JP4775750B2 - Optical encoder and optical encoder manufacturing method - Google Patents

Optical encoder and optical encoder manufacturing method Download PDF

Info

Publication number
JP4775750B2
JP4775750B2 JP2001230773A JP2001230773A JP4775750B2 JP 4775750 B2 JP4775750 B2 JP 4775750B2 JP 2001230773 A JP2001230773 A JP 2001230773A JP 2001230773 A JP2001230773 A JP 2001230773A JP 4775750 B2 JP4775750 B2 JP 4775750B2
Authority
JP
Japan
Prior art keywords
fixed
side element
sub
board
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001230773A
Other languages
Japanese (ja)
Other versions
JP2003042811A (en
Inventor
喬 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2001230773A priority Critical patent/JP4775750B2/en
Publication of JP2003042811A publication Critical patent/JP2003042811A/en
Application granted granted Critical
Publication of JP4775750B2 publication Critical patent/JP4775750B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Transform (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、受光素子の受光面にフォトエッチング等により、スリットが直接形成された固定側素子を有する光学式エンコーダに関するものである。
【0002】
【従来の技術】
従来、複数の受光素子を備えた固定側素子と、固定側素子の共通電極および各受光素子の電極に接続するためのパターンを含み、屈曲構造を備えたサブ基板と固定側素子とを固定する基板と、固定側素子に空隙を介して対向する回転ディスクとを有する光学式エンコーダにおいては、前記サブ基板を前記固定側素子と基板との間に配置して固定側素子を基板に固定していた(たとえば特開平11−148844号公報)。この場合、基板に対する固定側素子の位置決めは、サブ基板の外形寸法や取り付け穴を基準にしていた。
【0003】
【発明が解決しようとする課題】
しかしながら、このような従来の光学式エンコーダにおいては、次のような問題があった。
(1) 屈曲構造の前記サブ基板は、プレス加工で製造するため外形加工寸法誤差が±0.1mm程度あり、固定側素子とサブ基板との接続工程における両者の取
り付けが正確に行えない。
(2) 屈曲構造の前記サブ基板と前記基板を固定する場合も、取り付け寸法誤差が
±0.1mm程度あり、サブ基板と基板の取り付けが正確に行えない。
したがって、組み立て時には、これらの寸法誤差が重畳して、最大±0.2mmという位置決め誤差が発生し、固定側素子が正確な位置で基板に固定できないという問題があった。その結果、固定側素子と回転ディスクのスリット部の機械寸法がずれてしまい、光学式エンコーダから正確な検出信号が得られないという問題が発生していた。
本発明は、このような問題を解消するためになされたもので、固定側素子を基準位置に正確に取付けることができる光学式エンコーダを提供することを目的とするものである。
【0004】
【課題を解決するための手段】
上記問題を解決するため、本発明は、複数の受光素子を備えた固定側素子と、前記固定側素子の共通電極および各受光素子の電極に接続するためのパターンを含み、屈曲構造を備えたサブ基板と、前記固定側素子を固定する基板と、前記固定側素子に空隙を介して対向する可動ディスクとを有する光学式エンコーダにおいて、前記サブ基板に、前記固定側素子の外形の一部が露出する固定側素子露出部を設けるとともに、前記基板に、前記固定側素子を基準位置に取り付けるための取り付け基準部を設けるようにしたものである。
【0005】
【発明の実施の形態】
以下、本発明の実施例を図に基づいて説明する。
図1は、本発明の実施例における回転型の光学式エンコーダを示す側断面図である。図2は本発明の実施例におけるサブ基板と固定側素子とを接続固定するための組立工程を示す斜視図で、(a)はサブ基板を示し、(b)はサブ基板の内部に接続固定される固定側素子を示し、(c)はサブ基板と固定側素子を接続固定した状態を示している。図3は本発明の実施例におけるサブ基板と固定側素子とを基板に接続固定するための組立工程を示す斜視図で、(a)は固定側素子を基板に位置決めするための位置決め治具を示し、(b)は位置決め治具を用いて固定側素子をサブ基板とともに基板に取付けた状態を示している。
図1において、1はエンコーダケース、2はエンコーダケース1に固定されたベース、3はベース2に固定された基板で、両面に配線パターンを設けている。31は取付け基準部で、例えば位置決めピンを挿入する基準穴で構成している。また、4は基板3を挟んでベース2に固定されたLEDケース、41はLEDケース4に固定されたLED、5は円周方向に複数のスリットを配列した回転ディスクで、回転軸51にディスクハブ52を介して固定されている。6は固定側素子で、空隙を介して回転ディスク5に対向している。さらに、7は固定側素子6と基板3との間に設けたサブ基板、8は基板3の両面に取り付けられたチップ部品である。すなわち、本発明の光学式エンコーダは、固定側素子6と基板3の間にスペーサ機能と屈曲構造を備えたサブ基板7が設けられており、固定側素子6は基板3からの高さが高くなっており、その結果、固定側素子6と同じ基板平面上にチップ部品8が実装されている。もちろん、固定側素子6の高さは、チップ部品8の高さより高くなるような寸法のサブ基板7を使用している。
図2において、サブ基板7は、固定側素子6の電極C1,C2,C3,C4に対応する電極パターンT1,T2,T3,T4と、受光面の裏面共通電極C5に対応する共通電極T5と、基板3と接続する電極部T11(図示せず)、T12(図示せず)、T13、T14を露出させ、他のパターンはカバーフィルムとレジストでパターン表面を保護している。
前記サブ基板7は、専用の曲げ・打ち抜き加工金型を使用して製造している。
また、サブ基板7の角部2箇所を切り欠いて固定側素子露出部Aを形成している。固定側素子6には、4個の受光素子の電極パターンT1,T2,T3,T4と、受光面の裏面共通電極C5に対応する共通電極T5とが配置されている。
つぎに、固定側素子6とサブ基板7と基板3の固定方法について説明する。
まず、固定側素子6の電極部C1,C2,C3,C4と共通電極C5に図示しない高温クリームハンダを塗布し、固定側素子6をサブ基板7に固定する(図2(a)、(b))。
この状態でリフローハンダ槽の中を通過させ、固定側素子6の各電極部をサブ基板7の電極パターンに接続する(図2(c))。
その後、基板3に他のチップ部品8と同じように、固定側素子6を搭載したサブ基板7を載せ、取り付け基準のための基準穴31をあけた基板3に、図3(a)に示す例えば位置決めピン等からなる固定側素子位置決め治具75を前記基準穴31に嵌合させて立て(図3(b))、サブ基板7を正確に位置決め固定してからリフローハンダ槽に通す。この工程でサブ基板7の電極部と基板3のパターンとがハンダで電気的に接続される。
この場合、屈曲構造のサブ基板7を、サブ基板取付穴74にネジ76を通して基板3に固定するようにすれば、固定側素子6をより強固に基板3に固定することができる(図3(b))。
そして、リフローハンダ後、固定側素子位置決め治具を75を除けば完成となる。
また、固定側素子6とサブ基板7との接続は、高温ハンダを使用して接続されているため、2回目のリフローハンダ槽を通過しても固定側素子6が位置ずれすることはない。
本発明は、このように、屈曲構造のサブ基板7のー部を切り欠き、固定側素子6のー部を露出させ、この固定側素子6の外形部を基準として使用して固定側素子6の取り付け作業を行なうことにより、基板3に正確に固定側素子6を取り付けることができるようにしたものであるが、固定側素子6を基板3に正確に位置決め固定できる理由は次のとおりである。
すなわち、複数の受光素子を有する固定側素子6は、半導体であるため、シリコンウェハ上に多数個の受光素子を作成し、後工程においてダイシングソーというカッテイング装置で個々に切断して製造される。
通常、受光素子を製造するためのフォトマスクには、切断する外形形状まで描画されており、受光素子とこの外形形状の寸法誤差は、±lμm以下にて描画されている。
また、後工程において製品を切断するカッティング装置の切断寸法精度は、±lμm程度であり、受光素子の位置寸法と固定側素子6の外形寸法は、非常に正確な寸法で加工されている。
そこで、従来のように屈曲構造のサブ基板の加工寸法や取り付け穴を基準にせずに、固定側素子6の外形寸法を基準にして位置決めを行なうようにすれば、固定側素子6を基板3の所定の位置において正確に基板3に固定することができるわけである。
なお、前記実施例は、回転ディスクを有するロータリ形光学エンコーダの場合について述べたが、本発明は、リニア移動ディスクを有するリニア形光学エンコーダにも同様に実施できることは言うまでもない。
【0006】
【発明の効果】
以上述べたように、本発明によれば、固定側素子と基板の取り付けは、サブ基板の外形寸法や取り付け穴を使用せず、サブ基板の一部を切り欠くなどして固定側素子の一部を露出させ、固定側素子の外形寸法を位置決め基準として使用して位置決めをしながら組み立てるので、固定側素子の取り付けを極めて正確に行なうことができるという効果がある。
【図面の簡単な説明】
【図1】 本発明の実施例における回転型の光学式エンコーダを示す側断面図である。
【図2】 本発明の実施例におけるサブ基板と固定側素子とを接続固定するための組立工程を示す斜視図で、(a)はサブ基板を示し、(b)はサブ基板の内部に接続固定される固定側素子を示し、(c)はサブ基板と固定側素子を接続固定した状態を示している。
【図3】 本発明の実施例におけるサブ基板と固定側素子とを基板に接続固定するための組立工程を示す斜視図で、(a)は固定側素子を基板に位置決めするための位置決め治具を示し、(b)は位置決め治具を用いて固定側素子をサブ基板とともに基板に取付けた状態を示している。
【符号の説明】
1 エンコーダケース、
2 ベース、
3 基板、
31 取付け基準部(基準穴)、
4 LEDケース、
41 LED、
5 回転ディスク、
51 回転軸、
52 ディスクハブ、
6 固定側素子、
7 サブ基板、
74 サブ基板取付穴、
75 固定側素子位置決め治具、
76 ネジ、
8 チップ部品、
A 固定側素子露出部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical encoder having a fixed-side element in which a slit is directly formed on a light-receiving surface of a light-receiving element by photoetching or the like.
[0002]
[Prior art]
Conventionally, a fixed-side element including a plurality of light-receiving elements, a common electrode of the fixed-side elements, and a pattern for connecting to the electrodes of each light-receiving element are fixed, and the sub-board having a bent structure and the fixed-side element are fixed In an optical encoder having a substrate and a rotating disk facing the fixed-side element via a gap, the sub-substrate is disposed between the fixed-side element and the substrate to fix the fixed-side element to the substrate. (For example, JP-A-11-148844). In this case, the positioning of the fixed-side element with respect to the substrate is based on the external dimensions and attachment holes of the sub-board.
[0003]
[Problems to be solved by the invention]
However, such a conventional optical encoder has the following problems.
(1) Since the sub-substrate having a bent structure is manufactured by press working, an outer shape processing dimension error is about ± 0.1 mm, and it is not possible to accurately attach both in the connection process between the fixed side element and the sub-substrate.
(2) Even when the sub-substrate and the substrate having a bent structure are fixed, there is an attachment dimensional error of about ± 0.1 mm, and the sub-substrate and the substrate cannot be attached accurately.
Therefore, at the time of assembly, these dimensional errors are overlapped to generate a positioning error of maximum ± 0.2 mm, and there is a problem that the fixed side element cannot be fixed to the substrate at an accurate position. As a result, the mechanical dimensions of the fixed-side element and the slit portion of the rotating disk are shifted, and there is a problem that an accurate detection signal cannot be obtained from the optical encoder.
The present invention has been made to solve such a problem, and an object of the present invention is to provide an optical encoder capable of accurately mounting a fixed side element at a reference position.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention includes a fixed side element including a plurality of light receiving elements, a pattern for connecting to the common electrode of the fixed side element and the electrode of each light receiving element, and has a bent structure. In the optical encoder having a sub-substrate, a substrate for fixing the fixed-side element, and a movable disk facing the fixed-side element via a gap, a part of the outer shape of the fixed-side element is formed on the sub-substrate. An exposed fixed-side element exposed portion is provided, and an attachment reference portion for attaching the fixed-side element to a reference position is provided on the substrate.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a side sectional view showing a rotary optical encoder in an embodiment of the present invention. 2A and 2B are perspective views showing an assembly process for connecting and fixing the sub-board and the fixed-side element in the embodiment of the present invention. FIG. 2A shows the sub-board, and FIG. 2B shows the connection and fixing inside the sub-board. (C) shows a state in which the sub-board and the fixed element are connected and fixed. FIG. 3 is a perspective view showing an assembly process for connecting and fixing the sub-board and the fixed-side element to the board in the embodiment of the present invention. FIG. 3A shows a positioning jig for positioning the fixed-side element on the board. (B) shows a state in which the stationary side element is attached to the substrate together with the sub-substrate using a positioning jig.
In FIG. 1, 1 is an encoder case, 2 is a base fixed to the encoder case 1, 3 is a substrate fixed to the base 2, and wiring patterns are provided on both sides. Reference numeral 31 denotes an attachment reference portion, which is constituted by a reference hole for inserting a positioning pin, for example. Reference numeral 4 denotes an LED case fixed to the base 2 with the substrate 3 interposed therebetween, 41 denotes an LED fixed to the LED case 4, and 5 denotes a rotating disk in which a plurality of slits are arranged in the circumferential direction. It is fixed via the hub 52. Reference numeral 6 denotes a fixed-side element that faces the rotating disk 5 through a gap. Further, 7 is a sub-board provided between the fixed element 6 and the board 3, and 8 is a chip component attached to both sides of the board 3. That is, in the optical encoder of the present invention, the sub-substrate 7 having a spacer function and a bent structure is provided between the fixed-side element 6 and the substrate 3, and the fixed-side element 6 has a high height from the substrate 3. As a result, the chip component 8 is mounted on the same substrate plane as the fixed side element 6. Of course, the sub-substrate 7 having a dimension such that the height of the fixed side element 6 is higher than the height of the chip component 8 is used.
In FIG. 2, the sub-substrate 7 includes electrode patterns T1, T2, T3, T4 corresponding to the electrodes C1, C2, C3, C4 of the fixed side element 6, and a common electrode T5 corresponding to the back surface common electrode C5 of the light receiving surface. The electrode portions T11 (not shown), T12 (not shown), T13, and T14 connected to the substrate 3 are exposed, and the surface of the other patterns is protected by a cover film and a resist.
The sub-board 7 is manufactured using a dedicated bending / punching die.
Further, the fixed-side element exposure portion A is formed by cutting out two corner portions of the sub-substrate 7. On the fixed side element 6, electrode patterns T1, T2, T3, T4 of four light receiving elements and a common electrode T5 corresponding to the back surface common electrode C5 of the light receiving surface are arranged.
Next, a method for fixing the fixed element 6, the sub-substrate 7, and the substrate 3 will be described.
First, high temperature cream solder (not shown) is applied to the electrode portions C1, C2, C3, C4 and the common electrode C5 of the fixed side element 6, and the fixed side element 6 is fixed to the sub-substrate 7 (FIGS. 2A and 2B). )).
In this state, it passes through the reflow solder tank, and each electrode portion of the fixed side element 6 is connected to the electrode pattern of the sub-substrate 7 (FIG. 2C).
Thereafter, as in the case of the other chip components 8, the sub-board 7 on which the fixed-side element 6 is mounted is placed on the board 3 and the reference hole 31 for the attachment reference is opened, as shown in FIG. For example, a fixed-side element positioning jig 75 made of a positioning pin or the like is fitted into the reference hole 31 (FIG. 3B), and the sub-substrate 7 is accurately positioned and fixed, and then passed through the reflow solder tank. In this step, the electrode portion of the sub-substrate 7 and the pattern of the substrate 3 are electrically connected by solder.
In this case, if the sub-substrate 7 having a bent structure is fixed to the substrate 3 through the screw 76 in the sub-substrate attachment hole 74, the fixed-side element 6 can be more firmly fixed to the substrate 3 (FIG. 3 ( b)).
Then, after the reflow soldering, the fixed side element positioning jig is removed except for 75.
Further, since the fixed side element 6 and the sub-board 7 are connected using high-temperature solder, the fixed side element 6 is not displaced even after passing through the second reflow solder bath.
In this way, the present invention cuts off a portion of the sub-substrate 7 having the bent structure, exposes a portion of the fixed side element 6, and uses the outer shape portion of the fixed side element 6 as a reference to fix the fixed side element 6. The fixed side element 6 can be accurately attached to the substrate 3 by performing the attaching operation of the above. The reason why the fixed side element 6 can be accurately positioned and fixed to the substrate 3 is as follows. .
That is, since the fixed side element 6 having a plurality of light receiving elements is a semiconductor, a large number of light receiving elements are formed on a silicon wafer and are individually cut by a cutting apparatus called a dicing saw in a subsequent process.
Usually, a photomask for manufacturing a light receiving element is drawn up to the outer shape to be cut, and a dimensional error between the light receiving element and this outer shape is drawn within ± l μm.
In addition, the cutting dimension accuracy of the cutting device that cuts the product in the subsequent process is about ± 1 μm, and the position dimension of the light receiving element and the outer dimension of the fixed side element 6 are processed with very accurate dimensions.
Therefore, if the positioning is performed with reference to the external dimension of the fixed side element 6 without using the processing dimension and the mounting hole of the sub-substrate having the bent structure as a reference as in the prior art, the fixed side element 6 is fixed to the substrate 3. That is, it can be accurately fixed to the substrate 3 at a predetermined position.
Although the foregoing embodiment has been described with respect to a rotary optical encoder having a rotating disk, it goes without saying that the present invention can be similarly applied to a linear optical encoder having a linear moving disk.
[0006]
【The invention's effect】
As described above, according to the present invention, the fixed-side element and the board are attached without using the external dimensions of the sub-board or the mounting holes, and by cutting out a part of the sub-board. As the assembly is performed while positioning using the external dimensions of the fixed-side element as the positioning reference, the fixed-side element can be mounted with extremely high accuracy.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing a rotary optical encoder in an embodiment of the present invention.
FIGS. 2A and 2B are perspective views showing an assembly process for connecting and fixing a sub-board and a fixed element in an embodiment of the present invention, wherein FIG. 2A shows the sub-board, and FIG. 2B is connected to the inside of the sub-board. The fixed side element to be fixed is shown, and (c) shows a state where the sub-board and the fixed side element are connected and fixed.
FIG. 3 is a perspective view showing an assembly process for connecting and fixing a sub-board and a fixed-side element to a board in an embodiment of the present invention, and FIG. 3A is a positioning jig for positioning the fixed-side element on the board. (B) has shown the state which attached the stationary side element to the board | substrate with the sub board | substrate using the positioning jig.
[Explanation of symbols]
1 Encoder case,
2 base,
3 substrate,
31 Mounting reference part (reference hole),
4 LED case,
41 LED,
5 rotating discs,
51 rotation axis,
52 disk hub,
6 Fixed side element,
7 Sub-board,
74 Sub board mounting hole,
75 Fixed side element positioning jig,
76 screws,
8 Chip parts,
A Fixed side exposed element

Claims (4)

複数の受光素子を備えた固定側素子と、
前記固定側素子の共通電極および各受光素子の電極に接続するためのパターンを含み屈曲構造を備えたサブ基板と、
前記固定側素子を固定する基板と、
前記固定側素子に空隙を介して対向する可動ディスクと
前記サブ基板に切り欠いて設けられ、前記固定側素子の外形の一部を露出させる固定側素子露出部と、
前記固定側素子露出部により露出された前記固定側素子の外形の一部に対応した位置において前記基板に設けられ前記固定側素子の位置決め時に固定側素子位置決め治具を前記基板に取付けるための基準穴である取り付け基準部と、
を有する、光学式エンコーダ。
A fixed-side element including a plurality of light receiving elements;
A sub substrate having a bending structure comprises a pattern for connection to the common electrode and the electrode of the light receiving elements of the fixed-side elements,
A substrate for fixing the fixed side element;
A movable disk facing the fixed element via a gap ;
A fixed-side element exposure portion that is provided by cutting out the sub-substrate and exposes a part of the outer shape of the fixed-side element ;
For providing a fixed-side element positioning jig to the substrate at a position corresponding to a part of the outer shape of the fixed-side element exposed by the fixed-side element exposing portion, when positioning the fixed-side element. A mounting reference portion which is a reference hole ;
An optical encoder.
前記固定側素子は、前記サブ基板に固定され、  The fixed side element is fixed to the sub-board,
前記サブ基板は、前記取り付け基準部による基準穴と異なる箇所で前記基板にネジ止めされる、請求項1に記載の光学式エンコーダ。  The optical encoder according to claim 1, wherein the sub-board is screwed to the board at a location different from a reference hole formed by the attachment reference portion.
複数の受光素子を備えた固定側素子と、前記固定側素子の共通電極および各受光素子の電極に接続するためのパターンを含み屈曲構造を備えたサブ基板と、前記固定側素子を固定する基板と、前記固定側素子に空隙を介して対向する可動ディスクと、を有する光学式エンコーダの製造方法であって、  A fixed-side element including a plurality of light-receiving elements; a sub-board having a bent structure including a pattern for connecting to the common electrode of the fixed-side element and an electrode of each light-receiving element; and a board for fixing the fixed-side element And a movable disk facing the fixed side element via a gap, and a manufacturing method of an optical encoder,
前記固定側素子の位置決め時に、  When positioning the fixed side element,
前記基板に設けられた基準穴である取り付け基準部に、固定側素子位置決め治具を取付け、  Attach a fixed-side element positioning jig to the mounting reference part, which is a reference hole provided in the substrate,
前記サブ基板に切り欠いて設けられた固定側素子露出部で露出された前記固定側素子の外形の一部を、前記固定側素子位置決め治具に当接させることにより、前記固定側素子を位置決めする、光学式エンコーダの製造方法。  The fixed-side element is positioned by bringing a part of the outer shape of the fixed-side element exposed at the fixed-side element exposure portion provided by cutting out the sub-board into contact with the fixed-side element positioning jig. A method for manufacturing an optical encoder.
前記固定側素子は、前記サブ基板に固定された後、該サブ基板と一体として前記基板に対して位置決めされる、請求項3に記載の光学式エンコーダの製造方法。  The method of manufacturing an optical encoder according to claim 3, wherein the fixed-side element is fixed to the sub-board and then positioned with respect to the sub-board as a unit with the sub-board.
JP2001230773A 2001-07-31 2001-07-31 Optical encoder and optical encoder manufacturing method Expired - Fee Related JP4775750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001230773A JP4775750B2 (en) 2001-07-31 2001-07-31 Optical encoder and optical encoder manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001230773A JP4775750B2 (en) 2001-07-31 2001-07-31 Optical encoder and optical encoder manufacturing method

Publications (2)

Publication Number Publication Date
JP2003042811A JP2003042811A (en) 2003-02-13
JP4775750B2 true JP4775750B2 (en) 2011-09-21

Family

ID=19062920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001230773A Expired - Fee Related JP4775750B2 (en) 2001-07-31 2001-07-31 Optical encoder and optical encoder manufacturing method

Country Status (1)

Country Link
JP (1) JP4775750B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5896752B2 (en) 2012-01-16 2016-03-30 株式会社ミツトヨ Semiconductor package and manufacturing method thereof
JP5821109B2 (en) * 2013-06-17 2015-11-24 株式会社安川電機 Motor with encoder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122372U (en) * 1984-07-14 1986-02-08 シャープ株式会社 photo interrupter
JPS6237713U (en) * 1985-08-27 1987-03-06
JP4182299B2 (en) * 1997-11-14 2008-11-19 株式会社安川電機 Optical encoder and method for attaching fixed side element of optical encoder

Also Published As

Publication number Publication date
JP2003042811A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
US5671531A (en) Fabrication process for circuit substrate having interconnection leads
JP3588801B2 (en) Method for manufacturing semiconductor device
US20030034553A1 (en) Low profile ball-grid array package for high power
KR100728453B1 (en) Probe arrangement assembly, method of manufacturing probe arrangement assembly, probe mounting method using probe arrangement assembly, and probe mounting apparatus
US7250329B2 (en) Method of fabricating a built-in chip type substrate
KR20030007212A (en) Manufacturing method of circuit device
JP3196434B2 (en) Method for manufacturing multi-chip IC
US5275897A (en) Precisely aligned lead frame using registration traces and pads
JP4775750B2 (en) Optical encoder and optical encoder manufacturing method
JP4182299B2 (en) Optical encoder and method for attaching fixed side element of optical encoder
JPH09186416A (en) Board for surface mounting type electronic component and manufacture thereof
JPH07235621A (en) Leadless chip carrier and manufacture thereof
WO2019082611A1 (en) Substrate assembly sheet
JP2714691B2 (en) Manufacturing method of electronic component mounting board
JP2013145849A (en) Semiconductor package and manufacturing method of the same
JP2644194B2 (en) Semiconductor device and manufacturing method thereof
JPH08250825A (en) Reference position mark for printed wiring board
JP3716327B2 (en) Method for processing printed circuit boards
JP2017085069A (en) Manufacturing method for aggregate wiring board
JPH04263446A (en) Tape carrier for tab
JP2731662B2 (en) LSI chip positioning method
JP2004172244A (en) Ball positioning jig and its manufacturing method
JPS61288490A (en) Aligned mounting of semiconductor element
JPH04334048A (en) Package for semiconductor device
JPH0282594A (en) Manufacture of hybrid integrated circuit device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees