JP6777969B2 - Arc welding method and arc welding equipment - Google Patents
Arc welding method and arc welding equipment Download PDFInfo
- Publication number
- JP6777969B2 JP6777969B2 JP2016161844A JP2016161844A JP6777969B2 JP 6777969 B2 JP6777969 B2 JP 6777969B2 JP 2016161844 A JP2016161844 A JP 2016161844A JP 2016161844 A JP2016161844 A JP 2016161844A JP 6777969 B2 JP6777969 B2 JP 6777969B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- arc
- current
- wire
- welding wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003466 welding Methods 0.000 title claims description 570
- 238000000034 method Methods 0.000 title claims description 50
- 230000007704 transition Effects 0.000 claims description 122
- 238000012546 transfer Methods 0.000 claims description 58
- 239000010953 base metal Substances 0.000 claims description 53
- 239000007788 liquid Substances 0.000 claims description 7
- 230000005012 migration Effects 0.000 claims description 2
- 238000013508 migration Methods 0.000 claims description 2
- 239000002184 metal Substances 0.000 description 55
- 229910052751 metal Inorganic materials 0.000 description 55
- 239000000463 material Substances 0.000 description 22
- 239000011324 bead Substances 0.000 description 18
- 239000007789 gas Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 13
- 230000035515 penetration Effects 0.000 description 11
- 230000006641 stabilisation Effects 0.000 description 11
- 238000011105 stabilization Methods 0.000 description 11
- 238000001514 detection method Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 230000009471 action Effects 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000007665 sagging Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 101100537937 Caenorhabditis elegans arc-1 gene Proteins 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Arc Welding Control (AREA)
Description
本発明は、消耗電極式のアーク溶接方法及びアーク溶接装置に関する。 The present invention relates to a consumable electrode type arc welding method and an arc welding apparatus.
溶接方法の一つに、消耗電極式のガスシールドアーク溶接法がある(例えば、特許文献1)。ガスシールドアーク溶接法は、母材の被溶接部に送給された溶接ワイヤと、母材との間にアークを発生させ、アークの熱によって母材を溶接する手法であり、特に高温になった母材の酸化を防ぐために、不活性ガスを溶接部周辺に噴射しながら溶接を行うものである。5mm程度の薄板であれば、母材の突き合わせ継手を1パスで溶接することもできる。 One of the welding methods is a consumable electrode type gas shielded arc welding method (for example, Patent Document 1). The gas shielded arc welding method is a method in which an arc is generated between the welding wire fed to the welded portion of the base metal and the base metal, and the base metal is welded by the heat of the arc, and the temperature becomes particularly high. Welding is performed while injecting an inert gas around the welded portion in order to prevent oxidation of the base metal. If it is a thin plate of about 5 mm, the butt joint of the base material can be welded in one pass.
ところが、9〜30mmの厚板になると、従来のガスシールドアーク溶接法では1パスで母材を溶接することができない。このため、複数回の溶接操作を繰り返し行う多層溶接によって、厚板の溶接が行われている。しかし、多層溶接においては、溶接工数の増大が問題となる。また、入熱量が大きくなり、母材の変形、溶接部分の脆化が問題となる。 However, in the case of a thick plate of 9 to 30 mm, the base metal cannot be welded in one pass by the conventional gas shielded arc welding method. Therefore, the thick plate is welded by multi-layer welding in which the welding operation is repeated a plurality of times. However, in multi-layer welding, an increase in welding man-hours becomes a problem. In addition, the amount of heat input becomes large, and deformation of the base metal and embrittlement of the welded portion become problems.
本願発明者等は、かかる問題を解決すべく鋭意検討した結果、一般的なガスシールドアーク溶接法に比して、高速で溶接ワイヤの送給を行い、大電流を供給することによって、厚板の1パス溶接を実現することができるという知見を得た。具体的には、溶接ワイヤを約5〜100m/分で送給し、300A以上の大電流を供給することによって、厚板の1パス溶接を実現することができる。溶接ワイヤの高速送給及び大電流供給を行うと、アークの熱によって母材に凹状の溶融部分が形成され、溶接ワイヤの先端部が溶融部分によって囲まれる空間に進入する。溶接ワイヤの先端部が母材表面より深部に進入することによって、溶融部分が母材の厚み方向裏面側にまで貫通し、1パス溶接が可能になる。以下、凹状の溶融部分によって囲まれる空間を埋もれ空間と呼び、埋もれ空間に進入した溶接ワイヤの先端部と、母材又は溶融部分との間に発生するアークを、適宜、埋もれアークと呼ぶ。 As a result of diligent studies to solve such a problem, the inventors of the present application feed the welding wire at a higher speed than the general gas shielded arc welding method and supply a large current to the thick plate. We obtained the finding that 1-pass welding can be realized. Specifically, one-pass welding of a thick plate can be realized by feeding a welding wire at about 5 to 100 m / min and supplying a large current of 300 A or more. When the welding wire is fed at high speed and a large current is supplied, a concave molten portion is formed in the base metal by the heat of the arc, and the tip portion of the welding wire enters the space surrounded by the molten portion. When the tip end portion of the welding wire penetrates deeper than the surface surface of the base metal, the molten portion penetrates to the back surface side in the thickness direction of the base metal, and one-pass welding becomes possible. Hereinafter, the space surrounded by the concave molten portion is referred to as a buried space, and the arc generated between the tip of the welding wire that has entered the buried space and the base metal or the molten portion is appropriately referred to as a buried arc.
しかしながら、大電流のガスシールドアーク溶接法においては、アークの熱によって溶融した母材及び溶接ワイヤの溶融金属が増加し、アークによる溶融金属の波打ちが生じ、その溶融金属が凝固したビードの形状も周期的に大きく乱れるという問題があった。例えば、溶接ワイヤを30m/分の速度で送給し、溶接電流450A、溶接電圧40V、板圧12mmの突き合わせ炭酸ガス溶接を行うと、溶融金属が大きく波打ち、ビードの蛇行及び垂れが発生することが確認された。 However, in the large current gas shielded arc welding method, the molten metal of the base metal and the welding wire melted by the heat of the arc increases, the molten metal undulates due to the arc, and the shape of the bead where the molten metal solidifies also increases. There was a problem that it was disturbed periodically. For example, when a welding wire is fed at a speed of 30 m / min and butt carbon dioxide gas welding is performed with a welding current of 450 A, a welding voltage of 40 V, and a plate pressure of 12 mm, the molten metal undulates greatly, and bead meandering and sagging occur. Was confirmed.
本発明は斯かる事情に鑑みてなされたものであり、その目的は、300A以上の大電流を用いてガスシールドアーク溶接を行う場合であっても、埋もれアーク溶接における溶融金属の波打ちを抑え、ビードの乱れ及び垂れの発生を防止することができるアーク溶接方法及びアーク溶接装置を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to suppress waviness of molten metal in buried arc welding even when gas shielded arc welding is performed using a large current of 300 A or more. It is an object of the present invention to provide an arc welding method and an arc welding apparatus capable of preventing the occurrence of bead turbulence and sagging.
本発明に係るアーク溶接方法は、母材の被溶接部に溶接ワイヤを送給すると共に、該溶接ワイヤに溶接電流を供給することによって、前記溶接ワイヤの先端部及び被溶接部間にアークを発生させ、前記母材を溶接する消耗電極式のアーク溶接方法であって、前記先端部及び被溶接部間に発生したアークによって前記母材に形成された凹状の溶融部分によって囲まれる空間に前記先端部が進入する速度で、前記溶接ワイヤを送給し、前記溶接電流の周波数が10Hz以上1000Hz以下、平均電流が300A以上、電流振幅が50A以上になるように、該溶接電流を変動させる。 In the arc welding method according to the present invention, a welding wire is supplied to a welded portion of a base metal, and a welding current is supplied to the welding wire to generate an arc between the tip of the welding wire and the welded portion. It is a consumable electrode type arc welding method in which the base metal is generated and welded, and the space surrounded by the concave melted portion formed in the base metal by the arc generated between the tip portion and the welded portion is described. The welding wire is fed at a speed at which the tip portion enters, and the welding current is varied so that the frequency of the welding current is 10 Hz or more and 1000 Hz or less, the average current is 300 A or more, and the current amplitude is 50 A or more.
本発明にあっては、溶接ワイヤの先端部は、凹状の溶融部分で囲まれる埋もれ空間に進入し、埋もれアークが発生する。具体的には、溶接ワイヤの先端部は溶融部分に囲まれた状態となり、溶接電流を周期的に変動させることにより、埋もれ空間におけるワイヤ先端位置を上下させることができ、先端部と、溶融部分の底部及び側部との間にアークが発生する。アークの熱によって溶融した母材及び溶接ワイヤの溶融金属は、埋もれ空間が閉口し、溶接ワイヤの先端部が埋没される方向へ流れようとするが、溶接ワイヤの先端部から溶融部分の側部へ照射されるアークの力によって押し返され、先端部が溶融部分に囲まれた状態で安定化する。
また、埋もれアーク溶接における溶融金属は、大きく波打つおそれがあるが、前記周波数、平均電流及び電流振幅にて溶接電流を周期的に変動させることにより、大きな波打ち周期よりも高周波数で溶融金属を微振動させ、溶融金属の大きな波打ちを抑えることができ、厚板の1パス溶接を実現することができる。
In the present invention, the tip of the welding wire enters the buried space surrounded by the concave molten portion, and a buried arc is generated. Specifically, the tip of the welding wire is surrounded by the molten portion, and by periodically changing the welding current, the position of the wire tip in the buried space can be moved up and down, and the tip and the molten portion can be moved up and down. An arc is generated between the bottom and sides of the wire. The base metal melted by the heat of the arc and the molten metal of the welding wire close the buried space and try to flow in the direction in which the tip of the welding wire is buried, but from the tip of the welding wire to the side of the molten part. It is pushed back by the force of the arc applied to the wire and stabilizes with the tip surrounded by the molten part.
Further, the molten metal in buried arc welding may undulate greatly, but by periodically fluctuating the welding current with the frequency, average current and current amplitude, the molten metal is finely undulated at a higher frequency than the large undulating period. It can be vibrated to suppress large waviness of molten metal, and one-pass welding of thick plates can be realized.
本発明に係るアーク溶接方法は、母材の被溶接部に溶接ワイヤを送給すると共に、該溶接ワイヤに溶接電流を供給することによって、前記溶接ワイヤの先端部及び被溶接部間にアークを発生させ、前記母材を溶接する消耗電極式のアーク溶接方法であって、前記先端部及び被溶接部間に発生したアークによって前記母材に形成された凹状の溶融部分によって囲まれる空間に前記先端部が進入する速度で、前記溶接ワイヤを送給し、前記溶接電流を周期的に変動させることにより、前記先端部及び前記溶融部分の底部間にアークが発生する第1状態と、前記先端部及び前記溶融部分の側部間にアークが発生する第2状態とを周期的に変動させる。 In the arc welding method according to the present invention, a welding wire is supplied to a welded portion of a base metal, and a welding current is supplied to the welding wire to generate an arc between the tip of the welding wire and the welded portion. It is a consumable electrode type arc welding method in which the base metal is generated and welded, and the space surrounded by the concave melted portion formed in the base metal by the arc generated between the tip portion and the welded portion is described. The first state in which an arc is generated between the tip and the bottom of the molten portion by feeding the welding wire at the speed at which the tip enters and periodically fluctuating the welding current, and the tip. The second state in which an arc is generated is periodically changed between the portion and the side portion of the molten portion.
本発明にあっては、溶接ワイヤの先端部は、凹状の溶融部分で囲まれる埋もれ空間に進入し、埋もれアークが発生する。具体的には、溶接ワイヤの先端部は溶融部分に囲まれた状態となり、溶接電流を周期的に変動させることにより、埋もれ空間におけるワイヤ先端位置を上下させることができ、先端部と、溶融部分の底部及び側部との間にアークが発生する。アークの熱によって溶融した母材及び溶接ワイヤの溶融金属は、埋もれ空間が閉口し、溶接ワイヤの先端部が埋没される方向へ流れようとするが、溶接ワイヤの先端部から溶融部分の側部へ照射されるアークの力によって押し返され、先端部が溶融部分に囲まれた状態で安定化する。
また、埋もれアーク溶接における溶融金属は、大きく波打つおそれがあるが、溶接電流を周期的に変動させることにより、凹状の溶融部分の底部にアークが飛ぶ第1状態と、溶融部分の側部にアークが飛ぶ第2状態とを周期的に変動させることができ、溶融金属の波打ちを抑えることができ、厚板の1パス溶接を実現することができる。
In the present invention, the tip of the welding wire enters the buried space surrounded by the concave molten portion, and a buried arc is generated. Specifically, the tip of the welding wire is surrounded by the molten portion, and by periodically changing the welding current, the position of the wire tip in the buried space can be moved up and down, and the tip and the molten portion can be moved up and down. An arc is generated between the bottom and sides of the wire. The base metal melted by the heat of the arc and the molten metal of the welding wire close the buried space and try to flow in the direction in which the tip of the welding wire is buried, but from the tip of the welding wire to the side of the molten part. It is pushed back by the force of the arc applied to the wire and stabilizes with the tip surrounded by the molten part.
Further, the molten metal in buried arc welding may undulate greatly, but by periodically fluctuating the welding current, the arc flies to the bottom of the concave molten portion and the arc to the side of the fused portion. The second state in which the current flies can be changed periodically, the waviness of the molten metal can be suppressed, and one-pass welding of a thick plate can be realized.
本発明に係るアーク溶接方法は、前記第1状態及び前記第2状態を10Hz以上1000Hz以下の周波数で変動させる。 In the arc welding method according to the present invention, the first state and the second state are varied at a frequency of 10 Hz or more and 1000 Hz or less.
本発明にあっては、第1状態及び第2状態を10Hz以上1000Hz以下の周波数で変動させることにより、大きな波打ち周期よりも高周波数で溶融金属を微振動させ、溶融金属の大きな波打ちを抑えることができる。 In the present invention, by varying the first state and the second state at a frequency of 10 Hz or more and 1000 Hz or less, the molten metal is slightly vibrated at a frequency higher than a large waviness period, and large waviness of the molten metal is suppressed. Can be done.
本発明に係るアーク溶接方法は、前記第1状態はドロップ移行の溶滴移行形態を含み、前記第2状態は、前記溶接ワイヤの前記先端部に形成される液柱及びアークが振り子状に揺動する溶滴移行形態を含む。 In the arc welding method according to the present invention, the first state includes a droplet transfer form of drop transfer, and in the second state, a liquid column and an arc formed at the tip of the welding wire sway like a pendulum. Includes a moving droplet transfer form.
本発明にあっては、溶接電流を周期的に変動させることにより、凹状の溶融部分の底部にアークが飛ぶドロップ移行と、振り子移行とを周期的に変動させることができ、溶融金属の波打ちを抑えることができる。 In the present invention, by periodically changing the welding current, it is possible to periodically change the drop transition in which the arc flies to the bottom of the concave molten portion and the pendulum transition, thereby causing the molten metal to undulate. It can be suppressed.
本発明に係るアーク溶接方法は、前記第1状態はドロップ移行の溶滴移行形態を含み、前記第2状態はローテーティング移行の溶滴移行形態を含む。 In the arc welding method according to the present invention, the first state includes a drop transfer droplet transfer form, and the second state includes a rotating transfer droplet transfer form.
本発明にあっては、溶接電流を周期的に変動させることにより、凹状の溶融部分の底部にアークが飛ぶドロップ移行と、溶融部分の側部にアークが飛ぶローテーティング移行とを周期的に変動させることができ、溶融金属の波打ちを抑えることができる。 In the present invention, by periodically fluctuating the welding current, the drop transition in which the arc flies to the bottom of the concave molten portion and the rotating transition in which the arc flies to the side of the molten portion fluctuates periodically. It is possible to suppress the waviness of the molten metal.
本発明に係るアーク溶接方法は、前記第1状態は、前記溶接ワイヤの前記先端部に形成される液柱及びアークが振り子状に揺動する溶滴移行形態を含み、前記第2状態はローテーティング移行の溶滴移行形態を含む。 In the arc welding method according to the present invention, the first state includes a liquid column formed at the tip of the welding wire and a droplet transition form in which the arc swings like a pendulum, and the second state is a rotation. Includes a droplet transfer form of welding transfer.
本発明にあっては、溶接電流を周期的に変動させることにより、凹状の溶融部分の底部にアークが飛ぶ振り子移行と、溶融部分の側部にアークが飛ぶローテーティング移行とを周期的に変動させることができ、溶融金属の波打ちを抑えることができる。 In the present invention, by periodically fluctuating the welding current, the pendulum transition in which the arc flies to the bottom of the concave molten portion and the rotating transition in which the arc flies to the side of the molten portion fluctuates periodically. It is possible to suppress the waviness of the molten metal.
本発明に係るアーク溶接方法は、前記溶接電流の周波数が10Hz以上1000Hz以下、平均電流が300A以上、電流振幅が50A以上になるように、該溶接電流を変動させる。 In the arc welding method according to the present invention, the welding current is varied so that the frequency of the welding current is 10 Hz or more and 1000 Hz or less, the average current is 300 A or more, and the current amplitude is 50 A or more.
10Hz以上1000Hz以下、平均電流が300A以上、電流振幅が50A以上の溶接条件によれば、効果的に溶融金属の波打ちを抑え、かつ厚板の1パス溶接を実現することができる。 According to welding conditions of 10 Hz or more and 1000 Hz or less, an average current of 300 A or more, and a current amplitude of 50 A or more, it is possible to effectively suppress the waviness of the molten metal and realize one-pass welding of a thick plate.
本発明に係るアーク溶接方法は、前記溶接電流の周波数が50Hz以上300Hz以下、平均電流が300A以上1000A以下、電流振幅が100A以上500A以下である。 In the arc welding method according to the present invention, the frequency of the welding current is 50 Hz or more and 300 Hz or less, the average current is 300 A or more and 1000 A or less, and the current amplitude is 100 A or more and 500 A or less.
溶接電流の周波数が50Hz以上300Hz以下、平均電流が300A以上1000A以下、電流振幅が100A以上500A以下の溶接条件によれば、より効果的に溶融金属の波打ちを抑え、かつ厚板の1パス溶接を実現することができる。 According to the welding conditions where the frequency of the welding current is 50Hz or more and 300Hz or less, the average current is 300A or more and 1000A or less, and the current amplitude is 100A or more and 500A or less, the waviness of the molten metal is suppressed more effectively and the thick plate is welded in one pass. Can be realized.
本発明に係るアーク溶接装置は、母材の被溶接部に溶接ワイヤを送給するワイヤ送給部と、該溶接ワイヤに溶接電流を供給する電源部とを備え、前記溶接ワイヤに溶接電流を供給することによって、前記溶接ワイヤの先端部及び被溶接部間にアークを発生させ、前記母材を溶接する消耗電極式のアーク溶接装置であって、前記ワイヤ送給部は、前記先端部及び被溶接部間に発生したアークによって前記母材に形成された凹状の溶融部分によって囲まれる空間に前記先端部が進入する速度で、前記溶接ワイヤを送給し、前記電源部は、前記溶接電流の周波数が10Hz以上1000Hz以下、平均電流が300A以上、電流振幅が50A以上になるように、該溶接電流を変動させる。 The arc welding apparatus according to the present invention includes a wire feeding unit that supplies a welding wire to a portion to be welded of a base metal and a power supply unit that supplies a welding current to the welding wire, and applies a welding current to the welding wire. A consumable electrode type arc welding device that generates an arc between the tip of the welding wire and the welded portion by supplying the weld wire to weld the base metal, and the wire feeding portion is the tip portion and the welding portion. The welding wire is fed at a speed at which the tip portion enters the space surrounded by the concave molten portion formed in the base metal by the arc generated between the welded portions, and the power supply portion supplies the welding current. The welding current is varied so that the frequency of 10 Hz or more and 1000 Hz or less, the average current is 300 A or more, and the current amplitude is 50 A or more.
本発明にあっては、溶接ワイヤの先端部は、凹状の溶融部分で囲まれた埋もれ空間に進入し、埋もれアークが発生する。上記の通り、溶接ワイヤの先端部は溶融部分に囲まれた状態となり、当該溶融金属は、大きく波打つおそれがあるが、前記周波数、平均電流及び電流振幅にて溶接電流を周期的に変動させることにより、大きな波打ち周期よりも高周波数で溶融金属を微振動させ、溶融金属の大きな波打ちを抑えることができ、厚板の1パス溶接を実現することができる。 In the present invention, the tip of the welding wire enters the buried space surrounded by the concave molten portion, and a buried arc is generated. As described above, the tip of the welding wire is surrounded by the molten portion, and the molten metal may undulate greatly, but the welding current is periodically changed by the frequency, the average current, and the current amplitude. As a result, the molten metal can be slightly vibrated at a frequency higher than the large waviness period, the large waviness of the molten metal can be suppressed, and one-pass welding of a thick plate can be realized.
本発明に係るアーク溶接装置は、母材の被溶接部に溶接ワイヤを送給するワイヤ送給部と、該溶接ワイヤに溶接電流を供給する電源部とを備え、前記溶接ワイヤに溶接電流を供給することによって、前記溶接ワイヤの先端部及び被溶接部間にアークを発生させ、前記母材を溶接する消耗電極式のアーク溶接装置であって、前記ワイヤ送給部は、前記先端部及び被溶接部間に発生したアークによって前記母材に形成された凹状の溶融部分によって囲まれる空間に前記先端部が進入する速度で、前記溶接ワイヤを送給し、前記電源部は、前記溶接電流を周期的に変動させることにより、前記先端部及び前記溶融部分の底部間にアークが発生する第1状態と、前記先端部及び前記溶融部分の側部間にアークが発生する第2状態とを周期的に変動させる。 The arc welding apparatus according to the present invention includes a wire feeding unit that supplies a welding wire to a portion to be welded of a base metal and a power supply unit that supplies a welding current to the welding wire, and applies a welding current to the welding wire. A consumable electrode type arc welding device that generates an arc between the tip of the welding wire and the welded portion by supplying the weld wire to weld the base metal, and the wire feeding portion is the tip portion and the welding portion. The welding wire is fed at a speed at which the tip portion enters the space surrounded by the concave molten portion formed in the base metal by the arc generated between the welded portions, and the power supply portion supplies the welding current. The first state in which an arc is generated between the tip portion and the bottom portion of the molten portion and the second state in which an arc is generated between the tip portion and the side portion of the molten portion are obtained by periodically changing the above. It fluctuates periodically.
本発明にあっては、溶接ワイヤの先端部は、凹状の溶融部分に囲まれた埋もれ空間に進入し、埋もれアークが発生する。上記の通り、溶接ワイヤの先端部は溶融部分に囲まれた状態となり、当該溶融金属は、大きく波打つおそれがあるが、溶接電流を周期的に変動させることにより、凹状の溶融部分の底部にアークが飛ぶ第1状態と、溶融部分の側部にアークが飛ぶ第2状態とを周期的に変動させ、溶融金属の波打ちを抑えることができ、厚板の1パス溶接を実現することができる。 In the present invention, the tip of the welding wire enters the buried space surrounded by the concave molten portion, and a buried arc is generated. As described above, the tip of the welding wire is surrounded by the molten portion, and the molten metal may undulate greatly. However, by periodically changing the welding current, an arc is formed at the bottom of the concave molten portion. The first state in which the metal flies and the second state in which the arc flies to the side of the molten portion can be periodically changed to suppress the waviness of the molten metal, and one-pass welding of a thick plate can be realized.
本発明によれば、300A以上の大電流を用いてガスシールドアーク溶接を行う場合であっても、埋もれアーク溶接における溶融金属の波打ちを抑え、ビードの乱れ及び垂れの発生を防止することができる。 According to the present invention, even when gas shielded arc welding is performed using a large current of 300 A or more, it is possible to suppress waviness of molten metal in buried arc welding and prevent bead turbulence and sagging. ..
以下、本発明をその実施形態を示す図面に基づいて詳述する。
(実施形態1)
図1は、本実施形態1に係るアーク溶接装置の一構成を示す模式図である。本実施形態1に係るアーク溶接装置は、板厚が9〜30mmの母材4を1パスで突き合わせ溶接することが可能な消耗電極式のガスシールドアーク溶接機であり、溶接電源1、トーチ2及びワイヤ送給部3を備える。
Hereinafter, the present invention will be described in detail with reference to the drawings showing the embodiments thereof.
(Embodiment 1)
FIG. 1 is a schematic view showing a configuration of an arc welding apparatus according to the first embodiment. The arc welding apparatus according to the first embodiment is a consumable electrode type gas shielded arc welder capable of butt-welding a base metal 4 having a plate thickness of 9 to 30 mm in one pass, and is a welding power source 1 and a torch 2. And a wire feeding unit 3 is provided.
トーチ2は、銅合金等の導電性材料からなり、母材4の被溶接部へ溶接ワイヤ5を案内すると共に、アーク7(図5参照)の発生に必要な溶接電流Iwを供給する円筒形状のコンタクトチップを有する。コンタクトチップは、その内部を挿通する溶接ワイヤ5に接触し、溶接電流Iwを溶接ワイヤ5に供給する。また、トーチ2は、コンタクトチップを囲繞する中空円筒形状をなし、被溶接部へシールドガスを噴射するノズルを有する。シールドガスは、アーク7によって溶融した母材4及び溶接ワイヤ5の酸化を防止するためのものである。シールドガスは、例えば炭酸ガス、炭酸ガス及びアルゴンガスの混合ガス、アルゴン等の不活性ガス等である。 The torch 2 is made of a conductive material such as a copper alloy, and has a cylindrical shape that guides the welding wire 5 to the welded portion of the base material 4 and supplies the welding current Iw required for generating the arc 7 (see FIG. 5). Has a contact tip. The contact tip comes into contact with the welding wire 5 that penetrates the inside thereof, and supplies the welding current Iw to the welding wire 5. Further, the torch 2 has a hollow cylindrical shape surrounding the contact tip, and has a nozzle for injecting a shield gas to the welded portion. The shield gas is for preventing oxidation of the base metal 4 and the welding wire 5 melted by the arc 7. The shield gas is, for example, carbon dioxide gas, a mixed gas of carbon dioxide gas and argon gas, an inert gas such as argon, or the like.
溶接ワイヤ5は、例えばソリッドワイヤであり、その直径は0.9mm以上1.6mm以下であり、消耗電極として機能する。溶接ワイヤ5は、例えば、螺旋状に巻かれた状態でペールパックに収容されたパックワイヤ、あるいはワイヤリールに巻回されたリールワイヤである。 The welding wire 5 is, for example, a solid wire having a diameter of 0.9 mm or more and 1.6 mm or less, and functions as a consumable electrode. The welding wire 5 is, for example, a pack wire housed in a pail pack in a spirally wound state, or a reel wire wound around a wire reel.
ワイヤ送給部3は、溶接ワイヤ5をトーチ2へ送給する送給ローラと、当該送給ローラを回転させるモータとを有する。ワイヤ送給部3は、送給ローラを回転させることによって、ワイヤリールから溶接ワイヤ5を引き出し、引き出された溶接ワイヤ5をトーチ2へ供給する。なお、かかる溶接ワイヤ5の送給方式は一例であり、特に限定されるものでは無い。 The wire feeding unit 3 has a feeding roller that feeds the welding wire 5 to the torch 2 and a motor that rotates the feeding roller. The wire feeding unit 3 pulls out the welding wire 5 from the wire reel by rotating the feeding roller, and supplies the drawn welding wire 5 to the torch 2. The feeding method of the welding wire 5 is an example, and is not particularly limited.
溶接電源1は、給電ケーブルを介して、トーチ2のコンタクトチップ及び母材4に接続され、溶接電流Iwを供給する電源部11と、溶接ワイヤ5の送給速度を制御する送給速度制御部12とを備える。なお、電源部11及び送給速度制御部12を別体で構成しても良い。電源部11は、定電圧特性の電源であり、PWM制御された直流電流を出力する電源回路11a、出力電圧設定回路11b、周波数設定回路11c、電流振幅設定回路11d、平均電流設定回路11e、電圧検出部11f、電流検出部11g及び比較回路11hを備える。 The welding power supply 1 is connected to the contact tip of the torch 2 and the base material 4 via a power supply cable, and is a power supply unit 11 that supplies a welding current Iw and a feed rate control unit that controls the feed rate of the welding wire 5. 12 and. The power supply unit 11 and the feed rate control unit 12 may be formed separately. The power supply unit 11 is a power supply having a constant voltage characteristic, and is a power supply circuit 11a that outputs a PWM-controlled DC current, an output voltage setting circuit 11b, a frequency setting circuit 11c, a current amplitude setting circuit 11d, an average current setting circuit 11e, and a voltage. It includes a detection unit 11f, a current detection unit 11g, and a comparison circuit 11h.
電圧検出部11fは、溶接電圧Vwを検出し、検出した電圧値を示す電圧値信号Edを比較回路11hへ出力する。 The voltage detection unit 11f detects the welding voltage Vw and outputs a voltage value signal Ed indicating the detected voltage value to the comparison circuit 11h.
電流検出部11gは、例えば、溶接電源1からトーチ2を介して溶接ワイヤ5へ供給され、アーク7を流れる溶接電流Iwを検出し、検出した電流値を示す電流値信号Idを出力電圧設定回路11bへ出力する。 For example, the current detection unit 11g detects the welding current Iw that is supplied from the welding power supply 1 to the welding wire 5 via the torch 2 and flows through the arc 7, and outputs a current value signal Id indicating the detected current value to the output voltage setting circuit. Output to 11b.
周波数設定回路11cは、母材4及び溶接ワイヤ5間の溶接電圧Vw及び溶接電流Iwを周期的に変動させる周波数を設定するための周波数設定信号を出力電圧設定回路11bへ出力する。本実施形態1に係るアーク溶接方法を実施する場合、周波数設定回路11cは、10Hz以上1000Hz以下の周波数、好ましくは50Hz以上300Hz以下の周波数、より好ましくは80Hz以上200Hz以下の周波数を示す周波数設定信号を出力する。 The frequency setting circuit 11c outputs a frequency setting signal for setting a frequency for periodically changing the welding voltage Vw and the welding current Iw between the base metal 4 and the welding wire 5 to the output voltage setting circuit 11b. When the arc welding method according to the first embodiment is carried out, the frequency setting circuit 11c is a frequency setting signal indicating a frequency of 10 Hz or more and 1000 Hz or less, preferably a frequency of 50 Hz or more and 300 Hz or less, and more preferably a frequency of 80 Hz or more and 200 Hz or less. Is output.
電流振幅設定回路11dは、周期的に変動する溶接電流Iwの振幅を設定するための振幅設定信号を出力電圧設定回路11bへ出力する。本実施形態1に係るアーク溶接方法を実施する場合、電流振幅設定回路11dは、50A以上の電流振幅、好ましくは、100A以上500A以下の電流振幅、より好ましくは200A以上400A以下の電流振幅を示す振幅設定信号を出力する。 The current amplitude setting circuit 11d outputs an amplitude setting signal for setting the amplitude of the welding current Iw, which fluctuates periodically, to the output voltage setting circuit 11b. When the arc welding method according to the first embodiment is carried out, the current amplitude setting circuit 11d exhibits a current amplitude of 50 A or more, preferably 100 A or more and 500 A or less, and more preferably 200 A or more and 400 A or less. Outputs the amplitude setting signal.
平均電流設定回路11eは、周期的に変動する溶接電流Iwの平均電流を設定するための平均電流設定信号を出力電圧設定回路11b及び送給速度制御部12へ出力する。本実施形態1に係るアーク溶接方法を実施する場合、平均電流設定回路11eは、300A以上の平均電流、好ましくは平均電流を300A以上1000A以下の平均電流、より好ましくは500A以上800A以下の平均電流を示す平均電流設定信号を出力する。 The average current setting circuit 11e outputs an average current setting signal for setting the average current of the welding current Iw, which fluctuates periodically, to the output voltage setting circuit 11b and the feed rate control unit 12. When the arc welding method according to the first embodiment is carried out, the average current setting circuit 11e has an average current of 300 A or more, preferably an average current of 300 A or more and 1000 A or less, more preferably an average current of 500 A or more and 800 A or less. Outputs the average current setting signal indicating.
出力電圧設定回路11bは、各部から出力された電流値信号Id、周波数設定信号、振幅設定信号、平均電流設定信号に基づいて、溶接電流Iwが目標とする周波数、電流振幅及び平均電流となるように、例えば、矩形波状又は三角波状等の任意波形の目標電圧を示す出力電圧設定信号Ecrを生成し、生成した出力電圧設定信号Ecrを比較回路11hへ出力する。 The output voltage setting circuit 11b sets the welding current Iw to the target frequency, current amplitude, and average current based on the current value signal Id, frequency setting signal, amplitude setting signal, and average current setting signal output from each part. In addition, for example, an output voltage setting signal Ecr indicating a target voltage of an arbitrary waveform such as a rectangular wave shape or a triangular wave shape is generated, and the generated output voltage setting signal Ecr is output to the comparison circuit 11h.
比較回路11hは、電圧検出部11fから出力された電圧値信号Edと、出力電圧設定回路11bから出力された出力電圧設定信号Ecrとを比較し、その差分を示す差分信号Evを電源回路11aへ出力する。 The comparison circuit 11h compares the voltage value signal Ed output from the voltage detection unit 11f with the output voltage setting signal Ecr output from the output voltage setting circuit 11b, and transmits the difference signal Ev indicating the difference to the power supply circuit 11a. Output.
電源回路11aは、商用交流を交直変換するAC−DCコンバータ、交直変換された直流をスイッチングにより所要の交流に変換するインバータ回路、変換された交流を整流する整流回路等を備える。電源回路11aは、比較回路11hから出力された差分信号Evに従って、インバータをPWM制御し、電圧を溶接ワイヤ5へ出力する。その結果、母材4及び溶接ワイヤ5間に、周期的に変動する溶接電圧Vwが印加され、溶接電流Iwが通電する。なお、溶接電源1には、図示しない制御通信線を介して外部から出力指示信号が入力されるように構成されており、電源部11は、出力指示信号をトリガにして、電源回路11aに溶接電流Iwの供給を開始させる。出力指示信号は、例えば、溶接ロボットから溶接電源1へ出力される。また、手動の溶接機の場合、出力指示信号は、トーチ2側に設けられた手元操作スイッチが操作された際にトーチ2側から溶接電源1へ出力される。 The power supply circuit 11a includes an AC-DC converter that converts commercial AC to AC / DC, an inverter circuit that converts AC / DC converted DC into required AC by switching, a rectifier circuit that rectifies the converted AC, and the like. The power supply circuit 11a PWM-controls the inverter according to the difference signal Ev output from the comparison circuit 11h, and outputs a voltage to the welding wire 5. As a result, a welding voltage Vw that fluctuates periodically is applied between the base metal 4 and the welding wire 5, and the welding current Iw is energized. The welding power supply 1 is configured so that an output instruction signal is input from the outside via a control communication line (not shown), and the power supply unit 11 is welded to the power supply circuit 11a by using the output instruction signal as a trigger. The supply of the current Iw is started. The output instruction signal is output from the welding robot to the welding power source 1, for example. Further, in the case of a manual welding machine, the output instruction signal is output from the torch 2 side to the welding power supply 1 when the hand operation switch provided on the torch 2 side is operated.
溶接電源1の電源部11は、定電圧特性を有する。例えば、電源部11は、100Aの溶接電流の増加に対する溶接電圧の低下が4V以上20V以下となる外部特性を有する。電源部11の外部特性をこのように設定することにより、埋もれアーク状態を維持することが容易となる。
上記溶接電圧の低下が4V未満の場合、外乱要因によるアーク長の変動に対して溶接電圧の変動が小さく、溶接電流が大きく変動する。その結果、溶融部分6が大きく搖動して、埋もれアークの状態を維持することが難しくなる。上記溶接電圧の低下を4V以上とすることにより、溶融部分6の搖動が抑制され、埋もれアーク状態を維持することが容易となる。
また、外乱要因によってアーク長が短くなった場合、溶接電流の値が増加して溶接ワイヤ5の溶融速度が増大し、アーク長が長くなる。一方、外乱要因によってアーク長が長くなった場合、溶接電流の値が減少して溶接ワイヤ5の溶融速度が低下し、アーク長が短くなる(アーク長の自己制御作用)。上記溶接電圧の低下が20Vを超える場合、外乱要因によるアーク長の変動に対して溶接電流の変動が小さいため、上記アーク長の自己制御作用が小さくなる。その結果、埋もれアークの状態を維持することが難しくなる。上記溶接電圧の低下を20V以下とすることにより、上記アーク長の自己制御作用が維持され、埋もれアーク状態を維持することが容易となる。
なお、上記電圧低下は5V以上とすることが好ましい。また、上記電圧低下は15V以下とすることが好ましい。
The power supply unit 11 of the welding power supply 1 has a constant voltage characteristic. For example, the power supply unit 11 has an external characteristic that the decrease in welding voltage with respect to an increase in welding current of 100 A is 4 V or more and 20 V or less. By setting the external characteristics of the power supply unit 11 in this way, it becomes easy to maintain the buried arc state.
When the decrease in the welding voltage is less than 4 V, the fluctuation in the welding voltage is small with respect to the fluctuation in the arc length due to the disturbance factor, and the welding current fluctuates greatly. As a result, the molten portion 6 sways greatly, making it difficult to maintain the state of the buried arc. By setting the lowering of the welding voltage to 4 V or more, the pulsation of the molten portion 6 is suppressed, and it becomes easy to maintain the buried arc state.
Further, when the arc length is shortened due to a disturbance factor, the value of the welding current increases, the melting speed of the welding wire 5 increases, and the arc length becomes long. On the other hand, when the arc length becomes long due to a disturbance factor, the value of the welding current decreases, the melting speed of the welding wire 5 decreases, and the arc length becomes short (self-control action of the arc length). When the decrease in the welding voltage exceeds 20 V, the fluctuation of the welding current is small with respect to the fluctuation of the arc length due to the disturbance factor, so that the self-control action of the arc length is small. As a result, it becomes difficult to maintain the state of the buried arc. By reducing the welding voltage to 20 V or less, the self-control action of the arc length is maintained, and it becomes easy to maintain the buried arc state.
The voltage drop is preferably 5 V or more. Further, the voltage drop is preferably 15 V or less.
図2は、本実施形態1に係るアーク溶接方法の手順を示すフローチャート、図3は、溶接対象の母材4を示す側断面図である。まず、溶接により接合されるべき一対の母材4をアーク溶接装置に配置し、溶接電源1の各種設定を行う(ステップS11)。具体的には、図3に示すように板状の第1母材41及び第2母材42を用意し、被溶接部である端面41a、42aを突き合わせて、所定の溶接作業位置に配する。なお、必要に応じて、第1母材41及び第2母材42にY形、レ形等の任意形状の開先を設けても良い。第1及び第2母材41、42は、例えば軟鋼、機械構造用炭素鋼、機械構造用合金鋼等の鋼板であり、厚みは9mm以上30mm以下である。
そして、溶接電源1は、周波数10Hz以上1000Hz以下、平均電流300A以上、電流振幅50A以上の範囲内で溶接電流Iwの溶接条件を設定する。
FIG. 2 is a flowchart showing the procedure of the arc welding method according to the first embodiment, and FIG. 3 is a side sectional view showing a base material 4 to be welded. First, a pair of base materials 4 to be joined by welding are arranged in an arc welding apparatus, and various settings of the welding power source 1 are performed (step S11). Specifically, as shown in FIG. 3, a plate-shaped first base material 41 and a second base material 42 are prepared, and the end faces 41a and 42a to be welded are abutted and arranged at a predetermined welding work position. .. If necessary, the first base material 41 and the second base material 42 may be provided with grooves having an arbitrary shape such as a Y shape or a re shape. The first and second base materials 41 and 42 are steel plates such as mild steel, carbon steel for machine structure, and alloy steel for machine structure, and have a thickness of 9 mm or more and 30 mm or less.
Then, the welding power source 1 sets the welding conditions of the welding current Iw within the range of the frequency of 10 Hz or more and 1000 Hz or less, the average current of 300 A or more, and the current amplitude of 50 A or more.
なお、溶接電流Iwの条件設定は、全て溶接作業者が行っても良いし、溶接電源1が、本実施形態1に係る溶接方法の実施を操作部にて受け付け、全ての条件設定を自動的に行うように構成しても良い。また、溶接電源1が、平均電流等、一部の溶接条件を操作部にて受け付け、受け付けた一部の溶接条件に適合する残りの溶接条件を決定し、条件設定を半自動的に行うように構成しても良い。 The welding current Iw may be set entirely by the welding operator, or the welding power source 1 accepts the implementation of the welding method according to the first embodiment at the operation unit and automatically sets all the conditions. It may be configured to do so. In addition, the welding power supply 1 accepts some welding conditions such as the average current at the operation unit, determines the remaining welding conditions that meet some of the accepted welding conditions, and sets the conditions semi-automatically. It may be configured.
各種設定が行われた後、溶接電源1は、溶接電流Iwの出力開始条件を満たすか否かを判定する(ステップS12)。具体的には、溶接電源1は、溶接の出力指示信号が入力されたか否かを判定する。出力指示信号が入力されておらず、溶接電流Iwの出力開始条件を満たさないと判定した場合(ステップS12:NO)、溶接電源1は、出力指示信号の入力待ち状態で待機する。 After various settings are made, the welding power supply 1 determines whether or not the output start condition of the welding current Iw is satisfied (step S12). Specifically, the welding power supply 1 determines whether or not a welding output instruction signal has been input. When it is determined that the output instruction signal is not input and the output start condition of the welding current Iw is not satisfied (step S12: NO), the welding power supply 1 stands by in the input waiting state of the output instruction signal.
溶接電流Iwの出力開始条件を満たすと判定した場合(ステップS12:YES)、溶接電源1の送給速度制御部12は、ワイヤの送給を指示する送給指示信号を、ワイヤ送給部3へ出力し、所定速度で溶接ワイヤ5を送給させる(ステップS13)。溶接ワイヤ5の送給速度は、例えば、約5〜100m/分の範囲内で設定される。送給速度制御部12は、平均電流設定回路11eから出力された平均電流設定信号に応じて、送給速度を決定する。なお、溶接ワイヤ5の送給速度は一定速度であっても良いし、周期的に変動させても良い。また、溶接作業者が、ワイヤの送給速度を直接設定するように構成しても良い。 When it is determined that the output start condition of the welding current Iw is satisfied (step S12: YES), the feeding speed control unit 12 of the welding power supply 1 sends a feeding instruction signal instructing the wire feeding to the wire feeding unit 3. The welding wire 5 is fed at a predetermined speed (step S13). The feeding speed of the welding wire 5 is set, for example, in the range of about 5 to 100 m / min. The feed rate control unit 12 determines the feed rate according to the average current setting signal output from the average current setting circuit 11e. The feeding speed of the welding wire 5 may be a constant speed or may be changed periodically. Further, the welding operator may be configured to directly set the feeding speed of the wire.
次いで、溶接電源1の電源部11は、電圧検出部11f及び電流検出部11gにて溶接電圧Vw及び溶接電流Iwを検出し(ステップS14)、検出された溶接電流Iwの周波数、電流振幅及び平均電流が設定された溶接条件に一致し、溶接電流Iwが周期的に変動するように、目標電圧を生成し、溶接電圧をPWM制御する(ステップS15)。つまり、溶接電源1は、定電圧特性において、溶接電流Iwが周波数10Hz以上1000Hz未満、平均電流300A以上、電流振幅50A以上で周期的に変動するように、目標電圧を周期的に変動させて出力を制御する。 Next, the power supply unit 11 of the welding power supply 1 detects the welding voltage Vw and the welding current Iw by the voltage detection unit 11f and the current detection unit 11g (step S14), and the frequency, current amplitude, and average of the detected welding current Iw. A target voltage is generated and the welding voltage is PWM-controlled so that the current matches the set welding conditions and the welding current Iw fluctuates periodically (step S15). That is, the welding power supply 1 outputs by periodically fluctuating the target voltage so that the welding current Iw periodically fluctuates at a frequency of 10 Hz or more and less than 1000 Hz, an average current of 300 A or more, and a current amplitude of 50 A or more in the constant voltage characteristic. To control.
次いで、溶接電源1の電源部11は、溶接電流Iwの出力を停止するか否かを判定する(ステップS16)。具体的には、溶接電源1は、出力指示信号の入力が継続しているか否かを判定する。出力指示信号の入力が継続しており、溶接電流Iwの出力を停止しないと判定した場合(ステップS16:NO)、電源部11は、処理をステップS13へ戻し、溶接電流Iwの出力を続ける。 Next, the power supply unit 11 of the welding power supply 1 determines whether or not to stop the output of the welding current Iw (step S16). Specifically, the welding power supply 1 determines whether or not the input of the output instruction signal is continuous. When the input of the output instruction signal is continued and it is determined that the output of the welding current Iw is not stopped (step S16: NO), the power supply unit 11 returns the process to step S13 and continues the output of the welding current Iw.
溶接電流Iwの出力を停止すると判定した場合(ステップS16:YES)、電源部11は、処理をステップS12へ戻す。 When it is determined that the output of the welding current Iw is stopped (step S16: YES), the power supply unit 11 returns the process to step S12.
図4は、溶接電圧Vw及び溶接電流Iwの変動を示すグラフ、図5は、本実施形態1に係るアーク溶接方法を示す模式図である。図4に示す各グラフの横軸は時間を示し、図4A〜図4Cに示す各グラフの縦軸はそれぞれ、溶接電源1の設定電圧、母材4及び溶接ワイヤ5間の溶接電圧Vw、アーク7を流れる溶接電流Iwである。 FIG. 4 is a graph showing fluctuations in welding voltage Vw and welding current Iw, and FIG. 5 is a schematic view showing an arc welding method according to the first embodiment. The horizontal axis of each graph shown in FIG. 4 indicates time, and the vertical axis of each graph shown in FIGS. 4A to 4C is the set voltage of the welding power source 1, the welding voltage Vw between the base metal 4 and the welding wire 5, and the arc. It is a welding current Iw flowing through 7.
本実施形態1に係るアーク溶接方法においては、電源部11は、溶接電流Iwの周波数が10Hz以上1000Hz以下、平均電流が300A以上、電流振幅が50A以上になるように、溶接電流Iwを制御する。具体的には、定電圧特性の溶接電源1は、このように溶接電流Iwが変動するように、目標電圧を設定し、当該目標電圧を周期的に変動させる。以下の溶接電流Iwの制御についても同様である。定電圧特性で溶接電流Iを周期的に変動させることにより、埋もれアークの溶融部分6をより効果的に安定化させることができる。
好ましくは、電源部11は、溶接電流Iwの周波数が50Hz以上300Hz以下、平均電流が300A以上1000A以下、電流振幅が100A以上500A以下になるように、溶接電流Iwを制御する。
In the arc welding method according to the first embodiment, the power supply unit 11 controls the welding current Iw so that the frequency of the welding current Iw is 10 Hz or more and 1000 Hz or less, the average current is 300 A or more, and the current amplitude is 50 A or more. .. Specifically, the welding power supply 1 having a constant voltage characteristic sets a target voltage so that the welding current Iw fluctuates in this way, and the target voltage is periodically fluctuated. The same applies to the control of the welding current Iw below. By periodically fluctuating the welding current I with a constant voltage characteristic, the molten portion 6 of the buried arc can be stabilized more effectively.
Preferably, the power supply unit 11 controls the welding current Iw so that the frequency of the welding current Iw is 50 Hz or more and 300 Hz or less, the average current is 300 A or more and 1000 A or less, and the current amplitude is 100 A or more and 500 A or less.
より好ましくは、電源部11は、図4Cに示すように、溶接電源1の周波数が80Hz以上200Hz以下、電流振幅が200A以上400A以下、平均電流が500A以上800A以下になるように、溶接電流Iwを制御する。なお、図4Cにおいては、溶接電流の周波数が約100Hz、電流振幅が約240A、平均電流が約530Aである。かかる溶接電流Iwの溶接条件で、板圧12mmの母材4を溶接する場合、例えば、溶接ワイヤ5の直径を1.2mmとすると、約40m/分の速度で溶接ワイヤ5を送給すると良い。以下、溶接ワイヤ5の直径を、適宜、ワイヤ径と呼ぶ。このように溶接電流Iw及びワイヤ送給速度が設定された場合、設定電圧は、例えば図4Aに示すように、周波数100Hz、電圧振幅30Vの矩形波状の電圧となり、溶接ワイヤ5及び母材4間には図4Bに示すような溶接電圧Vwが印加され、図4Cに示すような溶接電流Iwが流れる。溶接電源1は、例えば溶接電流Iwの電流振幅が240A、平均電流が530Aになるように、周波数100Hzで設定電圧の制御を行う。また、溶接電源1は、約40m/分の速度で溶接ワイヤ5の送給を制御する。なお、溶接電圧Vwは41V以上27以下の範囲で変動しているが、溶接電圧Vwの変動範囲は、各種インピーダンスの影響によって変化する。また、図4Cに示す電流波形は一例であり、特に限定されるものでは無い。例えば、電流波形は略矩形波状であっても良いし、三角波状であっても良い。 More preferably, as shown in FIG. 4C, the power supply unit 11 has a welding current Iw so that the frequency of the welding power supply 1 is 80 Hz or more and 200 Hz or less, the current amplitude is 200 A or more and 400 A or less, and the average current is 500 A or more and 800 A or less. To control. In FIG. 4C, the frequency of the welding current is about 100 Hz, the current amplitude is about 240 A, and the average current is about 530 A. When welding the base metal 4 having a plate pressure of 12 mm under the welding conditions of the welding current Iw, for example, if the diameter of the welding wire 5 is 1.2 mm, the welding wire 5 may be fed at a speed of about 40 m / min. .. Hereinafter, the diameter of the welding wire 5 is appropriately referred to as a wire diameter. When the welding current Iw and the wire feeding rate are set in this way, the set voltage becomes a rectangular wavy voltage having a frequency of 100 Hz and a voltage amplitude of 30 V, for example, as shown in FIG. 4A, and is between the welding wire 5 and the base metal 4. A welding voltage Vw as shown in FIG. 4B is applied to, and a welding current Iw as shown in FIG. 4C flows. The welding power supply 1 controls the set voltage at a frequency of 100 Hz so that, for example, the current amplitude of the welding current Iw is 240 A and the average current is 530 A. Further, the welding power source 1 controls the feeding of the welding wire 5 at a speed of about 40 m / min. The welding voltage Vw fluctuates in the range of 41 V or more and 27 or less, but the fluctuation range of the welding voltage Vw changes due to the influence of various impedances. The current waveform shown in FIG. 4C is an example and is not particularly limited. For example, the current waveform may have a substantially rectangular wave shape or a triangular wave shape.
かかる溶接条件で溶接電流Iwを周期的に変動させると、溶接ワイヤ5の先端部5a及び被溶接部間に発生したアーク7の熱によって溶融した母材4及び溶接ワイヤ5の溶融金属からなる凹状の溶融部分6が母材4に形成される。そして、アーク7の様子を高速度カメラで撮影したところ、図5左図に示すように、溶接ワイヤ5の先端部5a及び溶融部分6の底部61間にアーク7が発生する第1状態と、先端部5a及び溶融部分6の側部62間にアーク7が発生する第2状態とを周期的に変動することが確認された。 When the welding current Iw is periodically changed under such welding conditions, a concave shape made of the molten metal of the base metal 4 and the welding wire 5 melted by the heat of the arc 7 generated between the tip portion 5a of the welding wire 5 and the welded portion. The molten portion 6 of is formed in the base metal 4. Then, when the state of the arc 7 was photographed with a high-speed camera, as shown in the left figure of FIG. 5, the first state in which the arc 7 was generated between the tip portion 5a of the welding wire 5 and the bottom portion 61 of the molten portion 6 and the first state. It was confirmed that it periodically fluctuates from the second state in which the arc 7 is generated between the tip portion 5a and the side portion 62 of the molten portion 6.
具体的には、溶接ワイヤ5の先端部5aから溶融部分6の底部61へアーク7が飛ぶ第1状態と、溶接ワイヤ5の先端部5aから溶融部分6の側部62へアーク7が飛ぶ第2状態とを繰り返す。第1状態は、例えば溶接ワイヤ5の溶滴移行形態がドロップ移行の状態である。第2状態は、例えば溶接ワイヤ5の溶滴移行形態がローテーティング移行の状態である。ドロップ移行は、溶接ワイヤ5の先端部5aから溶融部分6の底部61へ溶滴移行する形態の一例であり、ローテーティング移行は、溶接ワイヤ5の先端部5aから溶融部分6の側部62へ溶滴移行する形態の一例である。溶融金属は、埋もれ空間6aが閉口し、溶接ワイヤ5の先端部5aが埋没される方向へ流れようとするが、第2状態において溶融部分6の側部62にアーク7が飛び、溶融部分6の溶融金属は溶接ワイヤ5から離隔する方向へ押し返され、埋もれ空間6aは凹状の状態で安定化する。なお、図5右図では、大電流によって溶融した溶接ワイヤ5の先端部5aの溶滴が移行した結果、溶接ワイヤ5の先端部5aが短くなっている。
このような第1状態及び第2状態を10Hz以上、好ましくは50Hz以上300Hz以下、より好ましくは80Hz以上200Hz以下で変動させることによって、大きな波打ち周期よりも高周波数で溶融金属を微振動させることができ、溶融金属の波打ちが抑えられる。
Specifically, the first state in which the arc 7 flies from the tip portion 5a of the welding wire 5 to the bottom portion 61 of the molten portion 6, and the first state in which the arc 7 flies from the tip portion 5a of the welding wire 5 to the side portion 62 of the molten portion 6. Repeat the two states. In the first state, for example, the droplet transfer form of the welding wire 5 is a drop transfer state. In the second state, for example, the droplet transfer form of the welding wire 5 is a rotating transition state. The drop transition is an example of a droplet transition from the tip 5a of the welding wire 5 to the bottom 61 of the molten portion 6, and the rotating transition is from the tip 5a of the welding wire 5 to the side 62 of the molten portion 6. This is an example of a form in which droplets are transferred. In the molten metal, the buried space 6a is closed and the tip portion 5a of the welding wire 5 tries to flow in the buried direction, but in the second state, the arc 7 flies to the side portion 62 of the molten portion 6 and the molten portion 6 The molten metal of No. 5 is pushed back in the direction away from the welding wire 5, and the buried space 6a is stabilized in a concave state. In the right figure of FIG. 5, as a result of the droplets transferred from the tip portion 5a of the welding wire 5 melted by the large current, the tip portion 5a of the welding wire 5 is shortened.
By varying the first and second states at 10 Hz or higher, preferably 50 Hz or higher and 300 Hz or lower, more preferably 80 Hz or higher and 200 Hz or lower, the molten metal can be slightly vibrated at a frequency higher than a large wavy period. It can suppress the waviness of molten metal.
図6は、埋もれ空間6a及びビード形状の安定化に関する実験結果を写真で示す図表、図7は、埋もれ空間6a及びビード形状の安定化に関する実験結果を模式図で示す図表である。ワイヤ径が1.4mm、溶接ワイヤ5の突き出し長さが18mm、溶接ワイヤ5の送給速度が17.5m/分、平均溶接電流が530Aの溶接条件のもと、溶接電流の周波数及び振幅を変更させて、厚板の埋もれアーク溶接を行った。
図6及び図7の上図は、溶接電流の周波数が0Hz、振幅が0Aのときの実験結果、つまり溶接電流を振動させずに溶接を行ったときのビードの外観及び形状を示している。図6及び図7の中図は、溶接電流の周波数が10Hz、振幅が50Aの条件で溶接を行ったときのビード形状を示し、図6及び図7下図は、溶接電流の周波数が50Hz、振幅が100Aの条件で溶接を行ったときのビードの外観及び形状を示している。
FIG. 6 is a chart showing the experimental results regarding the stabilization of the buried space 6a and the bead shape with photographs, and FIG. 7 is a chart showing the experimental results regarding the stabilization of the buried space 6a and the bead shape in a schematic diagram. Under the welding conditions that the wire diameter is 1.4 mm, the protrusion length of the welding wire 5 is 18 mm, the feeding speed of the welding wire 5 is 17.5 m / min, and the average welding current is 530 A, the frequency and amplitude of the welding current are adjusted. After changing, the thick plate was buried and arc welded.
The upper figures of FIGS. 6 and 7 show the experimental results when the frequency of the welding current is 0 Hz and the amplitude is 0 A, that is, the appearance and shape of the bead when welding is performed without vibrating the welding current. The middle figures of FIGS. 6 and 7 show the bead shape when welding is performed under the conditions of the welding current frequency of 10 Hz and the amplitude of 50 A, and the lower figures of FIGS. 6 and 7 show the welding current frequency of 50 Hz and the amplitude. Shows the appearance and shape of the bead when welding is performed under the condition of 100A.
図6及び図7に示す実験結果から分かるように、溶接電流を周波数10Hz以上及び電流振幅50A以上の溶接条件で振動させることによって、周波数0Hzの場合に比べて、良好なビード形状が得られることが分かる。このような良好なビード形状は、溶接電流を周波数10Hzで振動させることによって埋もれ空間6aが安定化し、短絡の発生が抑えられていることを示している。
また、溶融金属を高周波で振動させることによって、溶融金属の波打ちを抑える動作原理より、溶接電流の周波数が10Hz以上であっても、同様にして溶融金属の波打ちを抑え、埋もれ空間6aを安定化させることができると予想される。また、50Aの電流振幅で溶融金属の波打ちを十分に抑えることができることから、50A以上の電流振幅であっても、溶融金属の波打を抑えることができることが予想される。実際、溶融電流の周波数50Hz、溶接電流100A以上の溶接条件で溶接を行うと、図6及び図7に示すように、より良好なビード形状が得られた。なお、ワイヤ径、溶接ワイヤ5の突出し長さ、送給速度、平均電流は、以下に説明する埋もれアークを実現できる範囲であれば、特に限定されるものでは無く、溶接電流の周波数が10Hz以上及び電流振幅が50Aの条件であれば、同様にして良好なビード形状が得られる。特に、周波数50Hz及び電流振幅100A以上であれば、より良好なビード形状が得られる。
As can be seen from the experimental results shown in FIGS. 6 and 7, by vibrating the welding current under welding conditions with a frequency of 10 Hz or higher and a current amplitude of 50 A or higher, a better bead shape can be obtained as compared with the case of a frequency of 0 Hz. I understand. Such a good bead shape indicates that the buried space 6a is stabilized by vibrating the welding current at a frequency of 10 Hz, and the occurrence of a short circuit is suppressed.
Further, according to the operating principle of suppressing the waviness of the molten metal by vibrating the molten metal at a high frequency, even if the frequency of the welding current is 10 Hz or higher, the waviness of the molten metal is similarly suppressed and the buried space 6a is stabilized. It is expected that it can be made. Further, since the waviness of the molten metal can be sufficiently suppressed with a current amplitude of 50 A, it is expected that the waviness of the molten metal can be suppressed even with a current amplitude of 50 A or more. In fact, when welding was performed under welding conditions with a melting current frequency of 50 Hz and a welding current of 100 A or more, a better bead shape was obtained as shown in FIGS. 6 and 7. The wire diameter, the protrusion length of the welding wire 5, the feeding speed, and the average current are not particularly limited as long as the buried arc described below can be realized, and the welding current frequency is 10 Hz or more. And if the current amplitude is 50 A, a good bead shape can be obtained in the same manner. In particular, when the frequency is 50 Hz and the current amplitude is 100 A or more, a better bead shape can be obtained.
<埋もれアークの溶接条件>
以下、埋もれアークを実現する溶接条件について説明する。
アーク溶接では一般的に、溶接ワイヤ5の先端部5aの位置は母材4より上側に位置し、その状態で溶接ワイヤ5の先端部5aと母材4の間にアークが発生する。かかる状態で発生したアークを、非埋もれアークと呼ぶ。非埋もれアークにおいては、溶接ワイヤ5の先端部5aと、母材4の表面に形成された溶融金属表面との間の距離をアーク長と呼ぶが、このアーク長は溶接電圧が低くなるにしたがって短くなることが知られている。通常のアーク溶接では、溶接電圧を下げてアーク長が短くなると、溶融金属と溶接ワイヤ5の先端部5aの位置の距離が近くなり、最終的にはアーク長が0となって溶接ワイヤ5と母材4とが短絡を起こし、アークの維持が困難となる。
<Welding conditions for buried arc>
The welding conditions for realizing the buried arc will be described below.
In arc welding, the position of the tip portion 5a of the welding wire 5 is generally located above the base metal 4, and an arc is generated between the tip portion 5a of the welding wire 5 and the base metal 4 in that state. The arc generated in such a state is called a non-buried arc. In the non-buried arc, the distance between the tip portion 5a of the welding wire 5 and the surface of the molten metal formed on the surface of the base metal 4 is called the arc length, and this arc length increases as the welding voltage decreases. It is known to be shorter. In normal arc welding, when the welding voltage is lowered and the arc length is shortened, the distance between the molten metal and the tip portion 5a of the welding wire 5 becomes closer, and finally the arc length becomes 0 and the welding wire 5 and the welding wire 5 A short circuit occurs with the base metal 4, making it difficult to maintain the arc.
しかし、高電流溶接においては、アーク圧力によって溶融金属が押しのけられるため、電圧を下げても短絡が起きにくくなる。その結果、母材4又は溶融金属表面よりも深い位置に溶接ワイヤ5の先端部5aが位置していても、アーク圧力によって溶融金属が押しのけられて形成された空間、即ち埋もれ空間6aの存在により短絡が起きず、アークを維持することができる。これが埋もれアーク現象である。 However, in high current welding, the molten metal is pushed away by the arc pressure, so that short circuits are less likely to occur even if the voltage is lowered. As a result, even if the tip portion 5a of the welding wire 5 is located deeper than the surface of the base metal 4 or the molten metal, the space formed by the molten metal being pushed away by the arc pressure, that is, the presence of the buried space 6a No short circuit occurs and the arc can be maintained. This is the buried arc phenomenon.
つまり、アーク圧力が強くなる高電流領域において、低い電圧条件でアークを発生させることにより、埋もれアークを実現することができる。具体的には、溶接電流は300A以上必要である(例えば、浅井知、「工場溶接の高効率化−重電機器溶接の事例−」、一般社団法人日本溶接協会 溶接情報センター、WE−COMマガジン第16号、2015年4月)。埋もれアークを実現することが可能な電圧値は、溶接電流、ワイヤ径、溶接ワイヤ5の突出し長さによって変動するが、前述のように溶接ワイヤ5の先端部5aの位置を母材4又は溶融金属表面よりも低い位置まで下げられるだけの低い電圧とすることで、埋もれアークを実現することができる。 That is, a buried arc can be realized by generating an arc under a low voltage condition in a high current region where the arc pressure becomes strong. Specifically, a welding current of 300 A or more is required (for example, Satoshi Asai, "Higher efficiency of factory welding-Examples of heavy electrical equipment welding-", The Japan Welding Engineering Society Welding Information Center, WE-COM Magazine No. 16, April 2015). The voltage value at which the buried arc can be realized varies depending on the welding current, the wire diameter, and the protruding length of the welding wire 5, but as described above, the position of the tip portion 5a of the welding wire 5 is set to the base metal 4 or the melting. A buried arc can be realized by setting the voltage so low that it can be lowered to a position lower than the metal surface.
図8は、埋もれアークを実現する溶接電流及び電圧の条件を示すグラフである。横軸は溶接電流を示し、縦軸は溶接電圧を示している。白抜き部分は、埋もれアークを実現することができる溶接電流及び電圧を示している。図8に示すように、溶接電流に対して溶接電圧が高いと、通常のアーク溶接、即ち非埋もれアーク溶接となり、逆に溶接電圧が低すぎると出力が足りず、アークの維持が困難となる。その中間の領域に、埋もれ空間6aでアーク7が発生する埋もれアークとなる範囲が存在する。 FIG. 8 is a graph showing the welding current and voltage conditions for realizing the buried arc. The horizontal axis shows the welding current, and the vertical axis shows the welding voltage. The white area shows the welding current and voltage that can realize the buried arc. As shown in FIG. 8, when the welding voltage is high with respect to the welding current, normal arc welding, that is, non-buried arc welding is performed, and conversely, when the welding voltage is too low, the output is insufficient and it becomes difficult to maintain the arc. .. In the intermediate region, there is a range in which the arc 7 is generated in the buried space 6a and becomes a buried arc.
また、埋もれアークを実現する溶接条件の範囲は、前述のようにワイヤ径と、溶接ワイヤ5の突出し長さの影響を受ける。 Further, the range of welding conditions for realizing the buried arc is affected by the wire diameter and the protruding length of the welding wire 5 as described above.
図9は、ワイヤ径及びワイヤ突出し長さと、埋もれアークを実現する溶接電流及び電圧の条件との関係を示す概念図である。図9に示すように、ワイヤ径が大きくなるほど、又は溶接ワイヤ5の突出し長さが短くなるほど、埋もれアークを実現できる溶接電流及び電圧の範囲は、符号Arc3、Aec2、Arc1に示すように、この順で同じ電流に対して低い電圧領域側へシフトする。 FIG. 9 is a conceptual diagram showing the relationship between the wire diameter and the wire protrusion length and the welding current and voltage conditions for realizing the buried arc. As shown in FIG. 9, as the wire diameter becomes larger or the protruding length of the welding wire 5 becomes shorter, the range of welding current and voltage that can realize the buried arc is as shown in reference numerals Arc3, Aec2, and Arc1. In order, it shifts to the lower voltage region side for the same current.
図10は、ワイヤ径1.6mm、溶接ワイヤ5の突出し長さ25mmの場合において埋もれアークを実現する溶接電流及び電圧の条件の一例を示すグラフである。図10の横軸は溶接電流、縦軸は溶接電圧を示している。黒丸プロットは、非埋もれアークと、埋もれアークとの境界を示している。図10中、上側の折れ線上にある黒丸プロットは、当該黒丸プロットが示す溶接電流において、溶接電圧を上昇させると、非埋もれアークとなり、溶接電圧を減少させると、埋もれアークになる。また、下側の折れ線上にある黒丸プロットは、当該黒丸プロットが示す溶接電流において、溶接電圧を上昇させると、埋もれアークとなり、溶接電圧を減少させると、非埋もれアークになる。要するに、溶接電流に対して溶接電圧が高いと、通常のアーク溶接、即ち非埋もれアーク溶接となり、逆に溶接電圧が低すぎると出力が足りず、アークの維持が困難となる。その中間の領域に、埋もれ空間6aでアーク7が発生する埋もれアークとなる範囲が存在する。 FIG. 10 is a graph showing an example of welding current and voltage conditions for realizing a buried arc when the wire diameter is 1.6 mm and the protrusion length of the welding wire 5 is 25 mm. The horizontal axis of FIG. 10 shows the welding current, and the vertical axis shows the welding voltage. The black circle plot shows the boundary between the unburied arc and the buried arc. In FIG. 10, the black circle plot on the upper polygonal line becomes a non-buried arc when the welding voltage is increased and becomes a buried arc when the welding voltage is decreased at the welding current indicated by the black circle plot. Further, the black circle plot on the lower polygonal line becomes a buried arc when the welding voltage is increased and becomes a non-buried arc when the welding voltage is decreased at the welding current indicated by the black circle plot. In short, if the welding voltage is high with respect to the welding current, normal arc welding, that is, non-buried arc welding is performed, and conversely, if the welding voltage is too low, the output is insufficient and it becomes difficult to maintain the arc. In the intermediate region, there is a range in which the arc 7 is generated in the buried space 6a and becomes a buried arc.
以上の通り、埋もれアークを実現する溶接電流は、300A以上であって、溶接ワイヤ5の先端部5aが溶融金属に接近した場合に、当該溶融金属を押しのけるアーク圧力を生じさせることが可能な電流値である。また、埋もれアークを実現する溶接電圧は、溶接ワイヤ5の先端部5aの位置を母材4又は溶融金属表面よりも低い位置まで下げることが可能な電圧値である。
具体的な溶接電流及び電圧は、図10に示す溶接電流及び電圧の範囲を基準としつつ、図8及び図9に示す傾向を考慮して溶接電流及び電圧を適宜決定すれば良い。
As described above, the welding current for realizing the buried arc is 300 A or more, and when the tip portion 5a of the welding wire 5 approaches the molten metal, a current capable of generating an arc pressure to push the molten metal away is generated. The value. Further, the welding voltage for realizing the buried arc is a voltage value capable of lowering the position of the tip portion 5a of the welding wire 5 to a position lower than the base material 4 or the surface of the molten metal.
As the specific welding current and voltage, the welding current and voltage may be appropriately determined in consideration of the tendency shown in FIGS. 8 and 9 while referring to the range of the welding current and voltage shown in FIG.
<埋もれ空間の安定化及び溶融金属の波打を抑えることが可能な溶接条件>
埋もれ空間6aを安定化させると共に、溶融金属の波打を抑えることができるその他の好適な溶接条件を説明する。
かかる好適な溶接条件は、例えば、溶接電流の周波数が20Hz以上600Hz以下、振幅が50A以上500A以下、平均電流が300A以上1000A以下である。
また、溶接電流の周波数が40Hz以上380Hz以下、振幅が100A以上500A以下、平均電流が300A以上1000A以下であっても良い。
更に、溶接電流の周波数が60Hz以上280Hz以下、振幅が100A以上500A以下、平均電流が300A以上900A以下であっても良い。
更にまた、溶接電流の周波数が60Hz以上180Hz以下、振幅が150A以上500A以下、平均電流が300A以上800A以下であっても良い。
<Welding conditions that can stabilize the buried space and suppress the waviness of molten metal>
Other suitable welding conditions that can stabilize the buried space 6a and suppress the waviness of the molten metal will be described.
Such suitable welding conditions are, for example, a welding current frequency of 20 Hz or more and 600 Hz or less, an amplitude of 50 A or more and 500 A or less, and an average current of 300 A or more and 1000 A or less.
Further, the frequency of the welding current may be 40 Hz or more and 380 Hz or less, the amplitude may be 100 A or more and 500 A or less, and the average current may be 300 A or more and 1000 A or less.
Further, the frequency of the welding current may be 60 Hz or more and 280 Hz or less, the amplitude may be 100 A or more and 500 A or less, and the average current may be 300 A or more and 900 A or less.
Furthermore, the frequency of the welding current may be 60 Hz or more and 180 Hz or less, the amplitude may be 150 A or more and 500 A or less, and the average current may be 300 A or more and 800 A or less.
以上の通り、本実施形態1に係るアーク溶接方法及びアーク溶接装置によれば、300A以上の大電流を用いてガスシールドアーク溶接を行う場合であっても、溶接電流Iwを周期的に変動させることによって、溶融金属の波打ちを抑えることができ、ビードの乱れ及び垂れの発生を防止することができる。
また、溶融金属の波打ちをより効果的に抑えるためには、アーク長を一定に保つ必要がある。一般的な定電流パルス溶接の場合はアーク長の自己制御作用が得られないため、一定のアーク長を保証するための何らかの制御を行う必要がある。本実施形態1に係るアーク溶接装置は定電圧特性であり、アーク長の自己制御作用が得られるため、アーク長が一定に保たれ、溶融金属の波打ちをより効果的に抑えることができる。
As described above, according to the arc welding method and the arc welding apparatus according to the first embodiment, the welding current Iw is periodically changed even when gas shielded arc welding is performed using a large current of 300 A or more. As a result, the waviness of the molten metal can be suppressed, and the bead can be prevented from being disturbed and dripping.
Further, in order to suppress the waviness of the molten metal more effectively, it is necessary to keep the arc length constant. In the case of general constant current pulse welding, the self-control action of the arc length cannot be obtained, so it is necessary to perform some control to guarantee a constant arc length. Since the arc welding apparatus according to the first embodiment has a constant voltage characteristic and a self-control action of the arc length can be obtained, the arc length is kept constant and the waviness of the molten metal can be suppressed more effectively.
なお本実施形態1では、溶接電流Iw及び溶接電圧Vwが大きい期間と、小さい期間とが略同一である場合を説明したが、各期間の比率を変化させても良い。当該期間の比率を変化させることによって、溶融金属の波打ちを抑えつつ、溶接ワイヤ5の先端部5aの上下位置変動の幅を調整することができる。例えば、溶接電流Iw及び溶接電圧Vwが大きい期間の比率を大きくすることによって、溶接ワイヤ5の先端部5aが、溶融部分6の底部61より高い位置に保持される割合が高くなる。その結果、母材4への入熱量を増加させ、ビード成形性を向上させることができる。 In the first embodiment, the case where the period in which the welding current Iw and the welding voltage Vw are large and the period in which the welding voltage Vw is small are substantially the same has been described, but the ratio of each period may be changed. By changing the ratio of the period, it is possible to adjust the width of the vertical position fluctuation of the tip portion 5a of the welding wire 5 while suppressing the waviness of the molten metal. For example, by increasing the ratio of the period in which the welding current Iw and the welding voltage Vw are large, the ratio at which the tip portion 5a of the welding wire 5 is held higher than the bottom portion 61 of the molten portion 6 increases. As a result, the amount of heat input to the base material 4 can be increased, and the bead moldability can be improved.
(実施形態2)
実施形態2に係るアーク溶接方法及びアーク溶接装置は、溶接電流Iw等の溶接条件が実施形態1と異なるため、以下では主にかかる相違点について説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
(Embodiment 2)
Since the arc welding method and the arc welding apparatus according to the second embodiment have different welding conditions such as a welding current Iw from the first embodiment, the differences will be mainly described below. Since other configurations and actions and effects are the same as those in the first embodiment, the corresponding parts are designated by the same reference numerals and detailed description thereof will be omitted.
まず、埋もれアーク溶接における溶滴移行形態と、その特徴について説明する。
図11は、ドロップ移行、振り子移行、ローテーティング移行の各溶滴移行形態を示す図表である。図11中、左列は溶接条件、右欄は複数の異なる溶滴移行形態を示している。中央列は、高速度カメラを用いて、各溶滴移行形態にある溶融部分6を0.4m秒毎に撮影して得られた画像を示す模式図を示している。埋もれアーク溶接においては、複数の溶滴移行形態が存在する。複数の溶滴移行形態には、例えば図11に示す3種類の溶滴移行形態、即ちドロップ移行、振り子移行、ローテーティング移行が含まれる。なお、ドロップ移行及びローテーティング移行は一般名称であるが、振り子移行は発明者による造語である。
First, the droplet transfer form in buried arc welding and its characteristics will be described.
FIG. 11 is a chart showing each droplet transfer mode of drop transfer, pendulum transfer, and rotating transfer. In FIG. 11, the left column shows welding conditions, and the right column shows a plurality of different droplet transfer modes. The center row shows a schematic diagram showing an image obtained by photographing the molten portion 6 in each droplet transition form every 0.4 msec using a high-speed camera. In buried arc welding, there are multiple droplet transfer forms. The plurality of droplet transfer forms include, for example, three types of droplet transfer forms shown in FIG. 11, that is, drop transfer, pendulum transfer, and rotating transfer. The drop transition and the rotating transition are general names, but the pendulum transition is a coined word by the inventor.
これらの溶滴移行形態は、溶接電流、ワイヤ突出し長さ、溶接ワイヤ5の直径、溶接ワイヤ5の材質、溶接ワイヤ5の送給速度等を含む、種々の要因による影響を受けて総合的に決定されるが、特に溶接電流の影響を強く受ける。なお、ワイヤ突き出し長さは、コンタクトチップの先端と、母材4との距離である。溶接電流が比較的小さい場合はドロップ移行を呈し、溶接電流の上昇に伴い溶滴移行形態は振り子移行、ローテーティング移行へと遷移する。 These droplet transfer forms are comprehensively influenced by various factors including the welding current, the wire protrusion length, the diameter of the welding wire 5, the material of the welding wire 5, the feeding speed of the welding wire 5, and the like. It is determined, but it is particularly strongly affected by welding current. The wire protrusion length is the distance between the tip of the contact tip and the base material 4. When the welding current is relatively small, a drop transition is exhibited, and as the welding current rises, the droplet transition mode shifts to a pendulum transition and a rotating transition.
ドロップ移行は、溶接ワイヤ5の先端部5aが溶融し、溶滴が粒状に溶接ワイヤ5から離脱する溶滴移行形態であり、溶接ワイヤ5の先端部5a及び溶融部分6の底部61間にアーク7が発生する。つまり、ドロップ移行においては、アーク7は下向き、つまり溶接ワイヤ5の延長方向となる。
振り子移行は、溶接ワイヤ5の先端部5aに形成された液柱及びアーク7が、同一平面上を振り子状に揺動しつつ、溶接ワイヤ5の突き出し方向を中心軸として当該平面が全体として少しずつ回転していく特徴的な溶滴移行形態である。
ローテーティング移行は、溶接ワイヤ5の先端部5a及び溶融部分6の側部62間にアーク7が発生し、溶接ワイヤ5の先端部5aに形成された液柱及びアーク7が凹状の溶融部分6の側部62方向を向きながら回転を続ける溶滴移行形態である。
The drop transition is a droplet transition mode in which the tip 5a of the welding wire 5 melts and the droplets are granularly separated from the welding wire 5, and an arc is formed between the tip 5a of the welding wire 5 and the bottom 61 of the molten portion 6. 7 occurs. That is, in the drop transition, the arc 7 faces downward, that is, in the extension direction of the welding wire 5.
In the pendulum transition, the liquid column and the arc 7 formed at the tip portion 5a of the welding wire 5 swing in a pendulum shape on the same plane, and the plane as a whole is slightly centered on the protrusion direction of the welding wire 5. It is a characteristic droplet transfer form that rotates little by little.
In the rotating transition, an arc 7 is generated between the tip portion 5a of the welding wire 5 and the side portion 62 of the molten portion 6, and the liquid column formed at the tip portion 5a of the welding wire 5 and the molten portion 6 in which the arc 7 is concave. It is a droplet transfer form that continues to rotate while facing the side portion 62 of the wire.
一例として、ワイヤ突出し長さが25mm、溶接ワイヤ5の直径が1.2mm、溶接ワイヤ5の材質がYGW12、溶接ワイヤ5の送給速度が30m/分の条件における、溶接電流と溶滴移行形態との関係を図12にまとめる。 As an example, the welding current and droplet transfer under the conditions that the wire protrusion length is 25 mm, the diameter of the welding wire 5 is 1.2 mm, the material of the welding wire 5 is YGW12, and the feeding speed of the welding wire 5 is 30 m / min. The relationship with the form is summarized in FIG.
図12は、ワイヤ径が1.2mm、ワイヤ突き出し長さが25mmのときの溶接電流と、溶接ワイヤ5の溶滴移行形態との関係を示す概念図である。太線矢印は溶接電流を示し、細線矢印は各溶滴移行形態となる溶接電流の範囲を示している。なお、図12に示す溶接電流と、溶滴移行形態との関係は、上記のワイヤ径、ワイヤ突き出し長さ等の条件下におけるものであり、あくまで一例である。
溶接電流が300A以上450A未満の電流域の場合、ドロップ移行の溶滴移行形態が支配的となる。
溶接電流が450A以上550A未満の電流域の場合、ドロップ移行及び振り子移行の溶滴移行形態が混在した状態となる。
溶接電流が550A以上600A未満の電流域の場合、振り子移行の溶接移行形態が支配的となる。
溶接電流が600A以上700A未満の電流域の場合、振り子移行及びローテーティング移行の溶接移行形態が混在した状態となる。
溶接電流が700A以上の電流域の場合、ローテーティング移行の溶滴移行形態が支配的となる。
FIG. 12 is a conceptual diagram showing the relationship between the welding current when the wire diameter is 1.2 mm and the wire protrusion length is 25 mm and the droplet transfer form of the welding wire 5. The thick line arrow indicates the welding current, and the thin line arrow indicates the range of the welding current in each droplet transition form. The relationship between the welding current shown in FIG. 12 and the droplet transfer form is under the above-mentioned conditions such as wire diameter and wire protrusion length, and is merely an example.
When the welding current is in the current range of 300 A or more and less than 450 A, the droplet transfer form of drop transfer becomes dominant.
When the welding current is in the current range of 450 A or more and less than 550 A, the drop transition and the pendulum transition are mixed.
When the welding current is in the current range of 550 A or more and less than 600 A, the welding transition form of the pendulum transition becomes dominant.
When the welding current is in the current range of 600 A or more and less than 700 A, the welding transition modes of the pendulum transition and the rotating transition are mixed.
When the welding current is in the current range of 700 A or more, the droplet transition form of the rotating transition becomes dominant.
埋もれアーク溶接においては、溶融金属中に埋もれ空間6a、つまり凹状の溶融部分6で囲まれた空間が形成されるが、溶融金属は、常に埋もれ空間6aが閉口し、溶接ワイヤ5の先端部5aが埋没される方向へ流れようとする。しかし、溶接ワイヤ5の先端部5aから溶融部分6の側部62へ照射されるアークの力によって、溶融部分6が支えられ、埋もれ空間6aは安定した状態で保持される。埋もれ空間6aをアーク7によって支え切れなかった場合、埋もれ空間6aの開口部は狭まり、最終的には溶接ワイヤ5に接触して短絡を起こす。短絡すると、溶接状態が著しく不安定化する。例えば、ドロップ移行が支配的な状況では、アーク7によって溶融部分6の側部62を十分に支えることができず、上記短絡によって溶接が不安定化するおそれがある。
これに対し、ローテーティング移行では、凹状の溶融部分6の側部62にアーク7が照射され、埋もれ空間6aの開口部を支えて埋もれ空間6aを安定化することができる。
また、振り子移行でも一定間隔でアーク7が溶融部分6の側部62に照射されるため、ローテーティング移行と同様、埋もれ空間6aを安定化させる類似の効果が得られる。ドロップ移行ではアーク7は下向き、つまり溶融部分6の底部61に照射されるため、上記の安定化効果は得られない。
一方、ローテーティング移行では埋もれ空間6aを安定化することができるものの、アーク7が埋もれ空間6aの底部61に照射されないため、溶接電流の出力に対する母材4の溶込みが比較的浅くなる傾向にある。これに対してドロップ移行においては、アーク7が溶融部分6の底部61に照射されるため、溶接電流の単位出力あたりの溶込みは比較的深くなる。振り子移行でも一定間隔で溶融部分6の底部61にアーク7が照射されるため、ドロップ移行と同様、比較的深い溶け込みが得られる。
In the buried arc welding, a buried space 6a, that is, a space surrounded by a concave molten portion 6 is formed in the molten metal, but in the molten metal, the buried space 6a is always closed and the tip portion 5a of the welding wire 5a is formed. Try to flow in the direction of being buried. However, the molten portion 6 is supported by the force of the arc radiated from the tip portion 5a of the welding wire 5 to the side portion 62 of the molten portion 6, and the buried space 6a is held in a stable state. When the buried space 6a cannot be fully supported by the arc 7, the opening of the buried space 6a is narrowed and finally contacts the welding wire 5 to cause a short circuit. A short circuit will significantly destabilize the weld condition. For example, in a situation where drop migration is dominant, the arc 7 cannot sufficiently support the side portion 62 of the molten portion 6, and the short circuit may cause welding to become unstable.
On the other hand, in the rotating transition, the arc 7 is irradiated to the side portion 62 of the concave molten portion 6, and the opening of the buried space 6a can be supported to stabilize the buried space 6a.
Further, even in the pendulum transition, since the arc 7 is irradiated to the side portion 62 of the molten portion 6 at regular intervals, a similar effect of stabilizing the buried space 6a can be obtained as in the rotating transition. In the drop transition, the arc 7 is irradiated downward, that is, the bottom portion 61 of the molten portion 6 is irradiated, so that the above stabilizing effect cannot be obtained.
On the other hand, in the rotating transition, the buried space 6a can be stabilized, but since the arc 7 is not irradiated to the bottom 61 of the buried space 6a, the penetration of the base metal 4 into the output of the welding current tends to be relatively shallow. is there. On the other hand, in the drop transition, since the arc 7 irradiates the bottom portion 61 of the molten portion 6, the penetration of the welding current per unit output becomes relatively deep. Even in the pendulum transition, since the arc 7 is irradiated to the bottom 61 of the molten portion 6 at regular intervals, a relatively deep penetration can be obtained as in the drop transition.
以上を考慮すると、ドロップ移行とローテーティング移行では規則的な溶滴移行を呈するが、埋もれ空間6aの安定化と深い溶け込みを両立することはできないことが分かる。また、振り子移行においては、埋もれ空間6aの安定化と深い溶け込みを両立できると考えられるが、液柱及びアーク7が変則的な挙動をとることから、必ずしも常に安定した溶接を実現することができない。
すなわち、3つの溶液移行形態のいずれを用いても、単独の溶滴移行形態のみでは、埋もれ空間6aの安定化と深い溶込みの両立を実現することはできない。また、前述のように溶滴移行形態は溶接電流の電流域によって変化するため、特定の溶滴移行形態のみを汎用的に利用するのは困難である。
Considering the above, it can be seen that although the drop transition and the rotating transition exhibit regular droplet transition, it is not possible to achieve both stabilization of the buried space 6a and deep penetration. Further, in the pendulum transition, it is considered that the stabilization of the buried space 6a and the deep penetration can be achieved at the same time, but since the liquid column and the arc 7 behave irregularly, stable welding cannot always be realized. ..
That is, regardless of which of the three solution transfer forms is used, it is not possible to achieve both stabilization of the buried space 6a and deep penetration with only the single droplet transfer form. Further, as described above, since the droplet transfer form changes depending on the current range of the welding current, it is difficult to use only a specific droplet transfer form for general purposes.
次に、以上の事情を踏まえた実施形態2に係るアーク溶接方法について説明する。本発明の実施形態2においては、これら3つの溶滴移行形態を複合的に用いることにより、埋もれ空間6aの安定化と深い溶込みの両立を実現する。 Next, the arc welding method according to the second embodiment based on the above circumstances will be described. In the second embodiment of the present invention, by using these three droplet transfer forms in combination, both stabilization of the buried space 6a and deep penetration are realized.
例えば、溶接電流の大きさを周期的に変動させる際、小電流期間における溶接電流Iwを、ドロップ移行を呈する電流域とし、大電流期間における溶接電流Iwを振り子移行又はローテーティング移行を呈する電流域とすることで、ドロップ移行と、振り子移行又はローテーティング移行とを周期的に繰り返すことが可能となる。大電流期間において溶滴移行形態が振り子移行あるいはローテーティング移行になると、アーク7が凹状の溶融部分6の側部62に照射され、埋もれ空間6aを安定化することが可能となる。一方、小電流期間において溶滴移行形態がドロップ移行になると、アーク7は凹状の溶融部分6の底部61に照射され、深い溶け込みが得られる。これらを周期的に繰り返すことで、埋もれ空間6aの安定化と深い溶込みを両立することが可能となる。 For example, when the magnitude of the welding current is changed periodically, the welding current Iw in the small current period is set as the current region exhibiting drop transition, and the welding current Iw in the large current period is set as the current region exhibiting pendulum transition or rotating transition. By doing so, it becomes possible to periodically repeat the drop transition and the pendulum transition or the rotating transition. When the droplet transition form becomes a pendulum transition or a rotating transition in a large current period, the arc 7 is irradiated to the side portion 62 of the concave molten portion 6, and the buried space 6a can be stabilized. On the other hand, when the droplet transition form becomes a drop transition in a small current period, the arc 7 irradiates the bottom portion 61 of the concave molten portion 6 to obtain a deep penetration. By repeating these periodically, it is possible to achieve both stabilization of the buried space 6a and deep penetration.
なお、小電流期間における溶接電流Iwをドロップ移行の電流域、大電流期間における溶接電流Iwを振り子移行又はローテーティング移行の電流域として説明したが、小電流期間及び大電流期間における溶接電流Iwの電流域はこれに限定されるものでは無い。
具体的には、300A以上450A未満の電流域、450A以上550A未満の電流域、550A以上600A未満の電流域、600A以上700A未満の電流域、及び700A以上の電流域の内、少なくともいずれか二つの電流域間で周期的に変動させ、アーク7が溶融部分6の底部61及び側部62に照射されるように、溶接電流を周期的に変動させると良い。溶接電流の変動周期は10Hz以上1000Hz以下の範囲、好ましくは50Hz以上300Hz以下の範囲で設定すると良い。溶接ワイヤ5の直径は0.9mm以上1.6mm以下、溶接ワイヤ5の送給速度は30m/分以上に設定すると良い。溶接ワイヤ5の送給速度は30m/分、50m/分、60m/分等、一定の送給速度であっても良いし、溶接電流の大きさに応じて、変動させても良い。
Although the welding current Iw in the small current period has been described as the drop transition current region and the welding current Iw in the large current period has been described as the pendulum transition or rotating transition current region, the welding current Iw in the small current period and the large current period has been described. The current range is not limited to this.
Specifically, at least one of a current range of 300 A or more and less than 450 A, a current range of 450 A or more and less than 550 A, a current range of 550 A or more and less than 600 A, a current range of 600 A or more and less than 700 A, and a current range of 700 A or more. It is preferable to periodically change the welding current between the two current ranges so that the arc 7 irradiates the bottom 61 and the side 62 of the molten portion 6. The fluctuation cycle of the welding current is preferably set in the range of 10 Hz or more and 1000 Hz or less, preferably in the range of 50 Hz or more and 300 Hz or less. The diameter of the welding wire 5 is preferably set to 0.9 mm or more and 1.6 mm or less, and the feeding speed of the welding wire 5 is preferably set to 30 m / min or more. The feeding speed of the welding wire 5 may be a constant feeding speed such as 30 m / min, 50 m / min, 60 m / min, or may be varied according to the magnitude of the welding current.
例えば、アーク溶接装置は、小電流期間における溶接電流Iwが300A以上450A未満の電流域、大電流期間における溶接電流Iwが550A以上600A未満の電流域となるように、溶接電流を周期的に変動させると良い。この場合、ドロップ移行及び振り子移行の溶滴移行形態が周期的に切り替えられ、溶接ワイヤ5の先端部5a及び溶融部分6の底部61間にアーク7が発生する第1状態と、先端部5a及び溶融部分6の側部62間にアーク7が発生する第2状態とが周期的に繰り返される。 For example, the arc welding apparatus periodically fluctuates the welding current so that the welding current Iw in the small current period is in the current range of 300 A or more and less than 450 A, and the welding current Iw in the large current period is in the current range of 550 A or more and less than 600 A. It is good to let it. In this case, the drop transition and the droplet transition modes of the pendulum transition are periodically switched, and the first state in which the arc 7 is generated between the tip 5a of the welding wire 5 and the bottom 61 of the molten portion 6, and the tip 5a and The second state in which the arc 7 is generated between the side portions 62 of the molten portion 6 is periodically repeated.
また、アーク溶接装置は、小電流期間における溶接電流Iwが300A以上450A未満の電流域、大電流期間における溶接電流Iwが700A以上の電流域となるように、溶接電流を周期的に変動させると良い。この場合、ドロップ移行及びローテーティング移行の溶滴移行形態が周期的に切り替えられ、溶接ワイヤ5の先端部5a及び溶融部分6の底部61間にアーク7が発生する第1状態と、先端部5a及び溶融部分6の側部62間にアーク7が発生する第2状態とが周期的に繰り返される。 Further, the arc welding apparatus periodically fluctuates the welding current so that the welding current Iw in the small current period is in the current range of 300 A or more and less than 450 A, and the welding current Iw in the large current period is in the current range of 700 A or more. good. In this case, the droplet transition form of the drop transition and the rotating transition is periodically switched, and the first state in which the arc 7 is generated between the tip portion 5a of the welding wire 5 and the bottom portion 61 of the molten portion 6, and the tip portion 5a. And the second state in which the arc 7 is generated between the side portions 62 of the molten portion 6 is periodically repeated.
更に、アーク溶接装置は、小電流期間における溶接電流Iwが550A以上600A未満の電流域、大電流期間における溶接電流Iwが700A以上の電流域となるように、溶接電流を周期的に変動させると良い。この場合、振り子移行及びローテーティング移行の溶滴移行形態が周期的に切り替えられ、溶接ワイヤ5の先端部5a及び溶融部分6の底部61間にアーク7が発生する第1状態と、先端部5a及び溶融部分6の側部62間にアーク7が発生する第2状態とが周期的に繰り返される。 Further, the arc welding apparatus periodically fluctuates the welding current so that the welding current Iw in the small current period is in the current range of 550 A or more and less than 600 A, and the welding current Iw in the large current period is in the current range of 700 A or more. good. In this case, the droplet transfer form of the pendulum transition and the rotating transition is periodically switched, and the first state in which the arc 7 is generated between the tip portion 5a of the welding wire 5 and the bottom portion 61 of the molten portion 6, and the tip portion 5a. And the second state in which the arc 7 is generated between the side portions 62 of the molten portion 6 is periodically repeated.
更にまた、2つの溶滴移行形態が混在する電流領域を用いて、溶接電流を周期的に変動させても良い。
例えば、アーク溶接装置は、小電流期間における溶接電流Iwが450A以上550A未満の電流域、大電流期間における溶接電流Iwが700A以上の電流域となるように、溶接電流を周期的に変動させても良い。この場合、ドロップ移行及び振り子移行が混在した状態と、ローテーティング移行とが周期的に切り替えられる。
また、アーク溶接装置は、小電流期間における溶接電流Iwが300A以上450A未満の電流域、大電流期間における溶接電流Iwが600A以上700A未満の電流域となるように、溶接電流を周期的に変動させても良い。この場合、ドロップ移行と、振り子移行及びローテーティング移行が混在した状態とが周期的に切り替えられる。
Furthermore, the welding current may be changed periodically by using a current region in which the two droplet transfer forms coexist.
For example, the arc welding apparatus periodically fluctuates the welding current so that the welding current Iw in the small current period is in the current range of 450 A or more and less than 550 A, and the welding current Iw in the large current period is in the current range of 700 A or more. Is also good. In this case, the state in which the drop transition and the pendulum transition are mixed and the rotating transition are periodically switched.
Further, the arc welding apparatus periodically fluctuates the welding current so that the welding current Iw in the small current period is in the current range of 300 A or more and less than 450 A, and the welding current Iw in the large current period is in the current range of 600 A or more and less than 700 A. You may let me. In this case, the drop transition and the mixed state of the pendulum transition and the rotating transition are periodically switched.
なお上述の溶接条件は、一例であり、溶接ワイヤ5の材質、ワイヤ系、突出し長さ、溶接ワイヤ5の送給速度は、溶接電流の範囲は、上記の数値範囲に限定されるものでは無い。以下、埋もれアークにおけるドロップ移行、振り子移行、ローテーティング移行の溶滴移行形態の相互遷移を可能する各種条件について説明する。 The above-mentioned welding conditions are an example, and the range of the welding current is not limited to the above-mentioned numerical range in terms of the material of the welding wire 5, the wire system, the protrusion length, and the feeding speed of the welding wire 5. .. Hereinafter, various conditions that enable mutual transition of the drop transition, the pendulum transition, and the droplet transition form of the rotating transition in the buried arc will be described.
溶接ワイヤ5の材質は、YGW12以外にも、YGW11、YGW15、YGW17、YGW18、YGW19等、ソリッドワイヤを用いることができる。ただし、フラックスコアードワイヤやメタルコアードワイヤ、その他の新規のワイヤを溶接ワイヤ5として適用しても良い。 As the material of the welding wire 5, in addition to YGW12, solid wires such as YGW11, YGW15, YGW17, YGW18, and YGW19 can be used. However, a flux cored wire, a metal cored wire, or another new wire may be applied as the welding wire 5.
溶接ワイヤ5の突出し長さは、10mm以上35mm以下が好ましい。突出し長さが長くなるほど溶込みは浅くなるため、長くても35mmに留めておくのが良い。一方、突出し長さが短くなるとチップ先端が溶融池に近づき、チップ消耗が激しくなる。大電流溶接のため、特にその傾向が顕著であり、10mmを下回ると頻繁なチップ交換が必要となる。
更に、溶接ワイヤ5の突出し長さは移行形態の遷移電流に影響する(図13参照)。そのバランスの観点からも、突出し長さには適正範囲が存在し、10〜35mm程度が適正である。
The protruding length of the welding wire 5 is preferably 10 mm or more and 35 mm or less. The longer the protrusion length, the shallower the penetration, so it is better to keep it at 35 mm at the longest. On the other hand, when the protruding length is shortened, the tip of the tip approaches the molten pool and the tip is consumed more severely. This tendency is particularly remarkable because of high current welding, and if it is less than 10 mm, frequent tip replacement is required.
Further, the protruding length of the welding wire 5 affects the transition current of the transition form (see FIG. 13). From the viewpoint of the balance, there is an appropriate range for the protruding length, and about 10 to 35 mm is appropriate.
ワイヤ径は、例えば0.9mm以上1.6mm以下が好ましい。ワイヤ径は、溶接条件を適切に変更することにより、基本的にはどのようなワイヤ径にも対応することができ、特に限定されるものでは無いが、一般流通性を考慮すると、0.9mm〜1.6mm程度が現実的である。また、ワイヤ径は溶滴移行形態の遷移電流に影響を及ぼす(図13参照)。この観点からも、極端に太い溶接ワイヤ5や細い溶接ワイヤ5を使用すると、溶滴移行形態の遷移領域が大きく広がり、任意の溶滴移行形態を利用することが困難となる。したがって、0.9〜1.6mm程度が適正である。 The wire diameter is preferably 0.9 mm or more and 1.6 mm or less, for example. The wire diameter can be basically any wire diameter by appropriately changing the welding conditions, and is not particularly limited, but is 0.9 mm in consideration of general availability. ~ 1.6 mm is realistic. Further, the wire diameter affects the transition current of the droplet transition form (see FIG. 13). From this point of view, when the extremely thick welding wire 5 or the thin welding wire 5 is used, the transition region of the droplet transfer form is greatly expanded, and it becomes difficult to use an arbitrary droplet transfer form. Therefore, about 0.9 to 1.6 mm is appropriate.
溶接ワイヤ5の送給速度は、溶接電流と相関するため、溶接電流に応じて、埋もれ空間6aが形成されるように適宜決定すれば良い。 Since the feeding speed of the welding wire 5 correlates with the welding current, it may be appropriately determined so that the buried space 6a is formed according to the welding current.
図13は、ワイヤ径及びワイヤ突出し長さと、溶接ワイヤ5の溶滴移行形態との関係を示す概念図である。横軸は溶接電流、縦軸は、溶接ワイヤ5の突出し長さの長短及びワイヤ系の大小を示している。溶滴移行形態の遷移電流は、ワイヤ径および突出し長さの影響を強く受ける。図13は、溶接ワイヤ5の突き出し長さ及びワイヤ径が、溶滴移行形態の遷移電流に与える影響を示したものである。図13に示すように、ワイヤ径が大きいほど、又は突出し長さが短いほど、遷移電流が全体的に高電流域側にシフトする。これは溶接ワイヤ5の抵抗発熱の差に起因しており、ワイヤ径が大きくなる、あるいは突出し長さが短くなるとワイヤの抵抗が減少し、抵抗発熱による溶接ワイヤ5への入熱量が減少する。そのため、同じ溶滴移行現象を再現するためには、その分溶接電流を上げて入熱を増やす必要があるため、遷移電流が全体的に高電流側にシフトするのである。 FIG. 13 is a conceptual diagram showing the relationship between the wire diameter and the wire protrusion length and the droplet transfer form of the welding wire 5. The horizontal axis represents the welding current, and the vertical axis represents the length of the protrusion of the welding wire 5 and the size of the wire system. The transition current of the droplet transition form is strongly influenced by the wire diameter and the protrusion length. FIG. 13 shows the influence of the protrusion length and the wire diameter of the welding wire 5 on the transition current of the droplet transition form. As shown in FIG. 13, the larger the wire diameter or the shorter the protruding length, the more the transition current shifts toward the high current region as a whole. This is due to the difference in the resistance heat generation of the welding wire 5, and when the wire diameter becomes large or the protrusion length becomes short, the resistance of the wire decreases, and the amount of heat input to the welding wire 5 due to the resistance heat generation decreases. Therefore, in order to reproduce the same droplet transition phenomenon, it is necessary to increase the welding current by that amount to increase the heat input, so that the transition current shifts to the high current side as a whole.
一例として、ワイヤ径が変化したときの遷移電流の変化を具体的に示す。
図14は、ワイヤ径が1.4mm、ワイヤ突き出し長さが25mmのときの溶接電流と、溶接ワイヤ5の溶滴移行形態との関係を示す概念図である。図14は、図11と同様、ワイヤ突出し長さが25mm、溶接ワイヤ5の直径が1.4mm、溶接ワイヤ5の材質がYGW12、溶接ワイヤ5の送給速度が30m/分の条件における、溶接電流と溶滴移行形態との関係を示したものであり、溶接条件はワイヤ径のみが異なる。ワイヤ径が1.2mmの場合と、1.4mmの場合を比較すると、図11及び図14に示すように、溶滴移行形態の遷移電流は全体的に高電流側へ遷移する。
As an example, the change in the transition current when the wire diameter changes is specifically shown.
FIG. 14 is a conceptual diagram showing the relationship between the welding current when the wire diameter is 1.4 mm and the wire protrusion length is 25 mm and the droplet transfer form of the welding wire 5. 14 is the same as in FIG. 11, under the conditions that the wire protrusion length is 25 mm, the diameter of the welding wire 5 is 1.4 mm, the material of the welding wire 5 is YGW 12, and the feeding speed of the welding wire 5 is 30 m / min. It shows the relationship between the welding current and the droplet transfer form, and the welding conditions differ only in the wire diameter. Comparing the case where the wire diameter is 1.2 mm and the case where the wire diameter is 1.4 mm, as shown in FIGS. 11 and 14, the transition current of the droplet transition form shifts to the high current side as a whole.
以上の通り、溶接ワイヤ5のワイヤ径及び突出し長さは、図12又は図14を基準にして、図13に示す傾向を考慮して、適宜決定することができる。 As described above, the wire diameter and the overhang length of the welding wire 5 can be appropriately determined with reference to FIG. 12 or 14 in consideration of the tendency shown in FIG.
上記溶接方法を実施する溶接電源1は、上記溶接方法で説明した溶接電流、溶接電流の周波数、溶接ワイヤ5の送給速度を設定する。なお、溶接電源1は、当該溶接条件を操作部にて受け付けて記憶しても良いし、予め記憶しておいても良い。溶接電源1は、設定された溶接条件に基づいて、溶接ワイヤ5の送給を制御し、溶接電流を周期的に変動させる。 The welding power source 1 that carries out the welding method sets the welding current, the frequency of the welding current, and the feeding speed of the welding wire 5 described in the welding method. The welding power supply 1 may receive and store the welding conditions at the operation unit, or may store the welding conditions in advance. The welding power source 1 controls the feeding of the welding wire 5 based on the set welding conditions, and periodically fluctuates the welding current.
以上の通り、本実施形態2に係るアーク溶接方法及びアーク溶接装置にあっては、溶接電流を上記の条件で変動させた場合、ドロップ移行、振り子移行及びローテーティング移行、並びにこれらが混在した二つの状態間で周期的に変動し、溶融金属の波打ちを抑えることができ、埋もれ空間6aの安定化と深い溶け込みを実現することができる。 As described above, in the arc welding method and the arc welding apparatus according to the second embodiment, when the welding current is changed under the above conditions, the drop transition, the pendulum transition, the rotating transition, and the mixture thereof are used. It fluctuates periodically between the two states, the waviness of the molten metal can be suppressed, and the buried space 6a can be stabilized and deep penetration can be realized.
なお、アーク7が溶融部分6の側部62に照射されるのは必ずしも大電流期間でなくてもよい。高い周波数で電流期間が切り替わると、溶滴移行形態は過渡的に遷移するため、例えば本来の定常状態では振り子移行又はローテーティング移行となる電流域、即ち大電流期間の間であっても、必ずしも溶滴移行形態が振り子移行又はローテーティング移行へ遷移せず、その後、小電流期間になってから、やや遅れて振り子移行又はローテーティング移行を呈する場合がある。
同様に、大電流期間であっても、ドロップ移行を呈し、又はアーク7が溶融部分6の底部61に照射される場合がある。
It should be noted that the arc 7 is not necessarily applied to the side portion 62 of the molten portion 6 during a large current period. When the current period is switched at a high frequency, the droplet transition mode transitions transiently. Therefore, for example, even during the current region where the pendulum transition or the rotating transition occurs in the original steady state, that is, during the large current period, it is not always necessary. The droplet transition form may not transition to the pendulum transition or the rotating transition, and then the pendulum transition or the rotating transition may be exhibited with a slight delay after the small current period.
Similarly, even during high current periods, drop transitions may occur or the arc 7 may irradiate the bottom 61 of the molten portion 6.
また、小電流期間は必ずしも定常的にドロップ移行を呈する電流域でなくてもよいし、大電流期間は必ずしも定常的に振り子移行又はローテーティング移行を呈する電流域でなくてもよい。溶滴移行形態の遷移は過渡的であるため、定常的に該当の溶滴移行形態を呈する電流域でなくても、一時的又は過渡的には異なる溶滴移行形態をとる場合がある。 Further, the small current period does not necessarily have to be in the current region that constantly exhibits drop transition, and the large current period does not necessarily have to be in the current region that constantly exhibits pendulum transition or rotating transition. Since the transition of the droplet transition form is transient, it may take a different droplet transition form temporarily or transiently even if it is not in the current range that constantly exhibits the corresponding droplet transition form.
更に、大電流期間及び小電流期間は、溶接電流が一定の電流値に保持された状態にある必要は無く、周期的に変動する溶接電流の電流波形は矩形波等、特定の波形に限定されるものでは無い。例えば、溶接電流の電流波形は三角波であっても良い。大電流期間は、平均的に溶接電流が大きい期間、小電流期間は平均的に溶接電流が小さい期間である。 Further, during the large current period and the small current period, the welding current does not need to be held at a constant current value, and the current waveform of the welding current that fluctuates periodically is limited to a specific waveform such as a rectangular wave. It's not something. For example, the current waveform of the welding current may be a triangular wave. The large current period is a period in which the welding current is large on average, and the small current period is a period in which the welding current is small on average.
更にまた、実施形態2では、溶接電流の電流域を周期的に変動させることによって、溶滴移行形態を変動させる例を説明したが、溶接電流の変動に上記の溶滴移行形態の遷移が伴わない場合であっても、アーク7の力は大電流期間と小電流期間で周期的に変動し、溶融部分6に一定の微細な、比較的大きい周波数の振動が付与される。これにより、比較的小さい周波数、あるいは突発的に生じる、埋もれ空間6aの大きな搖動が抑制されるため、これだけでも埋もれ空間6aの安定化に一定の効果を奏する。従って、必ずしも上記の溶滴移行形態の遷移を伴わなくても、本発明によりある程度の埋もれ空間6aの安定化を実現できる。 Furthermore, in the second embodiment, an example in which the droplet transition form is changed by periodically changing the current range of the welding current has been described, but the change in the welding current is accompanied by the transition of the above-mentioned droplet transfer form. Even if it is not present, the force of the arc 7 fluctuates periodically in a large current period and a small current period, and a constant minute, relatively large frequency vibration is applied to the molten portion 6. As a result, a relatively small frequency or a sudden large sway of the buried space 6a is suppressed, so that this alone has a certain effect on the stabilization of the buried space 6a. Therefore, it is possible to realize a certain degree of stabilization of the buried space 6a by the present invention without necessarily accompanying the transition of the droplet transition form described above.
今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered as exemplary in all respects and not restrictive. The scope of the present invention is indicated by the scope of claims, not the above-mentioned meaning, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
1 溶接電源
2 トーチ
3 ワイヤ送給部
4 母材
5 溶接ワイヤ
5a 先端部
6 溶融部分
6a 埋もれ空間
61 底部
62 側部
7 アーク
11 電源部
11a 電源回路
11b 出力電圧設定回路
11c 周波数設定回路
11d 電流振幅設定回路
11e 平均電流設定回路
11f 電圧検出部
11g 電流検出部
11h 比較回路
12 送給速度制御部
41 第1母材
42 第2母材
Vw 溶接電圧
Iw 溶接電流
Ecr 出力電圧設定信号
Ed 電圧値信号
Id 電流値信号
Ev 差分信号
1 Welding power supply 2 Torch 3 Wire feeding part 4 Base material 5 Welding wire 5a Tip part 6 Melted part 6a Buried space 61 Bottom 62 Side part 7 Arc 11 Power supply part 11a Power supply circuit 11b Output voltage setting circuit 11c Frequency setting circuit 11d Current amplitude Setting circuit 11e Average current setting circuit 11f Voltage detection unit 11g Current detection unit 11h Comparison circuit 12 Feeding speed control unit 41 1st base material 42 2nd base material Vw Welding voltage Iw Welding current Ecr Output voltage setting signal Ed Voltage value signal Id Current value signal Ev difference signal
Claims (10)
前記溶接ワイヤを30m/分以上の送給速度で送給し、
前記先端部及び被溶接部間に発生したアークによって前記母材に形成された凹状の溶融部分によって囲まれる空間に前記先端部が進入する速度で、前記溶接ワイヤを送給し、
前記溶接電流の周波数が10Hz以上1000Hz以下、平均電流が300A以上、電流振幅が50A以上になるように、該溶接電流を変動させる
アーク溶接方法。 By supplying a welding wire to the welded portion of the base metal and supplying a welding current to the welding wire, an arc is generated between the tip of the welding wire and the welded portion to weld the base metal. It is a consumable electrode type arc welding method.
The welding wire is fed at a feeding speed of 30 m / min or more.
The welding wire is fed at a speed at which the tip portion enters the space surrounded by the concave molten portion formed in the base metal by the arc generated between the tip portion and the welded portion.
An arc welding method in which the welding current is varied so that the frequency of the welding current is 10 Hz or more and 1000 Hz or less, the average current is 300 A or more, and the current amplitude is 50 A or more.
前記溶接ワイヤを30m/分以上の送給速度で送給し、
前記先端部及び被溶接部間に発生したアークによって前記母材に形成された凹状の溶融部分によって囲まれる空間に前記先端部が進入する速度で、前記溶接ワイヤを送給し、
前記溶接電流を周期的に変動させることにより、前記先端部及び前記溶融部分の底部間にアークが発生する第1状態と、前記先端部及び前記溶融部分の側部間にアークが発生する第2状態とを周期的に変動させる
アーク溶接方法。 By supplying a welding wire to the welded portion of the base metal and supplying a welding current to the welding wire, an arc is generated between the tip of the welding wire and the welded portion to weld the base metal. It is a consumable electrode type arc welding method.
The welding wire is fed at a feeding speed of 30 m / min or more.
The welding wire is fed at a speed at which the tip portion enters the space surrounded by the concave molten portion formed in the base metal by the arc generated between the tip portion and the welded portion.
By periodically changing the welding current, an arc is generated between the tip portion and the bottom portion of the molten portion, and a second state in which an arc is generated between the tip portion and the side portion of the molten portion. An arc welding method that periodically changes the state.
請求項2に記載のアーク溶接方法。 The arc welding method according to claim 2, wherein the first state and the second state are varied at a frequency of 10 Hz or more and 1000 Hz or less.
前記第2状態は、前記溶接ワイヤの前記先端部に形成される液柱及びアークが振り子状に揺動する溶滴移行形態を含む
請求項2又は請求項3に記載のアーク溶接方法。 The first state includes a droplet transfer form of drop transfer.
The arc welding method according to claim 2 or 3, wherein the second state includes a liquid column formed at the tip of the welding wire and a droplet transition form in which an arc swings like a pendulum.
前記第2状態はローテーティング移行の溶滴移行形態を含む
請求項2又は請求項3に記載のアーク溶接方法。 The first state includes a droplet transfer form of drop transfer.
The arc welding method according to claim 2 or 3, wherein the second state includes a droplet transfer form of a rotating transition.
前記第2状態はローテーティング移行の溶滴移行形態を含む
請求項2又は請求項3に記載のアーク溶接方法。 The first state includes a droplet migration form in which a liquid column and an arc formed at the tip of the welding wire swing in a pendulum shape.
The arc welding method according to claim 2 or 3, wherein the second state includes a droplet transfer form of a rotating transition.
請求項2〜請求項6までのいずれか一項に記載のアーク溶接方法。 The arc according to any one of claims 2 to 6, wherein the welding current is varied so that the frequency of the welding current is 10 Hz or more and 1000 Hz or less, the average current is 300 A or more, and the current amplitude is 50 A or more. Welding method.
請求項1又は請求項7に記載のアーク溶接方法。 The arc welding method according to claim 1 or 7, wherein the frequency of the welding current is 50 Hz or more and 300 Hz or less, the average current is 300 A or more and 1000 A or less, and the current amplitude is 100 A or more and 500 A or less.
前記ワイヤ送給部は、
前記先端部及び被溶接部間に発生したアークによって前記母材に形成された凹状の溶融部分によって囲まれる空間に前記先端部が進入する30m/分以上の送給速度で、前記溶接ワイヤを送給し、
前記電源部は、
前記溶接電流の周波数が10Hz以上1000Hz以下、平均電流が300A以上、電流振幅が50A以上になるように、該溶接電流を変動させる
アーク溶接装置。 A wire feeding unit that feeds a welding wire to a portion to be welded of a base metal and a power supply unit that supplies a welding current to the welding wire are provided, and the welding wire is supplied with a welding current to supply the welding wire. A consumable electrode type arc welding device that generates an arc between the tip and the welded portion and welds the base metal.
The wire feeding unit is
The welding wire is fed at a feeding speed of 30 m / min or more at which the tip portion enters the space surrounded by the concave molten portion formed in the base metal by the arc generated between the tip portion and the welded portion. Feed
The power supply unit
An arc welding device that fluctuates the welding current so that the frequency of the welding current is 10 Hz or more and 1000 Hz or less, the average current is 300 A or more, and the current amplitude is 50 A or more.
前記ワイヤ送給部は、
前記先端部及び被溶接部間に発生したアークによって前記母材に形成された凹状の溶融部分によって囲まれる空間に前記先端部が進入する30m/分以上の送給速度で、前記溶接ワイヤを送給し、
前記電源部は、
前記溶接電流を周期的に変動させることにより、前記先端部及び前記溶融部分の底部間にアークが発生する第1状態と、前記先端部及び前記溶融部分の側部間にアークが発生する第2状態とを周期的に変動させる
アーク溶接装置。 A wire feeding unit that feeds a welding wire to a portion to be welded of a base metal and a power supply unit that supplies a welding current to the welding wire are provided, and the welding wire is supplied with a welding current to supply the welding wire. A consumable electrode type arc welding device that generates an arc between the tip and the welded portion and welds the base metal.
The wire feeding unit is
The welding wire is fed at a feeding speed of 30 m / min or more at which the tip portion enters the space surrounded by the concave molten portion formed in the base metal by the arc generated between the tip portion and the welded portion. Feed
The power supply unit
By periodically changing the welding current, an arc is generated between the tip portion and the bottom portion of the molten portion, and a second state in which an arc is generated between the tip portion and the side portion of the molten portion. An arc welding device that periodically changes the state.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/074690 WO2017033978A1 (en) | 2015-08-25 | 2016-08-24 | Welding method and arc welding device |
KR1020187005542A KR102490672B1 (en) | 2015-08-25 | 2016-08-24 | Welding method and arc welding device |
US15/753,956 US10710187B2 (en) | 2015-08-25 | 2016-08-24 | Welding method and arc welding device |
CN201680049906.XA CN107949451B (en) | 2015-08-25 | 2016-08-24 | Welding method and arc welding device |
EP16839325.4A EP3342523B1 (en) | 2015-08-25 | 2016-08-24 | Welding methods and arc welding device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016029260 | 2016-02-18 | ||
JP2016029260 | 2016-02-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017144480A JP2017144480A (en) | 2017-08-24 |
JP6777969B2 true JP6777969B2 (en) | 2020-10-28 |
Family
ID=59681914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016161844A Active JP6777969B2 (en) | 2015-08-25 | 2016-08-22 | Arc welding method and arc welding equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6777969B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6748555B2 (en) * | 2016-10-24 | 2020-09-02 | 株式会社ダイヘン | Arc welding method and arc welding apparatus |
JP6748556B2 (en) * | 2016-10-24 | 2020-09-02 | 株式会社ダイヘン | Arc welding method and arc welding apparatus |
KR102324216B1 (en) * | 2016-12-06 | 2021-11-09 | 가부시키가이샤 다이헨 | Arc welding method and arc welding device |
JP6969976B2 (en) * | 2017-10-24 | 2021-11-24 | 株式会社ダイヘン | Arc welding equipment and arc welding method |
JP7033517B2 (en) * | 2018-09-05 | 2022-03-10 | 株式会社ダイヘン | Arc welding method |
JP7075851B2 (en) * | 2018-09-05 | 2022-05-26 | 株式会社ダイヘン | Arc welding method |
JP7506553B2 (en) | 2020-08-07 | 2024-06-26 | 株式会社ダイヘン | Arc welding method and arc welding device |
EP4196307A2 (en) | 2020-08-12 | 2023-06-21 | The ESAB Group Inc. | Arc welding, cladding, and additive manufacturing method and apparatus |
-
2016
- 2016-08-22 JP JP2016161844A patent/JP6777969B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017144480A (en) | 2017-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6777969B2 (en) | Arc welding method and arc welding equipment | |
US9089920B2 (en) | Method for changing a welding process during a welding operation and method for applying heat prior to a welding operation | |
US20110248007A1 (en) | Arc welding method and arc welding apparatus | |
KR102490672B1 (en) | Welding method and arc welding device | |
JP6959941B2 (en) | Arc welding method and arc welding equipment | |
JP2015523217A (en) | Adjustable rotary arc welding method and system | |
JP6748555B2 (en) | Arc welding method and arc welding apparatus | |
WO2017033978A1 (en) | Welding method and arc welding device | |
JP2015150572A (en) | Method of welding multi-electrode single-sided submerged arc, method of manufacturing weldment | |
JP6211431B2 (en) | Multi-electrode single-sided submerged arc welding method, welded product manufacturing method | |
JP7222810B2 (en) | Arc welding device and arc welding method | |
JP6885755B2 (en) | Arc welding method | |
JP6748556B2 (en) | Arc welding method and arc welding apparatus | |
JP2017189818A (en) | Arc start method | |
EP2546017B2 (en) | Method of and device for arc welding with consumable electrode using in alternance short circuit welding cycles and pulsed transfer welding cycles | |
JP7475218B2 (en) | Arc welding method and arc welding device | |
KR20100032006A (en) | Electro gas arc welding apparatus to control feeding speed of wire and the feeding speed control method | |
JP7096099B2 (en) | Arc welding method and arc welding equipment | |
JP7198067B2 (en) | Horizontal fillet arc welding method | |
EP4382236A1 (en) | Welding control method, welding control device, welding power supply, welding system, program, welding method, and additive manufacturing method | |
JP2022144100A (en) | Arc-welding device and arc-welding method | |
JP2018083234A (en) | Method of multi-electrode single-sided submerged arc welding, and method of manufacturing weldment | |
JP2017042778A (en) | Welding method | |
JP2009072818A (en) | Welding arc control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200714 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201006 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201008 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6777969 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |