JPS6356371A - Manufacture of titanium clad steel sheet - Google Patents

Manufacture of titanium clad steel sheet

Info

Publication number
JPS6356371A
JPS6356371A JP19820686A JP19820686A JPS6356371A JP S6356371 A JPS6356371 A JP S6356371A JP 19820686 A JP19820686 A JP 19820686A JP 19820686 A JP19820686 A JP 19820686A JP S6356371 A JPS6356371 A JP S6356371A
Authority
JP
Japan
Prior art keywords
material plate
plate
titanium
clad
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19820686A
Other languages
Japanese (ja)
Other versions
JPH0465755B2 (en
Inventor
Aoshi Tsuyama
青史 津山
Masataka Suga
須賀 正孝
Akira Tagane
章 多賀根
Akihiro Tanaka
明広 田中
Nobuhiro Seki
関 信博
Kazuaki Matsumoto
和明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP19820686A priority Critical patent/JPS6356371A/en
Publication of JPS6356371A publication Critical patent/JPS6356371A/en
Publication of JPH0465755B2 publication Critical patent/JPH0465755B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To obtain the clad steel having high joining strength and bendability by providing the prescribed gap between the base metal of Fe base metal on which the necessary roughening is executed and a Ti clad material and hot- rolling the assembly slab in which the intermediate joining material of low carbon steel is inserted at the prescribed temp. CONSTITUTION:The roughening in 30-90mum roughness is executed on the joining face of the larger plastic deformation resistance part of a Fe base metal base metal and Ti group clad material. The intermediate joining material in thin thickness consisting of the low carbon steel of <=0.01wt% C is then inserted between this base metal and clad material, the gap in 0.1-8.0mm is provided between the intermediate material and clad material and the assembly slab is prepared. The assembly slab is then subjected to a hot rolling at the rolling temp. of 650-850 deg.C. The compound material laminating said intermediate joining material and the intermediate joining material consisting of Cu, Ni or Cu-Ni alloy may be applied for the intermediate joining material. The Ti clad steel sheet having high joining strength and bendability can thus be made.

Description

【発明の詳細な説明】 〔゛発明の技術分野〕 この発明は、チタンクラッド鋼板の熱間圧延による製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a titanium clad steel plate by hot rolling.

〔従来技術とその問題点〕[Prior art and its problems]

チタンクラッド鋼板の熱間圧延による製造方法は、炭素
鋼、低合金鋼およびステンレス鋼等の鉄基金属のいずれ
か1つからなる母材板と、チタンおよびチタン合金のい
ずれか1つからなるチタンクラッド材板とからなる組立
てスラブを、1050℃近辺の温度に加熱し、加熱され
た組立てスラブを、950〜1ooo℃の圧延温度で熱
間圧延して、母材板およびチタンクラッド材板を互いに
圧着し、母材板およびチタンクラッド材板からなるチタ
ンクラッド鋼板を得るものである。
The method for manufacturing titanium clad steel sheets by hot rolling involves a base material plate made of any one of iron-based metals such as carbon steel, low alloy steel, and stainless steel, and a titanium plate made of any one of titanium and titanium alloys. The assembled slab consisting of the clad material plate is heated to a temperature of around 1050°C, and the heated assembled slab is hot rolled at a rolling temperature of 950 to 100°C to bond the base material plate and the titanium clad material plate to each other. A titanium clad steel plate consisting of a base material plate and a titanium clad material plate is obtained by crimping.

このような熱間圧延によって製造されたチタンクラッド
鋼板においては、母材板とクラッド材板との接合界面に
、熱間圧延によ5F。−T1の脆弱な金属間化合物層が
形成される。この金属間化合物層は、組立てスラブの加
熱温度および圧延温度が高い程増大し、チタンクラッド
鋼板の接合強度および曲げ加工性を低下させる。−!だ
、母材板を構成する鉄基金属からクラッド材板との接合
界面に拡散して来た炭素が接合界面でチタン炭化物を形
成することも、接合強度および曲げ加工性の低下を助長
する。
In titanium clad steel sheets manufactured by such hot rolling, 5F is formed at the bonding interface between the base material plate and the cladding material plate by hot rolling. - A fragile intermetallic layer of T1 is formed. This intermetallic compound layer increases as the heating temperature and rolling temperature of the assembled slab increases, reducing the bonding strength and bending workability of the titanium clad steel plate. -! However, carbon that has diffused from the iron-based metal that makes up the base plate to the bonding interface with the cladding material plate forms titanium carbide at the bonding interface, which also promotes a decrease in bonding strength and bending workability.

この対策として、特開昭59−220293号公報およ
び特開昭60−2133’78号公報には、組立てスラ
ブを950℃以下の低い温度に加熱し、熱間圧延する方
法が開示されている。しかし、950℃以下の温度に加
熱し、熱間圧延したのでは、母材板とクラッド材板との
間での金属原子の相互拡散が起こりにくくなるため、接
合界面に未圧着ポロシティが残存する。
As a countermeasure to this problem, Japanese Patent Application Laid-Open No. 59-220293 and Japanese Patent Application Laid-open No. 60-2133'78 disclose a method of heating the assembled slab to a low temperature of 950° C. or lower and hot rolling it. However, when heated to a temperature below 950°C and hot rolled, it becomes difficult for metal atoms to interdiffusion between the base material plate and the cladding material plate, resulting in unbonded porosity remaining at the bonding interface. .

即ち、クラッド材板を構成するチタン捷たけチタン合金
と母材板を構成する鉄基金属の熱間変形抵抗を比較する
と、クラッド材板がチタン製の場合は、母材板を構成す
る鉄基金属に比べ熱間変形抵抗が小さいために、熱間圧
延時にクラッド材板が優先的に変形し、母材板上を滑る
傾向がある。
In other words, when comparing the hot deformation resistance of the titanium-based titanium alloy that makes up the cladding material plate and the iron-based metal that makes up the base material plate, it is found that when the cladding material plate is made of titanium, the iron-based metal that makes up the base material plate Since the hot deformation resistance is lower than that of metal, the clad material plate deforms preferentially during hot rolling and tends to slide on the base material plate.

従って、組立てスラブの圧延温度が高い場合には問題は
ないが、圧延温度が低い場合には、熱間圧延時に母材板
とクラッド材板との間での金属原子の相互拡散が起と9
にくいので、未圧着ポロシティが発生し、残存する。ク
ラッド材板がチタン合金製の場合には、母材板を構成す
る鉄基金属の方が熱間変形抵抗が小さくなるため、熱間
圧延時に逆に母材板が優先的に変形して、同様に未圧着
ポロシティが発生し、残存させる。
Therefore, there is no problem if the rolling temperature of the assembled slab is high, but if the rolling temperature is low, interdiffusion of metal atoms between the base material plate and the cladding material plate may occur during hot rolling.
Since it is difficult to bond, uncrimped porosity occurs and remains. When the clad material plate is made of titanium alloy, the iron-based metal that makes up the base metal plate has lower hot deformation resistance, so the base metal plate deforms preferentially during hot rolling. Similarly, uncrimped porosity occurs and remains.

未圧着ポロシティが残存すると、逆にこれが原因と々っ
て、同様に接合強度および曲げ加工性の低下を生じる。
If unbonded porosity remains, this will conversely cause a similar reduction in bonding strength and bending workability.

〔発明の目的〕[Purpose of the invention]

この発明は、上述の現状に鑑み、接合強度および曲げ加
工性の高いチタンクラッド鋼板を得るととができる、チ
タンクラッド鋼板の熱間圧延による製造方法を提供する
ことを目的とするものである。
In view of the above-mentioned current situation, it is an object of the present invention to provide a method for manufacturing a titanium clad steel plate by hot rolling, which makes it possible to obtain a titanium clad steel plate with high bonding strength and bending workability.

〔発明の概要〕[Summary of the invention]

この発明は、鉄基金属からなる母材板と、チタンおよび
チタン合金のいずれか1つからなるチタンクラッド材板
とを、熱間圧延によって互いに圧着して、チタンクラッ
ド鋼板を製造するに際し、前記母材板と前記クラッド材
板のうち塑性変形抵抗の大きい方の接合面に粗さ30〜
90μmの粗面加工を施し、前記母材板と前記クラッド
材板との間に、炭素0.01 wt %以下の低炭素鋼
からなる薄厚の接合中間材を介挿し、または、炭素0.
01wt%以下の低炭素鋼からなる第1接合中間材と銅
、ニッケルおよび銅−ニッケル合金のいずれか1つから
なる第2接合中間材とを積層した複合の接合中間材を、
前記第2接合中間材が前記母材板側となるように介挿し
、且つ、前記接合中間材と前記クラッド材板との間に0
.1〜8,0關の間隙を設けて、組立てスラブを調製し
、そして、前記組立てスラブを650〜850℃の圧延
温度で熱間圧延することに特徴を有するものである。
This invention provides a method for manufacturing a titanium clad steel plate by hot rolling a base material plate made of an iron-based metal and a titanium clad material plate made of either titanium or a titanium alloy. The bonding surface of the base material plate and the cladding material plate, whichever has greater plastic deformation resistance, has a roughness of 30~30.
The surface is roughened to 90 μm, and a thin joining intermediate material made of low carbon steel containing 0.01 wt % or less carbon is inserted between the base material plate and the clad material plate.
A composite joining intermediate material in which a first joining intermediate material made of low carbon steel of 0.01 wt% or less and a second joining intermediate material made of any one of copper, nickel, and copper-nickel alloy are laminated,
The second bonding intermediate material is inserted so as to be on the base material plate side, and a zero
.. The method is characterized in that an assembled slab is prepared with a gap of 1 to 8.0 degrees, and then the assembled slab is hot rolled at a rolling temperature of 650 to 850°C.

〔発明の構成〕 以下、この発明のチタンクラッド鋼板の製造方法につい
て詳述する。
[Structure of the Invention] Hereinafter, the method for manufacturing a titanium clad steel sheet of the present invention will be described in detail.

この発明において、チタンクラッド材板は、チタンまた
はチタン合金からなる。母材板は、炭素鋼、低合金鋼お
よびステンレス鋼等の鉄基金属からなる。
In this invention, the titanium clad material plate is made of titanium or a titanium alloy. The base material plate is made of iron-based metal such as carbon steel, low alloy steel, and stainless steel.

この発明において、母材板とチタンクラッド材板との間
に、炭素0.01wt%以下の低炭素鋼からなる薄厚の
接合中間材を介挿して、組立てスラブを調製するのは、
接合中間材を介挿することによって、クラッド材板との
接合界面に母材板を構成する鉄基金属から炭素が拡散す
るのを阻正し、接合界面にチタン炭化物が形成されるの
を防止するためである。接合中間材を構成する低炭素鋼
の炭素含有量を0.01wt %以下としたのは、炭素
含有量がα01wt%を超えると、接合中間材自身から
の炭素の拡散が無視し得なくなるからでちる。薄厚の接
合中間材の厚さとしては、熱間圧延後に数lO〜数1数
100捏 クラッド材板との接合界面に母材板を構成する鉄基金属
から炭素が拡散するのを更に効果的に阻止する必要があ
る場合には、炭素α01wt %以下の低炭素鋼からな
る第1接合中間材と銅、ニッケルおよび銅−ニッケル合
金のいずれか1つから々る第2接合中間材とを積層した
薄厚の複合接合中間材を、第売接合中間材が母材板側と
なるようにして、母材板と前記クラッド材板との間に介
挿すればよい。なお、銅、ニッケルまたは銅−ニッケル
合金からなる薄厚の接合中間材のみを介挿したのでは、
?o− Tiの金属間化合物層よりも更に脆弱な金属間
化合物層が形成されるので、よくない。
In this invention, an assembled slab is prepared by inserting a thin joining intermediate material made of low carbon steel with carbon content of 0.01 wt% or less between the base material plate and the titanium clad material plate.
By inserting a bonding intermediate material, it is possible to prevent carbon from diffusing from the iron-based metal that makes up the base plate to the bonding interface with the cladding material plate, and to prevent the formation of titanium carbide at the bonding interface. This is to do so. The reason why the carbon content of the low carbon steel constituting the joining intermediate material was set to 0.01wt% or less is because if the carbon content exceeds α01wt%, the diffusion of carbon from the joining intermediate material itself cannot be ignored. Chiru. The thickness of the thin bonding intermediate material should be several 10 to several 100 after hot rolling to more effectively prevent carbon from diffusing from the iron-based metal constituting the base material plate at the bonding interface with the clad material plate. If it is necessary to prevent this from occurring, a first joining intermediate material made of low carbon steel with a carbon α of 01 wt % or less and a second joining intermediate material made of any one of copper, nickel, and copper-nickel alloy are laminated. The thin composite bonding intermediate material thus obtained may be inserted between the base material plate and the cladding material plate, with the final bonding intermediate material facing the base material plate side. In addition, if only a thin joining intermediate material made of copper, nickel, or copper-nickel alloy is inserted,
? This is not good because an intermetallic compound layer that is even more fragile than the o-Ti intermetallic compound layer is formed.

この発明において、接合中間材とチタンクラッド材板と
の間に0.1 − ao 玉の間隙を設けて、組立てス
ラブを調製するのは、組立てスラブの加熱時に、接合中
間材とチタンクラッド材板との接触を防止して、接合中
間材とチタンクラ・ソド材板との界面にFθ−T1の金
属間化合物層が形成されるのを抑制するためである。間
隙の大きさが8,−mを超えると、熱間圧延によって所
定の接合強度が得られるように、母材板とクラッド材板
とを接合中間材を介して互いに圧着するために、大きな
圧下比を必要とする。一方、間隙の大きさが0.171
fi未満であると、組立てスラブの溶接後に間隙に存在
する空気を排気する際、排気抵抗が大きく々り過ぎて長
時間を要する。従って、間隙は0.1〜8.0朋の範囲
にすべきである。接合中間材とクラッド材板との間の間
隙は、その間の四隅にスペーサを介挿することによシ設
けるのが良い。
In this invention, an assembled slab is prepared by providing a gap of 0.1 - ao between the joining intermediate material and the titanium clad material plate. This is to suppress the formation of an Fθ-T1 intermetallic compound layer at the interface between the bonding intermediate material and the titanium carbonate material plate. If the size of the gap exceeds 8,-m, a large reduction is required to press the base material plate and cladding material plate together via the joining intermediate material so that a predetermined joint strength can be obtained by hot rolling. Requires a ratio. On the other hand, the gap size is 0.171
If it is less than fi, the exhaust resistance will be too large and it will take a long time to exhaust the air existing in the gap after welding the assembled slabs. Therefore, the gap should be in the range of 0.1 to 8.0 mm. The gap between the joining intermediate material and the cladding material plate is preferably provided by inserting spacers at the four corners between them.

この発明において、母材板とチタンクラッド材板のうち
塑性変形抵抗の大きい方の接合面に粗さ30〜90μm
の粗面加工を施す理由は、次の通9である。
In this invention, the bonding surface of the base material plate and the titanium clad material plate, which has greater plastic deformation resistance, has a roughness of 30 to 90 μm.
The reason for roughening the surface is as follows.

熱間圧延によって接合中間材を介して母材板とチタンク
ラッド材板とを互いに圧着したときに、接合界面に未圧
着ポロシティが残存するのを防止するためには、熱間圧
延時に母材板およびクラッド材板に作用する垂直圧縮応
力を高めて、母材板とクラッド材板との間での金属原子
の相互接触を促進する必要がある。そのためには、圧延
圧力を充分に大きくすることが考えられるが、圧延機の
能力や組立てスラブの圧延板幅等の関係から、圧延圧力
を充分に大きくすることは困難である。
In order to prevent unbonded porosity from remaining at the bonding interface when a base material plate and a titanium clad material plate are crimped to each other via a joining intermediate material by hot rolling, it is necessary to It is also necessary to increase the vertical compressive stress acting on the cladding material plate to promote mutual contact of metal atoms between the base material plate and the cladding material plate. For this purpose, it is conceivable to increase the rolling pressure sufficiently, but it is difficult to increase the rolling pressure sufficiently due to the capacity of the rolling mill, the width of the rolled plate of the assembled slab, etc.

そこで、本発明者等は、種々の検討を重ね、次に述べる
実験を行なった結果、母材板とチタンクラッド材板のう
ち塑性変形抵抗の大きい方の材料の接合面の粗さを30
〜90μmとすれば、この粗さの接合面によって熱間圧
延時に塑性変形抵抗の小さい方の材料の接合面を拘束し
、その圧延方向の変形を抑制できるので、母材板とクラ
ッド材板て作用する垂直圧縮応力を容易に高めることが
でき、その結果、接合界面に未圧着ポロシティが残存す
るのを防止できることを知見した。
Therefore, the present inventors conducted various studies and conducted the experiments described below. As a result, the roughness of the joint surface of the base material plate and the titanium clad material plate, whichever has greater plastic deformation resistance, was reduced to 30%.
If the roughness is ~90μm, the joint surface of this roughness will restrain the joint surface of the material with smaller plastic deformation resistance during hot rolling and suppress its deformation in the rolling direction. It has been found that the acting vertical compressive stress can be easily increased, and as a result, it is possible to prevent unbonded porosity from remaining at the bonding interface.

行なった実験は次の通りである。即ち、炭素鋼からなる
母材板とチタンからなるクラッド材板のうち、塑性変形
抵抗の大きい方の母材板の接合面に種々の粗さの粗面加
工を施した組立てスラブを調製して、熱間圧延によりチ
タンクラッド鋼板.を製造し、そして、チタンクラッド
鋼板の剪断試験および曲げ試験を行なって、母材板の接
合面の粗さとの関係を調べた。その結果を第1図に示す
The experiments conducted are as follows. That is, assembled slabs were prepared by roughening the joint surface of the base material plate with a greater resistance to plastic deformation with various roughnesses between a base material plate made of carbon steel and a cladding material plate made of titanium. , titanium clad steel plate by hot rolling. A shear test and a bending test were conducted on the titanium clad steel plate to investigate the relationship between the roughness of the bonding surface of the base plate and the bonding surface of the base plate. The results are shown in FIG.

製造条件は次の通9である0 母材板   :SB ル9 炭素鋼、 寸法は124. 、X 1B00m1nX 2500f
il。
The manufacturing conditions are as follows90 Base material plate: SB le9 Carbon steel, dimensions are 124. ,X 1B00m1nX 2500f
il.

lO− クラッド材板:純TjJ種、 寸法は30m、 X 1’i’00m1 X 2400
m、。
lO- cladding board: pure TjJ type, dimensions are 30m, X 1'i'00m1 X 2400
m.

接合中間材 :炭素0.002〜0.01wt%の低炭
素鋼からなる接合中間材、並びに、 炭素0.002〜0.01wt %の低炭素鋼からなる
第1接合中間材とニラ ケルからなる第2接合中間材の 複合接合中間材。
Joining intermediate material: A joining intermediate material made of low carbon steel containing 0.002 to 0.01 wt% carbon, a first joining intermediate material made of low carbon steel containing 0.002 to 0.01 wt% carbon, and a first joining intermediate material made of Nirakel. Composite bonded intermediate material of two bonded intermediate materials.

組立てスラブ:後述の第2図(へ)に示す組立て方式。Assembling slab: Assembling method shown in Figure 2 (f) below.

圧延寸法  : 2 X (12+3)m71IX 3
500gz X 12800mm。
Rolling dimensions: 2 x (12+3)m71IX 3
500gz x 12800mm.

加熱温度  :800〜980℃ 圧延温度  :650〜850℃ クラッド材板と接合中間材と の間の間隙:2mm。Heating temperature: 800-980℃ Rolling temperature: 650-850℃ Clad material plate and joining intermediate material Gap between: 2mm.

母材板の接合面に粗面加工を施すにはポータプルグライ
ンダーを用いた。
A porta-pull grinder was used to roughen the joint surfaces of the base metal plates.

第1図において、○印は曲げ試験でクラッド材板と母材
板とが剥離せず良好であったことを示し、・印は曲げ試
験でクラッド材板が剥離し不良であったことを示し、ま
た、*印は複合接合中間材を用いていることを示す。
In Figure 1, the ○ mark indicates that the clad material plate and the base material plate did not peel off during the bending test and was good, and the ・ mark indicates that the clad material plate separated during the bending test and was defective. , * indicates that a composite bonding intermediate material is used.

第1図に示されるように、母材板の接合面の粗さが30
μm未満の場合には、未圧着ポロシティが残存するため
に、剪断強度が小さく、また曲げ試験において接合面に
剥離が発生している。一方、粗さが90μmを超えると
、クラッド材板を構成するチタンが母材板の接合面に充
満し外いために、未圧着ポロシティが残存し、剪断試験
および曲げ試験において満足な結果を示さないでいる。
As shown in Figure 1, the roughness of the joint surface of the base material plate is 30
If it is less than μm, unbonded porosity remains, resulting in low shear strength and peeling at the bonded surface in bending tests. On the other hand, if the roughness exceeds 90 μm, the titanium constituting the cladding material plate will fill the joint surface of the base material plate and come off, leaving unbonded porosity and not showing satisfactory results in shear tests and bending tests. I'm here.

以上から、母材板とチタンクラッド材板のうち、塑性変
形抵抗の大きい方の材料の接合面の粗さを30〜90μ
mとすれば、接合界面に未圧着ポロシティが残存するの
を容易に防止できることが判る。
From the above, the roughness of the joint surface of the material with greater plastic deformation resistance between the base material plate and the titanium clad material plate is set at 30 to 90 μm.
It can be seen that if m is used, it is possible to easily prevent unbonded porosity from remaining at the bonding interface.

なお、クラッド材板がチタン合金からなる場合には、ク
ラッド材板の方が母材板よりも塑性変形抵抗が大になる
ので、この場合には、クラッド材板の接合面を粗さ30
〜90μmとするのは勿論である。
In addition, when the cladding material plate is made of titanium alloy, the plastic deformation resistance of the cladding material plate is greater than that of the base material plate, so in this case, the joint surface of the cladding material plate is made with a roughness of 30.
Of course, the thickness is set to 90 μm.

この発明において、熱間圧延の圧延温度を650〜85
0℃に限定したのは、圧延温度が850℃を超えると、
接合界面でのFe−TIの脆弱な金属間化合物層の形成
が促進され、一方、650℃未満では、所定の圧延圧下
量に要する圧延圧力が増大し、好ましくないからである
。組立てスラブの加熱温度は、F8−T工の融点の10
85℃以下の温度にする。
In this invention, the rolling temperature of hot rolling is 650 to 85
The reason why it is limited to 0℃ is that if the rolling temperature exceeds 850℃,
This is because the formation of a fragile intermetallic compound layer of Fe-TI at the bonding interface is promoted, and on the other hand, if the temperature is lower than 650°C, the rolling pressure required for a predetermined rolling reduction amount increases, which is not preferable. The heating temperature of the assembled slab is 10% higher than the melting point of F8-T.
Keep the temperature below 85℃.

組立てスラブの組立て方式としては、第2図(A)〜(
C)に示す3つが代表的なものであるが、同時に3枚以
上のクラッド鋼板を製造することができる組立て方式を
採用することもできる。
The method of assembling the assembled slab is shown in Figure 2 (A) to (
The three methods shown in C) are typical, but an assembly method that allows three or more clad steel plates to be manufactured at the same time can also be adopted.

第2図(A)〜(C)において、lは母材板、2はチタ
ンクラッド材板、3は接合中間材(複合の接合中間材を
含む)、4は剥離材、5はスペーサ、6は溶接部、7は
クラッド材板2と接合中間材3との間に設けた間隙であ
る。また、第2図(B)〜(C)において、8はカバー
材である。
In FIGS. 2(A) to (C), l is a base material plate, 2 is a titanium clad material plate, 3 is a bonding intermediate material (including a composite bonding intermediate material), 4 is a release material, 5 is a spacer, and 6 is a welded portion, and 7 is a gap provided between the clad material plate 2 and the joining intermediate material 3. Further, in FIGS. 2(B) to 2(C), 8 is a cover material.

第2図(A)は、片面チタンクラッド鋼板を同時に2枚
製造するための組立てスラブの組立て方式(以下A方式
と称す)ヲ、第2図(B)は、片面チタンクラッド鋼板
を1枚製造するための組立てスラブの組立て方式(以下
B方式と称す)を、そして、第2図(0)は、両面チタ
ンクラッド鋼板を1枚製造するための組立てスラブの組
立て方式(以下C方式と称す)を示す。
Figure 2 (A) shows an assembly method of assembled slabs (hereinafter referred to as method A) for simultaneously manufacturing two single-sided titanium clad steel plates, and Figure 2 (B) shows a method for manufacturing one single-sided titanium clad steel plate. Figure 2 (0) shows an assembly method of assembled slabs for manufacturing one double-sided titanium clad steel plate (hereinafter referred to as method C). shows.

調製された組立スラブの内部は、]、0”−”Parr
以下の高真空にすることが好ましい。そのために、組立
てス゛ラブの周囲の溶接を大気中で行かったのち、拡散
ポンプで組立てスラブの内部を吸引して高真空にする他
、組立てスラブの周囲の溶接を電子ビーム溶接などによ
って高真空中で行ない、内部を高真空にする。
The interior of the prepared assembled slab is ], 0”-”Parr
It is preferable to use the following high vacuum. To do this, we first perform welding around the assembled slab in the atmosphere, then create a high vacuum by suctioning the inside of the assembled slab using a diffusion pump, and weld the area around the assembled slab in a high vacuum using electron beam welding. to create a high vacuum inside.

〔実施例〕〔Example〕

この発明の方法に従って、本発明クラッド鋼板N[11
〜6.11〜13.16〜17および19〜21を製造
し、超音波探傷試験等の確性試験を行なった。
According to the method of this invention, the clad steel plate N[11
~6.11~13.16~17 and 19~21 were manufactured, and accuracy tests such as ultrasonic flaw detection tests were conducted.

また、比較のために、この発明の範囲外の製造条件で、
比較クラッド鋼板%7〜10 、14〜15および18
を製造し、同様に、超音波探傷試験等の確性試験を行な
った。
Also, for comparison, under manufacturing conditions outside the scope of this invention,
Comparative clad steel plate%7-10, 14-15 and 18
was manufactured and similarly conducted accuracy tests such as ultrasonic flaw detection tests.

組立てスラブの組立て方式は、第2図(A)〜(C)に
示したA−0の3方式で、それぞれの方式における母材
板等の規格、寸法等の基本条件を、第1表19〜21、
並びに、比較クラッド鋼板A’7〜10.14〜15お
よび18の製造条件を第2表に、そして、それらの確性
試験結果を第3表に示す。
There are three methods of assembling the assembled slabs, A-0 shown in Figure 2 (A) to (C). ~21,
In addition, the manufacturing conditions of comparative clad steel plates A'7 to 10, 14 to 15 and 18 are shown in Table 2, and the results of their accuracy tests are shown in Table 3.

第2表〜第3表に示されるように、この発明では、接合
強度および曲げ加工性の高いチタンクラッド鋼板が得ら
れている。
As shown in Tables 2 and 3, the present invention provides titanium clad steel plates with high bonding strength and bending workability.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、接合強度および曲げ加工性の高いチ
タンクラッド鋼板を容易に製造することができる。
According to this invention, a titanium clad steel plate with high bonding strength and bending workability can be easily manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明において接合面の1方に行なう粗面
加工の粗さと剪断強度との関係を示すグラフ、第2図(
A)〜(C)は、それぞれこの発明における組立てスラ
ブの代表的な組立方式を示す垂直横断面図である。図面
において、 コ・・・母材板、     2・・・クラッド材板、3
・・・接合中間材、  4・・・剥離材、5・・スペー
サ、   6・・・溶接部、7・・間隙、     8
・・・カバー材。 −]9− −In寸(〇− ψ u′)  囚 く
Figure 1 is a graph showing the relationship between the roughness of the roughening performed on one side of the joint surface and shear strength in this invention, and Figure 2 (
A) to (C) are vertical cross-sectional views each showing a typical method of assembling an assembled slab according to the present invention. In the drawing, K... Base material plate, 2... Clad material plate, 3
...Joining intermediate material, 4...Peeling material, 5...Spacer, 6...Welding part, 7...Gap, 8
...Cover material. −]9− −In dimension (〇− ψ u′) Capture

Claims (1)

【特許請求の範囲】 1、鉄基金属からなる母材板と、チタンおよびチタン合
金のいずれか1つからなるチタンクラッド材板とを、熱
間圧延によって互いに圧着して、チタンクラッド鋼板を
製造するに際し、 前記母材板と前記クラッド材板のうち塑性変形抵抗の大
きい方の接合面に粗さ30〜90μmの粗面加工を施し
、前記母材板と前記クラッド材板との間に、炭素0.0
1wt%以下の低炭素鋼からなる薄厚の接合中間材を介
挿し、且つ、前記接合中間材と前記クラッド材板との間
に0.1〜8.0mmの間隙を設けて、組立てスラブを
調製し、そして、前記組立てスラブを650〜850℃
の圧延温度で熱間圧延することを特徴とする、チタンク
ラッド鋼板の製造方法。 2、鉄基金属からなる母材板と、チタンおよびチタン合
金のいずれか1つからなるチタンクラッド材板とを、熱
間圧延によって互いに圧着して、チタンクラッド鋼板を
製造するに際し、 前記母材板と前記クラッド材板のうち塑性変形抵抗の大
きい方の接合面に粗さ30〜90μmの粗面加工を施し
、前記母材板と前記クラッド材板との間に、炭素0.0
1wt%以下の低炭素鋼からなる第1接合中間材と銅、
ニッケルおよび銅−ニッケル合金のいずれか1つからな
る第2接合中間材とを積層した薄厚の複合接合中間材を
、前記第2接合中間材が前記母材板側となるように介挿
し、且つ、前記複合接合中間材と前記クラッド材板との
間に0.1〜8.0mmの間隙を設けて、組立てスラブ
を調製し、そして、前記組立てスラブを650〜850
℃の圧延温度で熱間圧延することを特徴とする、チタン
クラッド鋼板の製造方法。
[Claims] 1. A titanium clad steel plate is produced by hot rolling a base material plate made of an iron-based metal and a titanium clad material plate made of either titanium or a titanium alloy. When doing so, the bonding surface of the base material plate and the cladding material plate, whichever has greater plastic deformation resistance, is roughened to a roughness of 30 to 90 μm, and between the base material plate and the cladding material plate, carbon 0.0
An assembled slab is prepared by inserting a thin joining intermediate material made of low carbon steel of 1 wt% or less and providing a gap of 0.1 to 8.0 mm between the joining intermediate material and the cladding material plate. Then, the assembled slab is heated to 650-850°C.
A method for producing a titanium clad steel sheet, the method comprising hot rolling at a rolling temperature of . 2. When manufacturing a titanium clad steel plate by hot rolling a base material plate made of an iron-based metal and a titanium clad material plate made of either titanium or a titanium alloy, the base material The joint surface of the plate and the clad material plate, which has a higher plastic deformation resistance, is roughened to a roughness of 30 to 90 μm, and between the base material plate and the clad material plate, carbon 0.0
A first joining intermediate material made of low carbon steel of 1 wt% or less and copper,
A thin composite bonding intermediate material in which a second bonding intermediate material made of any one of nickel and a copper-nickel alloy is laminated is inserted such that the second bonding intermediate material is on the base material plate side, and , prepare an assembled slab by providing a gap of 0.1 to 8.0 mm between the composite bonding intermediate material and the cladding material plate, and prepare the assembled slab with a gap of 650 to 850 mm.
A method for producing a titanium clad steel sheet, characterized by hot rolling at a rolling temperature of °C.
JP19820686A 1986-08-26 1986-08-26 Manufacture of titanium clad steel sheet Granted JPS6356371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19820686A JPS6356371A (en) 1986-08-26 1986-08-26 Manufacture of titanium clad steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19820686A JPS6356371A (en) 1986-08-26 1986-08-26 Manufacture of titanium clad steel sheet

Publications (2)

Publication Number Publication Date
JPS6356371A true JPS6356371A (en) 1988-03-10
JPH0465755B2 JPH0465755B2 (en) 1992-10-21

Family

ID=16387245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19820686A Granted JPS6356371A (en) 1986-08-26 1986-08-26 Manufacture of titanium clad steel sheet

Country Status (1)

Country Link
JP (1) JPS6356371A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049916B2 (en) 2004-01-21 2006-05-23 Keihin Corporation Electromagnetic apparatus
US7325564B2 (en) 2004-03-24 2008-02-05 Keihin Corporation Linear solenoid valve
US7487798B2 (en) 2004-03-31 2009-02-10 Keihin Corporation Linear solenoid valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049916B2 (en) 2004-01-21 2006-05-23 Keihin Corporation Electromagnetic apparatus
US7388461B2 (en) 2004-01-21 2008-06-17 Keihin Corporation Electromagnetic apparatus
US7325564B2 (en) 2004-03-24 2008-02-05 Keihin Corporation Linear solenoid valve
US7503347B2 (en) 2004-03-24 2009-03-17 Keihin Corporation Linear solenoid valve
US7487798B2 (en) 2004-03-31 2009-02-10 Keihin Corporation Linear solenoid valve

Also Published As

Publication number Publication date
JPH0465755B2 (en) 1992-10-21

Similar Documents

Publication Publication Date Title
KR100734794B1 (en) Method for making a joint between copper and stainless steel
JPS6071579A (en) Method of bonding alumina and metal
JP2000312979A (en) Aluminum/stainless steel clad material, and its manufacturing method
JP2008006496A (en) Composite metal plate and method for producing the same
JP4627400B2 (en) Aluminum / nickel clad and battery external terminals
JPS6356371A (en) Manufacture of titanium clad steel sheet
JP2009190080A (en) Copper-silver brazing filler metal and cladding material for lid of package for electronic component
JPS6018205A (en) Manufacture of titanium-clad steel material
JPH11284111A (en) Heat sink member, manufacture thereof and semiconductor package using the hear sink member
JP4916646B2 (en) Clad plate for polymer electrolyte fuel cell separator and method for producing the same
JPH02121786A (en) Manufacture of copper-aluminum clad plate
JP4607497B2 (en) Parallel metal plates of different metals and manufacturing method thereof
JPS5829589A (en) Manufacture of titanium-clad steel plate
WO2004020191A1 (en) Aluminum/nickel clad material and method for manufacture thereof, and exterior terminal for electric cell
JPS60261682A (en) Titanium clad steel material and its production
JPS6039477B2 (en) Manufacturing method of clad steel plate
JPH0353074B2 (en)
JPS60261683A (en) Titanium clad steel material and its production
JPH05169283A (en) Manufacture of clad steel sheet
JPH069907B2 (en) Method for producing composite material composed of graphite and metal
JP3899709B2 (en) Clad steel plate manufacturing method
JP3323605B2 (en) Manufacturing method of copper clad steel sheet
JPS60170586A (en) Production of titanium clad steel plate
JP3779188B2 (en) Method for producing laminated material having ultra-thin or ultra-thick soft material, and laminated material produced by the production method
JPH0424154B2 (en)