JP4780570B2 - Arc welding method - Google Patents

Arc welding method Download PDF

Info

Publication number
JP4780570B2
JP4780570B2 JP25114498A JP25114498A JP4780570B2 JP 4780570 B2 JP4780570 B2 JP 4780570B2 JP 25114498 A JP25114498 A JP 25114498A JP 25114498 A JP25114498 A JP 25114498A JP 4780570 B2 JP4780570 B2 JP 4780570B2
Authority
JP
Japan
Prior art keywords
welding
wire
arc
groove
arc welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25114498A
Other languages
Japanese (ja)
Other versions
JP2000079474A (en
Inventor
和雄 平岡
照美 中村
英幸 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
IHI Corp
National Institute for Materials Science
Original Assignee
Daihen Corp
IHI Corp
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp, IHI Corp, National Institute for Materials Science filed Critical Daihen Corp
Priority to JP25114498A priority Critical patent/JP4780570B2/en
Priority to US09/389,619 priority patent/US6297473B2/en
Priority to EP99307039A priority patent/EP0983816B1/en
Priority to DE69940415T priority patent/DE69940415D1/en
Publication of JP2000079474A publication Critical patent/JP2000079474A/en
Application granted granted Critical
Publication of JP4780570B2 publication Critical patent/JP4780570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この出願の発明は、アーク溶接方法に関するものである。さらに詳しくは、この出願の発明は、開先アーク溶接施工において、ワイヤ送給速度を周期的に変動することによって溶接ワイヤのアーク発生点(溶接ワイヤ先端)を上下方向へ揺動させ、この上下揺動と溶接電流特性との間の位相差を制御することによって母材開先面でのアーク熱密度分布を自在に制御することを特徴とした高能率で高品質な溶接方法に関するものである。
【0002】
【従来の技術とその課題】
従来より、アーク溶接においては、V,K,レ型等および狭開先溶接継手の狭隘間隙部(開先底部)での融合不良などの溶接欠陥を防ぐためにその開先底部に十分なアーク入熱を投与することが必要であることが知られている。だが、開先の底部を十分に溶融するために大入熱アーク溶接法を用いると溶接時の熱により溶接継手部での金属学的な特性劣化や溶接変形が問題となる。これらの問題を解決するため、開先内でアーク熱の分散化と集中化を適切に制御することが不可欠である。
【0003】
しかしながら、従来においては、各種の工夫が試みられているものの、アーク熱分布を自在に制御することは容易ではなく、この制御を可能として高能率で高品質な溶接を行うことは依然としてアーク溶接法の大きな課題になっていた。
【0004】
【課題を解決するための手段】
そこで、この出願の発明は、上記のとおりの課題を解決するために、第1には、被溶接材の開先内に、消耗電極である溶接ワイヤを連続的に送給しながら、アーク電流の投入による溶接ワイヤの消耗につれて開先の底部から所望の高さに至るまでアーク溶接する消耗電極式のアーク溶接方法であって、溶接ワイヤの開先内への送給速度とアーク電流特性とをそれぞれ周期的に変動させ、溶接ワイヤの先端が、開先の底部付近で停留するように、両周期に位相差を設定してアーク溶接することを特徴としている。
【0005】
そして、上記第1の特徴に関し、この出願の発明は、第2として、電気量を変化させて直流アーク溶接を行うことを特徴とし、第3として、溶接ワイヤの極性を変化させて交流アーク溶接を行うことを特徴とし、第4として電流波形を変化させてアーク溶接を行うことを特徴としている。
【0006】
すなわち、以上のとおり、この出願の発明では、消耗電極ワイヤの送給速度を周期的に変動させ、溶接ワイヤのアーク発生点(ワイヤ先端)をアーク軸方向に揺動させる。この揺動に溶接パルス電流を協調させることにより、アーク入熱点(溶液ワイヤ先端)挙動範囲と移動速度を制御し、適切に開先底部へ熱エネルギーを投入しながら開先面のアーク熱密度分布を任意に形成することのできる消耗電極式アーク溶接方法としている。
【0007】
この溶接方法では開先内の熱密度分布を適切に制御できるので、過大入熱を回避した母材の特性を損なわない組織保存型の溶接施工が可能となる。また、従来では施工が困難な開先幅10mm以下の超狹開先の消耗式電極溶接(MIG,MAG,CO2 ,SAW)に有効である。また、溶接時の溶融領域や熱影響部を最小化できるので変形、残留応力の低減にも効果が大きい。
【0008】
【発明の実施の形態】
この出願の発明は以上のとおりの特徴をもつものであるが、以下に、詳しくこの発明の実施の形態について説明する。
まず、図1は、この発明の方法に用いることのできる溶接装置を例示したものである。この図1の装置においては、溶接電源(1)に接続されている溶接トーチ(2)と、この溶接トーチ(2)を介して消耗電極としての溶接ワイヤ(3)を送給するワイヤ送給装置(7)とを備えており、しかも、溶接ワイヤ(3)は送給装置(7)によって、その送給速度が周期的に変動されて、たとえば狹開先継手を形成する被溶接材(4)の開先内において、アーク入熱点(ワイヤ先端)が、発生されるアーク(5)の軸方向、つまり図1の上下方向に揺動可能とされている。
【0009】
従来の溶接方法においては、溶接ワイヤ(3)の送給速度は一定に保たれているが、この発明の溶接方法においては、溶接ワイヤ(3)の送給速度は一定でなしに周期的に変動することになる。
なお、図1中の符号6は溶融金属を、Zは、ワイヤ端の位置(開先底部からの距離)を示している。
【0010】
さらに従来法との比較として説明すると、たとえば、図2(a)は、ワイヤ送供速度が一定な従来法における直流パルスアークを例示したものであるが、大電流時にワイヤ溶融量が大きくなりワイヤ端がA1からA2に上昇する。A2に達した後にアーク電流を下げるとワイヤの溶融量が少なくなりワイヤ端がA3まで下がる。しかしこの開先底部で、アーク電流が低下するため入熱量は相対的に小さくなり、底部の溶融確保には不適当な状態となる。
【0011】
一方、この発明の方法を例示した図2(b)の溶接ワイヤの送給速度を増減する直流パルス溶接では、この溶接ワイヤの送給速度の周期的変化とパルス発生時の位相差を制御することにより、ワイヤ端が開先底部にある時に大電流となるようにすることができる。これによって、開先底部の溶融確保が容易となる。
被溶接材の開先でのワイヤ端のアーク発生位置は、溶接電源特性、溶接アーク電流・電圧波形、ワイヤ極性等の変化によって、制御可能であるが、溶接ワイヤの送給速度に対して、これらの諸条件を協調させて設定するとき入熱分布を自在かつ効果的に制御することができる。
【0012】
そして、溶接ワイヤの送給速度とアーク電流特性の変更時の位相差を最適なものに制御することで、開先底部での母材としての被溶接材の溶融を確保することができる。
この最適化については、溶接ワイヤの送給速度の変動周期(周波数)とアーク電流特性、たとえば直流パルス電流の変動周期(周波数)の設定等によって最適位相差が異なることが考慮される。
【0013】
そこで、これらの周期(周波数)をどのように考えるかの点は、たとえば次の例を参照することができる。
すなわちまず、平均ワイヤ送給速度(Vfav )に対する周期的ワイヤ送給速度の変動(V6 )の割合(Vfr)が一定の場合、変動周波数が大きくなると、ワイヤ端の上下揺動幅(ΔZ)が急激に減し、熱密度分布制御の効果が得られなくなる。たとえば図3は、直流パルス電流の場合について、位相差が−π/4におけるワイヤ送給速度変動周波数(f)とワイヤ端揺動振幅(ΔZ)との関係を例示したものであるが、前記Vfrが0.25〜0.75において、ワイヤ送給速度周波数(f)が10Hzまで大きくなるとワイヤ端の上下揺動幅(ΔZ)が急減し、10Hz以上では最小のレベルで平均化されることがわかる。
【0014】
そこで、たとえば溶接入熱量〜25kJ/cmを想定した溶接条件において開先内を1溶接で開先底部から高さ約10mmまで溶着金属で埋めるとすると、ワイヤ端の上下変動量は、少くとも5mm以上、最大で10mm強を目標とし、この範囲で入熱密度分布を与えることが考慮される。してみると、図3からは、ワイヤ送給速度変動周波数(f)は10Hz以下を目安とすることが望ましいことになる。
【0015】
また、パルス電流についても、パルス周波数を大きくすると、ワイヤの溶融速度も平均化された電流で支配されることになり、ワイヤ端のパルス電流による揺動効果が期待できないことになる。そしてたとえば、前記の溶接条件と、ワイヤ端の上下変動量を考慮すると、10Hz以下の電流のパルス周波数を目安とすることが望ましい。
【0016】
そこで、溶接ワイヤの送給速度とアーク電流特性の変更時との位相差を制御するこの発明の方法をより具体的に例示説明する。
まず図4は、ワイヤ送給速度を一定とした従来の溶接方法において、パルス電圧の周期を0.4秒とした場合の溶接電流とワイヤ端位置を例示したものであるが、パルス電流印加時にはアーク発生端(ワイヤ端)は開先底部から上方へ急速に移動し、開先底部には十分な熱を投与することができない。
【0017】
一方、パルス電圧の周期を0.4秒として、ワイヤ送給速度の変動周期も0.4秒とした場合のアーク発生端(ワイヤ端)とパルス電流との相互関係を例示したものが図5である。位相差−π/4のときが適正条件であり、パルス電流印加時に、ワイヤ端は開先底部に存在し、かつその後最も緩やかに上方に移動し、図4の従来法に比べて、開先底部に熱を投与できることがわかる。
【0018】
さらに、パルス電圧の周期を0.2秒とし、ワイヤ送給速度の変動周期を0.4秒とした場合、つまり送給速度変動1周期に2パルスが生成する場合について例示したのが図6である。位相差がπ/2の場合にワイヤ端が開先底部付近で停留し、かつ、このとき1パルスの入熱が効果的に投与されることがわかる。
以上の直流パルスアーク溶接に代えて交流アーク溶接を行う場合を例示したものが図7である。交流の周期は、0.2秒であり、ワイヤ送給速度の変動周期は0.4秒とした場合である。交流アークの場合には、ワイヤ側が正の極性となるときに被溶接材が効果的に溶融できる。またワイヤ側が負の極性時には正の極性時に比較して溶融素度が大きくなることから、周期的なワイヤ送給速度変動とワイヤの溶融速度変動の相対関係によってワイヤ端位置が複雑に変化する。図7では、位相差を0とした時が適正な場合で、ワイヤ端が開先底部で停留する時にワイヤ側が正の極性となり(溶融電流が正の時)、開先底部の溶融を確保できるようになることがわかる。
【0019】
そして、これらのことからは、溶接電流波形(入熱)を任意に設定することで母材開先面への熱密度分布をさらに自在に制御することが可能となる。
以上のとおりのこの発明によって、開先内の熱密度分布を自在に制御でき、通常V,レ,K型等開先内および開先幅10mm以下の超狹開先内での開先底部の溶融確保とビード表面形状平滑化が同時に制御可能な溶接施工が行え、また、このことから過大な溶接入熱とならず母材の特性を損なわない組織保存型の溶接施工が可能となる。
【0020】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、母材の開先面にアーク熱の分散化と集中化を自在に制御できる溶接システムが提供される。アークの入熱密度分布の制御を行うことによって、過大な溶接入熱となるのを抑制しながら母材溶融の確保を可能とする。また同時に、溶接時の熱密度を低減できるので、母材の特性を損なわない組織保存型の溶接施工が期待される。
【図面の簡単な説明】
【図1】溶接装置の構成を例示した概要図である。
【図2】従来法(a)と、ワイヤ送給速度とパルス電流との位相制御(b)によるワイヤ端の挙動変化を示した図である。
【図3】ワイヤ送給速度周波数とワイヤ上下揺動幅との関係を例示した図である。
【図4】具体例として、ワイヤ送給速度が一定の従来法の場合の、ワイヤ端の挙動変化を示した図である。
【図5】実施例としてのワイヤ端の挙動変化を示した図である。
【図6】別の実施例としてのワイヤ端の挙動を示した図である。
【図7】実施例としての交流パルスアーク溶接時のワイヤ端の挙動を示した図である。
【符号の説明】
1 溶接電源
2 溶接トーチ
3 溶接ワイヤ
4 被溶接材
5 溶接アーク
6 溶融金属
7 ワイヤ送給装置
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to an arc welding method. More specifically, in the invention of this application, in the groove arc welding construction, by periodically changing the wire feed speed, the arc generation point (welding wire tip) of the welding wire is swung in the vertical direction. The present invention relates to a high-efficiency and high-quality welding method characterized by freely controlling the arc heat density distribution on a base metal groove surface by controlling the phase difference between oscillation and welding current characteristics. .
[0002]
[Prior art and its problems]
Conventionally, in arc welding, in order to prevent welding defects such as poor fusion at the narrow gap portion (groove bottom) of V, K, ladle, etc. and narrow groove welded joints, a sufficient arc has entered the groove bottom. It is known that it is necessary to administer heat. However, if a high heat input arc welding method is used to sufficiently melt the bottom of the groove, metallological characteristic deterioration and welding deformation at the welded joint due to heat during welding become problems. In order to solve these problems, it is essential to appropriately control the distribution and concentration of arc heat within the groove.
[0003]
However, although various attempts have been made in the past, it is not easy to freely control the arc heat distribution, and it is still possible to perform high-quality and high-quality welding with this control. It was a big issue.
[0004]
[Means for Solving the Problems]
Therefore, in order to solve the problems as described above, the invention of this application firstly, while continuously supplying a welding wire as a consumable electrode into the groove of the material to be welded, an arc current is supplied. A consumable electrode type arc welding method in which arc welding is performed from the bottom of the groove to a desired height as the welding wire is consumed due to the charging of the welding wire, and the feed speed and arc current characteristics of the welding wire into the groove periodically varied respectively, the distal end of the welding wire, urchin by you staying near the bottom of the groove, is characterized by arc welding by setting a phase difference to both periods.
[0005]
Then, relates to the aforementioned first aspect, the invention of this application, as the second, varying the electrical quantity characterized by performing DC arc welding, as the third, the polarity of the welding wire is changed and performing AC arc welding, and the fourth is characterized by performing arc welding by changing the current waveform.
[0006]
That is, as described above, in the invention of this application, the feeding speed of the consumable electrode wire is periodically varied, and the arc generation point (wire tip) of the welding wire is swung in the arc axis direction. By coordinating the welding pulse current with this oscillation, the arc heat input point (solution wire tip) behavior range and moving speed are controlled, and heat energy is appropriately input to the groove bottom while the heat density of the groove surface is increased. The consumable electrode arc welding method can arbitrarily form the distribution.
[0007]
In this welding method, since the heat density distribution in the groove can be appropriately controlled, it is possible to perform a structure-preserving type welding construction that does not impair the characteristics of the base material that avoids excessive heat input. Further, it is effective for consumable electrode welding (MIG, MAG, CO 2 , SAW) of a super-groove with a groove width of 10 mm or less, which is conventionally difficult to perform. Further, since the melting region and the heat-affected zone at the time of welding can be minimized, the effect is great in reducing deformation and residual stress.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The invention of this application has the features as described above. Hereinafter, embodiments of the present invention will be described in detail.
First, FIG. 1 illustrates a welding apparatus that can be used in the method of the present invention. In the apparatus shown in FIG. 1, a welding torch (2) connected to a welding power source (1) and a wire feed for feeding a welding wire (3) as a consumable electrode via the welding torch (2). And a welding wire (3) whose welding speed is periodically changed by a feeding device (7) to form, for example, a cleavage joint (7). In the groove 4), the arc heat input point (wire tip) can swing in the axial direction of the generated arc (5), that is, in the vertical direction in FIG.
[0009]
In the conventional welding method, the feeding speed of the welding wire (3) is kept constant, but in the welding method of the present invention, the feeding speed of the welding wire (3) is not constant but periodically. Will fluctuate.
In addition, the code | symbol 6 in FIG. 1 shows a molten metal, Z shows the position (distance from a groove bottom part) of a wire end.
[0010]
Further, as a comparison with the conventional method, for example, FIG. 2 (a) exemplifies a DC pulse arc in the conventional method in which the wire feeding speed is constant. The end rises from A1 to A2. When the arc current is decreased after reaching A2, the amount of melting of the wire decreases and the wire end decreases to A3. However, since the arc current decreases at the groove bottom, the amount of heat input becomes relatively small, which is in an unsuitable state for ensuring melting of the bottom.
[0011]
On the other hand, in the DC pulse welding that increases or decreases the feeding speed of the welding wire in FIG. 2B exemplifying the method of the present invention, the periodic change of the feeding speed of the welding wire and the phase difference at the time of pulse generation are controlled. Thus, a large current can be obtained when the wire end is at the groove bottom. This facilitates ensuring the melting of the groove bottom.
The arc generation position of the wire end at the groove of the welded material can be controlled by changes in the welding power source characteristics, welding arc current / voltage waveform, wire polarity, etc., but with respect to the welding wire feed speed, When these conditions are set in coordination, the heat input distribution can be controlled freely and effectively.
[0012]
And by controlling the phase difference at the time of changing the feeding speed of the welding wire and the arc current characteristic, it is possible to ensure melting of the material to be welded as the base material at the groove bottom.
For this optimization, it is considered that the optimum phase difference differs depending on the setting of the fluctuation period (frequency) of the welding wire feeding speed and arc current characteristics, for example, the fluctuation period (frequency) of the DC pulse current.
[0013]
Therefore, for example, the following example can be referred to for how to consider these periods (frequency).
That is, first, when the ratio (V fr ) of the fluctuation (V 6 ) of the periodic wire feed speed to the average wire feed speed (V fav ) is constant, when the fluctuation frequency increases, the vertical swing width ( ΔZ) decreases rapidly, and the effect of controlling the heat density distribution cannot be obtained. For example, FIG. 3 illustrates the relationship between the wire feed speed fluctuation frequency (f) and the wire end swing amplitude (ΔZ) when the phase difference is −π / 4 in the case of a DC pulse current. When V fr is 0.25 to 0.75, when the wire feed speed frequency (f) increases to 10 Hz, the vertical fluctuation width (ΔZ) of the wire end decreases rapidly, and at 10 Hz or more, it is averaged at the minimum level. I understand that.
[0014]
Thus, for example, if the inside of the groove is filled with a weld metal from the bottom of the groove to a height of about 10 mm under welding conditions assuming a welding heat input of ˜25 kJ / cm, the vertical fluctuation amount of the wire end is at least 5 mm. As mentioned above, it is considered that the target is a little over 10 mm and the heat input density distribution is given within this range. Accordingly, from FIG. 3, it is desirable that the wire feed speed fluctuation frequency (f) is 10 Hz or less.
[0015]
As for the pulse current, when the pulse frequency is increased, the melting rate of the wire is governed by the averaged current, and the fluctuation effect due to the pulse current at the wire end cannot be expected. For example, considering the welding conditions and the amount of vertical fluctuation of the wire end, it is desirable to use a pulse frequency of a current of 10 Hz or less as a guide.
[0016]
Therefore, the method of the present invention for controlling the phase difference between the welding wire feed speed and the arc current characteristic change will be described more specifically.
First, FIG. 4 exemplifies the welding current and the wire end position when the pulse voltage cycle is 0.4 seconds in the conventional welding method in which the wire feed speed is constant. The arc generation end (wire end) moves rapidly upward from the groove bottom, and sufficient heat cannot be applied to the groove bottom.
[0017]
On the other hand, FIG. 5 illustrates the interrelationship between the arc generation end (wire end) and the pulse current when the period of the pulse voltage is 0.4 seconds and the fluctuation period of the wire feed speed is also 0.4 seconds. It is. A phase difference of −π / 4 is an appropriate condition, and when a pulse current is applied, the wire end is present at the bottom of the groove and then moves most gently upward. Compared to the conventional method of FIG. It can be seen that heat can be administered to the bottom.
[0018]
Furthermore, FIG. 6 illustrates the case where the cycle of the pulse voltage is 0.2 seconds and the fluctuation cycle of the wire feed speed is 0.4 seconds, that is, the case where two pulses are generated in one cycle of the feed speed fluctuation. It is. It can be seen that when the phase difference is π / 2, the wire end stays near the bottom of the groove, and at this time, one pulse of heat input is effectively administered.
FIG. 7 illustrates a case where AC arc welding is performed instead of the above DC pulse arc welding. The AC cycle is 0.2 seconds and the wire feed rate fluctuation cycle is 0.4 seconds. In the case of an AC arc, the welded material can be effectively melted when the wire side has a positive polarity. In addition, since the melting degree becomes larger when the wire side has a negative polarity than when the polarity is positive, the wire end position changes in a complicated manner depending on the relative relationship between the periodic wire feed speed fluctuation and the wire melting speed fluctuation. In FIG. 7, when the phase difference is 0, it is appropriate, and when the wire end stops at the groove bottom, the wire side has a positive polarity (when the melting current is positive), and it is possible to ensure melting of the groove bottom. You can see that
[0019]
And from these things, it becomes possible to further freely control the heat density distribution on the base material groove surface by arbitrarily setting the welding current waveform (heat input).
According to the present invention as described above, the heat density distribution in the groove can be freely controlled, and the groove bottom portion in the groove having a groove width of 10 mm or less and in a groove having a groove width of 10 mm or less is usually used. Welding that can control melting and bead surface shape smoothing at the same time can be performed, and this makes it possible to perform a structure-preserving-type welding that does not cause excessive welding heat input and does not impair the properties of the base material.
[0020]
【The invention's effect】
As described above in detail, the invention of this application provides a welding system that can freely control the dispersion and concentration of arc heat on the groove surface of the base material. By controlling the heat input density distribution of the arc, it is possible to ensure the base material melting while suppressing excessive welding heat input. At the same time, since the heat density at the time of welding can be reduced, a structure-preserving type welding construction that does not impair the properties of the base material is expected.
[Brief description of the drawings]
FIG. 1 is a schematic view illustrating the configuration of a welding apparatus.
FIG. 2 is a diagram showing a change in behavior of a wire end by a conventional method (a) and phase control (b) between a wire feed speed and a pulse current.
FIG. 3 is a diagram illustrating a relationship between a wire feed speed frequency and a wire up-and-down swing width.
FIG. 4 is a diagram showing a change in behavior of a wire end in the case of a conventional method with a constant wire feed speed as a specific example.
FIG. 5 is a diagram showing a change in behavior of a wire end as an example.
FIG. 6 is a diagram showing the behavior of a wire end as another embodiment.
FIG. 7 is a diagram showing the behavior of a wire end during AC pulse arc welding as an example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Welding power source 2 Welding torch 3 Welding wire 4 Material to be welded 5 Welding arc 6 Molten metal 7 Wire feeder

Claims (4)

被溶接材の開先内に、消耗電極である溶接ワイヤを連続的に送給しながら、アーク電流の投入による溶接ワイヤの消耗につれて開先の底部から所望の高さに至るまでアーク溶接する消耗電極式のアーク溶接方法であって、溶接ワイヤの開先内への送給速度とアーク電流特性とをそれぞれ周期的に変動させ、溶接ワイヤの先端が、開先の底部付近で停留するように、両周期に位相差を設定してアーク溶接することを特徴とするアーク溶接方法。Consumption of arc welding from the bottom of the groove to the desired height as the welding wire is consumed by supplying an arc current while continuously feeding the welding wire, which is a consumable electrode, into the groove of the workpiece. an electrode-type arc welding method, the feed rate and arc current characteristic of the welding wire GMA in to periodically change each distal end of the welding wire, dwell near the bottom of the groove Thus, an arc welding method characterized by arc welding with a phase difference set in both cycles. 電気量を変化させて直流アーク溶接を行うことを特徴とする請求項1に記載のアーク溶接方法。  2. The arc welding method according to claim 1, wherein direct current arc welding is performed by changing an electric quantity. 溶接ワイヤの極性を変化させて交流アーク溶接を行うことを特徴とする請求項1に記載のアーク溶接方法。  2. The arc welding method according to claim 1, wherein AC arc welding is performed by changing the polarity of the welding wire. 電流波形を変化させてアーク溶接を行うことを特徴とする請求項1に記載のアーク溶接方法。  The arc welding method according to claim 1, wherein arc welding is performed by changing a current waveform.
JP25114498A 1998-09-04 1998-09-04 Arc welding method Expired - Fee Related JP4780570B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP25114498A JP4780570B2 (en) 1998-09-04 1998-09-04 Arc welding method
US09/389,619 US6297473B2 (en) 1998-09-04 1999-09-03 Arc welding method
EP99307039A EP0983816B1 (en) 1998-09-04 1999-09-03 Arc welding method
DE69940415T DE69940415D1 (en) 1998-09-04 1999-09-03 Arc welding processes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25114498A JP4780570B2 (en) 1998-09-04 1998-09-04 Arc welding method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010137662A Division JP5191508B2 (en) 2010-06-16 2010-06-16 Arc welding method

Publications (2)

Publication Number Publication Date
JP2000079474A JP2000079474A (en) 2000-03-21
JP4780570B2 true JP4780570B2 (en) 2011-09-28

Family

ID=17218337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25114498A Expired - Fee Related JP4780570B2 (en) 1998-09-04 1998-09-04 Arc welding method

Country Status (1)

Country Link
JP (1) JP4780570B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5987737B2 (en) * 2012-04-09 2016-09-07 Jfeスチール株式会社 Narrow groove welding method for steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2700823B2 (en) * 1989-08-29 1998-01-21 ファナック株式会社 Arc welding current / voltage feedback control method
JP3294080B2 (en) * 1995-09-19 2002-06-17 三菱重工業株式会社 Consumable electrode gas shielded arc welding equipment
JP3758178B2 (en) * 1996-03-19 2006-03-22 株式会社安川電機 Welding line scanning control device
JPH10193117A (en) * 1996-12-29 1998-07-28 Tokyo Gas Co Ltd Left/right arc copying correction method in automatic tube circumference welding machine

Also Published As

Publication number Publication date
JP2000079474A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
CA2858104C (en) Dc electrode negative rotating arc welding method and system
US6297473B2 (en) Arc welding method
US20110248007A1 (en) Arc welding method and arc welding apparatus
JP3809983B2 (en) Consumable electrode type AC gas shield welding equipment
JP6777969B2 (en) Arc welding method and arc welding equipment
JP5191508B2 (en) Arc welding method
JP4890179B2 (en) Plasma MIG welding method
JP4780570B2 (en) Arc welding method
WO2017033978A1 (en) Welding method and arc welding device
DE69818712D1 (en) METHOD FOR ARC WELDING WITH A MELTING ELECTRODE
JP4538616B2 (en) Arc welding method
JPH0320310B2 (en)
RU2639586C1 (en) Method of arc mechanized two-electrode welding
JP3867164B2 (en) Welding method
RU2418661C1 (en) Method of welding by three-phase arc
RU2367546C2 (en) Three-phase arc weld deposition method
CN104227181A (en) Double-wire-feeding welding method implemented by main electric arcs driven by auxiliary electric arcs to swing
JP5926589B2 (en) Plasma MIG welding method
JP7475218B2 (en) Arc welding method and arc welding device
JP2001079664A (en) Heating device for welding wire
JPS5940549B2 (en) DC TIG welding method
JP2001225168A (en) Consumable electrode gas shielded arc welding method
JPH0221909B2 (en)
JP2021030291A (en) Dual electrode submerged arc-welding method
Nakamura et al. Development of Ultra-Narrow Gap GMA Welding Process by Numerical Simulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees