WO2023119705A1 - Method for manufacturing cladding material - Google Patents

Method for manufacturing cladding material Download PDF

Info

Publication number
WO2023119705A1
WO2023119705A1 PCT/JP2022/028366 JP2022028366W WO2023119705A1 WO 2023119705 A1 WO2023119705 A1 WO 2023119705A1 JP 2022028366 W JP2022028366 W JP 2022028366W WO 2023119705 A1 WO2023119705 A1 WO 2023119705A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
metal plate
layer
clad
metal layer
Prior art date
Application number
PCT/JP2022/028366
Other languages
French (fr)
Japanese (ja)
Inventor
優哉 原
紀智 八木
Original Assignee
株式会社プロテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロテリアル filed Critical 株式会社プロテリアル
Publication of WO2023119705A1 publication Critical patent/WO2023119705A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill

Definitions

  • This invention relates to a clad material manufacturing method.
  • Battery packs are installed in equipment such as various automobiles and electronic devices.
  • a battery pack is configured as a battery group in which a plurality of battery cells are connected in series, and further configured as a larger battery group in which a plurality of battery cells are connected in parallel, as required.
  • Battery cells, battery groups, and battery packs have positive and negative electrodes, and the positive and negative electrodes are interconnected by wiring components.
  • Al aluminum
  • Cu copper
  • a clad material composed of an Al layer and a Cu layer is suitable for the wiring component.
  • a semiconductor device is highly integrated, multi-layered, or has a large current, as required. Therefore, the amount of heat generated when energized increases, and a large amount of heat generated by energization is configured to escape to the outside of the device.
  • heat dissipating parts that impart thermal conductivity to a chassis that requires mechanical strength
  • heat dissipating parts that impart mechanical strength to support parts that require thermal conductivity, and the like are used. Therefore, a clad material composed of a Cu layer with good thermal conductivity and an iron (Fe) layer or a stainless steel (SUS) layer with good mechanical strength is suitable for the above heat dissipation component.
  • Patent Document 1 A clad material that is considered suitable for the wiring component is disclosed in Patent Document 1, for example.
  • a side end face of a first metal plate made of aluminum (Al) or an Al alloy and a side end face of a second metal plate made of copper (Cu) or a Cu alloy are rolled and joined by rolling rolls.
  • a formed parallel clad plate (cladding material) is disclosed.
  • each side end surface of the first metal plate and the second metal plate is a surface (inclined surface) inclined with respect to the rolling width direction, and one convex portion (or concave portion) formed on each inclined surface and the other recess (or projection) in combination, and can be formed by a method of rolling and bonding with rolling rolls.
  • This clad material is formed by forming the joint surface (side end surface) between the first metal plate (first metal layer) and the second metal plate (second metal layer) into an uneven inclined surface, thereby It is intended to improve the properties (separation resistance).
  • Patent Document 2 a clad material that is considered suitable for the above heat dissipation component is disclosed in Patent Document 2, for example.
  • a plurality of metal plates such as aluminum (Al), copper (Cu), steel (Fe), or stainless steel (SUS) are combined in a desired arrangement and rolled and joined by rolling rolls.
  • a clad metal composite (clad material) is disclosed. This clad material is made by forming a plurality of metal squares with square cross-sections from a plurality of metal plates of desired materials, and by combining the plurality of metal squares in a desired arrangement, it is possible to select the function and characteristics of the clad material. ing.
  • the joint edge between the first metal layer and the second metal layer is exposed on the surface in the thickness direction.
  • the clad material disclosed in Japanese Unexamined Patent Application Publication No. 2002-200002 also has the same configuration in which the joint end portion is exposed on the surface in the thickness direction.
  • rolling oil lubricating oil
  • the rolling oil may enter between the joint surface (side end surface) of the first metal plate and the joint surface (side end surface) of the second metal plate during roll joining.
  • the joint end portion of the first metal layer in the rolling width direction and the joint end portion of the second metal layer in the rolling width direction are pointed in a triangular shape. Since the thickness of the triangular sharp portion (pointed head) of the joint end is extremely small, there is a possibility that sufficient joint strength cannot be obtained at the joint end. As a result, the clad material disclosed in Patent Literature 1 may have peeling at the joint end portion during bending.
  • the side end face that becomes the joint surface in the rolling width direction of the clad material disclosed in Patent Document 2 is a surface perpendicular to the rolling width direction of the metal square bar, unlike the inclined surface of the clad material disclosed in Patent Document 1. (vertical plane). This vertical plane is positioned parallel to the rolling direction of the rolling rolls (thickness direction of the metal plate). Therefore, the rolling force (component of force) necessary for joining the vertical surfaces is less likely to act, and there is a possibility that the joint ends of the vertical surfaces will not be joined or sufficient joint strength cannot be obtained. As a result, the clad material disclosed in Patent Literature 2 may have an unjoined portion at the joint end, or peeling may occur at the joint end during bending.
  • An object of the present invention is to suppress the infiltration of rolling oil into the joint surface and improve the peeling resistance, and more preferably, to have bending peeling resistance that makes peeling less likely to occur during bending. It is to provide a clad material manufacturing method that is possible.
  • the inventor In order to improve the delamination resistance and bending delamination resistance of the clad material, the inventor repeatedly made prototypes of clad materials with various structures, and found that the first metal plate (first metal layer) and the second metal plate (second The bonding interface with the metal layer) was thoroughly examined. In particular, focusing on the joint form and joint properties of the joint end where the joint interface is exposed on the surface and the vicinity thereof, the rolling rolls are not brought into direct contact with the joint end of the first metal plate and the second metal plate.
  • the product portion (cladding material)
  • the inventors have found that the above-mentioned problems can be solved by means of roll-bonding the dummy portion to the joint, and have conceived of the present invention.
  • a clad material manufacturing method comprises a first metal plate made of a first metal, a second metal plate made of a second metal different from the first metal, and a third metal plate made of a third metal. and rolling the second metal plate while sandwiching the second metal plate between the first metal plate and the third metal plate so as not to expose the rolled surface of the second metal plate; forming a clad rolled material comprising a first metal layer made of a metal, a second metal layer made of the second metal, and a third metal layer made of the third metal; and removing the third metal layer, wherein the second metal layer exists on one rolled surface side in the thickness direction, and the second metal layer exists on the other rolled surface side in the thickness direction. form a cladding material in the absence of
  • the first metal plate and the third metal plate having a length in the rolling width direction larger than that of the second metal plate are prepared, and the length in the rolling width direction is smaller than that of the first metal layer.
  • a clad material can be formed in which the second metal layer exists on one rolled surface side in the thickness direction and the second metal layer does not exist on the other rolled surface side in the thickness direction.
  • the step of forming the clad rolled material it is preferable to roll at a rolling reduction of 65% or more.
  • the third metal a metal having a hardness difference of 100 HV or less between the first metal plate and the second metal plate in contact with the third metal plate.
  • the third metal is preferably any one of Al, Al alloy, Cu, Cu alloy, Fe, and Fe alloy.
  • one of the first metal and the second metal may be Al or an Al alloy, and the other may be Cu or a Cu alloy.
  • one of the first metal and the second metal may be Cu or a Cu alloy, and the other may be Fe or an Fe alloy, or stainless steel.
  • FIG. 6 is a diagram showing a configuration example (edge lay type) of a clad material according to a second embodiment of the present invention
  • FIG. 10 is a view showing a configuration example (edge lay type modification) of a third embodiment of the clad rolled material according to the present invention
  • FIG. 10 is a diagram showing a configuration example (edge-ray type modification) of a clad material according to a third embodiment of the present invention
  • Shown is an enlarged cross section of a portion including a joint end of an inlay-type clad rolled material having a three-layer structure of Al layer-Cu layer (inlay layer)-Al layer (third metal layer), which is an example of the present invention.
  • It is a diagram (map).
  • FIG. 10 is an enlarged cross-sectional view (image) of a portion including a joint end portion of an inlay-type clad material having a two-layer structure of an Al layer and a Cu layer (inlay layer), which is an example of the present invention.
  • FIG. 10 is an enlarged cross-sectional view (image) of a portion including a joint end portion of an inlay-type clad material having a two-layer structure of an Al layer and a Cu layer (inlay layer), which is an example of the present invention.
  • FIG. 10 is a diagram (image) showing an enlarged cross section of a portion including a joint end portion of an inlay-type clad material having a two-layer structure of an Al layer and a Cu layer (inlay layer), which is a comparative example (comparative example 1).
  • FIG. 10 is a diagram (image) showing an enlarged cross section of a portion including a joint end portion of an inlay-type clad material having a two-layer structure of an Al layer and a Cu layer (inlay layer), which is a comparative example (comparative example 1). .
  • FIG. 10 is a diagram (image) showing an enlarged cross section of a portion including a joint end portion of an inlay-type clad material having a two-layer structure of an Al layer and a Cu layer (inlay layer), which is a comparative example (comparative example 1). .
  • FIG. 10 is a diagram (image) showing an enlarged cross section of a portion including a joint end portion of an inlay-
  • FIG. 4 is a view (image) showing a cross section of an inlay-type clad material having a two-layer structure of an Al layer and a Cu layer (inlay layer) according to an example of the present invention after a bending test.
  • FIG. 14 is a diagram (map) showing an enlarged cross section of the cross section shown in FIG. 13 and including one (Y2 side) joint end.
  • FIG. 10 is a view (image) showing a cross section of an inlay-type clad material having a two-layer structure of an Al layer and a Cu layer (inlay layer) after a bending test as a comparative example (comparative example 2).
  • the method of manufacturing a clad material according to the present invention will be described with reference to the drawings as appropriate, citing several configuration examples of the clad material that can be manufactured by this manufacturing method.
  • the clad material manufacturing method according to the present invention is not limited to the configuration examples illustrated here, but is indicated by the scope of the claims, and all modifications within the meaning and scope equivalent to the scope of the claims is included.
  • the terms and symbols relating to the manufacturing method of the clad material may be used in common in the specification and drawings unless otherwise specified. For example, in FIG. 2, the first metal plate and the first metal layer are labeled "101", the second metal plate and the second metal layer are labeled "102", and the third metal plate and the third metal layer are labeled "102". "103" are shared respectively.
  • FIG. 1 shows the process flow of the clad material manufacturing method according to the present invention.
  • the clad material manufacturing method according to the present invention includes a metal plate preparation step, a clad rolled material formation step, and a metal layer removal step. At least three metal plates are prepared in the metal plate preparation step.
  • a clad rolled material forming step a clad rolled material comprising at least three metal layers is formed.
  • the metal layer removal step forms a cladding material comprising at least two metal layers.
  • the thickness direction of the metal plate is the Z direction (see FIG. 2), the rolling width direction is the Y direction (see FIG. 2), and the rolling direction is the X direction (not shown).
  • the second metal plate 102 becomes a core material (inlay core) located in the center of the clad rolled material 100 .
  • a first metal layer 101 made of a first metal a second metal layer 102 made of a second metal different from the first metal, and a third metal layer 103 made of a third metal, It consists of clad rolled material 100 .
  • the first metal layer 101 corresponds to the first metal plate 101
  • the second metal layer 102 corresponds to the second metal plate 102
  • the third metal layer 103 corresponds to the third metal plate 103. do.
  • the second metal layer 102 becomes a core layer (inlay layer) located in the center of the clad rolled material 100 .
  • the first metal layer 101 and the second metal layer 102 constitute a product corresponding portion 100A
  • the third metal layer 103 constitutes a dummy portion 100B.
  • the clad rolled material 100 shown in FIG. 2 has a second metal layer 102 on one rolled surface side (Z2 side) in the Z direction, and a second metal layer 102 on the other rolled surface side (Z1 side) in the Z direction. 2 metal layer 102 is not present.
  • a second metal layer 102 having a length in the Y direction smaller than that of the first metal layer 101 exists on one rolled surface side (Z2 side) in the Z direction, and the other rolled surface in the Z direction is present.
  • the second metal layer 102 does not exist on the side (Z1 side).
  • neither one (Y1 side) side surface 102c nor the other (Y2 side) side surface 102c in the Y direction of the second metal layer 102 is exposed.
  • the clad material 10 shown in FIG. 3 corresponds to the product corresponding portion 100A of the clad rolled material 100 shown in FIG.
  • the clad material 10 is composed of a first metal layer 11 made of a first metal and a second metal layer 12 made of a second metal different from the first metal.
  • This clad material 10 has a second metal layer 12 on one rolled surface side (Z2 side) in the Z direction, and a second metal layer 12 on the other rolled surface side (Z1 side) of the first metal layer 11 in the Z direction. 2 metal layer 12 is not present.
  • the second metal layer 12 having a length in the Y direction smaller than that of the first metal layer 11 exists on one rolled surface side (Z2 side) in the Z direction.
  • the second metal layer 12 does not exist on the other rolled surface side (Z1 side).
  • neither one (Y1 side) side surface 12c nor the other (Y2 side) side surface 12c in the Y direction of the second metal layer 12 is exposed. Therefore, the second metal layer 12 becomes a buried layer (inlay layer) located in the center of the cladding material 10 in the Y direction.
  • the inlay-type clad material is not limited to the clad material 10 having the structure shown in FIG. According to the method of manufacturing the clad material shown in FIG. 1, for example, even in an inlay-type clad material having second metal layers with different lengths in the Y direction, the second metal layers with different thicknesses in the Z direction can be used. Even an inlay-type clad material having a layered structure can be manufactured by preparing a second metal plate corresponding to a desired second metal layer. According to the method of manufacturing the clad material shown in FIG. 1, for example, the second metal layer 12 is an inlay-type clad material in which the second metal layer 12 is located at one side (Y1 side) or the other side (Y2 side) in the Y direction. However, in the step of forming the clad rolled material 100, it can be manufactured by sending the second metal plate corresponding to the second metal layer to a desired position in the Y direction and rolling.
  • Metal plate preparation process In the metal plate preparation step shown in FIG. 1, at least three metal plates, i.e., at least two metal plates for constituting the product part and at least one metal plate for facilitating the manufacture of the product part, are prepared. prepare. For example, regarding the clad rolled material 100 shown in FIG. A third metal plate 103 made of three metals is prepared.
  • the plate 103 has a length in the Y direction greater than that of the second metal plate 102 and equal to or less than that of the first metal plate 101 , preferably equal to that of the first metal plate 101 .
  • the dimensions and materials of the first metal plate 101 and the second metal plate 102 that constitute the product-corresponding portion 100A can be selected according to the application, function, etc., as desired.
  • the materials of the first metal plate 101 and the second metal plate 102, that is, the first metal and the second metal are high-purity aluminum (Al) or Al alloy, high-purity copper (Cu) or Cu alloy, high-purity Iron (Fe) or Fe alloys, or stainless steel (SUS) can each be selected as desired.
  • high-purity nickel (Ni) or Ni alloys, high-purity titanium (Ti) or Ti alloys, Zn alloys, or Sn alloys can be applied as the first metal and the second metal.
  • the wiring components described above such as secondary battery terminals, leads, and bus bars
  • emphasis is placed on electrical characteristics such as low volume resistivity, and one of the first metal and the second metal is selected. It is preferable to use Al or an Al alloy and the other to be Cu or a Cu alloy.
  • thermal characteristics such as high thermal conductivity
  • one of the first metal and the second metal is Cu or a Cu alloy
  • stainless steel such as SUS304, SUS316L, and SUS430 is preferably used.
  • the dimensions of the third metal plate 103 that constitutes the dummy portion 100B of the clad rolled material 100 are at least in the Y direction, the second metal stacked on the opposite side (Z2 side) to the first metal plate 101 side (Z1 side). The dimensions are selected such that the rolled surface (upper surface 102a) of plate 102 is covered and not exposed.
  • the material of the third metal plate 103, that is, the third metal is relatively easy to overlap-roll with the first metal and the second metal, and is relatively easy to remove in the subsequent step of removing the metal layer shown in FIG. It is preferable to choose a metal, which is relatively inexpensive.
  • the compatibility with the first and second metals is met as desired, and the metal layer removal step shown in FIG. 1 is taken into consideration.
  • Cu such as C1020, Fe such as electroless iron, or Al alloys such as JIS standard 3000 series to 5000 series, Cu alloys such as brass, bronze and copper-nickel alloys, low carbon steel used for SPCC etc.
  • a Fe alloy or the like can be selected.
  • the third metal may be high-purity nickel (Ni), high-purity titanium (Ti), Ni alloy, or Ti alloy, considering the difference in hardness between the first and second metals.
  • Zn alloys, Sn alloys, stainless steel (SUS), and the like can also be applied.
  • the thickness of the third metal plate 103 is sufficiently small so that the dummy portion 100B (the third metal layer 103) can be easily removed in the subsequent metal layer removal step shown in FIG. preferable.
  • the thickness of the third metal plate 103 becomes excessively small, a large plastic instability phenomenon tends to occur during rolling, and the amount of compressive deformation of the third metal plate 103 in the Z direction tends to fluctuate greatly. If the thickness of the third metal layer 103 fluctuates greatly, the dummy portion 100B becomes largely wavy, and the bonding interface between the dummy portion 100B and the product corresponding portion 100A becomes uneven.
  • the bonding interface has an uneven shape, the product corresponding portion 100A is excessively removed along with the removal of the dummy portion 100B, which will be described later, which is not preferable.
  • the difference between the hardness of the third metal plate 103 and the hardness of the first metal plate 101 and the second metal plate 102 in contact therewith should be made smaller. is preferred.
  • the third metal forming the third metal plate 103 is preferably a metal having a hardness difference of 100 HV or less between the first metal plate 103 and the second metal plate 102 in contact with the third metal plate 103. to select. Further, for convenience, the same metal as the one having lower hardness among the first metal plate 103 and the second metal plate 102 in contact with the third metal plate 103 can be selected as the third metal. In this case, considering the ease of rolling and the ease of removing the dummy portion 100B, it is preferable to set the thickness of the third metal plate 103 to, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the deformation resistance of the harder metal plate due to the difference in hardness during roll bonding is increased. increases, and the occurrence of plastic instability phenomenon in which the thickness of the metal layer constituting the clad rolled material fluctuates in an undulating manner is likely to be suppressed.
  • ⁇ Formation process of clad rolled material> In the step of forming the clad rolled material shown in FIG. 1, at least three metal plates prepared in the step of preparing the metal plates are stacked in the Z direction and rolled with rolling rolls to join the metal plates by rolling. A clad roll consisting of two metal layers is formed. For example, regarding the clad rolled material 100 shown in FIG. With the plate 102 sandwiched, it is rolled by rolling rolls at a rolling reduction of preferably 65% or more (more preferably 67% or more).
  • the first metal plate 101, the second metal plate 102, and the third metal plate 103 are set in a rolling device, and before they are sent to the rolling rolls, the first metal plate 101 rolls the third metal plate from the Z1 side.
  • the lower surface 103b of the third metal plate 103 covers the upper surface 102a, which is the rolled surface of one side (Z2 side) of the second metal plate 102, on both sides of the second metal plate 102 in the Z direction.
  • bottom surface 101c and side surface 101d of first metal plate 101 cover lower surface 102b and side surface 102c, which are rolled surfaces on the other side (Z1 side) of second metal plate 102, respectively.
  • the third metal plate 103 is sandwiched between the first metal plate 101 and the second metal plate 102 so as not to expose the upper surface 102a and the lower surface 102b, which are the rolling surfaces of the second metal plate 102, under the rolling rolls. It is preferably rolled at a rolling reduction of 65% or more (more preferably 67% or more) while being sent to rolling rolls. The fact that it is preferable to roll at a rolling reduction of 65% or more (more preferably 67% or more) will be described later with examples.
  • the upper surface 102a of the second metal plate 102 is covered with the third metal plate 103, and the lower surface 102b and both side surfaces 102c are covered with the first metal plate 101 before being sent to the rolling rolls and below the rolling rolls. covered. Therefore, when forming the clad rolled material 100 shown in FIG. 2, the second metal plate 102 can be rolled without exposing all the outer peripheral surface including the joint end 100a with the first metal plate 101. This prevents the rolling oil from entering between the side surface 101d of the first metal plate 101 and the side surface 102c of the second metal plate 102 from the joint end portion 100a of the first metal plate 101 and the second metal plate 102. 100 A of product correspondence parts can be formed while carrying out.
  • the rolling can be performed in a state in which the joint end portion 100a of the upper surface 102a of the second metal plate 102 to the first metal plate 101 is not exposed.
  • the first metal plate 101 and the second metal plate 102 are rolled and joined by the rolling rolls while suppressing the infiltration of rolling oil that may reduce the bonding strength between the layers of the clad material 10 shown in FIG. can do.
  • the first metal plate 101 and the second metal plate 102 are used when forming the clad material 10 shown in FIG. Therefore, under the rolling rolls, in a state in which the rolling rolls are in contact with the upper surface 101a and the lower surface 101b of the first metal plate 101 and the upper surface 102a of the second metal plate 102, a large pressure in the Z direction (hereinafter referred to as "rolling force ) works. Due to the rolling force acting in the Z direction, the first metal plate 101 and the second metal plate 102 are stretched and deformed in the Z direction, and at the same time, are stretched and deformed in the X direction, and are also stretched and deformed in the Y direction. It spreads and transforms.
  • the third metal plate 103 is brought into contact with the first metal plate 101 and the second metal plate 102 while being stacked in the Z direction. Therefore, under the rolling rolls, a large rolling force acts in the Z direction while the lower surface 103b of the third metal plate 103 is in contact with the upper surface 101a of the first metal plate 101 and the upper surface 102a of the second metal plate 102. . Due to the rolling force acting in the Z direction, the first metal plate 101, the second metal plate 102 and the third metal plate 103 are stretched and deformed in the Z direction, and at the same time are stretched and deformed in the X direction. At the same time, it is extended and deformed in the Y direction as well.
  • the rolling oil enters between the lower surface 103b of the third metal plate 103 and the upper surface 101a of the first metal plate 101 and the upper surface 102a of the second metal plate 102. is suppressed. Therefore, a relatively large frictional force is generated between the lower surface 103b of the third metal plate 103 and the upper surface 101a of the first metal plate 101 and the upper surface 102a of the second metal plate 102.
  • a relatively large drag force is generated that limits the deformation of the metal plate 102 as it spreads in the Y direction.
  • the drag acting in the Y direction is greater than in the conventional rolling method.
  • the stress in the Y direction that contributes to the joint between the first metal plate 101 and the second metal plate 102 becomes relatively large, and the joint strength at the joint end portion 10a of the clad material 10 is improved. can contribute to
  • the clad material (the product corresponding portion of the rolled clad material) according to the present invention is not limited to the two-layer structure shown in FIG. 3 (the two-layer structure product corresponding portion 100A shown in FIG. 2).
  • the clad material according to the present invention can also have a layered structure of three or more layers.
  • one or more metal layers are inserted between the first metal layer 101 and the second metal layer 102 shown in FIG. 2, and one metal layer is inserted between the first metal layer 11 and the second metal layer 12 shown in FIG.
  • a configuration having more than one metal layer is also possible.
  • one or more metal layers are inserted on the lower surface 101b side (Z1 side) of the first metal layer 101 shown in FIG.
  • a configuration having more than one metal layer is also possible. Also, for example, one or more metal layers are inserted on the upper surface 102a side (Z2 side) of the second metal layer 102 shown in FIG. It is also possible to have a configuration having more than one metal layer, that is, to configure the second metal layer 12 itself in multiple layers.
  • the modified example of the layer structure of the clad material described above can also be applied to an edge-ray type (second embodiment) and a modified edge-ray type (third embodiment), which will be described later.
  • the clad material (product-corresponding portion of the rolled clad material) according to the present invention is not limited to the configuration in which the inlay core (second metal layer 12) shown in FIG. 3 is one.
  • the clad material according to the present invention can also be configured by arranging two or more inlay cores in the Y direction. In this case, all the inlay cores can be made of the same material or different materials, or some inlay cores can be made of different materials.
  • the clad material (the part corresponding to the product of the clad rolled material) according to the present invention is a combined use of the inlay type and the edge lay type (second embodiment), and a modified example of the inlay type and the edge lay type (third embodiment).
  • a combined use with is also possible. That is, in the Y direction, one or two or more inlay cores and one or two edge lay cores can be arranged at the same time.
  • the clad rolled material 100 shown in FIG. Diffusion annealing is performed under the following conditions.
  • Clad rolled material 100 that has been diffusion annealed under appropriate conditions has a composition of each metal layer at the bonding interfaces of the first metal layer 101, the second metal layer 102 and the third metal layer 103 that constitute the clad rolled material 100.
  • a moderate amount of intermetallic compounds based on An intermetallic compound appropriately generated at the bonding interface can form an intermetallic compound layer with an appropriate thickness.
  • the clad rolled material 100 in which an intermetallic compound layer having an appropriate thickness is formed between each metal layer has a further improved mechanical strength (bonding strength between metal layers).
  • the mechanical strength (joining strength between metal layers) of the clad material 10 which is the product corresponding portion 100A after removing the dummy portion 100B from the clad rolled material 100, is further improved.
  • the clad rolled material 100 shown in FIG. 1 the clad rolled material 100 shown in FIG. Thickness, hardness, surface roughness, etc. can be adjusted. Such finish rolling can be performed in the middle of the metal layer removing step, which will be described later, or after the metal layer removing step.
  • the clad material that will become the product is formed by removing the metal layer from the clad rolled material other than the part corresponding to the product.
  • the clad rolled material 100 shown in FIG. The second metal layer 102 remains.
  • the clad material 10 shown in FIG. 3 can be formed from the clad rolled material 100 shown in FIG.
  • the metal layer can be removed in multiple steps.
  • the means for removing the metal layer can be, for example, mechanical polishing using a cylindrical whetstone, a flat whetstone, or a buff made of stainless steel wire, or electrochemical polishing corresponding to the material of the metal layer. It is preferable to appropriately select the means for removing the metal layer according to the requirements, such as the material of the metal layer forming the rolled clad material, the function and application of the clad material, and the manufacturing equipment. For example, when manufacturing a long clad material, it is preferable to select mechanical polishing, which requires relatively simple manufacturing equipment and can be expected to be mass-producible and inexpensive.
  • the rolling oil flows from the joint end 100a between the first metal plate 101 and the second metal plate 102 to the side surface 101d of the first metal plate 101 and the second metal plate.
  • the part 100 ⁇ /b>A corresponding to the product of the clad rolled material 100 can be formed while suppressing penetration between the side surface 102 c of the plate 102 .
  • the mechanical strength of the product corresponding portion 100A, in particular, the bonding strength of the bonding layers (side surfaces 101d and 102c) in the Y direction between the first metal layer 101 and the second metal layer 102 can be sufficiently improved. can.
  • the product corresponding portion 100A after removing the dummy portion 100B that is, the clad material 10 is sufficient for the bonding layers (side surfaces 11d and 12c) of the first metal layer 11 and the second metal layer 12 in the Y direction.
  • the joint strength is obtained, and in particular, the joint strength of the joint end portion 10a exposed on one surface (Z2 side) of the clad material 10 is improved. Peelability is sufficiently improved.
  • the clad material 10 formed by rolling and joining with a reduction ratio of 65% or more with a rolling roll can have a resistance to bending peeling, which makes peeling less likely to occur during bending. This point will be described later.
  • the third metal layer 102 (inlay core) constituting the product corresponding portion 100A corresponding to the clad material 10 is not exposed to the rolled surface 102a.
  • the clad material 10 can be formed by a simple means of removing the third metal layer 103 (dummy part 100B) after forming the clad rolled material 100 by stacking the metal plates 103 (dummy part 100B). Therefore, as in the clad materials disclosed in Patent Documents 1 and 2, means for forming uneven joint surfaces (side end surfaces) of the first metal plate and the second metal plate, or a plurality of metal squares with a square cross section are used.
  • the cladding material 10 shown in FIG. 3, which is composed of the first metal layer 11 and the second metal layer 12, can be formed without using forming and arranging means.
  • the edge lay type shown in FIGS. 4 and 5 is given as an example of the configuration of the rolled clad material and the clad material.
  • the clad rolled material and clad material referred to as the edge-lay type in the present invention are intended to have a form in which the second metal layer overlaps on one side (Z2 side) in the thickness direction (Z direction) of the first metal layer. .
  • a clad rolled material 200 shown in FIG. 4 includes a first metal plate 201 made of a first metal, a second metal plate 202 made of a second metal different from the first metal, and a third metal plate 203 made of a third metal. and are rolled and joined by rolling rolls.
  • the second metal plate 202 becomes a core portion (edge lay core) positioned at the Y1 side edge of the clad rolled material 200 .
  • a first metal layer 201 made of a first metal, a second metal layer 202 made of a second metal different from the first metal, and a third metal layer 203 made of a third metal It consists of clad rolled material 200 .
  • the first metal layer 201 corresponds to the first metal plate 201
  • the second metal layer 202 corresponds to the second metal plate 202
  • the third metal layer 203 corresponds to the third metal plate 203. do. Therefore, the second metal layer 202 becomes a core layer (edge lay layer) positioned at the Y1 side edge of the clad rolled material 200 .
  • the first metal layer 201 and the second metal layer 202 constitute a product corresponding portion 200A
  • the third metal layer 203 constitutes a dummy portion 200B.
  • the clad rolled material 200 shown in FIG. 4 has a second metal layer 202 on one rolled surface side (Z2 side) in the Z direction, and a second metal layer 202 on the other rolled surface side (Z1 side) in the Z direction. 2 metal layer 202 is not present.
  • a second metal layer 202 having a length in the Y direction smaller than that of the first metal layer 201 is present on one rolled surface side (Z2 side) in the Z direction, and the other rolled surface in the Z direction is present.
  • the second metal layer 202 does not exist on the side (Z1 side).
  • one (Y1 side) side surface 202c in the Y direction of the second metal layer 202 is exposed, and the other side (Y2 side) is exposed, unlike the configuration example of the first embodiment (see FIG. 2). ) is not exposed.
  • the clad material 20 shown in FIG. 5 corresponds to the product corresponding portion 200A of the clad rolled material 200 shown in FIG.
  • the clad material 20 is composed of a first metal layer 21 made of a first metal and a second metal layer 22 made of a second metal different from the first metal.
  • This clad material 20 has a second metal layer 22 on one rolled surface side (Z2 side) in the Z direction, and a second metal layer 22 on the other rolled surface side (Z1 side) in the Z direction. not.
  • the second metal layer 22 having a length in the Y direction smaller than that of the first metal layer 21 is present on one rolled surface side (Z2 side) in the Z direction, and the other rolled surface side in the Z direction is present.
  • the second metal layer 22 does not exist on (Z1 side).
  • this cladding material 20 one (Y1 side) side surface 22c in the Y direction of the second metal layer 22 is exposed, and the other side (Y2 side) is exposed, unlike the configuration example of the first embodiment (see FIG. 3). is not exposed. Therefore, the second metal layer 12 becomes a buried layer (inlay layer) positioned at the Y1 side edge of the clad material 10 .
  • edge-lay type clad material is not limited to the clad material 20 having the configuration shown in FIG. According to the clad material manufacturing method shown in FIG. 1, for example, even in an edge-lay type clad material having a configuration including second metal layers with different lengths in the Y direction, the second metal layers with different thicknesses in the Z direction Even an edge-lay type clad material having a layered structure can be manufactured by preparing a second metal plate corresponding to a desired second metal layer. According to the method of manufacturing the clad material shown in FIG.
  • the clad rolled material 200 is formed. 3, the second metal plate corresponding to the second metal layer is sent to a desired position in the Y direction and rolled.
  • the configuration example of the second embodiment according to the present invention for example, the clad rolled material 200 shown in FIG. 4 and the clad material 20 shown in FIG. 5 can be manufactured by the clad material manufacturing method shown in FIG.
  • the first metal plate 201 and the second metal plate 202 are prepared to have a shape and dimensions corresponding to the clad rolled material 200 shown in FIG.
  • the third metal plate 203 has a Y-direction length greater than that of the second metal plate 202 and equal to or less than that of the first metal plate 201 , preferably equal to that of the first metal plate 201 .
  • Other matters such as the material of the metal plate may be substantially the same as in the configuration example of the first embodiment.
  • the first metal plate 201, the second metal plate 202, and the third metal plate 203 prepared to correspond to the clad rolled material 200 in the metal plate preparation step are placed in a rolling mill. set. Then, both sides of the second metal plate 202 in the Z direction are sandwiched by the first metal plate 201 from the Z1 side and the third metal plate 203 from the Z2 side, respectively, before being sent to the rolling rolls.
  • the lower surface 203b of the third metal plate 203 covers the upper surface 202a, which is the rolled surface on one side (Z2 side), and the lower surface 202b, which is the rolled surface on the other side (Z1 side), and the side surface 202d of the second metal plate 202 are covered by the first metal.
  • the plate 201 is fed into the rolling rolls so that the bottom surface 201c and side surface 201d of the plate 201 are covered.
  • the second metal plate 202 is sent to the rolling rolls so that the second metal plate 202 is positioned on the Y1 side in the Y direction.
  • the third metal plate 203 is sandwiched between the first metal plate 201 and the second metal plate 202 so that the upper surface 202a and the lower surface 202b, which are the rolling surfaces of the second metal plate 202, are not exposed under the rolling rolls.
  • the clad rolled material 100 it is preferably rolled at a reduction ratio of a predetermined value or more while being sent to the rolling rolls.
  • matters other than the above may be substantially the same as in the configuration example of the first embodiment described above.
  • Diffusion annealing and finish rolling of the clad rolled material 200 may also be substantially the same as in the configuration example of the first embodiment.
  • the second metal plate 202 can be rolled without exposing the entire outer peripheral surface including the joint end 200a with the first metal plate 201, as in the configuration example of the first embodiment. can be done. Therefore, it is possible to form the product corresponding portion 200A while preventing the rolling oil from entering between the side surface 201d of the first metal plate 201 and the side surface 202d of the second metal plate 202 from the joint end portion 200a.
  • the third metal plate 203 since the third metal plate 203 is used, the lower surface 203b of the third metal plate 203, the upper surface 201a of the first metal plate 201, and the second metal plate 201, as in the configuration example of the first embodiment.
  • a relatively large frictional force is generated between the upper surface 202a of the plate 202 and a relatively large drag that limits the spreading deformation of the first metal plate 201 and the second metal plate 202 in the Y direction. Therefore, the compressive force in the Y direction that contributes to the bonding between the first metal plate 201 and the second metal plate 202 at the joint end portion 200a increases, and the joint strength at the joint end portion 20a of the clad material 20 (see FIG. 5) increases. can contribute to improvement.
  • the dummy portion 200B (the third metal layer 203) is removed from the clad rolled material 200 formed in the clad rolled material forming step, and the first metal layer 201 and the first metal layer 201 as the product corresponding portion 200A are removed. Two metal layers 202 remain. Thereby, the clad material 20 shown in FIG. 5 can be formed.
  • other items such as the means for removing the metal layer may be substantially the same as those in the configuration example of the first embodiment described above.
  • the clad material manufacturing method of the present invention it is possible to form the product-corresponding portion 200A of the clad rolled material 200 while suppressing the intrusion of rolling oil from the joint end portion 200a.
  • the mechanical strength of the product corresponding portion 200A in particular, the bonding strength of the bonding layers (side surfaces 201d and 202d) in the Y direction between the first metal layer 201 and the second metal layer 202 can be sufficiently improved.
  • the product corresponding portion 200A after removing the dummy portion 200B, that is, the clad material 20 is sufficiently bonded to the bonding layers (side surfaces 21d and 22d) of the first metal layer 21 and the second metal layer 22 in the Y direction.
  • the joint strength of the joint end portion 20a exposed on the surface of one side (Z2 side) of the clad material 20 is improved, and the clad material formed by the conventional manufacturing method is resistant to peeling. performance is sufficiently improved.
  • the clad material 20 formed with a rolling reduction of a predetermined value or more can have preferable resistance to bending peeling.
  • the clad material 20 shown in FIG. 5, which is composed of the first metal layer 21 and the second metal layer 22, can be formed without using means for forming and arranging a plurality of metal squares having square cross sections. .
  • ⁇ Third Embodiment> Regarding the method of manufacturing the clad material shown in FIG. 1, as a configuration example of the rolled clad material and the clad material, a modification of the edge-lay type shown in FIGS. 6 and 7 will be given. Note that the edge-lay type modification also intends a clad rolled material and a clad material having a form in which the second metal layer overlaps on one side (Z2 side) of the first metal layer in the thickness direction (Z direction).
  • the plate 303 is rolled and joined by rolling rolls.
  • the two second metal plates 302 become two cores (edge lay cores) positioned at the Y1 side edge and the Y2 side edge of the clad rolled material 300 .
  • a first metal layer 301 made of a first metal
  • two second metal layers 302 made of a second metal different from the first metal
  • a third metal layer 303 made of a third metal.
  • it consists of clad rolling material 300 .
  • the first metal layer 301 corresponds to the first metal plate 301
  • the second metal layer 302 corresponds to the second metal plate 302
  • the third metal layer 303 corresponds to the third metal plate 303. do. Therefore, the two second metal layers 302 become two core layers (edge lay layers) positioned at the Y1 side edge and the Y2 side edge of the clad rolled material 300 .
  • the first metal layer 301 and the two second metal layers 302 constitute a product corresponding portion 300A
  • the third metal layer 303 constitutes a dummy portion 300B.
  • the clad rolled material 300 shown in FIG. 6 has two second metal layers 302 on one rolled surface side (Z2 side) in the Z direction, and has two second metal layers 302 on the other rolled surface side (Z1 side) in the Z direction. , the second metal layer 302 does not exist.
  • this clad rolled material 300 two second metal layers 302 having a length in the Y direction smaller than that of the first metal layer 301 are present on one rolling surface side (Z2 side) in the Z direction, and the other two in the Z direction.
  • the second metal layer 302 does not exist on the rolled surface side (Z1 side).
  • this clad rolled material 300 exposes two side surfaces 302c of the two second metal layers 302 facing outward in the Y direction. The two inward facing sides 302d are not exposed.
  • the clad material 30 shown in FIG. 7 corresponds to the product corresponding portion 300A of the clad rolled material 300 shown in FIG.
  • the clad material 30 is composed of a first metal layer 31 made of a first metal and two second metal layers 32 made of a second metal different from the first metal.
  • This clad material 30 has two second metal layers 32 on one rolled surface side (Z2 side) in the Z direction, and a second metal layer 32 on the other rolled surface side (Z1 side) in the Z direction. does not exist.
  • this cladding material 30 exposes two side surfaces 32c of the two second metal layers 32 facing outward in the Y direction, The two facing sides 32d are not exposed. Therefore, the two second metal layers 32 become two embedded layers (inlay layers) positioned at the Y1 side edge and the Y2 side edge of the cladding material 30 .
  • the modified clad material having two edge-lay type second metal layers is not limited to the clad material 30 having the configuration shown in FIG. According to the clad material manufacturing method shown in FIG. 1, for example, even an edge-lay type clad material having two second metal layers with different lengths in the Y direction has two different thicknesses in the Z direction. Even an edge-lay type clad material having two second metal layers can be manufactured by preparing two second metal plates corresponding to the two second metal layers.
  • the configuration example of the third embodiment according to the present invention for example, the clad rolled material 300 shown in FIG. 6 and the clad material 30 shown in FIG. 7 can be manufactured by the clad material manufacturing method shown in FIG.
  • the first metal plate 301 and the two second metal plates 302 are prepared to have a shape and dimensions corresponding to the clad rolled material 300 shown in FIG.
  • the third metal plate 303 has a Y-direction length greater than that of the second metal plate 302 and equal to or less than that of the first metal plate 301 , preferably equal to that of the first metal plate 301 .
  • Other items, such as the material of the metal plate may be substantially the same as those in the configuration example of the first embodiment or the configuration example of the second embodiment.
  • the two second metal plates 302 that form the two edge lay cores are not limited to being made of the second metal.
  • the two second metal plates 302 can be made of metals different from each other as desired, such as the application.
  • the first metal plate 301, the two second metal plates 302, and the third metal plate 303 prepared to correspond to the clad rolled material 300 in the metal plate preparation step are rolled. set in the device. Then, before being sent to the rolling rolls, the two second metal plates 302 are sandwiched from the Z1 side with the first metal plate 301 and from the Z2 side with the third metal plate 303 to form two second metal plates 302 in the Z direction.
  • the upper surface 302a that is the rolled surface of one (Z2 side) of the metal plate 302 is covered with the lower surface 303b of the third metal plate 303, and the lower surface 302b that is the rolled surface of the other (Z1 side) of the two second metal plates 302 and
  • the side surface 302d is fed into the rolling rolls so that the bottom surface 301c and the side surface 301d of the first metal plate 301 are covered.
  • one of the second metal plates 302 is positioned on the Y1 side in the Y direction, and the other second metal plate 302 is positioned on the Y2 side in the Y direction.
  • the third metal plate 303 is sandwiched between the first metal plate 301 and the second metal plate 302 so that the upper surface 302a and the lower surface 302b, which are the rolling surfaces of the two second metal plates 302, are not exposed under the rolling rolls. It is preferably rolled at a reduction rate equal to or higher than a predetermined value, similarly to the case of the clad rolled material 100, while being sent to the rolling rolls in this state.
  • matters other than the above may be substantially the same as those in the configuration example of the first embodiment or the configuration example of the second embodiment.
  • Diffusion annealing and finish rolling of the clad rolled material 300 may also be substantially the same as in the configuration example of the first embodiment or the configuration example of the second embodiment.
  • the lower surface 303b of the third metal plate 303 and the first metal plate A relatively large frictional force is generated between the upper surface 301a of 301 and the upper surface 302a of the two second metal plates 302, causing the first metal plate 301 and the two second metal plates 302 to spread and deform in the Y direction.
  • a relatively large limiting drag force is created. Therefore, the compressive force in the Y direction that contributes to the bonding between the first metal plate 301 and the second metal plate 302 at the joint end portion 300a increases, and the joint strength at the joint end portion 30a of the clad material 30 (see FIG. 7) increases. can contribute to improvement.
  • the dummy portion 300B (the third metal layer 303) is removed from the clad rolled material 300 formed in the clad rolled material forming step, and the first metal layers 301 and 2, which are the product corresponding portion 300A, are removed.
  • One second metal layer 302 remains.
  • the clad material 30 shown in FIG. 7 can be formed.
  • Other items such as the means for removing the metal layer may be substantially the same as those in the configuration example of the first embodiment or the configuration example of the second embodiment.
  • the clad material manufacturing method according to the present invention it is possible to form the product corresponding portion 300A of the clad rolled material 300 while suppressing the intrusion of rolling oil from the joint end portion 300a. Therefore, the mechanical strength of the product corresponding portion 300A, particularly the bonding strength of the two bonding layers (side surfaces 301d and 302d) in the Y direction between the first metal layer 301 and the two second metal layers 302 is sufficiently improved. be able to. As a result, the product corresponding portion 300A after removing the dummy portion 300B, that is, the clad material 30 is formed by two bonding layers (side surfaces 31d and 32d) of the first metal layer 31 and the two second metal layers 32 in the Y direction.
  • the joint strength of the joint end portion 30a exposed on the surface of one side (Z2 side) of the clad material 30 is improved, compared to the clad material formed by the conventional manufacturing method. Therefore, the peeling resistance is sufficiently improved. Further, similarly to the case of the clad material 10, the clad material 30 formed with a rolling reduction of a predetermined value or more can have preferable resistance to bending peeling.
  • an inlay-type (first embodiment) clad rolled material and clad material which is a representative configuration example, were formed.
  • the first metal plate 101, the second metal plate 102 and the third metal plate 103 shown in FIG. 2 were prepared.
  • the clad rolled material 100 composed of the first metal layer 101, the second metal layer 102 and the third metal layer 103 shown in FIG. 2 was formed.
  • a mineral oil-based rolling oil used for conventional cold rolling was used, and roll bonding was performed with rolling rolls.
  • a diffusion annealing step of heat-treating the clad rolled material 100 under predetermined holding conditions 400°C, 3 minutes
  • predetermined holding conditions 400°C, 3 minutes
  • an intermetallic compound layer having a moderate thickness can be formed at the bonding interface between the first metal layer and the second metal layer. is formed, and the bonding strength between the first metal layer and the second metal layer of the clad material can be improved.
  • the clad material 10 was formed by removing the dummy portion 100B (the third metal layer 103) from the clad rolled material 100 to leave the product corresponding portion 100A.
  • An inlay-type clad material 10 shown in FIG. 3 was formed through the above-described steps.
  • Table 1 shows the material, hardness, thickness and width of the three metal plates prepared in the metal plate preparation process.
  • the thick part of the first metal plate means the part where the third metal plate directly overlaps.
  • the thin portion of the first metal plate means the portion where the second metal plate that becomes the inlay core overlaps.
  • One type of first metal plate, one type of second metal plate, and nine types of third metal plate were prepared.
  • the material symbols shown in Table 1 comply with JIS standards.
  • the dimensions (plate thickness, plate width) shown in Table 1 are obtained based on the measured values obtained by randomly selecting the dimensional measurement position of each metal plate and measuring multiple times with a general vernier caliper or micrometer. is the average value.
  • the hardness shown in Table 1 is obtained by randomly selecting a cut cross-section in the rolling width direction (Y direction) of each metal plate and measuring it multiple times with a low-load Vickers hardness tester manufactured by Akashi Seisakusho Co., Ltd.
  • the measured values. is an average value obtained based on
  • the maximum difference in hardness of the third metal plate shown in Table 1 is the difference in hardness between the third metal plate and the first metal plate and the difference in hardness between the third metal plate and the second metal plate. and , whichever has the greater difference. No. shown in Table 1.
  • Each of the third metal plates 1 to 8 is a material (third metal) that has a difference in hardness (maximum difference in hardness shown in Table 1) between the first metal plate and the second metal plate of 100 HV or less. is selected, and further tempered to the hardness shown in Table 1. In addition, No. shown in Table 1.
  • a material (SPCC) whose hardness difference is unlikely to be 100 HV or less is selected and tempered to the hardness shown in Table 1.
  • the third metal plate is made of the same material (third metal) as the material of the first metal plate (first metal) whose hardness is lower than that of the second metal plate (second metal).
  • Table 2 shows the rolling reduction (%) when three metal plates are roll-joined in the clad rolled material formation process, and the layer thicknesses of the three metal layers constituting the clad rolled material 100 formed by the roll-joining. (mm).
  • the thick portion of the first metal layer means the portion directly overlapping with the third metal layer.
  • the thin portion of the first metal layer means the portion where the second metal layer, which is the inlay layer, overlaps.
  • the rolling reduction (%) shown in Table 2 is the ratio of the thickness changed by roll bonding, and the total thickness (mm) of the three metal plates shown in Table 1 before roll bonding is Tb, and rolling It is a value obtained by (Tb ⁇ Ta)/Tb ⁇ 100(%), where Ta is the total layer thickness (mm) of the three metal plates shown in Table 2 after bonding.
  • the plate thickness of the first metal plate is the thin portion plate thickness
  • the layer thickness of the first metal layer is the thin portion layer thickness.
  • the layer thicknesses (mm) of the first metal layer, the second metal layer and the third metal layer shown in Table 2 are measured in the rolling direction (X direction) and the rolling width direction (Y direction) of the clad rolled material. It is an average value obtained based on the measured values obtained by randomly selecting positions and measuring multiple times with a metallurgical microscope PMG3 (magnification: 200 times) manufactured by Olympus Corporation.
  • FIG. 8 shows a cross-sectional view (map).
  • This cross-sectional view (map) is an enlarged view of a portion including a joint end portion of an inlay-type clad rolled material having a three-layer structure of Al layer-Cu layer-Al layer.
  • This cross section is in the rolling width direction (Y direction) perpendicular to the thickness direction (Z direction) of the clad rolled material, and is the joint end between the Al layer (first metal layer) and the Cu layer (second metal layer). including part.
  • the Cu layer is an inlay layer of the rolled clad material.
  • the Z1 side of the Cu layer is covered with the Al layer, which is the first metal layer.
  • the Z2 side of the Cu layer is covered with the Al layer, which is the third metal layer.
  • the joint end between the Al layer and the Cu layer, which are the first metal layers is not exposed in the Z direction.
  • peeling (or unbonding) is not observed in any of the bonding interfaces between the Al layer, the Cu layer, which is the first metal layer, and the Al layer, which is the third metal layer.
  • the first metal layer (Al layer), the second metal layer (Cu layer), and the third metal layer (Al layer) are separated (or not joined). ), sufficient peel resistance can be obtained.
  • FIG. 4 a cross-sectional view (map) is shown in FIG.
  • This cross-sectional view (map) is an enlarged view of a portion including a joint end portion of an inlay-type clad rolled material having a three-layer structure of Al layer-Cu layer-Cu layer.
  • This cross section is in the rolling width direction (Y direction) perpendicular to the thickness direction (Z direction) of the clad rolled material, and is the joint end between the Al layer (first metal layer) and the Cu layer (second metal layer). including part.
  • the Cu layer which is the second metal layer, is an inlay layer of the rolled clad material.
  • the inlay type clad rolled material of the example of the present invention is separated (or not joined) between the first metal layer (Al layer), the second metal layer (Cu layer) and the third metal layer (Cu layer). ), sufficient peel resistance can be obtained.
  • FIG. 10 shows a cross-sectional view (map) of the clad material formed by using the rolled clad material of 6B.
  • This cross-sectional view (map) is an enlarged view of a portion including a joint end portion of an inlay-type clad material having a two-layer structure of Al layer-Cu layer (inlay layer).
  • This cross section is in the rolling width direction (Y direction) perpendicular to the thickness direction (Z direction) of the clad material, and is the joint end portion between the Al layer (first metal layer) and the Cu layer (second metal layer) including.
  • the Cu layer is an inlay layer of the clad material.
  • the part that is whiter than the Al layer and the Cu layer and extends from the Z1 side of the Y1 side toward the joint end is the joint interface.
  • an intermetallic compound layer is formed between the Al layer and the Cu layer.
  • no peeling (or unbonded) is observed at the bonding interface between the Al layer and the Cu layer, and no peeling (or unbonded) is confirmed near the bonding edge.
  • the inlay-type clad material of the example of the present invention does not have peeling (or non-bonding) between the first metal layer (Al layer) and the second metal layer (Cu layer), so it has sufficient peeling resistance.
  • an inlay-type clad material was formed without using the third metal plate and using a Cu plate (second metal plate) as an inlay core. bottom.
  • a Cu plate second metal plate
  • an Al plate (first metal plate) made of A1050 and a Cu plate (second metal plate) made of C1020 were prepared.
  • the Al plate and the Cu plate serving as the inlay core were stacked in the thickness direction, and rolled and joined by rolling rolls to form inlay-type clad materials (Comparative Examples 1 and 2).
  • this clad material was subjected to heat treatment (diffusion annealing) under predetermined holding conditions (400° C., 3 minutes) in the same manner as in the present invention example.
  • Comparative Example 1 the third metal plate was not used, and the same mineral oil-based rolling oil as in the example of the present invention was used in a lubricated state, that is, in a state in which the rolling oil could penetrate into the joint interface of the clad material. , and roll-joining is performed by rolling rolls.
  • peeling was sometimes visually observed on the surface of the bonding interface (near the bonding end portion) between the Al layer (first metal layer) and the Cu layer (second metal layer) after roll bonding.
  • FIG. 11 shows a cross-sectional view (map) as an example of peeling (or non-bonding) at the bonding edge of the Al layer and the Cu layer in Comparative Example 1 in a lubricated state using rolling oil.
  • Such delamination (or non-bonding) occurring in the vicinity of the joint end is considered to be caused by penetration of rolling oil into the joint surface.
  • the clad material of Comparative Example 1 in which the rolling oil may have entered the joint surface because the third metal plate was not used, peeled off (or unjoined) at the joint end of the Al plate and the Cu plate. ) may occur, so it was found that the peeling resistance may not be sufficient.
  • peeling (or unbonding) occurred, so a bending test, which will be described later, was not performed.
  • Comparative Example 2 the third metal plate was not used, and rolling oil was not used, and in a non-lubricated state, that is, in a state in which the rolling oil did not enter the joint interface of the clad material, rolling and joining was performed with a rolling roll. I have been there.
  • Comparative Example 2 peeling was not visually recognized on the surface of the bonding interface (near the bonding end portion) between the Al layer (first metal layer) and the Cu layer (second metal layer) after roll bonding.
  • FIG. 12 shows a cross-sectional view (map) as an example of the vicinity of the joint end portion between the Al layer and the Cu layer in relation to Comparative Example 2 in a non-lubricated state using no rolling oil.
  • the inlay-type clad material of Comparative Example 2 which does not use the third metal plate but does not use rolling oil and does not allow rolling oil to enter the joint surface, has an Al layer (first metal layer) and the Cu layer (second metal layer). Therefore, the inlay-type clad material of Comparative Example 2 may have sufficient peeling resistance.
  • the production method in which the roll bonding is performed by rolling rolls without using rolling oil and without lubrication is not preferable from a practical point of view. In this case, due to the direct contact between the surface of the rolling roll and the surface of the material to be rolled (metal plate), the mutual surface damage such as surface roughening, indentation flaws and adhesion of foreign matter is enormous.
  • the clad material of Comparative Example 2 no peeling (or unbonded) was observed near the joint edge, so a bending test using a clad test piece, which will be described later, was performed.
  • a plurality of clad specimens were cut out from each of the clad rolled material and the clad material formed through each of the above processes, and the joint cross-section and joint strength were evaluated.
  • a plurality of clad specimens were cut out from the rolled clad material so as to include the joint ends.
  • the cross sections along the rolling width direction (Y direction), particularly the joint surfaces (see the side surfaces 101d and 102c shown in FIG. 2) and the joint ends of the plurality of clad test pieces were observed in an enlarged manner.
  • a plurality of clad specimens were cut out from the clad material so as to include the joint ends.
  • FIG. 13 shows a cross-sectional view (image) of the appearance of the clad test body as an example of the clad test body after the bending test.
  • the clad specimen after the bending test shown in FIG. 13 is bent so that the vicinity of the joint end of the clad material (clad specimen) is positioned almost at the top of the convex bend, and the bend angle is about 100 degrees. It's becoming In the cross section shown in FIG. 13, no obvious separation (or unbonded) is observed at the bonding interface between the Al layer (first metal layer) and the Cu layer (second metal layer) which is an inlay layer. Further, FIG.
  • FIG. 14 shows an enlarged cross-sectional view (map) of a portion including the Y2-side joint end of the clad specimen after the bending test shown in FIG.
  • peeling or non-bonding
  • the inlay-type clad material of the example of the present invention is peeled (or separated) between the first metal layer (Al layer) and the second metal layer (Cu layer). Since there is no unbonded joint, it is possible to have sufficient resistance to bending peeling.
  • FIG. 15 shows an enlarged cross-sectional view (map) of a portion including the joint end portion as an example of a clad test piece after the bending test.
  • severe peeling or non-bonding
  • the inlay-type clad material of Comparative Example 2 which does not use the third metal plate and the rolling oil, causes severe peeling (or unbonding) at the bonding end when the above bending test is performed. It was found that it does not have sufficient bending peeling resistance because it may be broken.
  • Table 3 shows some of the results of the bending test described above. Table 3 summarizes the rolling reduction (%) of the roll joint in the forming process of the clad rolled material, whether or not rolling oil is used, and whether or not the third metal plate is used, and is divided into bending test groups.
  • a bend test group means a bend test performed using a plurality of clad specimens cut out from a clad material formed under the same conditions.
  • the pass probability means a value obtained by dividing the number of clad specimens in which no peeling was confirmed at the joint edge in the bending test group by the number of clad specimens subjected to the bending test.
  • Group G1 is an inlay-type clad material formed by rolling and joining with rolling rolls at a rolling reduction of 58% using a third metal plate with a thickness of 0.10 mm and rolling oil. .
  • Group G1 had a passing probability of 0.34, and was evaluated as "medium” in bending peeling resistance.
  • group G2 uses a third metal plate with a thickness of 0.10 mm and rolling oil, and has a rolling reduction of 67%, which is larger than that of group G1. It is wood.
  • group G2 had a passing probability of 1, and was evaluated as "high" in resistance to bending peeling.
  • group G3 uses a third metal plate with a thickness of 0.05 mm and rolling oil, and is formed by rolling and joining with a rolling roll at a reduction rate of 68%, which is larger than group G1 and substantially the same as group G2. It is an inlay-type clad material. As a result of the above-described bending test, group G3 had a passing probability of 1, and therefore was evaluated as "high" in resistance to bending peeling.
  • Group G4 corresponds to Comparative Example 2 in which the third metal plate and rolling oil are not used, and is an inlay-type clad material formed by rolling and joining with rolling rolls at a rolling reduction of 59%, which is substantially the same as Group G1. is.
  • group G4 had a passing probability of 0, and was evaluated as "low” in terms of resistance to bending peeling.
  • Group G5 corresponds to Comparative Example 2 in which the third metal plate and rolling oil are not used, and is rolled with a rolling roll at a reduction rate of 68%, which is approximately the same as group G2 and group G3, which is approximately 10% larger than group G4. It is an inlay-type clad material formed by bonding. Group G5 had a rolling reduction about 10% larger than Group G4, but as a result of the bending test described above, the pass probability was 0, so the resistance to bending peeling was evaluated as "low".
  • Group G1 is a case where rolling oil is used to make the bonding strength disadvantageous, and the third metal plate is rolled and bonded at a rolling reduction of 58%.
  • Group G4 is a case where rolling oil is not used and conditions are favorable for improving the bonding strength, and roll bonding is performed at a rolling reduction of 59% without using the third metal plate.
  • the group G1 using the third metal plate was evaluated as "medium” in bending peeling resistance, whereas the group G4 using the third metal plate at substantially the same rolling reduction (about 60%) did not use the third metal plate.
  • the bending peeling resistance was evaluated as "low”. From this, when forming an inlay-type clad material, it was found that using the above-described third metal plate is effective in improving the resistance to bending peeling.
  • the reduction ratio is different between the group G1 and the group G2 using the third metal plate having the same thickness.
  • the rolling reduction of group G1 is 58%, and the rolling reduction of group G2 is 67%.
  • the difference in rolling reduction between the two is about 10%.
  • Group G1 which has a small rolling reduction, was evaluated as having "medium” bending peeling resistance, while Group G4, which has a large rolling reduction, had a "medium” bending peeling resistance. It was rated as "High”. From this, it was found that when forming an inlay-type clad material using the third metal plate, increasing the reduction ratio of rolling bonding by rolling rolls is effective for improving the resistance to bending peeling.
  • the passing probability at a rolling reduction of 58% is 0.34 (that is, about 1 /3)
  • the acceptance probability at a rolling reduction of 67% is 1 (i.e., 3/3)
  • the difference in rolling reduction is 9%
  • the above-mentioned rolling reduction rate is evaluated as “medium” but bending peeling resistance It is 60% or more where the resistance is obtained, preferably 65% or more, which is considered to further improve the bending peeling resistance, and more preferably 67% or more, where the bending peeling resistance is evaluated as "high”. recommended.
  • the inlay-type clad materials of groups G1 to G3 with a "high” or “medium” evaluation of bending peeling resistance are more durable and reliable against severe vibrations and impacts, as described above. It is thought that it can be used for wiring parts and heat dissipation parts that require good performance.
  • the inlay-type clad materials of Groups G2 and G3, which have a "high” evaluation of bending peeling resistance are subjected to bending in order to cope with the complication and diversification of the shapes of facilities and equipment, as described above. It is considered that it can be used sufficiently for wiring parts and heat dissipation parts.
  • the clad material manufacturing method according to the present invention it is possible to suppress the infiltration of rolling oil into the joint surface and improve the peeling resistance. It was confirmed that it is possible to have bending peeling resistance in which peeling is less likely to occur.

Abstract

Provided is a method for manufacturing a cladding material that increases peeling resistance by suppressing entry of rolling oil into a bonding surface, and that preferably has bending-induced peeling resistance which less likely causes peeling during bending. This method for manufacturing a cladding material incudes: a step for preparing a first metal sheet comprising a first metal, a second metal sheet comprising a second metal different from the first metal, and a third metal sheet comprising a third metal; a step for carrying out rolling in a state in which the second metal sheet is sandwiched between the first metal sheet and the third metal sheet so that the rolling surface of the second metal sheet is not exposed, thereby forming a rolled cladding material comprising a first metal layer comprising the first metal, a second metal layer comprising the second metal, and a third metal layer comprising the third metal; and a step for removing the third metal layer from the rolled cladding material. The second metal layer exists on one rolling-surface side in the thickness direction, and the second metal layer does not exist on the other rolling-surface side in the thickness direction.

Description

クラッド材の製造方法Clad material manufacturing method
 この発明は、クラッド材の製造方法に関する。 This invention relates to a clad material manufacturing method.
 各種の自動車両および電子機器などの設備装置には電池パックが搭載される。電池パックは、必要に応じて、複数の電池セルが直列に接続された電池群として構成され、さらに、複数の電池群が並列に接続されたより大きな電池群として構成される。電池セル、電池群および電池パックには正極と負極があり、正極と負極とは配線部品により相互接続される。一般的に、正極の端子にはアルミニウム(Al)が使用され、負極の端子には銅(Cu)が使用される。そのため、Al層とCu層により構成されたクラッド材は、上記配線部品に好適である。 Battery packs are installed in equipment such as various automobiles and electronic devices. A battery pack is configured as a battery group in which a plurality of battery cells are connected in series, and further configured as a larger battery group in which a plurality of battery cells are connected in parallel, as required. Battery cells, battery groups, and battery packs have positive and negative electrodes, and the positive and negative electrodes are interconnected by wiring components. In general, aluminum (Al) is used for a positive electrode terminal, and copper (Cu) is used for a negative electrode terminal. Therefore, a clad material composed of an Al layer and a Cu layer is suitable for the wiring component.
 また、各種の自動車両および電子機器などの設備装置には多くの半導体装置が搭載される。半導体装置は、必要に応じて、高集積化、多積層化、あるいは、大電流化される。そのため、通電時の発熱量が増大し、通電で生じた多量の熱を装置外に逃がすように構成される。たとえば、機械的強さが必要なシャーシに対して熱伝導性を付与した放熱部品や、熱伝導性が必要なサポート部品に対して機械的強さを付与した放熱部品などが使用される。そのため、熱伝導性が良好なCu層と、機械的強さが良好な鉄(Fe)層またはステンレス鋼(SUS)層により構成されたクラッド材は、上記放熱部品に好適である。 In addition, many semiconductor devices are installed in equipment such as various automobiles and electronic equipment. A semiconductor device is highly integrated, multi-layered, or has a large current, as required. Therefore, the amount of heat generated when energized increases, and a large amount of heat generated by energization is configured to escape to the outside of the device. For example, heat dissipating parts that impart thermal conductivity to a chassis that requires mechanical strength, heat dissipating parts that impart mechanical strength to support parts that require thermal conductivity, and the like are used. Therefore, a clad material composed of a Cu layer with good thermal conductivity and an iron (Fe) layer or a stainless steel (SUS) layer with good mechanical strength is suitable for the above heat dissipation component.
 上記配線部品に好適と考えられるクラッド材は、たとえば、特許文献1に開示されている。特許文献1には、アルミニウム(Al)またはAl合金から成る第1金属板の側端面と、銅(Cu)またはCu合金から成る第2金属板の側端面とが、圧延ロールにより圧延接合されて形成された、並接クラッド板(クラッド材)が開示される。このクラッド材は、第1金属板および第2金属板のそれぞれの側端面を圧延幅方向に対して傾斜する面(傾斜面)とし、それぞれの傾斜面に形成した一方の凸部(または凹部)と他方の凹部(または凸部)とを組み合わせた状態で、圧延ロールにより圧延接合する方法で形成することができる。このクラッド材は、第1金属板(第1金属層)と第2金属板(第2金属層)との接合面(側端面)を凹凸状の傾斜面に構成することで、接合面の接合性(耐剥離性)向上が図られている。 A clad material that is considered suitable for the wiring component is disclosed in Patent Document 1, for example. In Patent Document 1, a side end face of a first metal plate made of aluminum (Al) or an Al alloy and a side end face of a second metal plate made of copper (Cu) or a Cu alloy are rolled and joined by rolling rolls. A formed parallel clad plate (cladding material) is disclosed. In this clad material, each side end surface of the first metal plate and the second metal plate is a surface (inclined surface) inclined with respect to the rolling width direction, and one convex portion (or concave portion) formed on each inclined surface and the other recess (or projection) in combination, and can be formed by a method of rolling and bonding with rolling rolls. This clad material is formed by forming the joint surface (side end surface) between the first metal plate (first metal layer) and the second metal plate (second metal layer) into an uneven inclined surface, thereby It is intended to improve the properties (separation resistance).
 また、上記放熱部品に好適と考えられるクラッド材は、たとえば、特許文献2に開示されている。特許文献2には、アルミニウム(Al)、銅(Cu)、鋼(Fe)またはステンレス鋼(SUS)などの複数の金属板を所望の配列で組み合せた状態で、圧延ロールにより圧延接合されて形成された、クラッド金属複合材(クラッド材)が開示される。このクラッド材は、所望の材質の複数の金属板から角形断面の複数の金属角材を形成し、複数の金属角材を所望の配列で組み合せることで、クラッド材の機能や特性の選択を可能にしている。 In addition, a clad material that is considered suitable for the above heat dissipation component is disclosed in Patent Document 2, for example. In Patent Document 2, a plurality of metal plates such as aluminum (Al), copper (Cu), steel (Fe), or stainless steel (SUS) are combined in a desired arrangement and rolled and joined by rolling rolls. A clad metal composite (clad material) is disclosed. This clad material is made by forming a plurality of metal squares with square cross-sections from a plurality of metal plates of desired materials, and by combining the plurality of metal squares in a desired arrangement, it is possible to select the function and characteristics of the clad material. ing.
 近年、上記した配線部品や放熱部品には、より過酷な振動や衝撃に対する耐久性や信頼性が要望されている。さらに、最近、配線部品や放熱部品を使用する設備装置の形状の複雑化や多様化に対応するため、配線部品や放熱部品を曲げ加工する場合が増えている。そのため、曲げ加工が可能な高い耐剥離性(耐曲げ剥離性)を有する、配線部品や放熱部品に好適なクラッド材が望まれている。 In recent years, the above-mentioned wiring parts and heat dissipation parts are required to have durability and reliability against more severe vibrations and impacts. Further, recently, in order to cope with the complicated and diversified shapes of equipment using wiring parts and heat dissipation parts, cases of bending wiring parts and heat dissipation parts are increasing. Therefore, there is a demand for a clad material suitable for wiring parts and heat-dissipating parts, which has high peeling resistance (bending peeling resistance) that can be bent.
特許第4780664号公報Japanese Patent No. 4780664 特表2018―517567号公報Japanese Patent Publication No. 2018-517567
 特許文献1が開示するクラッド材は、その厚さ方向の表面に、第1金属層と第2金属層との接合端部が露出している。この接合端部が厚さ方向の表面に露出する構成は、特許文献2が開示するクラッド材でも同様である。一般的な圧延ロールによる圧延接合では、被圧延材(金属板)と圧延ロールとの摩擦軽減や冷却性の付与などを目的として、圧延油(潤滑油)を供給する。そのため、圧延接合中、第1金属板の接合面(側端面)と第2金属板の接合面(側端面)との間に、圧延油が浸入する可能性がある。圧延油が接合面の間に浸入すると、これに起因して、第1金属層と第2金属層との接合界面に何らかの変質が生じるおそれがある。こうした接合界面の変質は、クラッド材の層間の接合強度の低下の原因になる。 In the clad material disclosed in Patent Document 1, the joint edge between the first metal layer and the second metal layer is exposed on the surface in the thickness direction. The clad material disclosed in Japanese Unexamined Patent Application Publication No. 2002-200002 also has the same configuration in which the joint end portion is exposed on the surface in the thickness direction. In rolling bonding using general rolling rolls, rolling oil (lubricating oil) is supplied for the purpose of reducing friction between the material to be rolled (metal plate) and rolling rolls and imparting cooling properties. Therefore, there is a possibility that the rolling oil may enter between the joint surface (side end surface) of the first metal plate and the joint surface (side end surface) of the second metal plate during roll joining. If the rolling oil penetrates between the joint surfaces, there is a possibility that the joint interface between the first metal layer and the second metal layer will undergo some deterioration. Such deterioration of the joint interface causes a decrease in the joint strength between the layers of the clad material.
 また、特許文献1が開示するクラッド材は、第1金属層の圧延幅方向の接合端部および第2金属層の圧延幅方向のそれぞれの接合端部が三角形状に尖っている。この接合端部の三角形状に尖った部分(尖頭部)は厚さが極めて小さいため、接合端部に十分な接合強度が得られない可能性がある。その結果、特許文献1が開示するクラッド材は、曲げ加工において接合端部に剥離が発生する可能性がある。 In addition, in the clad material disclosed in Patent Document 1, the joint end portion of the first metal layer in the rolling width direction and the joint end portion of the second metal layer in the rolling width direction are pointed in a triangular shape. Since the thickness of the triangular sharp portion (pointed head) of the joint end is extremely small, there is a possibility that sufficient joint strength cannot be obtained at the joint end. As a result, the clad material disclosed in Patent Literature 1 may have peeling at the joint end portion during bending.
 また、特許文献2が開示するクラッド材の圧延幅方向の接合面になる側端面は、特許文献1が開示するクラッド材の傾斜面とは異なり、金属角材の圧延幅方向に対して垂直な面(垂直面)になっている。この垂直面は、圧延ロールの圧下方向(金属板の厚さ方向)に対して平行に位置する。そのため、垂直面同士の接合に必要な圧延力(分力)が作用しにくく、この垂直面の接合端部は、接合されない、もしくは、十分な接合強度が得られない可能性がある。その結果、特許文献2が開示するクラッド材は、接合端部に未接合部を有するか、もしくは、曲げ加工において接合端部に剥離が発生する可能性がある。 In addition, the side end face that becomes the joint surface in the rolling width direction of the clad material disclosed in Patent Document 2 is a surface perpendicular to the rolling width direction of the metal square bar, unlike the inclined surface of the clad material disclosed in Patent Document 1. (vertical plane). This vertical plane is positioned parallel to the rolling direction of the rolling rolls (thickness direction of the metal plate). Therefore, the rolling force (component of force) necessary for joining the vertical surfaces is less likely to act, and there is a possibility that the joint ends of the vertical surfaces will not be joined or sufficient joint strength cannot be obtained. As a result, the clad material disclosed in Patent Literature 2 may have an unjoined portion at the joint end, or peeling may occur at the joint end during bending.
 この発明の目的は、接合面への圧延油の浸入を抑制して耐剥離性を向上することが可能な、さらに望ましくは、曲げ加工において剥離がより発生しにくい耐曲げ剥離性を有することが可能な、クラッド材の製造方法を提供することである。 An object of the present invention is to suppress the infiltration of rolling oil into the joint surface and improve the peeling resistance, and more preferably, to have bending peeling resistance that makes peeling less likely to occur during bending. It is to provide a clad material manufacturing method that is possible.
 この発明者は、クラッド材の耐剥離性および耐曲げ剥離性の向上のために、各種構造のクラッド材の試作を繰り返し、第1金属板(第1金属層)と第2金属板(第2金属層)との接合界面を十分に精査した。そして、特に、接合界面が表面に露出する接合端部およびその近傍の接合形態および接合性状に着目し、第1金属板と第2金属板との接合端部に圧延ロールを直に当接させないという発想を得て、同時に、第1金属板と第2金属板との接合端部付近における圧延幅方向への変形を制限するという発想を得て、その後の工夫により、製品部分(クラッド材)にダミー部分を圧延接合するという手段により上記課題が解決できることを見出し、この発明に想到した。 In order to improve the delamination resistance and bending delamination resistance of the clad material, the inventor repeatedly made prototypes of clad materials with various structures, and found that the first metal plate (first metal layer) and the second metal plate (second The bonding interface with the metal layer) was thoroughly examined. In particular, focusing on the joint form and joint properties of the joint end where the joint interface is exposed on the surface and the vicinity thereof, the rolling rolls are not brought into direct contact with the joint end of the first metal plate and the second metal plate. At the same time, with the idea of limiting the deformation in the rolling width direction near the joint end of the first metal plate and the second metal plate, the product portion (cladding material) The inventors have found that the above-mentioned problems can be solved by means of roll-bonding the dummy portion to the joint, and have conceived of the present invention.
 この発明に係るクラッド材の製造方法は、第1金属から成る第1金属板と、前記第1金属とは異なる第2金属から成る第2金属板と、第3金属から成る第3金属板と、を準備する工程と、前記第2金属板の圧延面を露出させないように、前記第1金属板と前記第3金属板とで前記第2金属板を挟み込んだ状態で圧延し、前記第1金属から成る第1金属層と、前記第2金属から成る第2金属層と、前記第3金属から成る第3金属層と、から成る、クラッド圧延材を形成する工程と、前記クラッド圧延材から前記第3金属層を除去する工程と、を含み、厚さ方向の一方の圧延面側には前記第2金属層が存在し、厚さ方向の他方の圧延面側には前記第2金属層が存在していない、クラッド材を形成する。 A clad material manufacturing method according to the present invention comprises a first metal plate made of a first metal, a second metal plate made of a second metal different from the first metal, and a third metal plate made of a third metal. and rolling the second metal plate while sandwiching the second metal plate between the first metal plate and the third metal plate so as not to expose the rolled surface of the second metal plate; forming a clad rolled material comprising a first metal layer made of a metal, a second metal layer made of the second metal, and a third metal layer made of the third metal; and removing the third metal layer, wherein the second metal layer exists on one rolled surface side in the thickness direction, and the second metal layer exists on the other rolled surface side in the thickness direction. form a cladding material in the absence of
 この発明において、前記第2金属板よりも圧延幅方向の長さが大きい、前記第1金属板および前記第3金属板を準備し、前記第1金属層よりも圧延幅方向の長さが小さい前記第2金属層が厚さ方向の一方の圧延面側に存在し、厚さ方向の他方の圧延面側には前記第2金属層が存在していない、クラッド材を形成することができる。 In this invention, the first metal plate and the third metal plate having a length in the rolling width direction larger than that of the second metal plate are prepared, and the length in the rolling width direction is smaller than that of the first metal layer. A clad material can be formed in which the second metal layer exists on one rolled surface side in the thickness direction and the second metal layer does not exist on the other rolled surface side in the thickness direction.
 この発明において、前記クラッド圧延材を形成する工程では、65%以上の圧下率で圧延する、ことが好ましい。 In the present invention, in the step of forming the clad rolled material, it is preferable to roll at a rolling reduction of 65% or more.
 この発明において、前記第3金属として、前記第3金属板に接する前記第1金属板および前記第2金属板との硬さの差が100HV以下になる金属を選択する、ことが好ましい。 In the present invention, it is preferable to select, as the third metal, a metal having a hardness difference of 100 HV or less between the first metal plate and the second metal plate in contact with the third metal plate.
 この発明において、前記第3金属は、Al、Al合金、Cu、Cu合金、Fe、および、Fe合金のうちのいずれか1つとする、ことが好ましい。 In the present invention, the third metal is preferably any one of Al, Al alloy, Cu, Cu alloy, Fe, and Fe alloy.
 この発明において、前記第1金属と前記第2金属とのうち、一方をAlまたはAl合金とし、他方をCuまたはCu合金とする、ことができる。 In the present invention, one of the first metal and the second metal may be Al or an Al alloy, and the other may be Cu or a Cu alloy.
 この発明において、前記第1金属と前記第2金属とのうち、一方をCuまたはCu合金とし、他方をFeまたはFe合金、あるいはステンレス鋼とする、ことができる。 In the present invention, one of the first metal and the second metal may be Cu or a Cu alloy, and the other may be Fe or an Fe alloy, or stainless steel.
 この発明によれば、接合面への圧延油の浸入を抑制して耐剥離性を向上することが可能になり、さらに望ましくは、曲げ加工において剥離がより発生しにくい耐曲げ剥離性を有することが可能になる、クラッド材の製造方法を提供することができる。 According to the present invention, it is possible to suppress the infiltration of rolling oil into the joint surface and improve the peeling resistance. It is possible to provide a clad material manufacturing method.
この発明に係るクラッド材の製造方法の工程の流れを示す図である。It is a figure which shows the flow of the process of the manufacturing method of the clad material which concerns on this invention. この発明に係るクラッド圧延材の第1実施形態の構成例(インレイ型)を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the structural example (inlay type|mold) of 1st Embodiment of the clad rolled material which concerns on this invention. この発明に係るクラッド材の第1実施形態の構成例(インレイ型)を示す図である。It is a figure which shows the structural example (inlay type) of 1st Embodiment of the clad material which concerns on this invention. この発明に係るクラッド圧延材の第2実施形態の構成例(エッジレイ型)を示す図である。It is a figure which shows the structural example (edge lay type|mold) of 2nd Embodiment of the clad rolled material which concerns on this invention. この発明に係るクラッド材の第2実施形態の構成例(エッジレイ型)を示す図である。FIG. 6 is a diagram showing a configuration example (edge lay type) of a clad material according to a second embodiment of the present invention; この発明に係るクラッド圧延材の第3実施形態の構成例(エッジレイ型の変形例)を示す図である。FIG. 10 is a view showing a configuration example (edge lay type modification) of a third embodiment of the clad rolled material according to the present invention; この発明に係るクラッド材の第3実施形態の構成例(エッジレイ型の変形例)を示す図である。FIG. 10 is a diagram showing a configuration example (edge-ray type modification) of a clad material according to a third embodiment of the present invention; 本発明例であって、Al層-Cu層(インレイ層)-Al層(第3金属層)の3層構造を有するインレイ型のクラッド圧延材の接合端部を含む部分を拡大した断面を示す図(写像)である。Shown is an enlarged cross section of a portion including a joint end of an inlay-type clad rolled material having a three-layer structure of Al layer-Cu layer (inlay layer)-Al layer (third metal layer), which is an example of the present invention. It is a diagram (map). 本発明例であって、Al層-Cu層(インレイ層)-Cu層(第3金属層)の3層構造を有するインレイ型のクラッド圧延材の接合端部を含む部分を拡大した断面を示す図(写像)である。Shown is an enlarged cross section of a portion including a joint end of an inlay-type clad rolled material having a three-layer structure of Al layer-Cu layer (inlay layer)-Cu layer (third metal layer), which is an example of the present invention. It is a diagram (map). 本発明例であって、Al層-Cu層(インレイ層)の2層構造を有するインレイ型のクラッド材の接合端部を含む部分を拡大した断面を示す図(写像)である。FIG. 10 is an enlarged cross-sectional view (image) of a portion including a joint end portion of an inlay-type clad material having a two-layer structure of an Al layer and a Cu layer (inlay layer), which is an example of the present invention. 比較例(比較例1)であって、Al層-Cu層(インレイ層)の2層構造を有するインレイ型のクラッド材の接合端部を含む部分を拡大した断面を示す図(写像)である。FIG. 10 is a diagram (image) showing an enlarged cross section of a portion including a joint end portion of an inlay-type clad material having a two-layer structure of an Al layer and a Cu layer (inlay layer), which is a comparative example (comparative example 1). . 比較例(比較例1)であって、Al層-Cu層(インレイ層)の2層構造を有するインレイ型のクラッド材の接合端部を含む部分を拡大した断面を示す図(写像)である。FIG. 10 is a diagram (image) showing an enlarged cross section of a portion including a joint end portion of an inlay-type clad material having a two-layer structure of an Al layer and a Cu layer (inlay layer), which is a comparative example (comparative example 1). . 本発明例であって、Al層-Cu層(インレイ層)の2層構造を有するインレイ型のクラッド材の曲げ試験後の断面を示す図(写像)である。FIG. 4 is a view (image) showing a cross section of an inlay-type clad material having a two-layer structure of an Al layer and a Cu layer (inlay layer) according to an example of the present invention after a bending test. 図13に示す断面であって、一方(Y2側)の接合端部を含む部分を拡大した断面を示す図(写像)である。FIG. 14 is a diagram (map) showing an enlarged cross section of the cross section shown in FIG. 13 and including one (Y2 side) joint end. 比較例(比較例2)であって、Al層-Cu層(インレイ層)の2層構造を有するインレイ型のクラッド材の曲げ試験後の断面を示す図(写像)である。FIG. 10 is a view (image) showing a cross section of an inlay-type clad material having a two-layer structure of an Al layer and a Cu layer (inlay layer) after a bending test as a comparative example (comparative example 2).
 この発明に係るクラッド材の製造方法について、この製造方法により製造可能なクラッド材の構成例を幾つか挙げて、適宜図面を参照して説明する。なお、この発明に係るクラッド材の製造方法は、ここに例示する構成例に限定するものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれると解することが相当である。なお、クラッド材の製造方法に係る用語および符号は、特段の断りがない限り、明細書および図面の記載において共用することがある。たとえば、図2において、第1金属板および第1金属層は符号「101」を、第2金属板および第2金属層は符号「102」を、第3金属板および第3金属層層は符号「103」を、それぞれ、共用する。 The method of manufacturing a clad material according to the present invention will be described with reference to the drawings as appropriate, citing several configuration examples of the clad material that can be manufactured by this manufacturing method. In addition, the clad material manufacturing method according to the present invention is not limited to the configuration examples illustrated here, but is indicated by the scope of the claims, and all modifications within the meaning and scope equivalent to the scope of the claims is included. The terms and symbols relating to the manufacturing method of the clad material may be used in common in the specification and drawings unless otherwise specified. For example, in FIG. 2, the first metal plate and the first metal layer are labeled "101", the second metal plate and the second metal layer are labeled "102", and the third metal plate and the third metal layer are labeled "102". "103" are shared respectively.
 この発明に係るクラッド材の製造方法について、図1に、工程の流れを示す。図1に示すように、この発明に係るクラッド材の製造方法は、金属板の準備工程と、クラッド圧延材の形成工程と、金属層の除去工程と、を含む。金属板の準備工程では、少なくとも3つの金属板を準備する。クラッド圧延材の形成工程では、少なくとも3つの金属層から成るクラッド圧延材を形成する。金属層の除去工程では、少なくとも2つの金属層から成るクラッド材を形成する。なお、金属板の厚さ方向をZ方向(図2参照)とし、圧延幅方向をY方向(図2参照)とし、圧延方向をX方向(図示略)とする。 FIG. 1 shows the process flow of the clad material manufacturing method according to the present invention. As shown in FIG. 1, the clad material manufacturing method according to the present invention includes a metal plate preparation step, a clad rolled material formation step, and a metal layer removal step. At least three metal plates are prepared in the metal plate preparation step. In the clad rolled material forming step, a clad rolled material comprising at least three metal layers is formed. The metal layer removal step forms a cladding material comprising at least two metal layers. The thickness direction of the metal plate is the Z direction (see FIG. 2), the rolling width direction is the Y direction (see FIG. 2), and the rolling direction is the X direction (not shown).
<第1実施形態>
 図1に示すクラッド材の製造方法に関し、クラッド圧延材およびクラッド材の構成例として、図2および図3に示すインレイ型を挙げる。
<First Embodiment>
Regarding the method of manufacturing the clad material shown in FIG. 1, the inlay molds shown in FIGS.
 図2に示すクラッド圧延材100は、第1金属から成る第1金属板101と、第1金属とは異なる第2金属から成る第2金属板102と、第3金属から成る第3金属板103とを用いて、圧延ロールにより圧延接合されて、形成されている。第2金属板102は、クラッド圧延材100の中央に位置する芯材(インレイコア)になる。これにより、第1金属から成る第1金属層101と、第1金属とは異なる第2金属から成る第2金属層102と、第3金属から成る第3金属層103と、により構成された、クラッド圧延材100に成っている。このクラッド圧延材100において、第1金属層101は第1金属板101に対応し、第2金属層102は第2金属板102に対応し、第3金属層103は第3金属板103に対応する。したがって、第2金属層102は、クラッド圧延材100の中央に位置する芯層(インレイ層)になる。このクラッド圧延材100は、第1金属層101と第2金属層102とが製品対応部100Aを構成し、第3金属層103がダミー部100Bを構成する。 A clad rolled material 100 shown in FIG. and are rolled and joined by rolling rolls. The second metal plate 102 becomes a core material (inlay core) located in the center of the clad rolled material 100 . As a result, a first metal layer 101 made of a first metal, a second metal layer 102 made of a second metal different from the first metal, and a third metal layer 103 made of a third metal, It consists of clad rolled material 100 . In this clad rolled material 100, the first metal layer 101 corresponds to the first metal plate 101, the second metal layer 102 corresponds to the second metal plate 102, and the third metal layer 103 corresponds to the third metal plate 103. do. Therefore, the second metal layer 102 becomes a core layer (inlay layer) located in the center of the clad rolled material 100 . In this clad rolled material 100, the first metal layer 101 and the second metal layer 102 constitute a product corresponding portion 100A, and the third metal layer 103 constitutes a dummy portion 100B.
 また、図2に示すクラッド圧延材100は、Z方向の一方の圧延面側(Z2側)には第2金属層102が存在し、Z方向の他方の圧延面側(Z1側)には第2金属層102が存在していない。このクラッド圧延材100は、第1金属層101よりもY方向の長さが小さい第2金属層102がZ方向の一方の圧延面側(Z2側)に存在し、Z方向の他方の圧延面側(Z1側)には第2金属層102が存在していない。このクラッド圧延材100は、第2金属層102のY方向の一方(Y1側)の側面102cおよび他方(Y2側)の側面102cが、いずれも、露出していない。 In addition, the clad rolled material 100 shown in FIG. 2 has a second metal layer 102 on one rolled surface side (Z2 side) in the Z direction, and a second metal layer 102 on the other rolled surface side (Z1 side) in the Z direction. 2 metal layer 102 is not present. In this clad rolled material 100, a second metal layer 102 having a length in the Y direction smaller than that of the first metal layer 101 exists on one rolled surface side (Z2 side) in the Z direction, and the other rolled surface in the Z direction is present. The second metal layer 102 does not exist on the side (Z1 side). In this clad rolled material 100, neither one (Y1 side) side surface 102c nor the other (Y2 side) side surface 102c in the Y direction of the second metal layer 102 is exposed.
 図3に示すクラッド材10は、図2に示すクラッド圧延材100の製品対応部100Aに対応する。このクラッド材10は、第1金属から成る第1金属層11と、第1金属とは異なる第2金属から成る第2金属層12と、により構成されている。このクラッド材10は、Z方向の一方の圧延面側(Z2側)には第2金属層12が存在し、第1金属層11のZ方向の他方の圧延面側(Z1側)には第2金属層12が存在していない。 The clad material 10 shown in FIG. 3 corresponds to the product corresponding portion 100A of the clad rolled material 100 shown in FIG. The clad material 10 is composed of a first metal layer 11 made of a first metal and a second metal layer 12 made of a second metal different from the first metal. This clad material 10 has a second metal layer 12 on one rolled surface side (Z2 side) in the Z direction, and a second metal layer 12 on the other rolled surface side (Z1 side) of the first metal layer 11 in the Z direction. 2 metal layer 12 is not present.
 また、図3に示すクラッド材10は、第1金属層11よりもY方向の長さが小さい第2金属層12がZ方向の一方の圧延面側(Z2側)に存在し、Z方向の他方の圧延面側(Z1側)には第2金属層12が存在していない。このクラッド材10は、第2金属層12のY方向の一方(Y1側)の側面12cおよび他方(Y2側)の側面12cが、いずれも、露出していない。したがって、第2金属層12は、クラッド材10のY方向中央に位置する埋込層(インレイ層)になる。 In the clad material 10 shown in FIG. 3, the second metal layer 12 having a length in the Y direction smaller than that of the first metal layer 11 exists on one rolled surface side (Z2 side) in the Z direction. The second metal layer 12 does not exist on the other rolled surface side (Z1 side). In this clad material 10, neither one (Y1 side) side surface 12c nor the other (Y2 side) side surface 12c in the Y direction of the second metal layer 12 is exposed. Therefore, the second metal layer 12 becomes a buried layer (inlay layer) located in the center of the cladding material 10 in the Y direction.
 なお、インレイ型のクラッド材は、図3に示す構成のクラッド材10に限らない。図1に示すクラッド材の製造方法によれば、たとえば、Y方向の長さが異なる第2金属層を備える構成のインレイ型のクラッド材であっても、Z方向の厚さが異なる第2金属層を備える構成のインレイ型のクラッド材であっても、所望の第2金属層に対応する第2金属板を準備することにより、製造可能である。図1に示すクラッド材の製造方法によれば、たとえば、第2金属層12がY方向の一方(Y1側)または他方(Y2側)のいずれかに片寄って位置する構成のインレイ型のクラッド材であっても、クラッド圧延材100の形成工程において、第2金属層に対応する第2金属板をY方向の所望の位置に送り込んで圧延することにより、製造可能である。 The inlay-type clad material is not limited to the clad material 10 having the structure shown in FIG. According to the method of manufacturing the clad material shown in FIG. 1, for example, even in an inlay-type clad material having second metal layers with different lengths in the Y direction, the second metal layers with different thicknesses in the Z direction can be used. Even an inlay-type clad material having a layered structure can be manufactured by preparing a second metal plate corresponding to a desired second metal layer. According to the method of manufacturing the clad material shown in FIG. 1, for example, the second metal layer 12 is an inlay-type clad material in which the second metal layer 12 is located at one side (Y1 side) or the other side (Y2 side) in the Y direction. However, in the step of forming the clad rolled material 100, it can be manufactured by sending the second metal plate corresponding to the second metal layer to a desired position in the Y direction and rolling.
<金属板の準備工程>
 図1に示す金属板の準備工程では、少なくとも3つの金属板、すなわち、製品部分を構成するための少なくとも2つの金属板と、製品部分の製造を容易にするための少なくとも1つの金属板とを準備する。たとえば、図2に示すクラッド圧延材100に関し、金属板の準備工程では、第1金属から成る第1金属板101と、第1金属とは異なる第2金属から成る第2金属板102と、第3金属から成る第3金属板103と、を準備する。
<Metal plate preparation process>
In the metal plate preparation step shown in FIG. 1, at least three metal plates, i.e., at least two metal plates for constituting the product part and at least one metal plate for facilitating the manufacture of the product part, are prepared. prepare. For example, regarding the clad rolled material 100 shown in FIG. A third metal plate 103 made of three metals is prepared.
 上記のように3つの金属板を準備し、図2に示すクラッド圧延材100を形成する場合、第2金属板102のY方向の長さが第1金属板101よりも小さいため、第3金属板103はY方向の長さが第2金属板102よりも大きく第1金属板101と同等以下、好ましくは第1金属板101と同等のものを準備する。 When three metal plates are prepared as described above to form the clad rolled material 100 shown in FIG. The plate 103 has a length in the Y direction greater than that of the second metal plate 102 and equal to or less than that of the first metal plate 101 , preferably equal to that of the first metal plate 101 .
 製品対応部100Aを構成する第1金属板101および第2金属板102は、用途や機能など、所望に応じて、それぞれの寸法および材質を選択することができる。第1金属板101および第2金属板102の材質、すなわち、第1金属および第2金属は、高純度のアルミニウム(Al)またはAl合金、高純度の銅(Cu)またはCu合金、高純度の鉄(Fe)またはFe合金、または、ステンレス鋼(SUS)から、所望に応じて、それぞれ選択することができる。第1金属および第2金属は、上記の他、高純度のニッケル(Ni)またはNi合金、高純度のチタン(Ti)またはTi合金、Zn合金、または、Sn合金などの適用も可能である。 The dimensions and materials of the first metal plate 101 and the second metal plate 102 that constitute the product-corresponding portion 100A can be selected according to the application, function, etc., as desired. The materials of the first metal plate 101 and the second metal plate 102, that is, the first metal and the second metal are high-purity aluminum (Al) or Al alloy, high-purity copper (Cu) or Cu alloy, high-purity Iron (Fe) or Fe alloys, or stainless steel (SUS) can each be selected as desired. In addition to the above, high-purity nickel (Ni) or Ni alloys, high-purity titanium (Ti) or Ti alloys, Zn alloys, or Sn alloys can be applied as the first metal and the second metal.
 たとえば、上記した配線部品、たとえば、二次電池の端子、リード、バスバーなどの用途では、体積抵抗率が小さいなどの電気的特性を重視し、第1金属と第2金属とのうち、一方をAlまたはAl合金とし、他方をCuまたはCu合金とする、ことが好ましい。 For example, in applications such as the wiring components described above, such as secondary battery terminals, leads, and bus bars, emphasis is placed on electrical characteristics such as low volume resistivity, and one of the first metal and the second metal is selected. It is preferable to use Al or an Al alloy and the other to be Cu or a Cu alloy.
 たとえば、上記した放熱部品の用途では、熱伝導率が大きいなどの熱的特性を重視し、第1金属と第2金属とのうち、一方をCuまたはCu合金とし、他方をFeまたはFe合金、あるいは、SUS304、SUS316L、SUS430などのステンレス鋼とする、ことが好ましい。 For example, in the application of the heat dissipation component described above, emphasis is placed on thermal characteristics such as high thermal conductivity, and one of the first metal and the second metal is Cu or a Cu alloy, Alternatively, stainless steel such as SUS304, SUS316L, and SUS430 is preferably used.
 また、クラッド圧延材100のダミー部100Bを構成する第3金属板103の寸法は、少なくともY方向において、第1金属板101側(Z1側)と反対側(Z2側)に重ねられる第2金属板102の圧延面(上面102a)が被覆され、露出することがない寸法を選択する。第3金属板103の材質、すなわち、第3金属は、第1金属および第2金属との重ね合わせ圧延が比較的容易で、図1に示す後の金属層の除去工程における除去が比較的容易で、比較的安価な、金属を選択することが好ましい。 In addition, the dimensions of the third metal plate 103 that constitutes the dummy portion 100B of the clad rolled material 100 are at least in the Y direction, the second metal stacked on the opposite side (Z2 side) to the first metal plate 101 side (Z1 side). The dimensions are selected such that the rolled surface (upper surface 102a) of plate 102 is covered and not exposed. The material of the third metal plate 103, that is, the third metal, is relatively easy to overlap-roll with the first metal and the second metal, and is relatively easy to remove in the subsequent step of removing the metal layer shown in FIG. It is preferable to choose a metal, which is relatively inexpensive.
 第3金属は、第1金属および第2金属との相性などの所望に応じるとともに、図1に示す金属層の除去工程を考慮し、展伸材で加工性のよい、たとえば、A1050などのAl、C1020などのCu、無電解鉄などのFe、あるいは、JIS規格の3000系から5000系などのAl合金、黄銅や青銅や銅ニッケル合金などのCu合金、SPCCなどに用いられる低炭素鋼などのFe合金などを選択することができる。上記の他、第3金属は、第1金属および第2金属との硬さの差を考慮すれば、高純度のニッケル(Ni)、高純度のチタン(Ti)、あるいは、Ni合金、Ti合金、Zn合金、Sn合金、ステンレス鋼(SUS)、などの適用も可能と考えられる。 As the third metal, the compatibility with the first and second metals is met as desired, and the metal layer removal step shown in FIG. 1 is taken into consideration. , Cu such as C1020, Fe such as electroless iron, or Al alloys such as JIS standard 3000 series to 5000 series, Cu alloys such as brass, bronze and copper-nickel alloys, low carbon steel used for SPCC etc. A Fe alloy or the like can be selected. In addition to the above, the third metal may be high-purity nickel (Ni), high-purity titanium (Ti), Ni alloy, or Ti alloy, considering the difference in hardness between the first and second metals. , Zn alloys, Sn alloys, stainless steel (SUS), and the like can also be applied.
 また、第3金属板103は、図1に示す後の金属層の除去工程でのダミー部100B(第3金属層103)の除去が容易になるように、その厚さが十分に小さいのが好ましい。しかし、第3金属板103の厚さが過度に小さくなると圧延中に大きな塑性不安定現象が発生しやすくなり、第3金属板103のZ方向への圧縮変形量が大きく変動しやすい。第3金属層103の厚さが大きく変動すると、ダミー部100Bが大きくうねった形態になるため、ダミー部100Bと製品対応部100Aとの接合界面が凸凹状の形態になる。接合界面が凸凹状の形態であると、後述するダミー部100Bの除去に伴って、製品対応部100Aが過分に除去されるため好ましくない。こうした圧延中の大きな塑性不安定現象を回避するには、第3金属板103の硬さと、これに接する第1金属板101および第2金属板102との硬さとの差を、より小さくするのが好ましい。 Further, the thickness of the third metal plate 103 is sufficiently small so that the dummy portion 100B (the third metal layer 103) can be easily removed in the subsequent metal layer removal step shown in FIG. preferable. However, if the thickness of the third metal plate 103 becomes excessively small, a large plastic instability phenomenon tends to occur during rolling, and the amount of compressive deformation of the third metal plate 103 in the Z direction tends to fluctuate greatly. If the thickness of the third metal layer 103 fluctuates greatly, the dummy portion 100B becomes largely wavy, and the bonding interface between the dummy portion 100B and the product corresponding portion 100A becomes uneven. If the bonding interface has an uneven shape, the product corresponding portion 100A is excessively removed along with the removal of the dummy portion 100B, which will be described later, which is not preferable. In order to avoid such a large plastic instability phenomenon during rolling, the difference between the hardness of the third metal plate 103 and the hardness of the first metal plate 101 and the second metal plate 102 in contact therewith should be made smaller. is preferred.
 この観点で、第3金属板103を構成する第3金属は、好ましくは、第3金属板103に接する第1金属板103および第2金属板102との硬さの差が100HV以下になる金属を選択する。また、簡便的には、第3金属として、第3金属板103に接する第1金属板103および第2金属板102のうち、硬さがより小さい方と同じ金属を選択することができる。この場合、圧延の容易性およびダミー部100Bの除去の容易性を考慮し、第3金属板103の厚さは、たとえば、10μm以上100μm以下に設定することが好ましい。第3金属板103に接する第1金属板101および第2金属板102との硬さの差を100HV以下にすることにより、圧延接合時に硬さの差に起因してより硬い金属板の変形抵抗が増大し、クラッド圧延材を構成する金属層の厚みがうねるように変動してしまう塑性不安定現象の発生が抑制されやすい。 From this point of view, the third metal forming the third metal plate 103 is preferably a metal having a hardness difference of 100 HV or less between the first metal plate 103 and the second metal plate 102 in contact with the third metal plate 103. to select. Further, for convenience, the same metal as the one having lower hardness among the first metal plate 103 and the second metal plate 102 in contact with the third metal plate 103 can be selected as the third metal. In this case, considering the ease of rolling and the ease of removing the dummy portion 100B, it is preferable to set the thickness of the third metal plate 103 to, for example, 10 μm or more and 100 μm or less. By setting the difference in hardness between the first metal plate 101 and the second metal plate 102 in contact with the third metal plate 103 to 100 HV or less, the deformation resistance of the harder metal plate due to the difference in hardness during roll bonding is increased. increases, and the occurrence of plastic instability phenomenon in which the thickness of the metal layer constituting the clad rolled material fluctuates in an undulating manner is likely to be suppressed.
<クラッド圧延材の形成工程>
 図1に示すクラッド圧延材の形成工程では、金属板の準備工程で準備した少なくとも3つの金属板をZ方向に重ねた状態で圧延ロールにより圧延することによって金属板同士を圧延接合し、少なくとも3つの金属層から成るクラッド圧延材を形成する。たとえば、図2に示すクラッド圧延材100に関し、クラッド圧延材の形成工程では、第2金属板102の圧延面を露出させないように、第1金属板101と第3金属板103とで第2金属板102を挟み込んだ状態で、好ましくは、65%以上(より好ましくは、67%以上)の圧下率で圧延ロールにより圧延する。
<Formation process of clad rolled material>
In the step of forming the clad rolled material shown in FIG. 1, at least three metal plates prepared in the step of preparing the metal plates are stacked in the Z direction and rolled with rolling rolls to join the metal plates by rolling. A clad roll consisting of two metal layers is formed. For example, regarding the clad rolled material 100 shown in FIG. With the plate 102 sandwiched, it is rolled by rolling rolls at a rolling reduction of preferably 65% or more (more preferably 67% or more).
 詳しくは、第1金属板101と第2金属板102と第3金属板103とを圧延装置にセットし、圧延ロールに送り込まれる前に、第1金属板101でZ1側から、第3金属板103でZ2側から、それぞれ第2金属板102のZ方向の両面に重ねて、第2金属板102の一方(Z2側)の圧延面である上面102aを第3金属板103の下面103bが被覆し、第2金属板102の他方(Z1側)の圧延面である下面102bおよび側面102cを第1金属板101の底面101cおよび側面101dが被覆するようにする。そして、圧延ロール下で第2金属板102の圧延面である上面102aおよび下面102bを露出させないように、第1金属板101と第2金属板102とで第3金属板103を挟み込んだ状態で圧延ロールに送り込みながら、好ましくは、65%以上(より好ましくは、67%以上)の圧下率で圧延する。なお、65%以上の圧下率で圧延することが好ましい(より好ましくは、67%以上)ことに関しては、実施例を挙げて、後述する。 Specifically, the first metal plate 101, the second metal plate 102, and the third metal plate 103 are set in a rolling device, and before they are sent to the rolling rolls, the first metal plate 101 rolls the third metal plate from the Z1 side. At 103, the lower surface 103b of the third metal plate 103 covers the upper surface 102a, which is the rolled surface of one side (Z2 side) of the second metal plate 102, on both sides of the second metal plate 102 in the Z direction. Then, bottom surface 101c and side surface 101d of first metal plate 101 cover lower surface 102b and side surface 102c, which are rolled surfaces on the other side (Z1 side) of second metal plate 102, respectively. Then, the third metal plate 103 is sandwiched between the first metal plate 101 and the second metal plate 102 so as not to expose the upper surface 102a and the lower surface 102b, which are the rolling surfaces of the second metal plate 102, under the rolling rolls. It is preferably rolled at a rolling reduction of 65% or more (more preferably 67% or more) while being sent to rolling rolls. The fact that it is preferable to roll at a rolling reduction of 65% or more (more preferably 67% or more) will be described later with examples.
 上記した圧延方法により、圧延ロールに送り込まれる前から圧延ロール下において、第2金属板102の上面102aは第3金属板103により被覆され、下面102bおよび両方の側面102cは第1金属板101により被覆されている。そのため、図2に示すクラッド圧延材100を形成する場合、第1金属板101との接合端部100aを含むすべての外周面を露出させない状態で、第2金属板102を圧延することができる。これにより、第1金属板101と第2金属板102との接合端部100aから圧延油が第1金属板101側面の101dと第2金属板102の側面102cとの間に浸入するのを抑制しながら製品対応部100Aを形成することができる。 By the above-described rolling method, the upper surface 102a of the second metal plate 102 is covered with the third metal plate 103, and the lower surface 102b and both side surfaces 102c are covered with the first metal plate 101 before being sent to the rolling rolls and below the rolling rolls. covered. Therefore, when forming the clad rolled material 100 shown in FIG. 2, the second metal plate 102 can be rolled without exposing all the outer peripheral surface including the joint end 100a with the first metal plate 101. This prevents the rolling oil from entering between the side surface 101d of the first metal plate 101 and the side surface 102c of the second metal plate 102 from the joint end portion 100a of the first metal plate 101 and the second metal plate 102. 100 A of product correspondence parts can be formed while carrying out.
 このように、図1に示すクラッド圧延材の形成工程では、第2金属板102のZ方向の一方(Z2側)の圧延面であって、第1金属板101と第2金属板102との接合端部100aが存在する第2金属板102の上面102aが第3金属板103の下面103bによって被覆されて露出することがない。そのため、第2金属板102の上面102aの第1金属板101との接合端部100aを露出させない状態で圧延することができる。これにより、図3に示すクラッド材10の層間の接合強度を低下させる可能性がある圧延油の浸入を抑制しながら、第1金属板101と第2金属板102とを、圧延ロールにより圧延接合することができる。 As described above, in the step of forming the clad rolled material shown in FIG. The upper surface 102a of the second metal plate 102 where the joint end 100a exists is covered with the lower surface 103b of the third metal plate 103 and is not exposed. Therefore, the rolling can be performed in a state in which the joint end portion 100a of the upper surface 102a of the second metal plate 102 to the first metal plate 101 is not exposed. As a result, the first metal plate 101 and the second metal plate 102 are rolled and joined by the rolling rolls while suppressing the infiltration of rolling oil that may reduce the bonding strength between the layers of the clad material 10 shown in FIG. can do.
 ここで、従来の一般的な圧延方法では、図3に示すクラッド材10を形成する場合、第1金属板101および第2金属板102を用いて、第3金属板103を用いない。そのため、圧延ロール下において、第1金属板101の上面101aと下面101b、および第2金属板102の上面102aに対して圧延ロールが接した状態で、Z方向に大きな圧力(以下、「圧延力」という。)が作用する。このZ方向に作用する圧延力により、第1金属板101および第2金属板102は、Z方向に展延されて変形し、同時に、X方向に展延されて変形するとともに、Y方向にも展延されて変形する。このとき、第3金属板103を用いていないため、圧延ロールと第1金属板101の上面101aおよび第2金属板102の上面102aとの間には、圧延油が介在している。この圧延油の潤滑作用により、圧延ロールと、第1金属板101の上面101aおよび第2金属板102の上面102aとの間に生じる摩擦力が十分に小さくなるため、第1金属板101および第2金属板102がY方向に展延されて変形するのを制限するように生じる抗力もまた十分に小さくなる。このY方向に作用する抗力が小さくなると、第1金属板101をY方向の外側に向かって展延させる応力が相対的に大きくなるため、接合端部100a付近において、第1金属板101と第2金属板102との接合に寄与するY方向の応力が相対的に小さくなる。このように接合に寄与するY方向の応力が小さいと、クラッド材10の接合端部10a付近の接合強度は向上しにくい。 Here, in the conventional general rolling method, the first metal plate 101 and the second metal plate 102 are used when forming the clad material 10 shown in FIG. Therefore, under the rolling rolls, in a state in which the rolling rolls are in contact with the upper surface 101a and the lower surface 101b of the first metal plate 101 and the upper surface 102a of the second metal plate 102, a large pressure in the Z direction (hereinafter referred to as "rolling force ) works. Due to the rolling force acting in the Z direction, the first metal plate 101 and the second metal plate 102 are stretched and deformed in the Z direction, and at the same time, are stretched and deformed in the X direction, and are also stretched and deformed in the Y direction. It spreads and transforms. At this time, since the third metal plate 103 is not used, rolling oil is interposed between the rolling rolls and the upper surface 101a of the first metal plate 101 and the upper surface 102a of the second metal plate 102 . Due to the lubricating action of this rolling oil, the frictional force generated between the rolling rolls and the upper surface 101a of the first metal plate 101 and the upper surface 102a of the second metal plate 102 is sufficiently reduced. The drag force generated to limit the deformation of the two metal plates 102 as they are spread in the Y direction is also sufficiently small. When the drag acting in the Y direction decreases, the stress that causes the first metal plate 101 to spread outward in the Y direction relatively increases. The stress in the Y direction that contributes to the bonding with the two metal plates 102 is relatively small. When the stress in the Y direction that contributes to the bonding is small in this way, the bonding strength of the clad material 10 near the bonding end portion 10a is difficult to improve.
 一方、この発明に係る圧延方法では、図2に示すように、第1金属板101および第2金属板102に対して、第3金属板103をZ方向に重ねた状態で接する。そのため、圧延ロール下において、第3金属板103の下面103bが第1金属板101の上面101aおよび第2金属板102の上面102aに対して接した状態で、Z方向に大きな圧延力が作用する。このZ方向に作用する圧延力により、第1金属板101、第2金属板102および第3金属板103は、Z方向に展延されて変形し、同時に、X方向に展延されて変形するとともに、Y方向にも展延されて変形する。このとき、第3金属板103を用いているため、第3金属板103の下面103bと、第1金属板101の上面101aおよび第2金属板102の上面102aとの間への圧延油の浸入が抑制されている。そのため、第3金属板103の下面103bと、第1金属板101の上面101aおよび第2金属板102の上面102aとの間に比較的大きな摩擦力が生じて、第1金属板101および第2金属板102がY方向へ展延されて変形するのを制限する比較的大きな抗力が生じる。このように、第3金属板103を用いる圧延方法では、Y方向に作用する抗力が従来の圧延方法よりも大きくなる。そのため、接合端部100a付近において、第1金属板101と第2金属板102との接合に寄与するY方向の応力が相対的に大きくなり、クラッド材10の接合端部10aにおける接合強度の向上に寄与することができる。 On the other hand, in the rolling method according to the present invention, as shown in FIG. 2, the third metal plate 103 is brought into contact with the first metal plate 101 and the second metal plate 102 while being stacked in the Z direction. Therefore, under the rolling rolls, a large rolling force acts in the Z direction while the lower surface 103b of the third metal plate 103 is in contact with the upper surface 101a of the first metal plate 101 and the upper surface 102a of the second metal plate 102. . Due to the rolling force acting in the Z direction, the first metal plate 101, the second metal plate 102 and the third metal plate 103 are stretched and deformed in the Z direction, and at the same time are stretched and deformed in the X direction. At the same time, it is extended and deformed in the Y direction as well. At this time, since the third metal plate 103 is used, the rolling oil enters between the lower surface 103b of the third metal plate 103 and the upper surface 101a of the first metal plate 101 and the upper surface 102a of the second metal plate 102. is suppressed. Therefore, a relatively large frictional force is generated between the lower surface 103b of the third metal plate 103 and the upper surface 101a of the first metal plate 101 and the upper surface 102a of the second metal plate 102. A relatively large drag force is generated that limits the deformation of the metal plate 102 as it spreads in the Y direction. Thus, in the rolling method using the third metal plate 103, the drag acting in the Y direction is greater than in the conventional rolling method. Therefore, in the vicinity of the joint end portion 100a, the stress in the Y direction that contributes to the joint between the first metal plate 101 and the second metal plate 102 becomes relatively large, and the joint strength at the joint end portion 10a of the clad material 10 is improved. can contribute to
 なお、この発明に係るクラッド材(クラッド圧延材の製品対応部)は、図3に示す2層構造(図2に示す2層構造の製品対応部100A)に限定されない。この発明に係るクラッド材は、層構造を3層以上に構成することも可能である。たとえば、図2に示す第1金属層101と第2金属層102との間に1層以上の金属層を入れ込み、図3に示す第1金属層11と第2金属層12との間に1層以上の金属層を有する構成にすることも可能である。また、たとえば、図2に示す第1金属層101の下面101b側(Z1側)に1層以上の金属層を入れ込み、図3に示す第1金属層11の下面11b側(Z1側)に1層以上の金属層を有する構成にすることも可能である。また、たとえば、図2に示す第2金属層102の上面102a側(Z2側)に1層以上の金属層を入れ込み、図3に示す第2金属層12の上面12a側(Z2側)に1層以上の金属層を有する構成、つまり、第2金属層12そのものを多層に構成することも可能である。上記したクラッド材の層構造に係る変形例は、後述するエッジレイ型(第2実施形態)およびエッジレイ型の変形例(第3実施形態)においても適用可能である。 It should be noted that the clad material (the product corresponding portion of the rolled clad material) according to the present invention is not limited to the two-layer structure shown in FIG. 3 (the two-layer structure product corresponding portion 100A shown in FIG. 2). The clad material according to the present invention can also have a layered structure of three or more layers. For example, one or more metal layers are inserted between the first metal layer 101 and the second metal layer 102 shown in FIG. 2, and one metal layer is inserted between the first metal layer 11 and the second metal layer 12 shown in FIG. A configuration having more than one metal layer is also possible. Further, for example, one or more metal layers are inserted on the lower surface 101b side (Z1 side) of the first metal layer 101 shown in FIG. A configuration having more than one metal layer is also possible. Also, for example, one or more metal layers are inserted on the upper surface 102a side (Z2 side) of the second metal layer 102 shown in FIG. It is also possible to have a configuration having more than one metal layer, that is, to configure the second metal layer 12 itself in multiple layers. The modified example of the layer structure of the clad material described above can also be applied to an edge-ray type (second embodiment) and a modified edge-ray type (third embodiment), which will be described later.
 また、この発明に係るクラッド材(クラッド圧延材の製品対応部)は、図3に示すインレイコア(第2金属層12)が1つの構成に限定されない。この発明に係るクラッド材は、Y方向において、2つ以上のインレイコアを配列して構成することも可能である。この場合、すべてのインレイコアを同材質または異材質で構成することも、幾つかのインレイコアを異材質で構成することも可能である。 Also, the clad material (product-corresponding portion of the rolled clad material) according to the present invention is not limited to the configuration in which the inlay core (second metal layer 12) shown in FIG. 3 is one. The clad material according to the present invention can also be configured by arranging two or more inlay cores in the Y direction. In this case, all the inlay cores can be made of the same material or different materials, or some inlay cores can be made of different materials.
 また、この発明に係るクラッド材(クラッド圧延材の製品対応部)は、インレイ型とエッジレイ型(第2実施形態)との併用、および、インレイ型とエッジレイ型の変形例(第3実施形態)との併用も、可能である。つまり、Y方向において、1つまたは2つ以上のインレイコアと、1つまたは2つのエッジレイコアとを、同時に配列して構成することも可能である。 In addition, the clad material (the part corresponding to the product of the clad rolled material) according to the present invention is a combined use of the inlay type and the edge lay type (second embodiment), and a modified example of the inlay type and the edge lay type (third embodiment). A combined use with is also possible. That is, in the Y direction, one or two or more inlay cores and one or two edge lay cores can be arranged at the same time.
 図1に示すクラッド材の製造方法では、図2に示すクラッド圧延材100に対して、好ましくは、クラッド圧延材100を構成するそれぞれの金属層の組成および寸法などを考慮して設定した適切な条件で、拡散焼鈍を施す。適切な条件で拡散焼鈍を施したクラッド圧延材100は、これを構成する第1金属層101、第2金属層102および第3金属層103のそれぞれの接合界面に、それぞれの金属層の組成に基づく金属間化合物が適度に生成されている。接合界面に適度に生成された金属間化合物は、適度な厚さの金属間化合物層を形成することができる。それぞれの金属層の間に適度な厚さの金属間化合物層が形成されているクラッド圧延材100は、その機械的強さ(金属層間の接合強度)がより向上される。その結果、クラッド圧延材100からダミー部100Bを除去した後の製品対応部100Aであるクラッド材10は、その機械的強さ(金属層間の接合強度)がより向上される。 In the method for manufacturing the clad material shown in FIG. 1, the clad rolled material 100 shown in FIG. Diffusion annealing is performed under the following conditions. Clad rolled material 100 that has been diffusion annealed under appropriate conditions has a composition of each metal layer at the bonding interfaces of the first metal layer 101, the second metal layer 102 and the third metal layer 103 that constitute the clad rolled material 100. A moderate amount of intermetallic compounds based on An intermetallic compound appropriately generated at the bonding interface can form an intermetallic compound layer with an appropriate thickness. The clad rolled material 100 in which an intermetallic compound layer having an appropriate thickness is formed between each metal layer has a further improved mechanical strength (bonding strength between metal layers). As a result, the mechanical strength (joining strength between metal layers) of the clad material 10, which is the product corresponding portion 100A after removing the dummy portion 100B from the clad rolled material 100, is further improved.
 また、図1に示すクラッド材の製造方法では、図2に示すクラッド圧延材100に対して適切な条件で拡散焼鈍を施した後に、さらに圧延(仕上圧延)を行って、クラッド圧延材100の厚さ、硬さおよび表面粗さなどを調製することができる。このような仕上圧延は、後述する金属層の除去工程の途中で行うこともできるし、金属層の除去工程を経た後に行うこともできる。 In the clad rolled material 100 shown in FIG. 1, the clad rolled material 100 shown in FIG. Thickness, hardness, surface roughness, etc. can be adjusted. Such finish rolling can be performed in the middle of the metal layer removing step, which will be described later, or after the metal layer removing step.
<金属層の除去工程>
 図1に示す金属層の除去工程では、クラッド圧延材から製品対応部以外の金属層を除去することによって、製品になるクラッド材を形成する。たとえば、図2に示すクラッド圧延材100に関し、金属層の除去工程では、クラッド圧延材100からダミー部100Bである第3金属層103を除去し、製品対応部100Aである第1金属層101および第2金属層102を残す。これにより、図2に示すクラッド圧延材100から、図3に示すクラッド材10を形成することができる。なお、金属層の除去工程では、金属層を複数回に分けて除去することもできる。
<Step of removing metal layer>
In the step of removing the metal layer shown in FIG. 1, the clad material that will become the product is formed by removing the metal layer from the clad rolled material other than the part corresponding to the product. For example, regarding the clad rolled material 100 shown in FIG. The second metal layer 102 remains. Thereby, the clad material 10 shown in FIG. 3 can be formed from the clad rolled material 100 shown in FIG. In addition, in the step of removing the metal layer, the metal layer can be removed in multiple steps.
 ここで、金属層の除去手段は、たとえば、円筒砥石、平面砥石、または、ステンレス鋼線製バフなどを用いた機械的研磨、金属層の材質に対応する電気化学的研磨などが考えられる。金属層の除去手段は、たとえば、クラッド圧延材を構成する金属層の材質、クラッド材の機能および用途、さらには製造設備など、所望に応じて、適切に選択することが好ましい。たとえば、長尺のクラッド材を製造する場合、製造設備が比較的簡素で量産性および廉価性が期待できる、機械的研磨を選択するのが好ましい。 Here, the means for removing the metal layer can be, for example, mechanical polishing using a cylindrical whetstone, a flat whetstone, or a buff made of stainless steel wire, or electrochemical polishing corresponding to the material of the metal layer. It is preferable to appropriately select the means for removing the metal layer according to the requirements, such as the material of the metal layer forming the rolled clad material, the function and application of the clad material, and the manufacturing equipment. For example, when manufacturing a long clad material, it is preferable to select mechanical polishing, which requires relatively simple manufacturing equipment and can be expected to be mass-producible and inexpensive.
 上記した通り、この発明に係るクラッド材の製造方法によれば、圧延油が第1金属板101と第2金属板102との接合端部100aから第1金属板101の側面101dと第2金属板102の側面102cとの間に浸入するのを抑制しながら、クラッド圧延材100の製品対応部100Aを形成することができる。これにより、製品対応部100Aの機械的強さ、特に、第1金属層101と第2金属層102とのY方向の接合層(側面101d、102c)の接合強度を、十分に向上させることができる。その結果、ダミー部100Bを除去した後の製品対応部100A、すなわち、クラッド材10は、第1金属層11と第2金属層12とのY方向の接合層(側面11d、12c)に十分な接合強度が得られ、特に、クラッド材10の一方(Z2側)の表面に露出している接合端部10aの接合強度が向上し、従来の製造方法で形成されたクラッド材に比べて、耐剥離性が十分に向上される。また、圧延ロールにより65%以上の圧下率で圧延接合されて形成されたクラッド材10は、曲げ加工において剥離がより発生しにくい耐曲げ剥離性を有することが可能になる。この点は、後述する。 As described above, according to the clad material manufacturing method of the present invention, the rolling oil flows from the joint end 100a between the first metal plate 101 and the second metal plate 102 to the side surface 101d of the first metal plate 101 and the second metal plate. The part 100</b>A corresponding to the product of the clad rolled material 100 can be formed while suppressing penetration between the side surface 102 c of the plate 102 . As a result, the mechanical strength of the product corresponding portion 100A, in particular, the bonding strength of the bonding layers (side surfaces 101d and 102c) in the Y direction between the first metal layer 101 and the second metal layer 102 can be sufficiently improved. can. As a result, the product corresponding portion 100A after removing the dummy portion 100B, that is, the clad material 10 is sufficient for the bonding layers (side surfaces 11d and 12c) of the first metal layer 11 and the second metal layer 12 in the Y direction. The joint strength is obtained, and in particular, the joint strength of the joint end portion 10a exposed on one surface (Z2 side) of the clad material 10 is improved. Peelability is sufficiently improved. In addition, the clad material 10 formed by rolling and joining with a reduction ratio of 65% or more with a rolling roll can have a resistance to bending peeling, which makes peeling less likely to occur during bending. This point will be described later.
 また、上記した通り、この発明に係るクラッド材の製造方法では、クラッド材10に対応する製品対応部100Aを構成する第2金属層102(インレイコア)の圧延面102aを露出させないように第3金属板103(ダミー部100B)を重ねてクラッド圧延材100を形成した後に第3金属層103(ダミー部100B)を除去する、という簡素な手段により、クラッド材10を形成することができる。したがって、特許文献1、2が開示するクラッド材のように、第1金属板および第2金属板の接合面(側端面)を凸凹状に形成する手段、あるいは、角形断面の複数の金属角材を形成して配列する手段を用いることなく、第1金属層11と第2金属層12とにより構成された、図3に示すクラッド材10を形成することができる。 Further, as described above, in the clad material manufacturing method according to the present invention, the third metal layer 102 (inlay core) constituting the product corresponding portion 100A corresponding to the clad material 10 is not exposed to the rolled surface 102a. The clad material 10 can be formed by a simple means of removing the third metal layer 103 (dummy part 100B) after forming the clad rolled material 100 by stacking the metal plates 103 (dummy part 100B). Therefore, as in the clad materials disclosed in Patent Documents 1 and 2, means for forming uneven joint surfaces (side end surfaces) of the first metal plate and the second metal plate, or a plurality of metal squares with a square cross section are used. The cladding material 10 shown in FIG. 3, which is composed of the first metal layer 11 and the second metal layer 12, can be formed without using forming and arranging means.
<第2実施形態>
 図1に示すクラッド材の製造方法に関し、クラッド圧延材およびクラッド材の構成例として、図4および図5に示すエッジレイ型を挙げる。なお、この発明でエッジレイ型と呼ぶクラッド圧延材およびクラッド材は、第1金属層の厚さ方向(Z方向)の一方側(Z2側)に第2金属層が重なる形態を有するものを意図する。
<Second embodiment>
Regarding the method of manufacturing the clad material shown in FIG. 1, the edge lay type shown in FIGS. 4 and 5 is given as an example of the configuration of the rolled clad material and the clad material. In addition, the clad rolled material and clad material referred to as the edge-lay type in the present invention are intended to have a form in which the second metal layer overlaps on one side (Z2 side) in the thickness direction (Z direction) of the first metal layer. .
 図4に示すクラッド圧延材200は、第1金属から成る第1金属板201と、第1金属とは異なる第2金属から成る第2金属板202と、第3金属から成る第3金属板203とを用いて、圧延ロールにより圧延接合されて、形成されている。第2金属板202は、クラッド圧延材200のY1側エッジに位置する芯部(エッジレイコア)になる。これにより、第1金属から成る第1金属層201と、第1金属とは異なる第2金属から成る第2金属層202と、第3金属から成る第3金属層203と、により構成された、クラッド圧延材200に成っている。このクラッド圧延材200において、第1金属層201は第1金属板201に対応し、第2金属層202は第2金属板202に対応し、第3金属層203は第3金属板203に対応する。したがって、第2金属層202は、クラッド圧延材200のY1側エッジに位置する芯層(エッジレイ層)になる。このクラッド圧延材200は、第1金属層201と第2金属層202とが製品対応部200Aを構成し、第3金属層203がダミー部200Bを構成する。 A clad rolled material 200 shown in FIG. 4 includes a first metal plate 201 made of a first metal, a second metal plate 202 made of a second metal different from the first metal, and a third metal plate 203 made of a third metal. and are rolled and joined by rolling rolls. The second metal plate 202 becomes a core portion (edge lay core) positioned at the Y1 side edge of the clad rolled material 200 . As a result, a first metal layer 201 made of a first metal, a second metal layer 202 made of a second metal different from the first metal, and a third metal layer 203 made of a third metal, It consists of clad rolled material 200 . In this clad rolled material 200, the first metal layer 201 corresponds to the first metal plate 201, the second metal layer 202 corresponds to the second metal plate 202, and the third metal layer 203 corresponds to the third metal plate 203. do. Therefore, the second metal layer 202 becomes a core layer (edge lay layer) positioned at the Y1 side edge of the clad rolled material 200 . In this rolled clad material 200, the first metal layer 201 and the second metal layer 202 constitute a product corresponding portion 200A, and the third metal layer 203 constitutes a dummy portion 200B.
 また、図4に示すクラッド圧延材200は、Z方向の一方の圧延面側(Z2側)には第2金属層202が存在し、Z方向の他方の圧延面側(Z1側)には第2金属層202が存在していない。このクラッド圧延材200は、第1金属層201よりもY方向の長さが小さい第2金属層202がZ方向の一方の圧延面側(Z2側)に存在し、Z方向の他方の圧延面側(Z1側)には第2金属層202が存在していない。このクラッド圧延材200は、上記した第1実施形態の構成例(図2参照)とは異なり、第2金属層202のY方向の一方(Y1側)の側面202cが露出し、他方(Y2側)の側面202dが露出していない。 The clad rolled material 200 shown in FIG. 4 has a second metal layer 202 on one rolled surface side (Z2 side) in the Z direction, and a second metal layer 202 on the other rolled surface side (Z1 side) in the Z direction. 2 metal layer 202 is not present. In this clad rolled material 200, a second metal layer 202 having a length in the Y direction smaller than that of the first metal layer 201 is present on one rolled surface side (Z2 side) in the Z direction, and the other rolled surface in the Z direction is present. The second metal layer 202 does not exist on the side (Z1 side). In this clad rolled material 200, one (Y1 side) side surface 202c in the Y direction of the second metal layer 202 is exposed, and the other side (Y2 side) is exposed, unlike the configuration example of the first embodiment (see FIG. 2). ) is not exposed.
 図5に示すクラッド材20は、図4に示すクラッド圧延材200の製品対応部200Aに対応する。このクラッド材20は、第1金属から成る第1金属層21と、第1金属とは異なる第2金属から成る第2金属層22と、により構成されている。このクラッド材20は、Z方向の一方の圧延面側(Z2側)には第2金属層22が存在し、Z方向の他方の圧延面側(Z1側)には第2金属層22が存在していない。このクラッド材20は、第1金属層21よりもY方向の長さが小さい第2金属層22がZ方向の一方の圧延面側(Z2側)に存在し、Z方向の他方の圧延面側(Z1側)には第2金属層22が存在していない。このクラッド材20は、上記した第1実施形態の構成例(図3参照)とは異なり、第2金属層22のY方向の一方(Y1側)の側面22cが露出し、他方(Y2側)の側面22dが露出していない。したがって、第2金属層12は、クラッド材10のY1側エッジに位置する埋込層(インレイ層)になる。 The clad material 20 shown in FIG. 5 corresponds to the product corresponding portion 200A of the clad rolled material 200 shown in FIG. The clad material 20 is composed of a first metal layer 21 made of a first metal and a second metal layer 22 made of a second metal different from the first metal. This clad material 20 has a second metal layer 22 on one rolled surface side (Z2 side) in the Z direction, and a second metal layer 22 on the other rolled surface side (Z1 side) in the Z direction. not. In this clad material 20, the second metal layer 22 having a length in the Y direction smaller than that of the first metal layer 21 is present on one rolled surface side (Z2 side) in the Z direction, and the other rolled surface side in the Z direction is present. The second metal layer 22 does not exist on (Z1 side). In this cladding material 20, one (Y1 side) side surface 22c in the Y direction of the second metal layer 22 is exposed, and the other side (Y2 side) is exposed, unlike the configuration example of the first embodiment (see FIG. 3). is not exposed. Therefore, the second metal layer 12 becomes a buried layer (inlay layer) positioned at the Y1 side edge of the clad material 10 .
 なお、エッジレイ型のクラッド材は、図5に示す構成のクラッド材20に限らない。図1に示すクラッド材の製造方法によれば、たとえば、Y方向の長さが異なる第2金属層を備える構成のエッジレイ型のクラッド材であっても、Z方向の厚さが異なる第2金属層を備える構成のエッジレイ型のクラッド材であっても、所望の第2金属層に対応する第2金属板を準備することにより、製造可能である。図1に示すクラッド材の製造方法によれば、たとえば、第2金属層がY方向の他方(Y2側)に位置する構成のエッジレイ型のクラッド材であっても、クラッド圧延材200の形成工程において、第2金属層に対応する第2金属板をY方向の所望の位置に送り込んで圧延することにより、製造可能である。 Note that the edge-lay type clad material is not limited to the clad material 20 having the configuration shown in FIG. According to the clad material manufacturing method shown in FIG. 1, for example, even in an edge-lay type clad material having a configuration including second metal layers with different lengths in the Y direction, the second metal layers with different thicknesses in the Z direction Even an edge-lay type clad material having a layered structure can be manufactured by preparing a second metal plate corresponding to a desired second metal layer. According to the method of manufacturing the clad material shown in FIG. 1, for example, even if the clad material is edge-lay type clad material in which the second metal layer is located on the other side of the Y direction (Y2 side), the clad rolled material 200 is formed. 3, the second metal plate corresponding to the second metal layer is sent to a desired position in the Y direction and rolled.
 以下、第2実施形態の構成例の製造方法についての説明を行うに際して、上記した第1実施形態の構成例(図2、図3参照)の製造方法と異なる事項を主として説明し、これと同様な事項は略すか、または、簡略に説明する。 In the following, when describing the manufacturing method of the configuration example of the second embodiment, the differences from the manufacturing method of the configuration example of the first embodiment (see FIGS. 2 and 3) will be mainly described, and the same important matters are omitted or explained briefly.
 この発明に係る第2実施形態の構成例、たとえば、図4に示すクラッド圧延材200および図5に示すクラッド材20は、図1に示すクラッド材の製造方法により製造することができる。 The configuration example of the second embodiment according to the present invention, for example, the clad rolled material 200 shown in FIG. 4 and the clad material 20 shown in FIG. 5 can be manufactured by the clad material manufacturing method shown in FIG.
 まず、金属板の準備工程では、第1金属から成る第1金属板201と、第1金属とは異なる第2金属から成る第2金属板202と、第3金属から成る第3金属板203と、を準備する。このとき、第1金属板201および第2金属板202は、図4に示すクラッド圧延材200に対応する形状および寸法のものを準備する。また、第3金属板203は、Y方向の長さが第2金属板202よりも大きく第1金属板201と同等以下、好ましくは第1金属板201と同等のものを準備する。金属板の材質など、他の事項については、上記した第1実施形態の構成例の場合と実質的に同じであってよい。 First, in the metal plate preparation step, a first metal plate 201 made of a first metal, a second metal plate 202 made of a second metal different from the first metal, and a third metal plate 203 made of a third metal. , to prepare. At this time, the first metal plate 201 and the second metal plate 202 are prepared to have a shape and dimensions corresponding to the clad rolled material 200 shown in FIG. Also, the third metal plate 203 has a Y-direction length greater than that of the second metal plate 202 and equal to or less than that of the first metal plate 201 , preferably equal to that of the first metal plate 201 . Other matters such as the material of the metal plate may be substantially the same as in the configuration example of the first embodiment.
 次いで、クラッド圧延材の形成工程では、金属板の準備工程でクラッド圧延材200に対応するように準備した、第1金属板201と第2金属板202と第3金属板203とを圧延装置にセットする。そして、圧延ロールに送り込まれる前に、第1金属板201でZ1側から、第3金属板203でZ2側から、それぞれ第2金属板202のZ方向の両面を挟み込み、第2金属板202の一方(Z2側)の圧延面である上面202aを第3金属板203の下面203bが被覆し、第2金属板202の他方(Z1側)の圧延面である下面202bおよび側面202dを第1金属板201の底面201cおよび側面201dが被覆するように圧延ロールに送り込む。このとき、第2金属板202がY方向のY1側に位置するように、圧延ロールに送り込む。そして、圧延ロール下で第2金属板202の圧延面である上面202aおよび下面202bを露出させないように、第1金属板201と第2金属板202とで第3金属板203を挟み込んだ状態で圧延ロールに送り込みながら、クラッド圧延材100の場合と同様に、好ましくは、所定以上の圧下率で圧延する。 Next, in the step of forming the clad rolled material, the first metal plate 201, the second metal plate 202, and the third metal plate 203 prepared to correspond to the clad rolled material 200 in the metal plate preparation step are placed in a rolling mill. set. Then, both sides of the second metal plate 202 in the Z direction are sandwiched by the first metal plate 201 from the Z1 side and the third metal plate 203 from the Z2 side, respectively, before being sent to the rolling rolls. The lower surface 203b of the third metal plate 203 covers the upper surface 202a, which is the rolled surface on one side (Z2 side), and the lower surface 202b, which is the rolled surface on the other side (Z1 side), and the side surface 202d of the second metal plate 202 are covered by the first metal. The plate 201 is fed into the rolling rolls so that the bottom surface 201c and side surface 201d of the plate 201 are covered. At this time, the second metal plate 202 is sent to the rolling rolls so that the second metal plate 202 is positioned on the Y1 side in the Y direction. Then, the third metal plate 203 is sandwiched between the first metal plate 201 and the second metal plate 202 so that the upper surface 202a and the lower surface 202b, which are the rolling surfaces of the second metal plate 202, are not exposed under the rolling rolls. As in the case of the clad rolled material 100, it is preferably rolled at a reduction ratio of a predetermined value or more while being sent to the rolling rolls.
 クラッド圧延材の形成工程では、上記以外の他の事項については、上記した第1実施形態の構成例の場合と実質的に同じであってよい。また、クラッド圧延材200に対する拡散焼鈍および仕上圧延についても、上記した第1実施形態の構成例の場合と実質的に同じであってよい。 In the step of forming the clad rolled material, matters other than the above may be substantially the same as in the configuration example of the first embodiment described above. Diffusion annealing and finish rolling of the clad rolled material 200 may also be substantially the same as in the configuration example of the first embodiment.
 これにより、上記した第1実施形態の構成例の場合と同様に、第1金属板201との接合端部200aを含むすべての外周面を露出させない状態で、第2金属板202を圧延することができる。そのため、接合端部200aから圧延油が第1金属板201の側面201dと第2金属板202の側面202dとの間に浸入するのを抑制しながら製品対応部200Aを形成することができる。 As a result, the second metal plate 202 can be rolled without exposing the entire outer peripheral surface including the joint end 200a with the first metal plate 201, as in the configuration example of the first embodiment. can be done. Therefore, it is possible to form the product corresponding portion 200A while preventing the rolling oil from entering between the side surface 201d of the first metal plate 201 and the side surface 202d of the second metal plate 202 from the joint end portion 200a.
 また、第3金属板203を用いているため、上記した第1実施形態の構成例の場合と同様に、第3金属板203の下面203bと、第1金属板201の上面201aおよび第2金属板202の上面202aとの間に比較的大きな摩擦力が生じて、第1金属板201および第2金属板202のY方向への展延変形を制限する比較的大きな抗力が生じる。そのため、接合端部200aにおいて第1金属板201と第2金属板202との接合に寄与するY方向の圧縮力が大きくなり、クラッド材20(図5参照)の接合端部20aにおける接合強度の向上に寄与することができる。 In addition, since the third metal plate 203 is used, the lower surface 203b of the third metal plate 203, the upper surface 201a of the first metal plate 201, and the second metal plate 201, as in the configuration example of the first embodiment. A relatively large frictional force is generated between the upper surface 202a of the plate 202 and a relatively large drag that limits the spreading deformation of the first metal plate 201 and the second metal plate 202 in the Y direction. Therefore, the compressive force in the Y direction that contributes to the bonding between the first metal plate 201 and the second metal plate 202 at the joint end portion 200a increases, and the joint strength at the joint end portion 20a of the clad material 20 (see FIG. 5) increases. can contribute to improvement.
 次いで、金属層の除去工程では、クラッド圧延材の形成工程で形成したクラッド圧延材200からダミー部200B(第3金属層203)を除去し、製品対応部200Aである第1金属層201および第2金属層202を残す。これにより、図5に示すクラッド材20を形成することができる。金属層の除去工程では、金属層の除去手段など、他の事項については、上記した第1実施形態の構成例の場合と実質的に同じであってよい。 Next, in the metal layer removing step, the dummy portion 200B (the third metal layer 203) is removed from the clad rolled material 200 formed in the clad rolled material forming step, and the first metal layer 201 and the first metal layer 201 as the product corresponding portion 200A are removed. Two metal layers 202 remain. Thereby, the clad material 20 shown in FIG. 5 can be formed. In the step of removing the metal layer, other items such as the means for removing the metal layer may be substantially the same as those in the configuration example of the first embodiment described above.
 上記したように、この発明に係るクラッド材の製造方法によれば、接合端部200aからの圧延油の浸入を抑制しながら、クラッド圧延材200の製品対応部200Aを形成することができる。これにより、製品対応部200Aの機械的強さ、特に、第1金属層201と第2金属層202とのY方向の接合層(側面201d、202d)の接合強度を、十分に向上させることができる。その結果、ダミー部200Bを除去した後の製品対応部200A、すなわちクラッド材20は、第1金属層21と第2金属層22とのY方向の接合層(側面21d、22d)に十分な接合強度が得られ、特に、クラッド材20の一方(Z2側)の表面に露出している接合端部20aの接合強度が向上し、従来の製造方法で形成されたクラッド材に比べて、耐剥離性が十分に向上される。また、クラッド材10の場合と同様に、所定以上の圧下率で形成されたクラッド材20は、好ましい耐曲げ剥離性を有することが可能になる。 As described above, according to the clad material manufacturing method of the present invention, it is possible to form the product-corresponding portion 200A of the clad rolled material 200 while suppressing the intrusion of rolling oil from the joint end portion 200a. As a result, the mechanical strength of the product corresponding portion 200A, in particular, the bonding strength of the bonding layers (side surfaces 201d and 202d) in the Y direction between the first metal layer 201 and the second metal layer 202 can be sufficiently improved. can. As a result, the product corresponding portion 200A after removing the dummy portion 200B, that is, the clad material 20 is sufficiently bonded to the bonding layers (side surfaces 21d and 22d) of the first metal layer 21 and the second metal layer 22 in the Y direction. In particular, the joint strength of the joint end portion 20a exposed on the surface of one side (Z2 side) of the clad material 20 is improved, and the clad material formed by the conventional manufacturing method is resistant to peeling. performance is sufficiently improved. Further, similarly to the case of the clad material 10, the clad material 20 formed with a rolling reduction of a predetermined value or more can have preferable resistance to bending peeling.
 また、クラッド材10の場合と同様に、特許文献1、2が開示するクラッド材のように、第1金属板および第2金属板の接合面(側端面)を凸凹状に形成する手段、あるいは、角形断面の複数の金属角材を形成して配列する手段を用いることなく、第1金属層21と第2金属層22とにより構成された、図5に示すクラッド材20を形成することができる。 In addition, as in the case of the clad material 10, as in the clad materials disclosed in Patent Documents 1 and 2, means for forming uneven joint surfaces (side end surfaces) of the first metal plate and the second metal plate, or The clad material 20 shown in FIG. 5, which is composed of the first metal layer 21 and the second metal layer 22, can be formed without using means for forming and arranging a plurality of metal squares having square cross sections. .
<第3実施形態>
 図1に示すクラッド材の製造方法に関し、クラッド圧延材およびクラッド材の構成例として、図6および図7に示すエッジレイ型の変形例を挙げる。なお、エッジレイ型の変形例もまた、第1金属層の厚さ方向(Z方向)の一方側(Z2側)に第2金属層が重なる形態を有するクラッド圧延材およびクラッド材を意図する。
<Third Embodiment>
Regarding the method of manufacturing the clad material shown in FIG. 1, as a configuration example of the rolled clad material and the clad material, a modification of the edge-lay type shown in FIGS. 6 and 7 will be given. Note that the edge-lay type modification also intends a clad rolled material and a clad material having a form in which the second metal layer overlaps on one side (Z2 side) of the first metal layer in the thickness direction (Z direction).
 図6に示すクラッド圧延材300は、第1金属から成る第1金属板301と、第1金属とは異なる第2金属から成る2つの第2金属板302と、第3金属から成る第3金属板303とを用いて、圧延ロールにより圧延接合されて、形成されている。2つの第2金属板302は、クラッド圧延材300のY1側エッジおよびY2側エッジに位置する2つの芯部(エッジレイコア)になる。これにより、第1金属から成る第1金属層301と、第1金属とは異なる第2金属から成る2つの第2金属層302と、第3金属から成る第3金属層303と、により構成された、クラッド圧延材300に成っている。このクラッド圧延材300において、第1金属層301は第1金属板301に対応し、第2金属層302は第2金属板302に対応し、第3金属層303は第3金属板303に対応する。したがって、2つの第2金属層302は、クラッド圧延材300のY1側エッジおよびY2側エッジに位置する2つの芯層(エッジレイ層)になる。このクラッド圧延材300は、第1金属層301と2つの第2金属層302とが製品対応部300Aを構成し、第3金属層303がダミー部300Bを構成する。 A clad rolled material 300 shown in FIG. The plate 303 is rolled and joined by rolling rolls. The two second metal plates 302 become two cores (edge lay cores) positioned at the Y1 side edge and the Y2 side edge of the clad rolled material 300 . As a result, a first metal layer 301 made of a first metal, two second metal layers 302 made of a second metal different from the first metal, and a third metal layer 303 made of a third metal. In addition, it consists of clad rolling material 300 . In this clad rolled material 300, the first metal layer 301 corresponds to the first metal plate 301, the second metal layer 302 corresponds to the second metal plate 302, and the third metal layer 303 corresponds to the third metal plate 303. do. Therefore, the two second metal layers 302 become two core layers (edge lay layers) positioned at the Y1 side edge and the Y2 side edge of the clad rolled material 300 . In this rolled clad material 300, the first metal layer 301 and the two second metal layers 302 constitute a product corresponding portion 300A, and the third metal layer 303 constitutes a dummy portion 300B.
 また、図6に示すクラッド圧延材300は、Z方向の一方の圧延面側(Z2側)には2つの第2金属層302が存在し、Z方向の他方の圧延面側(Z1側)には第2金属層302が存在していない。このクラッド圧延材300は、第1金属層301よりもY方向の長さが小さい2つの第2金属層302がZ方向の一方の圧延面側(Z2側)に存在し、Z方向の他方の圧延面側(Z1側)には第2金属層302が存在していない。このクラッド圧延材300は、上記した第2実施形態の構成例(図4参照)とは異なり、2つの第2金属層302のY方向の外向きの2つの側面302cが露出し、Y方向の内向きの2つの側面302dが露出していない。 In addition, the clad rolled material 300 shown in FIG. 6 has two second metal layers 302 on one rolled surface side (Z2 side) in the Z direction, and has two second metal layers 302 on the other rolled surface side (Z1 side) in the Z direction. , the second metal layer 302 does not exist. In this clad rolled material 300, two second metal layers 302 having a length in the Y direction smaller than that of the first metal layer 301 are present on one rolling surface side (Z2 side) in the Z direction, and the other two in the Z direction. The second metal layer 302 does not exist on the rolled surface side (Z1 side). Unlike the configuration example of the second embodiment described above (see FIG. 4), this clad rolled material 300 exposes two side surfaces 302c of the two second metal layers 302 facing outward in the Y direction. The two inward facing sides 302d are not exposed.
 図7に示すクラッド材30は、図6に示すクラッド圧延材300の製品対応部300Aに対応する。このクラッド材30は、第1金属から成る第1金属層31と、第1金属とは異なる第2金属から成る2つの第2金属層32と、により構成されている。このクラッド材30は、Z方向の一方の圧延面側(Z2側)には2つの第2金属層32が存在し、Z方向の他方の圧延面側(Z1側)には第2金属層32が存在していない。このクラッド材30は、第1金属層31よりもY方向の長さが小さい2つの第2金属層32がZ方向の一方の圧延面側(Z2側)に存在し、Z方向の他方の圧延面側(Z1側)には第2金属層32が存在していない。このクラッド材30は、上記した第2実施形態の構成例(図5参照)とは異なり、2つの第2金属層32のY方向の外向きの2つの側面32cが露出し、Y方向の内向きの2つの側面32dが露出していない。したがって、2つの第2金属層32は、クラッド材30のY1側エッジおよびY2側エッジに位置する2つの埋込層(インレイ層)になる。 The clad material 30 shown in FIG. 7 corresponds to the product corresponding portion 300A of the clad rolled material 300 shown in FIG. The clad material 30 is composed of a first metal layer 31 made of a first metal and two second metal layers 32 made of a second metal different from the first metal. This clad material 30 has two second metal layers 32 on one rolled surface side (Z2 side) in the Z direction, and a second metal layer 32 on the other rolled surface side (Z1 side) in the Z direction. does not exist. In this clad material 30, two second metal layers 32 having a length in the Y direction smaller than that of the first metal layer 31 are present on one rolling surface side (Z2 side) in the Z direction, and the other rolling surface in the Z direction is The second metal layer 32 does not exist on the surface side (Z1 side). Unlike the configuration example of the second embodiment described above (see FIG. 5), this cladding material 30 exposes two side surfaces 32c of the two second metal layers 32 facing outward in the Y direction, The two facing sides 32d are not exposed. Therefore, the two second metal layers 32 become two embedded layers (inlay layers) positioned at the Y1 side edge and the Y2 side edge of the cladding material 30 .
 なお、エッジレイ型の2つの第2金属層を備える変形例のクラッド材は、図7に示す構成のクラッド材30に限らない。図1に示すクラッド材の製造方法によれば、たとえば、Y方向の長さが異なる2つの第2金属層を備える構成のエッジレイ型のクラッド材であっても、Z方向の厚さが異なる2つの第2金属層を備える構成のエッジレイ型のクラッド材であっても、2つの第2金属層に対応する2つの第2金属板を準備することにより、製造可能である。 It should be noted that the modified clad material having two edge-lay type second metal layers is not limited to the clad material 30 having the configuration shown in FIG. According to the clad material manufacturing method shown in FIG. 1, for example, even an edge-lay type clad material having two second metal layers with different lengths in the Y direction has two different thicknesses in the Z direction. Even an edge-lay type clad material having two second metal layers can be manufactured by preparing two second metal plates corresponding to the two second metal layers.
 以下、第3実施形態の構成例の製造方法についての説明を行うに際して、上記した第1実施形態の構成例(図2、図3参照)または第2実施形態の構成例(図4、図5参照)の製造方法と異なる事項を主として説明し、これと同様な事項は略すか、または、簡略に説明する。 Hereinafter, when describing the manufacturing method of the configuration example of the third embodiment, the configuration example of the first embodiment (see FIGS. 2 and 3) or the configuration example of the second embodiment (FIGS. 4 and 5). ) will be mainly described, and similar items will be omitted or briefly described.
 この発明に係る第3実施形態の構成例、たとえば、図6に示すクラッド圧延材300および図7に示すクラッド材30は、図1に示すクラッド材の製造方法により製造することができる。 The configuration example of the third embodiment according to the present invention, for example, the clad rolled material 300 shown in FIG. 6 and the clad material 30 shown in FIG. 7 can be manufactured by the clad material manufacturing method shown in FIG.
 まず、金属板の準備工程では、第1金属から成る第1金属板301と、第1金属とは異なる第2金属から成る2つの第2金属板302と、第3金属から成る第3金属板303と、を準備する。このとき、第1金属板301および2つの第2金属板302は、図6に示すクラッド圧延材300に対応する形状および寸法のものを準備する。また、第3金属板303は、Y方向の長さが第2金属板302よりも大きく第1金属板301と同等以下、好ましくは第1金属板301と同等のものを準備する。金属板の材質など、他の事項については、上記した第1実施形態の構成例または第2実施形態の構成例の場合と実質的に同じであってよい。なお、2つのエッジレイコアになる2つの第2金属板302は、2つとも第2金属から成る構成に限られない。2つの第2金属板302は、用途など所望に応じて、互いに異なる金属から成る構成にすることも可能である。 First, in the metal plate preparation step, a first metal plate 301 made of a first metal, two second metal plates 302 made of a second metal different from the first metal, and a third metal plate made of a third metal 303 and are prepared. At this time, the first metal plate 301 and the two second metal plates 302 are prepared to have a shape and dimensions corresponding to the clad rolled material 300 shown in FIG. The third metal plate 303 has a Y-direction length greater than that of the second metal plate 302 and equal to or less than that of the first metal plate 301 , preferably equal to that of the first metal plate 301 . Other items, such as the material of the metal plate, may be substantially the same as those in the configuration example of the first embodiment or the configuration example of the second embodiment. Note that the two second metal plates 302 that form the two edge lay cores are not limited to being made of the second metal. The two second metal plates 302 can be made of metals different from each other as desired, such as the application.
 次いで、クラッド圧延材の形成工程では、金属板の準備工程でクラッド圧延材300に対応するように準備した、第1金属板301と2つの第2金属板302と第3金属板303とを圧延装置にセットする。そして、圧延ロールに送り込まれる前に、第1金属板301でZ1側から、第3金属板303でZ2側から、それぞれ2つの第2金属板302のZ方向の両面を挟み込み、2つの第2金属板302の一方(Z2側)の圧延面である上面302aを第3金属板303の下面303bが被覆し、2つの第2金属板302の他方(Z1側)の圧延面である下面302bおよび側面302dを第1金属板301の底面301cおよび側面301dが被覆するように圧延ロールに送り込む。このとき、一方の第2金属板302がY方向のY1側に位置し、他方の第2金属板302がY方向のY2側に位置するように、圧延ロールに送り込む。そして、圧延ロール下で2つの第2金属板302の圧延面である上面302aおよび下面302bを露出させないように、第1金属板301と第2金属板302とで第3金属板303を挟み込んだ状態で圧延ロールに送り込みながら、クラッド圧延材100の場合と同様に、好ましくは、所定以上の圧下率で圧延する。 Next, in the step of forming the clad rolled material, the first metal plate 301, the two second metal plates 302, and the third metal plate 303 prepared to correspond to the clad rolled material 300 in the metal plate preparation step are rolled. set in the device. Then, before being sent to the rolling rolls, the two second metal plates 302 are sandwiched from the Z1 side with the first metal plate 301 and from the Z2 side with the third metal plate 303 to form two second metal plates 302 in the Z direction. The upper surface 302a that is the rolled surface of one (Z2 side) of the metal plate 302 is covered with the lower surface 303b of the third metal plate 303, and the lower surface 302b that is the rolled surface of the other (Z1 side) of the two second metal plates 302 and The side surface 302d is fed into the rolling rolls so that the bottom surface 301c and the side surface 301d of the first metal plate 301 are covered. At this time, one of the second metal plates 302 is positioned on the Y1 side in the Y direction, and the other second metal plate 302 is positioned on the Y2 side in the Y direction. Then, the third metal plate 303 is sandwiched between the first metal plate 301 and the second metal plate 302 so that the upper surface 302a and the lower surface 302b, which are the rolling surfaces of the two second metal plates 302, are not exposed under the rolling rolls. It is preferably rolled at a reduction rate equal to or higher than a predetermined value, similarly to the case of the clad rolled material 100, while being sent to the rolling rolls in this state.
 クラッド圧延材の形成工程では、上記以外の他の事項については、上記した第1実施形態の構成例または第2実施形態の構成例の場合と実質的に同じであってよい。また、クラッド圧延材300に対する拡散焼鈍および仕上圧延についても、上記した第1実施形態の構成例または第2実施形態の構成例の場合と実質的に同じであってよい。 In the step of forming the clad rolled material, matters other than the above may be substantially the same as those in the configuration example of the first embodiment or the configuration example of the second embodiment. Diffusion annealing and finish rolling of the clad rolled material 300 may also be substantially the same as in the configuration example of the first embodiment or the configuration example of the second embodiment.
 これにより、上記した第1実施形態の構成例または第2実施形態の構成例の場合と同様に、第1金属板301との接合端部300aを含むすべての外周面を露出させない状態で、2つの第2金属板302を圧延することができる。そのため、接合端部300aから圧延油が第1金属板301の側面301dと2つの第2金属板302の側面302dとの間に浸入するのを抑制しながら製品対応部300Aを形成することができる。 As a result, as in the case of the configuration example of the first embodiment or the configuration example of the second embodiment, in a state in which all the outer peripheral surface including the joint end portion 300a with the first metal plate 301 is not exposed, Two second metal plates 302 can be rolled. Therefore, it is possible to form the product corresponding portion 300A while preventing the rolling oil from entering between the side surface 301d of the first metal plate 301 and the side surface 302d of the two second metal plates 302 from the joint end portion 300a. .
 また、第3金属板303を用いているため、上記した第1実施形態の構成例または第2実施形態の構成例の場合と同様に、第3金属板303の下面303bと、第1金属板301の上面301aおよび2つの第2金属板302の上面302aとの間に比較的大きな摩擦力が生じて、第1金属板301および2つの第2金属板302のY方向への展延変形を制限する比較的大きな抗力が生じる。そのため、接合端部300aにおいて第1金属板301と第2金属板302との接合に寄与するY方向の圧縮力が大きくなり、クラッド材30(図7参照)の接合端部30aにおける接合強度の向上に寄与することができる。 In addition, since the third metal plate 303 is used, the lower surface 303b of the third metal plate 303 and the first metal plate A relatively large frictional force is generated between the upper surface 301a of 301 and the upper surface 302a of the two second metal plates 302, causing the first metal plate 301 and the two second metal plates 302 to spread and deform in the Y direction. A relatively large limiting drag force is created. Therefore, the compressive force in the Y direction that contributes to the bonding between the first metal plate 301 and the second metal plate 302 at the joint end portion 300a increases, and the joint strength at the joint end portion 30a of the clad material 30 (see FIG. 7) increases. can contribute to improvement.
 次いで、金属層の除去工程では、クラッド圧延材の形成工程で形成したクラッド圧延材300からダミー部300B(第3金属層303)を除去し、製品対応部300Aである第1金属層301および2つの第2金属層302を残す。これにより、図7に示すクラッド材30を形成することができる。金属層の除去手段など、他の事項については、上記した第1実施形態の構成例または第2実施形態の構成例の場合と実質的に同じであってよい。 Next, in the metal layer removing step, the dummy portion 300B (the third metal layer 303) is removed from the clad rolled material 300 formed in the clad rolled material forming step, and the first metal layers 301 and 2, which are the product corresponding portion 300A, are removed. One second metal layer 302 remains. Thereby, the clad material 30 shown in FIG. 7 can be formed. Other items such as the means for removing the metal layer may be substantially the same as those in the configuration example of the first embodiment or the configuration example of the second embodiment.
 上記したように、この発明に係るクラッド材の製造方法によれば、接合端部300aからの圧延油の浸入を抑制しながら、クラッド圧延材300の製品対応部300Aを形成することができる。そのため、製品対応部300Aの機械的強さ、特に第1金属層301と2つの第2金属層302とのY方向の2つの接合層(側面301d、302d)の接合強度を、十分に向上させることができる。その結果、ダミー部300Bを除去した後の製品対応部300A、すなわちクラッド材30は、第1金属層31と2つの第2金属層32とのY方向の2つの接合層(側面31d、32d)に十分な接合強度が得られ、特に、クラッド材30の一方(Z2側)の表面に露出している接合端部30aの接合強度が向上し、従来の製造方法で形成されたクラッド材に比べて、耐剥離性が十分に向上される。また、クラッド材10の場合と同様に、所定以上の圧下率で形成されたクラッド材30は、好ましい耐曲げ剥離性を有することが可能になる。 As described above, according to the clad material manufacturing method according to the present invention, it is possible to form the product corresponding portion 300A of the clad rolled material 300 while suppressing the intrusion of rolling oil from the joint end portion 300a. Therefore, the mechanical strength of the product corresponding portion 300A, particularly the bonding strength of the two bonding layers (side surfaces 301d and 302d) in the Y direction between the first metal layer 301 and the two second metal layers 302 is sufficiently improved. be able to. As a result, the product corresponding portion 300A after removing the dummy portion 300B, that is, the clad material 30 is formed by two bonding layers (side surfaces 31d and 32d) of the first metal layer 31 and the two second metal layers 32 in the Y direction. In particular, the joint strength of the joint end portion 30a exposed on the surface of one side (Z2 side) of the clad material 30 is improved, compared to the clad material formed by the conventional manufacturing method. Therefore, the peeling resistance is sufficiently improved. Further, similarly to the case of the clad material 10, the clad material 30 formed with a rolling reduction of a predetermined value or more can have preferable resistance to bending peeling.
 また、クラッド材10の場合と同様に、特許文献1、2が開示するクラッド材のように、第1金属板および第2金属板の接合面(側端面)を凸凹状に形成する手段、あるいは、角形断面の複数の金属角材を形成して配列する手段を用いることなく、第1金属層31と2つの第2金属層32とにより構成された、図7に示すクラッド材30を形成することができる。 In addition, as in the case of the clad material 10, as in the clad materials disclosed in Patent Documents 1 and 2, means for forming uneven joint surfaces (side end surfaces) of the first metal plate and the second metal plate, or 7, which is composed of a first metal layer 31 and two second metal layers 32, without using means for forming and arranging a plurality of metal squares having square cross sections. can be done.
 この発明に係るクラッド材の製造方法の効果を検証するため、代表的な構成例であるインレイ型(第1実施形態)のクラッド圧延材およびクラッド材を形成した。詳しくは、図1に示すクラッド材の製造方法に従って、金属板の準備工程では、図2に示す第1金属板101、第2金属板102および第3金属板103を準備した。クラッド圧延材の形成工程では、図2に示す第1金属層101、第2金属層102および第3金属層103により構成されたクラッド圧延材100を形成した。このクラッド圧延材の形成工程では、従来の一般的な冷間圧延に使用される鉱油系の圧延油を使用し、圧延ロールにより圧延接合を行った。 In order to verify the effect of the clad material manufacturing method according to the present invention, an inlay-type (first embodiment) clad rolled material and clad material, which is a representative configuration example, were formed. Specifically, according to the clad material manufacturing method shown in FIG. 1, in the metal plate preparation step, the first metal plate 101, the second metal plate 102 and the third metal plate 103 shown in FIG. 2 were prepared. In the step of forming the clad rolled material, the clad rolled material 100 composed of the first metal layer 101, the second metal layer 102 and the third metal layer 103 shown in FIG. 2 was formed. In the step of forming the clad rolled material, a mineral oil-based rolling oil used for conventional cold rolling was used, and roll bonding was performed with rolling rolls.
 ここで、金属板の除去工程の前に、クラッド圧延材100を所定の保持条件(400℃、3分間)で熱処理する、拡散焼鈍工程を入れた。拡散焼鈍を第1金属板および第2金属板の構成元素の拡散特性を考慮した適切な条件で行えば、第1金属層と第2金属層の接合界面に適度な厚さの金属間化合物層が形成され、クラッド材の第1金属層と第2金属層との間の接合強度を向上させることができる。 Here, before the step of removing the metal plate, a diffusion annealing step of heat-treating the clad rolled material 100 under predetermined holding conditions (400°C, 3 minutes) was added. If the diffusion annealing is performed under appropriate conditions in consideration of the diffusion characteristics of the constituent elements of the first metal plate and the second metal plate, an intermetallic compound layer having a moderate thickness can be formed at the bonding interface between the first metal layer and the second metal layer. is formed, and the bonding strength between the first metal layer and the second metal layer of the clad material can be improved.
 拡散焼鈍工程の後、金属板の除去工程では、クラッド圧延材100からダミー部100B(第3金属層103)を除去して製品対応部100Aを残し、クラッド材10を形成した。上記した各工程を経て、図3に示すインレイ型のクラッド材10を形成した。 After the diffusion annealing step, in the step of removing the metal plate, the clad material 10 was formed by removing the dummy portion 100B (the third metal layer 103) from the clad rolled material 100 to leave the product corresponding portion 100A. An inlay-type clad material 10 shown in FIG. 3 was formed through the above-described steps.
 表1に、金属板の準備工程において準備した3つの金属板の材質、硬さ、板厚および板幅を示す。第1金属板の厚部とは、第3金属板が直に重なる部分を意味する。第1金属板の薄部とは、インレイコアになる第2金属板が重なる部分を意味する。第1金属板は1種類、第2金属板は1種類、および、第3金属板は9種類、それぞれ準備した。 Table 1 shows the material, hardness, thickness and width of the three metal plates prepared in the metal plate preparation process. The thick part of the first metal plate means the part where the third metal plate directly overlaps. The thin portion of the first metal plate means the portion where the second metal plate that becomes the inlay core overlaps. One type of first metal plate, one type of second metal plate, and nine types of third metal plate were prepared.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す材質の記号はJIS規格に準拠する。表1に示す寸法(板厚、板幅)は、それぞれの金属板の寸法測定位置を無作為に選択し、一般的なノギスまたはマイクロメータ―により複数回測定し、その測定値に基づいて得た平均値である。表1に示す硬さは、それぞれの金属板の圧延幅方向(Y方向)の切断断面を無作為に選択し、株式会社明石製作所製の低荷重ビッカース硬度計により複数回測定し、その測定値に基づいて得た平均値である。 The material symbols shown in Table 1 comply with JIS standards. The dimensions (plate thickness, plate width) shown in Table 1 are obtained based on the measured values obtained by randomly selecting the dimensional measurement position of each metal plate and measuring multiple times with a general vernier caliper or micrometer. is the average value. The hardness shown in Table 1 is obtained by randomly selecting a cut cross-section in the rolling width direction (Y direction) of each metal plate and measuring it multiple times with a low-load Vickers hardness tester manufactured by Akashi Seisakusho Co., Ltd. The measured values. is an average value obtained based on
 また、表1に示す第3金属板の硬さの最大差は、第3金属板と第1金属板との硬さの差と、第3金属板と第2金属板との硬さの差と、のうち、その差が大きい方を意味する。表1に示すNo.1~8の第3金属板は、いずれも、第1金属板および第2金属板との硬さの差(表1に示す硬さの最大差)が100HV以下になる材質(第3金属)を選択し、さらに、表1に示す硬さに調質している。また、表1に示すNo.9の第3金属板は、上記した硬さの差が100HV以下になりにくい材質(SPCC)を選択し、さらに、表1に示す硬さに調質している。また、表1に示すNo.5~8において、第3金属板は、硬さが第2金属板の材質(第2金属)よりも小さい第1金属板の材質(第1金属)と同じ材質(第3金属)から成る。 The maximum difference in hardness of the third metal plate shown in Table 1 is the difference in hardness between the third metal plate and the first metal plate and the difference in hardness between the third metal plate and the second metal plate. and , whichever has the greater difference. No. shown in Table 1. Each of the third metal plates 1 to 8 is a material (third metal) that has a difference in hardness (maximum difference in hardness shown in Table 1) between the first metal plate and the second metal plate of 100 HV or less. is selected, and further tempered to the hardness shown in Table 1. In addition, No. shown in Table 1. For the third metal plate No. 9, a material (SPCC) whose hardness difference is unlikely to be 100 HV or less is selected and tempered to the hardness shown in Table 1. In addition, No. shown in Table 1. In 5 to 8, the third metal plate is made of the same material (third metal) as the material of the first metal plate (first metal) whose hardness is lower than that of the second metal plate (second metal).
 表2に、クラッド圧延材の形成工程において、3つの金属板を圧延接合したときの圧下率(%)と、その圧延接合によって形成されたクラッド圧延材100を構成する3つの金属層の層厚(mm)を示す。第1金属層の厚部とは、第3金属層が直に重なる部分を意味する。第1金属層の薄部とは、インレイ層である第2金属層が重なる部分を意味する。 Table 2 shows the rolling reduction (%) when three metal plates are roll-joined in the clad rolled material formation process, and the layer thicknesses of the three metal layers constituting the clad rolled material 100 formed by the roll-joining. (mm). The thick portion of the first metal layer means the portion directly overlapping with the third metal layer. The thin portion of the first metal layer means the portion where the second metal layer, which is the inlay layer, overlaps.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す圧下率(%)は、圧延接合で変化させた厚さの比率であって、圧延接合前の表1に示す3つの金属板の合計の板厚(mm)をTbとし、圧延接合後の表2に示す3つの金属板の合計の層厚(mm)をTaとするとき、(Tb-Ta)/Tb×100(%)で求まる値である。第1金属板の板厚は薄部板厚であり、第1金属層の層厚は薄部層厚である。表2に示す第1金属層、第2金属層および第3金属層の層厚(mm)は、クラッド圧延材の圧延方向(X方向)および圧延幅方向(Y方向)において、それぞれ、寸法測定位置を無作為に選択し、オリンパス株式会社製の金属顕微鏡PMG3(倍率:200倍)により複数回測定し、その測定値に基づいて得た平均値である。 The rolling reduction (%) shown in Table 2 is the ratio of the thickness changed by roll bonding, and the total thickness (mm) of the three metal plates shown in Table 1 before roll bonding is Tb, and rolling It is a value obtained by (Tb−Ta)/Tb×100(%), where Ta is the total layer thickness (mm) of the three metal plates shown in Table 2 after bonding. The plate thickness of the first metal plate is the thin portion plate thickness, and the layer thickness of the first metal layer is the thin portion layer thickness. The layer thicknesses (mm) of the first metal layer, the second metal layer and the third metal layer shown in Table 2 are measured in the rolling direction (X direction) and the rolling width direction (Y direction) of the clad rolled material. It is an average value obtained based on the measured values obtained by randomly selecting positions and measuring multiple times with a metallurgical microscope PMG3 (magnification: 200 times) manufactured by Olympus Corporation.
 インレイ型のクラッド圧延材の一例として、表2に示すNo.6Aに関し、図8に、断面図(写像)を示す。この断面図(写像)は、Al層-Cu層-Al層の3層構造を有するインレイ型のクラッド圧延材の接合端部を含む部分を拡大したものである。この断面は、クラッド圧延材の厚さ方向(Z方向)に垂直な圧延幅方向(Y方向)であって、Al層(第1金属層)とCu層(第2金属層)との接合端部を含む。Cu層はクラッド圧延材のインレイ層である。この断面において、Cu層のZ1側が、第1金属層であるAl層により被覆されていることを確認することができる。また、Cu層のZ2側が、第3金属層であるAl層により被覆されていることを確認することができる。また、第1金属層であるAl層とCu層との接合端部が、Z方向において露出していないことを確認することができる。また、第1金属層であるAl層とCu層と第3金属層であるAl層との間の接合界面には、いずれにも剥離(もしくは未接合)が確認されない。これにより、本発明例のインレイ型のクラッド圧延材は、第1金属層(Al層)と第2金属層(Cu層)と第3金属層(Al層)との間に剥離(もしくは未接合)がないので、十分な耐剥離性を有することができる。 As an example of an inlay-type clad rolled material, No. Regarding 6A, FIG. 8 shows a cross-sectional view (map). This cross-sectional view (map) is an enlarged view of a portion including a joint end portion of an inlay-type clad rolled material having a three-layer structure of Al layer-Cu layer-Al layer. This cross section is in the rolling width direction (Y direction) perpendicular to the thickness direction (Z direction) of the clad rolled material, and is the joint end between the Al layer (first metal layer) and the Cu layer (second metal layer). including part. The Cu layer is an inlay layer of the rolled clad material. In this cross section, it can be confirmed that the Z1 side of the Cu layer is covered with the Al layer, which is the first metal layer. Also, it can be confirmed that the Z2 side of the Cu layer is covered with the Al layer, which is the third metal layer. Also, it can be confirmed that the joint end between the Al layer and the Cu layer, which are the first metal layers, is not exposed in the Z direction. Moreover, peeling (or unbonding) is not observed in any of the bonding interfaces between the Al layer, the Cu layer, which is the first metal layer, and the Al layer, which is the third metal layer. As a result, in the inlay-type clad rolled material of the example of the present invention, the first metal layer (Al layer), the second metal layer (Cu layer), and the third metal layer (Al layer) are separated (or not joined). ), sufficient peel resistance can be obtained.
 また、インレイ型のクラッド圧延材の別例として、表2に示すNo.4に関し、図9に、断面図(写像)を示す。この断面図(写像)は、Al層-Cu層-Cu層の3層構造を有するインレイ型のクラッド圧延材の接合端部を含む部分を拡大したものである。この断面は、クラッド圧延材の厚さ方向(Z方向)に垂直な圧延幅方向(Y方向)であって、Al層(第1金属層)とCu層(第2金属層)との接合端部を含む。第2金属層であるCu層はクラッド圧延材のインレイ層である。この断面において、第2金属層であるCu層のZ1側が、Al層により被覆されていることを確認することができる。また、第2金属層であるCu層のZ2側が、第3金属層であるCu層により被覆されていることを確認することができる。また、Al層と第2金属層であるCu層との接合端部が、Z方向において露出していないことを確認することができる。また、Al層と第2金属層であるCu層と第3金属層であるCu層との間の接合界面には、いずれにも剥離(もしくは未接合)が確認されない。これにより、本発明例のインレイ型のクラッド圧延材は、第1金属層(Al層)と第2金属層(Cu層)と第3金属層(Cu層)との間に剥離(もしくは未接合)がないので、十分な耐剥離性を有することができる。 Also, as another example of the inlay-type clad rolled material, No. 4, a cross-sectional view (map) is shown in FIG. This cross-sectional view (map) is an enlarged view of a portion including a joint end portion of an inlay-type clad rolled material having a three-layer structure of Al layer-Cu layer-Cu layer. This cross section is in the rolling width direction (Y direction) perpendicular to the thickness direction (Z direction) of the clad rolled material, and is the joint end between the Al layer (first metal layer) and the Cu layer (second metal layer). including part. The Cu layer, which is the second metal layer, is an inlay layer of the rolled clad material. In this cross section, it can be confirmed that the Z1 side of the Cu layer, which is the second metal layer, is covered with the Al layer. Moreover, it can be confirmed that the Z2 side of the Cu layer, which is the second metal layer, is covered with the Cu layer, which is the third metal layer. Also, it can be confirmed that the joint end between the Al layer and the Cu layer, which is the second metal layer, is not exposed in the Z direction. Moreover, peeling (or unbonding) is not observed in any of the bonding interfaces between the Al layer, the Cu layer as the second metal layer, and the Cu layer as the third metal layer. As a result, the inlay type clad rolled material of the example of the present invention is separated (or not joined) between the first metal layer (Al layer), the second metal layer (Cu layer) and the third metal layer (Cu layer). ), sufficient peel resistance can be obtained.
 また、インレイ型のクラッド材の一例として、表2に示すNo.6Bのクラッド圧延材を用いて形成したクラッド材に関し、図10に、断面図(写像)を示す。この断面図(写像)は、Al層-Cu層(インレイ層)の2層構造を有するインレイ型のクラッド材の接合端部を含む部分を拡大したものである。この断面は、クラッド材の厚さ方向(Z方向)に垂直な圧延幅方向(Y方向)であって、Al層(第1金属層)とCu層(第2金属層)との接合端部を含む。Cu層はクラッド材のインレイ層である。この断面において、Al層およびCu層よりも白色化し、Y1側のZ1側から接合端部に向かって伸びる、帯状に視認される部分が、接合界面である。この断面において、Al層とCu層との間に金属間化合物層が形成されていることを確認することができる。また、Al層とCu層との接合界面には剥離(もしくは未接合)が確認されないし、接合端部付近にも剥離(もしくは未接合)が確認されない。これにより、本発明例のインレイ型のクラッド材は、第1金属層(Al層)と第2金属層(Cu層)との間に剥離(もしくは未接合)がないので、十分な耐剥離性を有することができる。 Also, as an example of an inlay-type clad material, No. FIG. 10 shows a cross-sectional view (map) of the clad material formed by using the rolled clad material of 6B. This cross-sectional view (map) is an enlarged view of a portion including a joint end portion of an inlay-type clad material having a two-layer structure of Al layer-Cu layer (inlay layer). This cross section is in the rolling width direction (Y direction) perpendicular to the thickness direction (Z direction) of the clad material, and is the joint end portion between the Al layer (first metal layer) and the Cu layer (second metal layer) including. The Cu layer is an inlay layer of the clad material. In this cross section, the part that is whiter than the Al layer and the Cu layer and extends from the Z1 side of the Y1 side toward the joint end is the joint interface. In this cross section, it can be confirmed that an intermetallic compound layer is formed between the Al layer and the Cu layer. Further, no peeling (or unbonded) is observed at the bonding interface between the Al layer and the Cu layer, and no peeling (or unbonded) is confirmed near the bonding edge. As a result, the inlay-type clad material of the example of the present invention does not have peeling (or non-bonding) between the first metal layer (Al layer) and the second metal layer (Cu layer), so it has sufficient peeling resistance. can have
 次に、上記した第3金属板を使用した場合との比較を目的として、第3金属板を使用せず、Cu板(第2金属板)をインレイコアとした、インレイ型のクラッド材を形成した。詳しくは、金属板の準備工程では、A1050から成るAl板(第1金属板)と、C1020から成るCu板(第2金属板)とを、準備した。そして、Al板と、インレイコアになるCu板とを厚さ方向に重ねた状態で、圧延ロールにより圧延接合し、インレイ型のクラッド材(比較例1、2)を形成した。さらに、このクラッド材に対して、本発明例と同様に、所定の保持条件(400℃、3分間)で熱処理(拡散焼鈍)を施した。 Next, for the purpose of comparison with the case of using the above-described third metal plate, an inlay-type clad material was formed without using the third metal plate and using a Cu plate (second metal plate) as an inlay core. bottom. Specifically, in the step of preparing the metal plates, an Al plate (first metal plate) made of A1050 and a Cu plate (second metal plate) made of C1020 were prepared. Then, the Al plate and the Cu plate serving as the inlay core were stacked in the thickness direction, and rolled and joined by rolling rolls to form inlay-type clad materials (Comparative Examples 1 and 2). Further, this clad material was subjected to heat treatment (diffusion annealing) under predetermined holding conditions (400° C., 3 minutes) in the same manner as in the present invention example.
 比較例1は、第3金属板を使用せず、本発明例と同様な鉱油系の圧延油を使用した潤滑な状態で、すなわち、クラッド材の接合界面への圧延油の浸入が可能な状態で、圧延ロールにより圧延接合を行ったものである。比較例1では、圧延接合後のAl層(第1金属層)とCu層(第2金属層)との接合界面(接合端部付近)の表面に、剥離が視認される場合があった。圧延油を使用した潤滑な状態の比較例1に関し、Al層とCu層との接合端部に剥離(もしくは未接合)がある一例として、図11に、断面図(写像)を示す。このような接合端部付近に発生する剥離(もしくは未接合)は、接合面への圧延油の浸入に起因するものと考えられる。このことから、第3金属板を使用していないため圧延油が接合面に浸入した可能性がある比較例1のクラッド材は、Al板とCu板との接合端部に剥離(もしくは未接合)が発生することがあるので、十分な耐剥離性を有さない場合があることが判明した。なお、比較例1の場合、剥離(もしくは未接合)が発生したので、後述する曲げ試験を行わなかった。 In Comparative Example 1, the third metal plate was not used, and the same mineral oil-based rolling oil as in the example of the present invention was used in a lubricated state, that is, in a state in which the rolling oil could penetrate into the joint interface of the clad material. , and roll-joining is performed by rolling rolls. In Comparative Example 1, peeling was sometimes visually observed on the surface of the bonding interface (near the bonding end portion) between the Al layer (first metal layer) and the Cu layer (second metal layer) after roll bonding. FIG. 11 shows a cross-sectional view (map) as an example of peeling (or non-bonding) at the bonding edge of the Al layer and the Cu layer in Comparative Example 1 in a lubricated state using rolling oil. Such delamination (or non-bonding) occurring in the vicinity of the joint end is considered to be caused by penetration of rolling oil into the joint surface. From this, the clad material of Comparative Example 1, in which the rolling oil may have entered the joint surface because the third metal plate was not used, peeled off (or unjoined) at the joint end of the Al plate and the Cu plate. ) may occur, so it was found that the peeling resistance may not be sufficient. In the case of Comparative Example 1, peeling (or unbonding) occurred, so a bending test, which will be described later, was not performed.
 比較例2は、第3金属板を使用せず、圧延油を使用しない無潤滑な状態で、すなわち、クラッド材の接合界面への圧延油の浸入が発生しない状態で、圧延ロールにより圧延接合を行ったものである。この比較例2では、圧延接合後のAl層(第1金属層)とCu層(第2金属層)との接合界面(接合端部付近)の表面に、剥離が視認されなかった。圧延油を使用しない無潤滑な状態の比較例2に関し、Al層とCu層との接合端部付近の一例として、図12に、断面図(写像)を示す。このことから、第3金属板を使用していないものの圧延油を使用していないため圧延油が接合面に浸入することがない比較例2のインレイ型のクラッド材は、Al層(第1金属層)とCu層(第2金属層)との間に剥離(もしくは未接合)がないことが確認される。そのため、比較例2のインレイ型のクラッド材は、十分な耐剥離性を有する可能性がある。但し、圧延油を使用しない無潤滑で圧延ロールによる圧延接合を行う製造方法は、実用上、好ましくない。この場合、圧延ロールの表面と被圧延材(金属板)の表面とが直に接触することに起因して、肌荒れ、押込み疵および異物付着など、互いの表面が被るダメージが甚大である。なお、比較例2のクラッド材は、接合端部付近に剥離(もしくは未接合)が確認されなかったので、後述するクラッド試験体を用いた曲げ試験を行った。 In Comparative Example 2, the third metal plate was not used, and rolling oil was not used, and in a non-lubricated state, that is, in a state in which the rolling oil did not enter the joint interface of the clad material, rolling and joining was performed with a rolling roll. I have been there. In Comparative Example 2, peeling was not visually recognized on the surface of the bonding interface (near the bonding end portion) between the Al layer (first metal layer) and the Cu layer (second metal layer) after roll bonding. FIG. 12 shows a cross-sectional view (map) as an example of the vicinity of the joint end portion between the Al layer and the Cu layer in relation to Comparative Example 2 in a non-lubricated state using no rolling oil. From this, the inlay-type clad material of Comparative Example 2, which does not use the third metal plate but does not use rolling oil and does not allow rolling oil to enter the joint surface, has an Al layer (first metal layer) and the Cu layer (second metal layer). Therefore, the inlay-type clad material of Comparative Example 2 may have sufficient peeling resistance. However, the production method in which the roll bonding is performed by rolling rolls without using rolling oil and without lubrication is not preferable from a practical point of view. In this case, due to the direct contact between the surface of the rolling roll and the surface of the material to be rolled (metal plate), the mutual surface damage such as surface roughening, indentation flaws and adhesion of foreign matter is enormous. For the clad material of Comparative Example 2, no peeling (or unbonded) was observed near the joint edge, so a bending test using a clad test piece, which will be described later, was performed.
 次に、上記の各工程を経て形成したクラッド圧延材およびクラッド材から、それぞれ、複数のクラッド試験体を切り出し、接合断面および接合強度の評価を実施した。詳しくは、クラッド圧延材から接合端部を含むように複数のクラッド試験体を切り出した。そして、その複数のクラッド試験体について、圧延幅方向(Y方向)に沿う断面、特に、接合面(図2に示す側面101d、102cを参照)部分および接合端部を、拡大して観察した。同様に、クラッド材から接合端部を含むように複数のクラッド試験体を切り出した。そして、その複数のクラッド試験体について、圧延幅方向(Y方向)に沿う断面、特に、接合面(図3に示す側面11d、12cを参照)部分および接合端部を、拡大して観察した。次いで、比較例1を除き、接合端部を含むようにクラッド材から切り出した複数のクラッド試験体に対して、凸状に曲げる曲げ試験を行った。そして、曲げ試験後のクラッド試験体の接合端部を含む接合界面について、剥離(もしくは未接合)の有無を確認した。なお、この曲げ試験では、接合端部により大きな負荷を付与するために、接合端部付近が凸状の曲げのほぼ頂上に位置するようにクラッド試験体を曲げた。 Next, a plurality of clad specimens were cut out from each of the clad rolled material and the clad material formed through each of the above processes, and the joint cross-section and joint strength were evaluated. Specifically, a plurality of clad specimens were cut out from the rolled clad material so as to include the joint ends. Then, the cross sections along the rolling width direction (Y direction), particularly the joint surfaces (see the side surfaces 101d and 102c shown in FIG. 2) and the joint ends of the plurality of clad test pieces were observed in an enlarged manner. Similarly, a plurality of clad specimens were cut out from the clad material so as to include the joint ends. Then, the cross sections along the rolling width direction (Y direction), particularly the joint surfaces (see the side surfaces 11d and 12c shown in FIG. 3) and the joint end portions of the plurality of clad specimens were enlarged and observed. Next, except for Comparative Example 1, a bending test was performed in which a plurality of clad specimens cut out from the clad material so as to include the joint ends were bent in a convex shape. After the bending test, the presence or absence of peeling (or unbonding) was confirmed for the bonding interface including the bonding edge of the clad test piece. In this bending test, the clad specimen was bent so that the vicinity of the joint end was positioned substantially at the top of the convex bend in order to apply a larger load to the joint end.
 上記した比較例2以外のクラッド材に関し、曲げ試験後のクラッド試験体の一例として、図13に、クラッド試験体の外観の断面図(写像)を示す。図13に示す曲げ試験後のクラッド試験体は、クラッド材(クラッド試験体)の接合端部付近が凸状の曲げのほぼ頂上に位置するように曲がり、その曲がりの角度は、約100度になっている。図13に示す断面において、Al層(第1金属層)とインレイ層であるCu層(第2金属層)との接合界面には、明らかな剥離(もしくは未接合)は確認されない。さらに、図13に示す曲げ試験後のクラッド試験体について、Y2側の接合端部を含む部分を拡大した断面図(写像)を、図14に示す。図14に示す断面において、Al層(第1金属層)とインレイ層であるCu層(第2金属層)との接合端部には、剥離(もしくは未接合)が確認されない。これにより、本発明例のインレイ型のクラッド材は、上記のような曲げ試験後であっても、第1金属層(Al層)と第2金属層(Cu層)との間に剥離(もしくは未接合)がないので、十分な耐曲げ剥離性を有することができる。 Regarding the clad materials other than the above-described Comparative Example 2, FIG. 13 shows a cross-sectional view (image) of the appearance of the clad test body as an example of the clad test body after the bending test. The clad specimen after the bending test shown in FIG. 13 is bent so that the vicinity of the joint end of the clad material (clad specimen) is positioned almost at the top of the convex bend, and the bend angle is about 100 degrees. It's becoming In the cross section shown in FIG. 13, no obvious separation (or unbonded) is observed at the bonding interface between the Al layer (first metal layer) and the Cu layer (second metal layer) which is an inlay layer. Further, FIG. 14 shows an enlarged cross-sectional view (map) of a portion including the Y2-side joint end of the clad specimen after the bending test shown in FIG. In the cross section shown in FIG. 14, peeling (or non-bonding) is not observed at the joint end between the Al layer (first metal layer) and the Cu layer (second metal layer) which is an inlay layer. As a result, even after the bending test as described above, the inlay-type clad material of the example of the present invention is peeled (or separated) between the first metal layer (Al layer) and the second metal layer (Cu layer). Since there is no unbonded joint, it is possible to have sufficient resistance to bending peeling.
 また、上記した比較例2のクラッド材に関し、曲げ試験後のクラッド試験体の一例として、図15に、接合端部を含む部分を拡大した断面図(写像)を示す。図15に示す断面において、Al層(第1金属層)とインレイ層であるCu層(第2金属層)との接合端部には、甚大な剥離(もしくは未接合)が確認される。このことから、第3金属板および圧延油を使用していない比較例2のインレイ型のクラッド材は、上記のような曲げ試験を行うと接合端部に甚大な剥離(もしくは未接合)が発生する場合があるので、十分な耐曲げ剥離性を有していないことが判明した。 In addition, regarding the clad material of Comparative Example 2 described above, FIG. 15 shows an enlarged cross-sectional view (map) of a portion including the joint end portion as an example of a clad test piece after the bending test. In the cross section shown in FIG. 15, severe peeling (or non-bonding) is confirmed at the bonding edge between the Al layer (first metal layer) and the Cu layer (second metal layer) which is an inlay layer. From this, the inlay-type clad material of Comparative Example 2, which does not use the third metal plate and the rolling oil, causes severe peeling (or unbonding) at the bonding end when the above bending test is performed. It was found that it does not have sufficient bending peeling resistance because it may be broken.
 表3に、上記した曲げ試験の結果の一部を、示す。この表3は、クラッド圧延材の形成工程における圧延接合の圧下率(%)、圧延油の使用有無および第3金属板の使用有無について整理し、曲げ試験グループに区分して示したものである。曲げ試験グループとは、同等条件で形成されたクラッド材から切り出した複数のクラッド試験体を用いて行った曲げ試験を意味する。合格確率とは、その曲げ試験グループにおいて、接合端部に剥離が確認されなかったクラッド試験体の数を、曲げ試験に供したクラッド試験体の数で除した値を意味する。耐曲げ剥離性は、合格確率をPsとするとき、Ps=1の場合を「高」とし、0<Ps<1の場合を「中」とし、Ps=0の場合を「低」とした。 Table 3 shows some of the results of the bending test described above. Table 3 summarizes the rolling reduction (%) of the roll joint in the forming process of the clad rolled material, whether or not rolling oil is used, and whether or not the third metal plate is used, and is divided into bending test groups. . A bend test group means a bend test performed using a plurality of clad specimens cut out from a clad material formed under the same conditions. The pass probability means a value obtained by dividing the number of clad specimens in which no peeling was confirmed at the joint edge in the bending test group by the number of clad specimens subjected to the bending test. The bending peeling resistance was defined as "high" when Ps=1, "medium" when 0<Ps<1, and "low" when Ps=0, where Ps was the acceptance probability.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3において、グループG1は、板厚が0.10mmの第3金属板および圧延油を使用し、58%の圧下率で、圧延ロールにより圧延接合して形成されたインレイ型のクラッド材である。グループG1は、上記した曲げ試験の結果、合格確率が0.34となったので、耐曲げ剥離性が「中」の評価になった。 In Table 3, Group G1 is an inlay-type clad material formed by rolling and joining with rolling rolls at a rolling reduction of 58% using a third metal plate with a thickness of 0.10 mm and rolling oil. . As a result of the above-described bending test, Group G1 had a passing probability of 0.34, and was evaluated as "medium" in bending peeling resistance.
 また、グループG2は、板厚が0.10mmの第3金属板および圧延油を使用し、グループG1よりも大きい67%の圧下率で、圧延ロールにより圧延接合して形成されたインレイ型のクラッド材である。グループG2は、上記した曲げ試験の結果、合格確率が1となったので、耐曲げ剥離性が「高」の評価になった。 In addition, group G2 uses a third metal plate with a thickness of 0.10 mm and rolling oil, and has a rolling reduction of 67%, which is larger than that of group G1. It is wood. As a result of the above-described bending test, group G2 had a passing probability of 1, and was evaluated as "high" in resistance to bending peeling.
 また、グループG3は、板厚が0.05mmの第3金属板および圧延油を使用し、グループG1よりも大きくグループG2と略同じ68%の圧下率で、圧延ロールにより圧延接合して形成されたインレイ型のクラッド材である。グループG3は、上記した曲げ試験の結果、合格確率が1となったので、耐曲げ剥離性が「高」の評価になった。 In addition, group G3 uses a third metal plate with a thickness of 0.05 mm and rolling oil, and is formed by rolling and joining with a rolling roll at a reduction rate of 68%, which is larger than group G1 and substantially the same as group G2. It is an inlay-type clad material. As a result of the above-described bending test, group G3 had a passing probability of 1, and therefore was evaluated as "high" in resistance to bending peeling.
 また、グループG4は、第3金属板および圧延油を使用しない比較例2に対応し、グループG1と略同じ59%の圧下率で、圧延ロールにより圧延接合して形成されたインレイ型のクラッド材である。グループG4は、上記した曲げ試験の結果、合格確率が0となったので、耐曲げ剥離性が「低」の評価になった。 Group G4 corresponds to Comparative Example 2 in which the third metal plate and rolling oil are not used, and is an inlay-type clad material formed by rolling and joining with rolling rolls at a rolling reduction of 59%, which is substantially the same as Group G1. is. As a result of the above-described bending test, group G4 had a passing probability of 0, and was evaluated as "low" in terms of resistance to bending peeling.
 また、グループG5は、第3金属板および圧延油を使用しない比較例2に対応し、グループG4よりも約10%大きなグループG2およびグループG3と略同じ68%の圧下率で、圧延ロールにより圧延接合して形成されたインレイ型のクラッド材である。グループG5は、圧下率がグループG4よりも約10%大きいが、上記した曲げ試験の結果、合格確率が0となったので、耐曲げ剥離性が「低」の評価になった Group G5 corresponds to Comparative Example 2 in which the third metal plate and rolling oil are not used, and is rolled with a rolling roll at a reduction rate of 68%, which is approximately the same as group G2 and group G3, which is approximately 10% larger than group G4. It is an inlay-type clad material formed by bonding. Group G5 had a rolling reduction about 10% larger than Group G4, but as a result of the bending test described above, the pass probability was 0, so the resistance to bending peeling was evaluated as "low".
 表3において、グループG1は、圧延油を用いて接合強度の向上に不利な状態とし、58%の圧下率で、第3金属板を用いて圧延接合した場合である。一方、グループG4は、圧延油を用いずに接合強度の向上に有利な状態とし、59%の圧下率で、第3金属板を用いずに圧延接合した場合である。その結果、第3金属板を用いたグループG1では耐曲げ剥離性が「中」の評価になったのに対し、略同じ圧下率(約60%)で第3金属板を用いなかったグループG4では耐曲げ剥離性が「低」の評価になった。このことから、インレイ型のクラッド材を形成する場合、上記した第3金属板を用いることが耐曲げ剥離性の向上に有効であることが判明した。 In Table 3, Group G1 is a case where rolling oil is used to make the bonding strength disadvantageous, and the third metal plate is rolled and bonded at a rolling reduction of 58%. Group G4, on the other hand, is a case where rolling oil is not used and conditions are favorable for improving the bonding strength, and roll bonding is performed at a rolling reduction of 59% without using the third metal plate. As a result, the group G1 using the third metal plate was evaluated as "medium" in bending peeling resistance, whereas the group G4 using the third metal plate at substantially the same rolling reduction (about 60%) did not use the third metal plate. In , the bending peeling resistance was evaluated as "low". From this, when forming an inlay-type clad material, it was found that using the above-described third metal plate is effective in improving the resistance to bending peeling.
 また、本発明例に関し、同じ厚さの第3金属板を用いたグループG1とグループG2とは、圧下率が異なる。グループG1の圧下率は58%で、グループG2の圧下率は67%である。両者の圧下率の差は約10%であるが、圧下率が小さいグループG1では耐曲げ剥離性が「中」の評価になったのに対し、圧下率が大きいグループG4では耐曲げ剥離性が「高」の評価になった。このことから、第3金属板を用いてインレイ型のクラッド材を形成する場合、圧延ロールによる圧延接合の圧下率をより大きくすることが耐曲げ剥離性の向上に有効であることが判明した。 In addition, regarding the examples of the present invention, the reduction ratio is different between the group G1 and the group G2 using the third metal plate having the same thickness. The rolling reduction of group G1 is 58%, and the rolling reduction of group G2 is 67%. The difference in rolling reduction between the two is about 10%. Group G1, which has a small rolling reduction, was evaluated as having "medium" bending peeling resistance, while Group G4, which has a large rolling reduction, had a "medium" bending peeling resistance. It was rated as "High". From this, it was found that when forming an inlay-type clad material using the third metal plate, increasing the reduction ratio of rolling bonding by rolling rolls is effective for improving the resistance to bending peeling.
 ここで、上記した圧下率と曲げ試験の合格確率(耐曲げ剥離性)との間に線形の相関が成り立つとすれば、圧下率が58%での合格確率が0.34(すなわち、約1/3)であり、圧下率が67%での合格確率が1(すなわち、3/3)であり、圧下率の差分が9%であることから、合格確率が0.66(すなわち、2/3)となるのは、58%+9%×(2/3)=64%より、圧下率が約65%の付近と考えられる。そのため、第3金属板を用いて耐剥離性を有するインレイ型のクラッド材を形成し、望ましくは耐曲げ剥離性を得たい場合は、上記した圧下率を、「中」評価ながらも耐曲げ剥離性が得られた60%以上とし、好ましくは耐曲げ剥離性がより向上すると考えられる65%以上とし、より好ましくは「高」評価の耐曲げ剥離性が有られた67%以上とする、ことを推奨する。 Here, if there is a linear correlation between the rolling reduction and the bending test pass probability (bend peeling resistance), the passing probability at a rolling reduction of 58% is 0.34 (that is, about 1 /3), the acceptance probability at a rolling reduction of 67% is 1 (i.e., 3/3), and the difference in rolling reduction is 9%, so the acceptance probability is 0.66 (i.e., 2/3). 3) is considered to be around 65% from 58%+9%×(2/3)=64%. Therefore, when it is desired to form an inlay-type clad material having peeling resistance using the third metal plate and preferably obtain bending peeling resistance, the above-mentioned rolling reduction rate is evaluated as "medium" but bending peeling resistance It is 60% or more where the resistance is obtained, preferably 65% or more, which is considered to further improve the bending peeling resistance, and more preferably 67% or more, where the bending peeling resistance is evaluated as "high". recommended.
 上記した曲げ試験の結果、耐曲げ剥離性の評価が「高」または「中」のグループG1~G3のインレイ型のクラッド材は、上記したように、より過酷な振動や衝撃に対する耐久性や信頼性が要望されている配線部品や放熱部品の用途に、使用可能と考えられる。また、耐曲げ剥離性の評価が「高」のグループG2およびグループG3のインレイ型のクラッド材は、上記したように、設備装置の形状の複雑化や多様化に対応するために曲げ加工を伴う配線部品や放熱部品の用途に、十分に使用可能と考えられる。 As a result of the above-mentioned bending test, the inlay-type clad materials of groups G1 to G3 with a "high" or "medium" evaluation of bending peeling resistance are more durable and reliable against severe vibrations and impacts, as described above. It is thought that it can be used for wiring parts and heat dissipation parts that require good performance. In addition, the inlay-type clad materials of Groups G2 and G3, which have a "high" evaluation of bending peeling resistance, are subjected to bending in order to cope with the complication and diversification of the shapes of facilities and equipment, as described above. It is considered that it can be used sufficiently for wiring parts and heat dissipation parts.
 以上述べたように、この発明に係るクラッド材の製造方法によれば、接合面への圧延油の浸入を抑制して耐剥離性を向上することが可能になること、さらに望ましくは、曲げ加工において剥離がより発生しにくい耐曲げ剥離性を有することが可能になること、を確認することができた。
 
As described above, according to the clad material manufacturing method according to the present invention, it is possible to suppress the infiltration of rolling oil into the joint surface and improve the peeling resistance. It was confirmed that it is possible to have bending peeling resistance in which peeling is less likely to occur.

Claims (7)

  1.  第1金属から成る第1金属板と、前記第1金属とは異なる第2金属から成る第2金属板と、第3金属から成る第3金属板と、を準備する工程と、
     前記第2金属板の圧延面を露出させないように、前記第1金属板と前記第3金属板とで前記第2金属板を挟み込んだ状態で圧延し、前記第1金属から成る第1金属層と、前記第2金属から成る第2金属層と、前記第3金属から成る第3金属層と、から成る、クラッド圧延材を形成する工程と、
     前記クラッド圧延材から前記第3金属層を除去する工程と、を含み、
     厚さ方向の一方の圧延面側には前記第2金属層が存在し、厚さ方向の他方の圧延面側には前記第2金属層が存在していない、クラッド材を形成する、クラッド材の製造方法。
    preparing a first metal plate made of a first metal, a second metal plate made of a second metal different from the first metal, and a third metal plate made of a third metal;
    Rolling the second metal plate while sandwiching the second metal plate between the first metal plate and the third metal plate so as not to expose the rolled surface of the second metal plate, and rolling the first metal layer made of the first metal and a step of forming a clad rolled material comprising a second metal layer made of the second metal and a third metal layer made of the third metal;
    and removing the third metal layer from the clad rolled material,
    A clad material forming a clad material in which the second metal layer exists on one rolled surface side in the thickness direction and the second metal layer does not exist on the other rolled surface side in the thickness direction. manufacturing method.
  2.  前記第2金属板よりも圧延幅方向の長さが大きい、前記第1金属板および前記第3金属板を準備し、
     前記第1金属層よりも圧延幅方向の長さが小さい前記第2金属層が厚さ方向の一方の圧延面側に存在し、厚さ方向の他方の圧延面側には前記第2金属層が存在していない、クラッド材を形成する、請求項1に記載のクラッド材の製造方法。
    Prepare the first metal plate and the third metal plate having a length in the rolling width direction greater than that of the second metal plate,
    The second metal layer having a smaller length in the rolling width direction than the first metal layer is present on one side of the rolled surface in the thickness direction, and the second metal layer is on the other side of the rolled surface in the thickness direction. 2. The method of manufacturing a clad material according to claim 1, wherein the clad material is formed in the absence of
  3.  前記クラッド圧延材を形成する工程では、65%以上の圧下率で圧延する、請求項1または請求項2に記載のクラッド材の製造方法。 The method for producing a clad material according to claim 1 or 2, wherein in the step of forming the clad rolled material, the material is rolled at a rolling reduction of 65% or more.
  4.  前記第3金属として、前記第3金属板に接する前記第1金属板および前記第2金属板との硬さの差が100HV以下になる金属を選択する、請求項1または請求項2に記載のクラッド材の製造方法。 3. The third metal according to claim 1, wherein a metal having a hardness difference of 100 HV or less between said first metal plate and said second metal plate in contact with said third metal plate is selected as said third metal. A method of manufacturing a clad material.
  5.  前記第3金属は、Al、Al合金、Cu、Cu合金、Fe、および、Fe合金のうちのいずれか1つとする、請求項1または請求項2に記載のクラッド材の製造方法。 The method for producing a clad material according to claim 1 or 2, wherein the third metal is any one of Al, Al alloy, Cu, Cu alloy, Fe, and Fe alloy.
  6.  前記第1金属と前記第2金属とのうち、一方をAlまたはAl合金とし、他方をCuまたはCu合金とする、請求項1または請求項2に記載のクラッド材の製造方法。 The method for producing a clad material according to claim 1 or 2, wherein one of the first metal and the second metal is Al or an Al alloy, and the other is Cu or a Cu alloy.
  7.  前記第1金属と前記第2金属とのうち、一方をCuまたはCu合金とし、他方をFeまたはFe合金、あるいはステンレス鋼とする、請求項1または請求項2に記載のクラッド材の製造方法。
     
    3. The method of manufacturing a clad material according to claim 1, wherein one of said first metal and said second metal is Cu or a Cu alloy, and the other is Fe, an Fe alloy, or stainless steel.
PCT/JP2022/028366 2021-12-22 2022-07-21 Method for manufacturing cladding material WO2023119705A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021207904A JP2023092721A (en) 2021-12-22 2021-12-22 Method for manufacturing clad material
JP2021-207904 2021-12-22

Publications (1)

Publication Number Publication Date
WO2023119705A1 true WO2023119705A1 (en) 2023-06-29

Family

ID=86901822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028366 WO2023119705A1 (en) 2021-12-22 2022-07-21 Method for manufacturing cladding material

Country Status (2)

Country Link
JP (1) JP2023092721A (en)
WO (1) WO2023119705A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570490A (en) * 1978-11-20 1980-05-27 Mitsubishi Metal Corp Production of clad plate
JPH02268985A (en) * 1989-04-06 1990-11-02 Sumitomo Special Metals Co Ltd Manufacture of top-lay clad material
JPH11320125A (en) * 1998-05-12 1999-11-24 Nkk Corp Clad steel plate of good workability
JP2017060978A (en) * 2015-09-25 2017-03-30 株式会社光栄 Clad material and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570490A (en) * 1978-11-20 1980-05-27 Mitsubishi Metal Corp Production of clad plate
JPH02268985A (en) * 1989-04-06 1990-11-02 Sumitomo Special Metals Co Ltd Manufacture of top-lay clad material
JPH11320125A (en) * 1998-05-12 1999-11-24 Nkk Corp Clad steel plate of good workability
JP2017060978A (en) * 2015-09-25 2017-03-30 株式会社光栄 Clad material and manufacturing method thereof

Also Published As

Publication number Publication date
JP2023092721A (en) 2023-07-04

Similar Documents

Publication Publication Date Title
JP4961508B2 (en) Clad plate
JP4961512B2 (en) Aluminum copper clad material
JP4780664B2 (en) Composite metal plate and manufacturing method thereof
WO2017068974A1 (en) Metal plate for terminal, terminal, and terminal pair
WO2023119705A1 (en) Method for manufacturing cladding material
JP3562719B2 (en) Terminal
GB2402447A (en) A multilayer aluminium-base alloy bearing
KR102001288B1 (en) Lead material for battery and method for producing the same
JP4423054B2 (en) Material for electronic parts with excellent press punchability
JP2009190080A (en) Copper-silver brazing filler metal and cladding material for lid of package for electronic component
JP2015202680A (en) Cladding material and production method of cladding material
JP2004351460A (en) Stainless steel cladded with aluminum-nickel material, its manufacturing method, and battery case
WO2020255836A1 (en) Copper composite plate material, vapor chamber in which copper composite plate material is used, and method for manufacturing vapor chamber
JP2014164934A (en) Crimp terminal and method for manufacturing crimp terminal
KR102390842B1 (en) Roll-joined body and production method therefor
JP2863900B2 (en) Copper-based double-layer bearing
JP4196776B2 (en) Brazing composite material and method for producing the same
JP4239853B2 (en) Brazing composite material, method for producing the same, and brazed product
JP3090038B2 (en) Manufacturing method of clad plate
JP6645490B2 (en) Cladding material and method for producing clad material
JP4607497B2 (en) Parallel metal plates of different metals and manufacturing method thereof
JP7269080B2 (en) METHOD FOR MANUFACTURING LAMINATE FOR WET-TYPE MULTIPLE-DISK CLUTCH SEPARATE PLATE AND METHOD FOR MANUFACTURING SEPARATE PLATE FOR WET-TYPE MULTIPLE-DISK CLUTCH
JP2001058280A (en) Clad material for coin and clad coin
JP2023069881A (en) Method for producing aluminum alloy multilayer material
JP4466687B2 (en) Sliding member and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910435

Country of ref document: EP

Kind code of ref document: A1