
JP4627400B2 (en) Aluminum / nickel clad and battery external terminals
JP2003136278A (en) Phosphor copper solder material, brazing sheet and manufacturing method thereof and passage structure of heat exchanger
JP4230377B2 (en) Clad material for terminal and terminal for aluminum wire formed by the clad material for terminal
JP6364910B2 (en) Clad material and method for producing the clad material
KR102001288B1 (en) Lead material for battery and method for producing the same
JP2009190080A (en) Copper-silver brazing filler metal and cladding material for lid of package for electronic component
EP3152049B1 (en) Low nickel, multiple layer laminate composite
JPH11284111A (en) Heat sink member, manufacture thereof and semiconductor package using the hear sink member
WO2017115661A1 (en) Cladding material and casing for electronic devices
WO2023119705A1 (en) Method for manufacturing cladding material
WO2004020191A1 (en) Aluminum/nickel clad material and method for manufacture thereof, and exterior terminal for electric cell
JPS6356371A (en) Manufacture of titanium clad steel sheet
CN114227064B (en) Silver-copper-titanium active solder laminated composite strip and preparation method thereof
JPH0353074B2 (en)
JP2004209490A (en) Clad material for welding structure and welding structure member using the clad material
JP3899709B2 (en) Clad steel plate manufacturing method
JP4600299B2 (en) Method for producing solder clad material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4780664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250