JP4775705B2 - Magnetic absolute encoder - Google Patents

Magnetic absolute encoder Download PDF

Info

Publication number
JP4775705B2
JP4775705B2 JP2006018349A JP2006018349A JP4775705B2 JP 4775705 B2 JP4775705 B2 JP 4775705B2 JP 2006018349 A JP2006018349 A JP 2006018349A JP 2006018349 A JP2006018349 A JP 2006018349A JP 4775705 B2 JP4775705 B2 JP 4775705B2
Authority
JP
Japan
Prior art keywords
magnetization
region
magnetized
signal
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006018349A
Other languages
Japanese (ja)
Other versions
JP2007198928A (en
Inventor
亮治 銭谷
文吾 柴山
泰典 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006018349A priority Critical patent/JP4775705B2/en
Publication of JP2007198928A publication Critical patent/JP2007198928A/en
Application granted granted Critical
Publication of JP4775705B2 publication Critical patent/JP4775705B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁気抵抗効果型磁気センサーを用いた磁気式アブソリュートエンコーダーに
関するものである。
The present invention relates to a magnetic absolute encoder using a magnetoresistive effect type magnetic sensor.

本発明は産業機械などで使用するサーボモーター等の回転体の回転絶対位置および直線
移動体の絶対位置を検出する磁気式アブソリュートエンコーダーに関するものである。
The present invention relates to a magnetic absolute encoder that detects the absolute rotation position of a rotating body such as a servo motor used in an industrial machine or the like and the absolute position of a linear moving body.

等ピッチで形成された2個のピッチ領域(n=正の整数)の各ピッチ領域に、m系列
パターン等に従って着磁された磁気媒体に対向して、磁気抵抗効果型磁気センサー(以降
、磁気センサーと言う)が配されている。磁気媒体と磁気センサーは相対的に移動する。
m系列パターン等で着磁された磁気媒体には、着磁ピッチ領域と無着磁ピッチ領域が混在
配列されることとなる。磁気センサーで、着磁ピッチ領域の漏洩磁界を検出し符号化処理
を行うことで、着磁ピッチ領域と無着磁ピッチ領域の配列を符号化信号「1」と「0」に
対応させることができる。この着磁ピッチ領域と無着磁ピッチ領域に相当するピッチで磁
気センサー素子を複数個配置すると、各々の磁気センサー素子が同時に着磁ピッチ領域の
漏洩磁界を検出し符号化処理を行うことで、「1」と「0」の信号を検出する。その信号
配列を判別することで磁気媒体上の絶対位置の検出が可能となる。
A magnetoresistive effect type magnetic sensor (hereinafter, referred to as a magnetoresistive effect type magnetic sensor) is opposed to a magnetic medium magnetized according to an m-sequence pattern or the like in each pitch region of 2 n pitch regions (n = positive integer) formed at an equal pitch. Called a magnetic sensor). The magnetic medium and the magnetic sensor move relatively.
In a magnetic medium magnetized with an m-sequence pattern or the like, a magnetized pitch area and a non-magnetized pitch area are mixedly arranged. By detecting the leakage magnetic field in the magnetized pitch region and performing the encoding process with the magnetic sensor, the arrangement of the magnetized pitch region and the non-magnetized pitch region can be made to correspond to the encoded signals “1” and “0”. it can. When a plurality of magnetic sensor elements are arranged at a pitch corresponding to the magnetization pitch region and the non-magnetization pitch region, each magnetic sensor element simultaneously detects a leakage magnetic field in the magnetization pitch region and performs an encoding process. The signals “1” and “0” are detected. By determining the signal arrangement, the absolute position on the magnetic medium can be detected.

しかし、現在は絶対位置検出用のエンコーダーとしては、特許文献1に示すような光学
式アブソリュートエンコーダーが主に使用されている。主に用いられている理由は、光学
式エンコーダーはm系列等のパターンを製作し易いことによる。遮光性の媒体に孔を開け
た部位が透光部となるので、m系列等のパターンで孔を開けたスケールが製作し易く、遮
光部と透光部で受光器の出力差が大きいつまり分解能が高いので、容易に高い信号精度が
得られるためである。しかし、受光器の配列等に制約があるため、主に用いられる光学式
エンコーダーのピッチは数100μm以上である。
However, at present, an optical absolute encoder as shown in Patent Document 1 is mainly used as an encoder for absolute position detection. The reason why it is mainly used is that the optical encoder can easily produce a pattern such as an m series. Since the part of the light-shielding medium with holes is the translucent part, it is easy to produce a scale with holes in the m series pattern, and the output difference between the light-receiving part and the light-transmitting part is large. This is because high signal accuracy can be easily obtained. However, since the arrangement of the light receivers is limited, the pitch of the optical encoder that is mainly used is several hundred μm or more.

特開平4−40321号 公報JP-A-4-40321

光学式アブソリュートエンコーダーは、塵埃やオイルミストなどの付着汚れに弱く、ま
た使用環境温度の変化に対して検出精度の安定性が低いとの指摘もある。汚れを防止する
ため、光学式アブソリュートエンコーダーのシール度を高めたり気密性の高いケーシング
等が行われている。しかし、気密性を上げると環境温度変化に追従し難くなることや、小
型、低価格の実現が難しくなる。塵埃やオイルミストなどの付着汚れに比較的強く、使用
環境温度の変化に対しても安定性の高い磁気式アブソリュートエンコーダーの需要が高ま
って来ている。磁気式アブソリュートエンコーダーのピッチは容易に100μm以下が得
られるが、検出精度が低い点が問題であった。
It has been pointed out that optical absolute encoders are vulnerable to dirt and oil mist and other contaminants, and that the detection accuracy is less stable against changes in the operating environment temperature. In order to prevent contamination, casings with high sealing performance and high airtightness are used for optical absolute encoders. However, when the airtightness is increased, it becomes difficult to follow changes in the environmental temperature, and it becomes difficult to realize a small size and a low price. There is a growing demand for magnetic absolute encoders that are relatively resistant to adhering dirt such as dust and oil mist and that are highly stable against changes in the operating environment temperature. The pitch of the magnetic absolute encoder can be easily obtained at 100 μm or less, but the problem is that the detection accuracy is low.

磁気式アブソリュートエンコーダーの検出精度を上げるため、磁気媒体の着磁方法が検
討されている。特許文献2に、ピッチ領域に媒体表面が単極となるように着磁することが
開示されている。N極もしくはS極が連続するピッチ数が場所により異なるため、漏洩磁
界強度が各ピッチ領域により異なってしまう。また、ピッチ領域の全域に着磁されている
ために、隣接する無着磁ピッチ領域と干渉して磁界分布が歪み、検出精度の大幅な改善が
見込めない。着磁ピッチ領域と無着磁ピッチ領域の干渉を低減する方策が、特許文献3に
開示されている。着磁ピッチ領域の中央部の一部領域にのみ信号用着磁領域を設け、着磁
ピッチ領域の他の部分は無着磁とし、隣接する無着磁ピッチ領域との干渉を低減させてい
る。しかし、着磁ピッチ領域の一部に設けられた信号着磁領域からの漏洩磁界が隣合う無
着磁ピッチ領域と干渉しないようにするには、信号着磁領域の磁界強度を小さくする必要
がある。磁界強度を下げるには、着磁ピッチ領域の信号用着磁領域を小さくするか、着磁
強度を下げる必要がある。漏洩磁界強度を下げると、磁気センサーの出力が低下してしま
い検出精度の大幅な改善が見込めない。磁気センサーの出力を上げるため、磁気センサー
と磁気媒体との間隙を近接させることが考えられるが、間隙を小さくすると微小な塵埃を
巻き込んだりして、磁気媒体や磁気センサーを損傷する危険性が大きくなる。
In order to increase the detection accuracy of a magnetic absolute encoder, a magnetic medium magnetization method has been studied. Patent Document 2 discloses that the medium surface is magnetized so as to have a single pole in the pitch region. Since the number of pitches where the N pole or S pole continues varies depending on the location, the leakage magnetic field strength varies depending on each pitch region. Further, since the magnetic field is magnetized in the entire pitch region, the magnetic field distribution is distorted due to interference with the adjacent non-magnetized pitch region, and a significant improvement in detection accuracy cannot be expected. Patent Document 3 discloses a measure for reducing the interference between the magnetization pitch region and the non-magnetization pitch region. A signal magnetized area is provided only in a part of the central part of the magnetized pitch area, and the other part of the magnetized pitch area is not magnetized to reduce interference with the adjacent magnetized pitch area. . However, in order to prevent the leakage magnetic field from the signal magnetization region provided in a part of the magnetization pitch region from interfering with the adjacent non-magnetization pitch region, it is necessary to reduce the magnetic field strength of the signal magnetization region. is there. In order to reduce the magnetic field strength, it is necessary to reduce the signal magnetization region in the magnetization pitch region or lower the magnetization strength. If the leakage magnetic field strength is lowered, the output of the magnetic sensor is lowered, and a significant improvement in detection accuracy cannot be expected. In order to increase the output of the magnetic sensor, it is conceivable that the gap between the magnetic sensor and the magnetic medium is close, but if the gap is made small, there is a high risk of damaging the magnetic medium or the magnetic sensor by enclosing fine dust. Become.

特開2000−352523号 公報 図2、図3JP, 2000-352523, A FIG. 2, FIG. 特開平02−201118号 公報 図6Japanese Patent Laid-Open No. 02-201118 FIG.

図7に特許文献3を参考にして着磁ピッチ領域の信号着磁領域幅を小さくしたときの、
着磁パターンを示す。全ての着磁ピッチ領域の信号着磁領域に同一磁界方向に着磁する方
法である。この着磁方法では各着磁ピッチ領域において磁気センサーからの信号出力が得
られるが、図7c)に示すように着磁ピッチ領域が連続する部分の磁気センサー出力は小
さくなり、無着磁ピッチ領域と隣接する着磁ピッチ領域の磁気センサー出力は大きくなる
。また1ケ以上連続する無着磁ピッチ領域は、両側の着磁ピッチ領域の影響により不要な
磁界が発生する。不要な磁界を磁気センサーが検知することで、図7d)の読出し符号化
パターンと図7a)の書込み符号パターンが異なると言う問題がある。これらは、連続し
た着磁ピッチ領域が見掛け上一つの磁石(着磁パターン)として働くためと考えられる。
When the width of the signal magnetization area of the magnetization pitch area is reduced with reference to Patent Document 3 in FIG.
The magnetization pattern is shown. In this method, the signal magnetization regions of all the magnetization pitch regions are magnetized in the same magnetic field direction. In this magnetization method, a signal output from the magnetic sensor can be obtained in each magnetization pitch region. However, as shown in FIG. 7c), the magnetic sensor output in the portion where the magnetization pitch region continues is small, and the non-magnetization pitch region. The magnetic sensor output in the adjacent magnetized pitch region becomes larger. Further, in the non-magnetized pitch region that continues for one or more, an unnecessary magnetic field is generated due to the influence of the magnetized pitch regions on both sides. When the magnetic sensor detects an unnecessary magnetic field, there is a problem that the read encoding pattern in FIG. 7d) differs from the write encoding pattern in FIG. 7a). These are considered because the continuous magnetization pitch region apparently works as one magnet (magnetization pattern).

図7c)で示した様な、連続した無着磁領域に発生する不要な磁界をなくす方策として
、図8b)に示すような着磁ピッチ領域の不連続部分において磁界方向を反転させる方法
がある。無着磁ピッチ領域に発生する不要な磁界は減少するが、着磁ピッチ領域が多数連
続すると見掛け上一つの磁石として働くため、隣接する無着磁ピッチ領域に反転磁界が発
生する。この反転磁界を磁気センサーが検知し、図8d)の読出し符号化パターンと図8
a)の書込み符号パターンが異なると言う問題が生じることがある。
As a measure for eliminating the unnecessary magnetic field generated in the continuous non-magnetized region as shown in FIG. 7c), there is a method of reversing the magnetic field direction in the discontinuous portion of the magnetized pitch region as shown in FIG. 8b). . Although an unnecessary magnetic field generated in the non-magnetized pitch region is reduced, when a large number of the magnetized pitch regions continue, it acts as one magnet, and thus a reversed magnetic field is generated in the adjacent non-magnetized pitch region. The reversal magnetic field is detected by the magnetic sensor, and the readout coding pattern of FIG.
There may be a problem that the writing code pattern of a) is different.

図7と図8を用い説明した問題を解決する方策として、図9に示すように隣接する全て
の着磁パターン領域の信号用着磁領域の磁界方向が逆になるように着磁する方法を考案し
た。各々の着磁ピッチ領域の信号着磁領域の磁界は、それぞれ信号着磁領域内で閉じた磁
場を形成する。そのため、図7と図8の様に連続着磁ピッチ領域が一つの大きな磁石とは
ならないので、無着磁ピッチ領域に現れる不要な磁界や反転磁界を大幅に減少させること
ができ、図9d)の読出し符号化パターンと図9a)の書込み符号パターンが同じとなり
、高い信号精度が得られた。
As a measure for solving the problem described with reference to FIGS. 7 and 8, a method of magnetizing the magnetic field directions of the signal magnetization regions in all adjacent magnetization pattern regions as shown in FIG. 9 is reversed. Devised. The magnetic field in the signal magnetization region of each magnetization pitch region forms a closed magnetic field in the signal magnetization region. Therefore, since the continuous magnetization pitch region does not become one large magnet as shown in FIGS. 7 and 8, the unnecessary magnetic field and the reversal magnetic field appearing in the non-magnetization pitch region can be greatly reduced. FIG. 9d) The read code pattern of FIG. 9 and the write code pattern of FIG. 9a) are the same, and high signal accuracy was obtained.

しかし、隣接する全ての着磁パターン領域の信号用着磁領域の磁界方向が逆になるよう
に着磁する方法でも、書込みの符号パターンによっては、高い信号精度が得られないこと
があった。 特に着磁パターン領域が多く連続した時に信号精度の低下が見られた。一例
として図10に、着磁ピッチ領域が6ヶ連続した状態を示す。図10a)に書込み符号パ
ターン、図10b)に着磁パターン、図10c)に磁気センサー出力、図10d)に符号
化信号波形、図10e)に読出し符号パターンを示す。図10c)に示すように、無着磁
ピッチ領域と隣接する着磁ピッチ領域の信号用着磁領域からの漏洩磁界がいびつになって
しまっている。漏洩磁界がいびつになることで、図10d)に示すように符号化処理後信
号波形のパルス幅が広くなってしまい、次のクロック領域に掛かり、誤検出する危険性が
ある。磁気センサー出力波形の歪程度やクロックパルス幅等によって、図10e)に示す
ように、本来の01111110の符号パターンとは異なり、11111111の間違っ
た符号パターンとなることが、非常に低い発生頻度であるが発生していた。図10では、
6連続の着磁ピッチ領域の例を示したが、着磁ピッチ領域の長さと信号用着磁領域の長さ
の比率関係によっては、1ケ以上連続する着磁ピッチ領域において同様の問題が発生する
ことが考えられる。
However, even with a method of magnetizing the magnetic field directions of the signal magnetization regions in all adjacent magnetization pattern regions to be reversed, high signal accuracy may not be obtained depending on the code pattern of writing. In particular, a decrease in signal accuracy was observed when a large number of magnetized pattern areas continued. As an example, FIG. 10 shows a state in which six magnetization pitch regions are continuous. FIG. 10a) shows the write code pattern, FIG. 10b) shows the magnetized pattern, FIG. 10c) shows the magnetic sensor output, FIG. 10d) shows the encoded signal waveform, and FIG. 10e) shows the read code pattern. As shown in FIG. 10c), the leakage magnetic field from the signal magnetization region in the magnetization pitch region adjacent to the non-magnetization pitch region becomes distorted. When the leakage magnetic field becomes distorted, the pulse width of the signal waveform after the encoding process is widened as shown in FIG. 10D), and there is a risk of erroneous detection in the next clock region. Depending on the degree of distortion of the magnetic sensor output waveform, the clock pulse width, etc., as shown in FIG. 10e), unlike the original code pattern of 01111110, an incorrect code pattern of 11111111 is a very low occurrence frequency. Had occurred. In FIG.
Although an example of six continuous magnetization pitch regions has been shown, the same problem occurs in one or more consecutive magnetization pitch regions depending on the ratio between the length of the magnetization pitch region and the length of the signal magnetization region. It is possible to do.

本発明は上記問題点を解決するためになされたものであって、連続した着磁ピッチ領域
の信号用着磁領域を個別に信号として取り出すことができ、無着磁ピッチ領域と隣接する
着磁ピッチ領域の磁界分布がいびつになることを防ぎ、高い信号精度が得られる磁気式ア
ブソリュートエンコーダーを提供することを目的とする。
The present invention has been made in order to solve the above-described problems, and it is possible to individually extract a signal magnetization region in a continuous magnetization pitch region as a signal, and to magnetize adjacent to the non-magnetization pitch region. An object of the present invention is to provide a magnetic absolute encoder capable of preventing the magnetic field distribution in the pitch region from becoming distorted and obtaining high signal accuracy.

本発明の磁気式アブソリュートエンコーダーは、ランダムに着磁されたアブソリュート
パターンを有する磁気媒体と、対向して相対的に移動する磁気抵抗効果型磁気センサーを
有する磁気式アブソリュートエンコーダーであって、移動方向に配されたアブソリュート
パターンは少なくとも一つ以上連続する着磁ピッチ領域と同一のピッチ領域幅で少なくと
も一つ以上連続する無着磁ピッチ領域からなり、着磁ピッチ領域は信号用着磁領域とピン
止め着磁領域を有し、ピン止め着磁領域は信号用着磁領域に隣接して両側に配され、隣り
合う信号用着磁領域の着磁方向は互いに逆方向であり、信号用着磁領域の着磁方向と信号
用着磁領域に隣接するピン止め着磁領域の着磁方向が逆方向であることが好ましい。
A magnetic absolute encoder according to the present invention is a magnetic absolute encoder having a magnetic medium having a randomly magnetized absolute pattern and a magnetoresistive effect type magnetic sensor that moves relative to each other in the moving direction. The arranged absolute pattern is composed of at least one non-magnetized pitch area that is continuous with at least one continuous magnetized pitch area and the same pitch area width. The magnetized pitch area is pinned to the signal magnetized area. There is a magnetized area, the pinned magnetized areas are arranged on both sides adjacent to the signal magnetized area, and the magnetization directions of the adjacent signal magnetized areas are opposite to each other. It is preferable that the magnetization direction of the pinned magnetization region adjacent to the signal magnetization region is opposite to the magnetization direction.

信号用着磁領域の両側に信号用着磁領域の着磁方向と逆の着磁方向に、ピン止め着磁を
行うことで、信号用着磁領域の両側が無着磁の状態に比べて、信号用着磁領域の磁界分布
を急峻にできる。特に、磁界分布の裾部分の広がりを防ぐことができる。着磁ピッチ領域
と無着磁ピッチ領域が隣接した場合、信号用着磁領域の磁界分布が無着磁ピッチ領域の影
響を受け、磁界分布の裾部分が無着磁ピッチ領域側に引っ張られた様ないびつな分布とな
る。このいびつな磁界分布は磁気抵抗効果型磁気センサーで電気信号に変えられる。磁気
センサーのアナログ出力をディジタル符号化すると、いびつな部分の分だけパルス幅が広
くなり次のクロック領域に掛かり、誤った検出結果を与えることになる。ピン止め着磁を
行うことで、信号用着磁領域の磁界分布がいびつになることを防ぐことができる。
By performing pinning magnetization in the opposite direction to the magnetization direction of the signal magnetization region on both sides of the signal magnetization region, both sides of the signal magnetization region are compared to the non-magnetized state. The magnetic field distribution in the signal magnetization region can be made steep. In particular, it is possible to prevent the bottom of the magnetic field distribution from spreading. When the magnetized pitch area and the non-magnetized pitch area are adjacent to each other, the magnetic field distribution in the signal magnetized area is affected by the non-magnetized pitch area, and the bottom of the magnetic field distribution is pulled toward the non-magnetized pitch area. The distribution is uneven. This distorted magnetic field distribution can be converted into an electric signal by a magnetoresistive effect type magnetic sensor. When the analog output of the magnetic sensor is digitally encoded, the pulse width is widened by the irregular portion and the next clock region is applied, giving an erroneous detection result. By performing pinning magnetization, it is possible to prevent the magnetic field distribution in the signal magnetization region from becoming distorted.

ピン止め着磁は信号用着磁領域の磁界分布がいびつになるのを防ぐためであるので、ピ
ン止め着磁領域で信号が発生してはいけないものである。ピン止め着磁領域の磁界を磁気
センサーが検知すると、検知された信号は信号用着磁領域から得られる信号に対してノイ
ズとなってしまう。そのため、ピン止め着磁領域の磁界強度は、磁気センサーでは検知さ
れない程度に小さく、信号用着磁領域の磁界分布がいびつにならない程度に大きい必要が
ある。
Since pinning magnetization is to prevent the magnetic field distribution in the signal magnetization region from becoming distorted, no signal should be generated in the pinning magnetization region. When the magnetic sensor detects the magnetic field in the pinned magnetization region, the detected signal becomes noise relative to the signal obtained from the signal magnetization region. For this reason, the magnetic field intensity in the pinned magnetized region needs to be small enough not to be detected by the magnetic sensor and so large that the magnetic field distribution in the signal magnetized region is not distorted.

ピン止め着磁領域の着磁方向は、隣接する信号用着磁領域の着磁方向と逆向きである必
要がある。同方向に着磁を行うと、信号用着磁領域の磁界分布がいびつになることを防ぐ
ことが出来ないだけでなく、信号用着磁領域の磁界分布の裾を更に広げることとなる。勿
論、ピン止め着磁領域同士も隣接するが、この場合も着磁方向は異なっていることが重要
である。例えば無着磁ピッチ領域と3つの着磁ピッチ領域、無着磁ピッチ領域のパターン
とし、着磁方向を矢印で表示すると、着磁されている部位と着磁方向は次の様になる。無
着磁領域、ピン止め着磁領域→、信号用着磁領域←、ピン止め着磁領域→、ピン止め着磁
領域←、信号用着磁領域→、ピン止め着磁領域←、ピン止め着磁領域→、信号用着磁領域
←、ピン止め着磁領域→、無着磁領域となる。これから判るように、隣り合う信号用着磁
領域は→←→と逆方向に着磁されており、隣接するピン止め着磁領域と信号用着磁領域、
ピン止め着磁領域同士も逆方向に着磁されることになる。このように着磁することで、連
続した着磁ピッチ領域の信号用着磁領域を個別に信号として取り出すことができる。また
、無着磁ピッチ領域に隣接する信号用着磁領域の磁界分布が歪になることを防ぐことがで
きる。
The magnetization direction of the pinned magnetization region needs to be opposite to the magnetization direction of the adjacent signal magnetization region. When magnetization is performed in the same direction, it is not only possible to prevent the magnetic field distribution in the signal magnetization region from becoming distorted, but also the base of the magnetic field distribution in the signal magnetization region is further expanded. Of course, the pinned magnetization regions are also adjacent to each other, but in this case, it is important that the magnetization directions are different. For example, when a pattern of a non-magnetized pitch region, three magnetized pitch regions, and a non-magnetized pitch region is used and the magnetization direction is indicated by an arrow, the magnetized portion and the magnetization direction are as follows. Non-magnetized area, pinned magnetized area →, signal magnetized area ←, pinned magnetized area →, pinned magnetized area ←, signal magnetized area →, pinned magnetized area ←, pinned and magnetized Magnetic region → Signal magnetization region ←, Pinned magnetization region → Non-magnetization region. As can be seen from this, adjacent signal magnetization regions are magnetized in the opposite direction of → ← →, and adjacent pinned magnetization regions and signal magnetization regions,
The pinned magnetized regions are also magnetized in the opposite directions. By magnetizing in this way, it is possible to individually extract signal magnetization regions in a continuous magnetization pitch region as signals. Further, it is possible to prevent the magnetic field distribution in the signal magnetization region adjacent to the non-magnetization pitch region from becoming distorted.

着磁ピッチ領域内の信号用着磁領域とピン止め着磁領域は、次の関係に有ることが好ま
しい。着磁ピッチ領域幅(着磁ピッチ領域の移動方向の長さに当たる)の中心と信号用着
磁領域幅(信号用着磁領域の移動方向の長さに当たる)の中心が一致し、着磁ピッチ領域
に隣接する二つのピン止め着磁幅(ピン止め着磁領域の移動方向の長さに当たる)が同じ
ことが好ましい。二つのピン止め着磁幅を同じとすることで、信号用着磁領域の磁界分布
の左右対称性が得やすくなる。着磁ピッチ領域幅の中心に対し信号用着磁ピッチ幅の中心
を左右何れかの方向にずらすことも可能であるが、左右のピン止め着磁幅が異なるので信
号用着磁領域の磁界分布の左右対称性が悪くなる可能性が有る。
It is preferable that the signal magnetization region and the pinning magnetization region in the magnetization pitch region have the following relationship. The center of the magnetization pitch area width (corresponding to the length of the magnetization pitch area in the moving direction) and the center of the signal magnetization area width (corresponding to the length of the signal magnetizing area in the movement direction) coincide with each other, and the magnetization pitch The two pinned magnetization widths adjacent to the region (corresponding to the length of the pinned magnetization region in the moving direction) are preferably the same. By making the two pinning magnetization widths the same, it becomes easy to obtain the left-right symmetry of the magnetic field distribution in the signal magnetization region. It is possible to shift the center of the signal magnetization pitch width in the left or right direction with respect to the center of the magnetization pitch area width, but the left and right pinned magnetization widths are different, so the magnetic field distribution in the signal magnetization area There is a possibility that the left-right symmetry of will deteriorate.

クロック信号は、移動方向に配されたアブソリュートパターンと平行にインクリメント
パターン着磁を行い、着磁パターンからの漏れ磁界をインクリメント用の磁気センサーで
クロック信号に変換することで得られる。磁気媒体にアブソリュートパターンとインクリ
メントパターンが一体に描かれ、一体となったアブソリュート用とインクリメント用の磁
気センサーで検出するので、アブソリュート信号とインクリメント信号に時間的な誤差が
生じることはない。そのため、磁気媒体と磁気センサーの相対移動速度が変化する様な状
況でも使用することができる。しかし、インクリメント信号を得るため、磁気媒体と磁気
センサーを大きくする必要が有る。磁気媒体と磁気センサーの相対移動速度が一定である
場合しか採用できないと言う制約はあるが、クロック信号を電気回路で作ることもできる
。電気回路で作ることで、磁気媒体や磁気センサーの大きさを小さく出来ると言う利点が
ある。
The clock signal is obtained by performing the increment pattern magnetization in parallel with the absolute pattern arranged in the moving direction, and converting the leakage magnetic field from the magnetization pattern into the clock signal by the increment magnetic sensor. Since the absolute pattern and the increment pattern are integrally drawn on the magnetic medium and are detected by the integrated absolute and increment magnetic sensors, there is no time error between the absolute signal and the increment signal. Therefore, it can be used even in a situation where the relative movement speed of the magnetic medium and the magnetic sensor changes. However, in order to obtain the increment signal, it is necessary to enlarge the magnetic medium and the magnetic sensor. Although there is a restriction that it can be adopted only when the relative moving speed of the magnetic medium and the magnetic sensor is constant, the clock signal can also be generated by an electric circuit. By using an electric circuit, there is an advantage that the size of the magnetic medium and the magnetic sensor can be reduced.

磁気媒体は、非磁性の基体に硬磁性材料を付加した例えば、アルミニウム製のドラムに
ハードフェライト粉末を塗布した磁気ドラムや、樹脂テープや非磁性金属にハードフェラ
イト粉末を塗布した磁気スケールがある。もしくは、非磁性の基体を用いない永久磁石そ
のものや、プラスチックやゴムに磁性粉末を混練して成型したものを用いることができる
Magnetic media include, for example, a magnetic drum in which a hard magnetic material is added to a non-magnetic substrate and a hard ferrite powder is applied to an aluminum drum, and a magnetic scale in which hard ferrite powder is applied to a resin tape or a non-magnetic metal. Alternatively, it is possible to use a permanent magnet itself that does not use a non-magnetic substrate, or a material obtained by kneading and molding a magnetic powder in plastic or rubber.

本発明の磁気式アブソリュートエンコーダーは、ランダムに着磁されたアブソリュート
パターンを有する磁気媒体と対向して、相対的に移動する磁気抵抗効果型磁気センサーを
有する磁気式アブソリュートエンコーダーであって、移動方向に配されたアブソリュート
パターンは少なくとも一つ以上連続する着磁ピッチ領域と同一のピッチ領域幅で少なくと
も一つ以上連続する無着磁ピッチ領域からなり、着磁ピッチ領域は信号用着磁領域とピン
止め着磁領域を有し、ピン止め着磁領域は信号用着磁領域と隣接して両側に配され、隣り
合う信号用着磁領域の着磁方向は互いに逆方向であり、無着磁ピッチ領域と隣接する着磁
ピッチ領域の少なくとも無着磁ピッチ領域側のピン止め着磁領域は着磁されており、信号
用着磁領域の着磁方向と信号用着磁領域に隣接するピン止め着磁領域の着磁方向が逆方向
であることが好ましい。
A magnetic absolute encoder of the present invention is a magnetic absolute encoder having a magnetoresistive effect type magnetic sensor that moves relative to a magnetic medium having a randomly magnetized absolute pattern and moves in a moving direction. The arranged absolute pattern is composed of at least one non-magnetized pitch area that is continuous with at least one continuous magnetized pitch area and the same pitch area width. The magnetized pitch area is pinned to the signal magnetized area. It has a magnetized region, the pinned magnetized region is arranged on both sides adjacent to the signal magnetized region, the magnetization directions of the adjacent signal magnetized regions are opposite to each other, and the non-magnetized pitch region The pinned magnetization area on at least the non-magnetized pitch area side of the adjacent magnetization pitch area is magnetized, and the magnetization direction of the signal magnetization area and the signal It is preferred magnetization direction of the pinned magnetization region adjacent to the magnetized zone are opposite.

ピン止め着磁領域は、無着磁ピッチ領域と隣接する着磁ピッチ領域の信号用着磁領域の
両側、もしくは無着磁ピッチ領域側のみとすることができる。少なくとも、無着磁ピッチ
領域と隣接する着磁ピッチ領域の信号用着磁領域の無着磁ピッチ領域側のみ、ピン止め着
磁を行うことで、信号用着磁領域の磁界分布がいびつになることを防ぐことができる。無
着磁ピッチ領域と隣接する着磁ピッチ領域の信号用着磁領域の無着磁ピッチ領域側の他に
、ピン止め着磁を何ヶ所行うかは、自由に決めることができる。
The pinned magnetization region can be on both sides of the signal magnetization region in the magnetization pitch region adjacent to the non-magnetization pitch region, or only on the non-magnetization pitch region side. At least the non-magnetized pitch area side of the non-magnetized pitch area adjacent to the non-magnetized pitch area is pinned and the magnetic field distribution in the signal magnetized area becomes distorted. Can be prevented. In addition to the non-magnetized pitch region side of the signal magnetized region of the magnetized pitch region adjacent to the non-magnetized pitch region, it is possible to freely determine the number of pinned magnetizations.

着磁は消磁された磁気媒体に磁気ヘッドを対向させて相対移動させ、磁気ヘッドのコイ
ルに流す電流の強弱と方向を変えて信号用着磁とピン止め着磁を連続して行うのが好まし
い。電流の値を変える場合、過渡現象で電流が所定の値になるまで時間が掛かることがあ
る。そのため、着磁に要する電流値の大きい信号用着磁と電流値の小さいピン止め着磁を
、例えば信号用着磁を行ったあとにピン止め着磁を行うと言うように、別個に行うことも
できる。着磁方法は着磁装置や着磁パターン等を考慮し当業者が適宜選択する事ができる
Magnetization is preferably carried out by continuously moving the magnetic head facing the demagnetized magnetic medium and changing the strength and direction of the current flowing through the coil of the magnetic head to continuously perform signal magnetization and pinning magnetization. . When changing the current value, it may take time until the current reaches a predetermined value due to a transient phenomenon. Therefore, signal magnetization with a large current value required for magnetization and pinning magnetization with a small current value should be performed separately, for example, pinning magnetization is performed after signal magnetization is performed. You can also. A magnetizing method can be appropriately selected by those skilled in the art in consideration of a magnetizing device, a magnetizing pattern, and the like.

本発明の磁気式アブソリュートエンコーダーは、着磁ピッチ領域の信号用着磁領域の移
動方向長さaとピン止め着磁領域移動方向長さbの比率b/aが、1/100以上2/3
以下であることが好ましい。
In the magnetic absolute encoder of the present invention, the ratio b / a of the moving direction length a of the magnetization region for signals in the magnetization pitch region to the moving direction length b of the pinned magnetization region is 1/100 or more and 2/3.
The following is preferable.

先にも述べたが、ピン止め着磁領域の磁界強度は、磁気センサーでは検知されない程度
に小さく、信号用着磁領域の磁界分布がいびつにならない程度に大きい必要がある。ピン
止め着磁領域の磁界強度を小さくする方法の一つとして、ピン止め着磁領域幅(ピン止め
着磁領域の移動方向の長さに当たる)を小さくすることである。
ピン止め着磁領域の移動方向長さbが信号着磁領域の移動方向長さaの2/3以上の場
合は、ピン止め着磁領域の漏洩磁界を磁気センサーが検知し、誤った検出結果を与えるこ
とがある。
またピン止め着磁によって得られる効果は、無着磁ピッチ領域に隣接する着磁ピッチ領
域の信号着磁領域からの漏洩磁界分布が無着磁ピッチ領域側に引っ張られたようないびつ
な分布となることを抑制することであり、ピン止め着磁領域の長さbが小さ過ぎると十分
な効果が得られない。したがって、ピン止め着磁領域の長さbは信号着磁領域の長さaの
1/100以上であることが好ましい。ピン止め着磁領域の長さbを大きくすると、信号
着磁領域から漏洩する磁界強度が小さくなるため、ピン止め着磁領域の長さbは信号着磁
領域の長さaは、b/a=2/3を上限とすることが好ましい。
As described above, the magnetic field strength of the pinned magnetization region needs to be small enough not to be detected by the magnetic sensor and so large that the magnetic field distribution in the signal magnetization region is not distorted. One method of reducing the magnetic field strength of the pinned magnetization region is to reduce the pinned magnetization region width (corresponding to the length of the pinned magnetization region in the moving direction).
When the movement direction length b of the pinned magnetization region is 2/3 or more of the movement direction length a of the signal magnetization region, the magnetic sensor detects a leakage magnetic field in the pinned magnetization region, and an erroneous detection result May give.
In addition, the effect obtained by pinning magnetization is that the distribution of the leakage magnetic field from the signal magnetization region of the magnetization pitch region adjacent to the non-magnetization pitch region is such that the leakage magnetic field distribution is not pulled toward the non-magnetization pitch region. If the length b of the pinned magnetized region is too small, a sufficient effect cannot be obtained. Therefore, the length b of the pinned magnetized region is preferably 1/100 or more of the length a of the signal magnetized region. When the length b of the pinned magnetization region is increased, the magnetic field strength leaked from the signal magnetization region is reduced. Therefore, the length b of the pinned magnetization region is b / a. It is preferable to set = 2/3 as the upper limit.

本発明の磁気式アブソリュートエンコーダーは、ランダムに着磁されたアブソリュート
パターンを有する磁気媒体と、対向して相対的に移動する磁気抵抗効果型磁気センサーを
有する磁気式アブソリュートエンコーダーであって、移動方向に配されたアブソリュート
パターンは少なくとも一つ以上連続する着磁ピッチ領域と同一のピッチ領域幅で少なくと
も一つ以上連続する無着磁ピッチ領域からなり、着磁ピッチ領域は信号用着磁領域とピン
止め着磁領域,無着磁領域を有し、ピン止め着磁領域は信号用着磁領域に隣接して両側に
配され、ピン止め着磁領域に隣接して無着磁領域を有し、隣り合う信号用着磁領域の着磁
方向は互いに逆方向であり、信号用着磁領域の着磁方向と信号用着磁領域に隣接するピン
止め着磁領域の着磁方向が逆方向であることが好ましい。
A magnetic absolute encoder according to the present invention is a magnetic absolute encoder having a magnetic medium having a randomly magnetized absolute pattern and a magnetoresistive effect type magnetic sensor that moves relative to each other in the moving direction. The arranged absolute pattern is composed of at least one non-magnetized pitch area that is continuous with at least one continuous magnetized pitch area and the same pitch area width. The magnetized pitch area is pinned to the signal magnetized area. It has a magnetized region and a non-magnetized region, and the pinned magnetized region is arranged on both sides adjacent to the signal magnetized region, and has a non-magnetized region adjacent to the pinned magnetized region. The magnetization directions of the matching signal magnetization areas are opposite to each other, and the magnetization directions of the signal magnetization areas and the pinned magnetization areas adjacent to the signal magnetization areas are opposite to each other. It is preferable that.

着磁ピッチ領域内の信号用着磁領域とピン止め着磁領域、無着磁領域は、次の関係に有
ることが好ましい。着磁ピッチ領域幅の中心と信号用着磁領域幅の中心が一致し、着磁ピ
ッチ領域に隣接する二つのピン止め着磁幅と、ピン止め着磁領域に隣接する無着磁領域幅
が同じことが好ましい。二つのピン止め着磁幅と無着磁領域幅を同じとすることで、信号
用着磁領域の磁界分布の左右対称性が得やすくなる。ピン止め着磁幅と無着磁領域幅が同
じ幅で有る必要はないものである。
It is preferable that the signal magnetized region, the pinned magnetized region, and the non-magnetized region in the magnetized pitch region have the following relationship. The center of the magnetization pitch area width and the center of the signal magnetization area width are the same, and the two pinned magnetization widths adjacent to the magnetization pitch area and the non-magnetization area width adjacent to the pinned magnetization area are The same is preferred. By making the two pinning magnetization widths and the non-magnetization area widths the same, it becomes easy to obtain left-right symmetry of the magnetic field distribution in the signal magnetization area. The pinned magnetization width and the non-magnetized area width need not be the same width.

本発明の磁気式アブソリュートエンコーダーは、ランダムに着磁されたアブソリュート
パターンを有する磁気媒体と、対向して相対的に移動する磁気抵抗効果型磁気センサーを
有する磁気式アブソリュートエンコーダーであって、移動方向に配されたアブソリュート
パターンは少なくとも一つ以上連続する着磁ピッチ領域と同一のピッチ領域幅で少なくと
も一つ以上連続する無着磁ピッチ領域からなり、着磁ピッチ領域は信号用着磁領域とピン
止め着磁領域,無着磁領域を有し、ピン止め着磁領域は信号用着磁領域と隣接して両側に
配され、ピン止め着磁了領域に隣接して無着磁領域を有し、隣り合う信号用着磁領域の着
磁方向は互いに逆方向であり、無着磁ピッチ領域と隣接する着磁ピッチ領域の少なくとも
無着磁ピッチ領域側のピン止め着磁領域は着磁されており、信号用着磁領域の着磁方向と
信号用着磁領域に隣接するピン止め着磁領域の着磁方向が逆方向であることが好ましい。
A magnetic absolute encoder according to the present invention is a magnetic absolute encoder having a magnetic medium having a randomly magnetized absolute pattern and a magnetoresistive effect type magnetic sensor that moves relative to each other in the moving direction. The arranged absolute pattern is composed of at least one non-magnetized pitch area that is continuous with at least one continuous magnetized pitch area and the same pitch area width. The magnetized pitch area is pinned to the signal magnetized area. It has a magnetized region and a non-magnetized region, the pinned magnetized region is arranged on both sides adjacent to the signal magnetized region, has a non-magnetized region adjacent to the pinned magnetized region, The magnetization directions of adjacent signal magnetization areas are opposite to each other, and pinning is performed at least on the non-magnetization pitch area side of the magnetization pitch area adjacent to the non-magnetization pitch area. Magnetized area is magnetized, it is preferable magnetization direction of the pinned magnetization region adjacent to the magnetized areas for magnetizing direction and signal of the signal magnetic areas are opposite.

本発明の磁気式アブソリュートエンコーダーは、着磁ピッチ領域の信号用着磁領域の移
動方向長さaとピン止め着磁領域の移動方向長さb,無着磁領域の移動方向長さcは、(
b+c)/aが1/100以上2/3以下であり、b/cが1以上5以下であることが好
ましい。
In the magnetic absolute encoder of the present invention, the movement direction length a of the signal magnetization region in the magnetization pitch region, the movement direction length b of the pinned magnetization region, and the movement direction length c of the non-magnetization region are: (
It is preferable that b + c) / a is 1/100 or more and 2/3 or less, and b / c is 1 or more and 5 or less.

ピン止め着磁によって得られる効果は、無着磁ピッチ領域に隣接する着磁ピッチ領域の
信号着磁領域からの漏洩磁界分布が無着磁ピッチ領域側に引っ張られたような歪な分布と
なることを抑制することであり、ピン止め着磁領域の長さbと無着磁領域の長さcが小さ
過ぎると十分な効果が得られない。したがって、ピン止め着磁領域の長さbと無着磁領域
の長さcの合計長は信号着磁領域の長さaの1/100以上であることが好ましい。ピン
止め着磁領域の長さbと無着磁領域の長さcの合計長を大きくすると、信号着磁領域から
漏洩する磁界強度が小さくなるため、ピン止め着磁領域の長さbと無着磁領域の長さcの
合計長は信号着磁領域の長さaと同じ(b+c)/a=1を上限とすることが好ましい。
The effect obtained by pinning magnetization is a distorted distribution in which the leakage magnetic field distribution from the signal magnetization region of the magnetization pitch region adjacent to the non-magnetization pitch region is pulled to the non-magnetization pitch region side. If the length b of the pinned magnetized region and the length c of the non-magnetized region are too small, a sufficient effect cannot be obtained. Therefore, the total length of the length b of the pinned magnetized region and the length c of the non-magnetized region is preferably 1/100 or more of the length a of the signal magnetized region. When the total length of the length b of the pinned magnetization region and the length c of the non-magnetized region is increased, the strength of the magnetic field leaking from the signal magnetized region is reduced. The total length c of the magnetized regions is preferably set to (b + c) / a = 1, which is the same as the length a of the signal magnetized region.

ピン止め着磁領域の移動方向長さbと無着磁領域の移動方向長さcの比率は、b/c=
1以上5以下であることが好ましい。b/cを1未満とすると、ピン止め着磁領域の長さ
bが小さくなり過ぎ、ピン止め効果が低下するためである。無着磁領域の移動方向長さc
をゼロとすると、先に述べた着磁ピッチ領域が信号用着磁領域とピン止め着磁領域で構成
されたものとなる。無着磁領域がピン止め着磁領域の磁界で見掛け上着磁されたようにな
らない程度まで、無着磁領域を小さくすることができる。実験の結果からb/cが5以下
であれば、無着磁領域を確保できる。
The ratio of the moving direction length b of the pinned magnetized region to the moving direction length c of the non-magnetized region is b / c =
It is preferable that it is 1 or more and 5 or less. This is because if b / c is less than 1, the length b of the pinned magnetized region becomes too small and the pinning effect is reduced. Movement direction length c of non-magnetized region
Is zero, the previously described magnetization pitch region is composed of a signal magnetization region and a pinned magnetization region. The non-magnetized region can be reduced to such an extent that the non-magnetized region is not apparently magnetized by the magnetic field of the pinned magnetized region. From the experimental results, if b / c is 5 or less, a non-magnetized region can be secured.

本発明の磁気式アブソリュートエンコーダーは、磁気式アブソリュートエンコーダー実
装時、磁気抵抗効果型磁気センサーの感磁部に加わる磁気媒体からの磁界強度が、信号用
着磁領域での磁界強度fとピン止め着磁領域での磁界強度gであり、磁界強度比g/fが
1/2以下であることが好ましい。
When the magnetic absolute encoder of the present invention is mounted, the magnetic field strength from the magnetic medium applied to the magnetic sensing portion of the magnetoresistive effect type magnetic sensor when the magnetic absolute encoder is mounted is the same as the magnetic field strength f in the signal magnetization region and the pinned attachment. It is the magnetic field strength g in the magnetic region, and the magnetic field strength ratio g / f is preferably ½ or less.

ピン止め着磁領域の幅を変えて磁界強度を変える方法の他に、着磁電流値を変える方法
も採用することができる。着磁電流値を変えることで、ピン止め領域の幅を大きく取るこ
とも可能となる。ピン止め着磁領域を小さな着磁電流で着磁を行うと発生する磁界も弱く
なり、磁気センサーの感磁部で検知できなくなるので、ノイズとなることはない。
In addition to the method of changing the magnetic field intensity by changing the width of the pinned magnetization region, a method of changing the magnetization current value can also be adopted. By changing the magnetization current value, it is possible to increase the width of the pinning region. When the pinned magnetized region is magnetized with a small magnetizing current, the generated magnetic field also becomes weak and cannot be detected by the magnetism sensitive part of the magnetic sensor, so there is no noise.

ピン止め着磁領域での磁界強度gが信号用着磁領域での磁界強度fの1/2以下であれ
ば磁気センサーがピン止め着磁領域の磁界によって発生する出力波形は、信号用着磁領域
で発生する出力波形よりも十分小さくなる。ピン止め着磁領域での出力波形よりも大きく
、信号用着磁領域での出力波形よりも小さい符号化比較電圧と比較してディジタル符号化
処理を行えば、所望の符号化信号を得ることができる。ピン止め着磁領域の磁界強度gが
大き過ぎると、符号化比較電圧の設定が困難となるだけではなく、誤検出の危険性が大き
くなる。
If the magnetic field strength g in the pinned magnetization region is ½ or less of the magnetic field strength f in the signal magnetization region, the output waveform generated by the magnetic sensor in the pinned magnetization region is the signal magnetization. It is sufficiently smaller than the output waveform generated in the region. If digital encoding processing is performed in comparison with an encoded comparison voltage that is larger than the output waveform in the pinned magnetization region and smaller than the output waveform in the signal magnetization region, a desired encoded signal can be obtained. it can. If the magnetic field strength g in the pinned magnetization region is too large, not only is it difficult to set the encoding comparison voltage, but the risk of erroneous detection increases.

隣り合う信号用着磁領域の着磁方向は互いに逆方向であり、信号用着磁領域の着磁方向
と信号用着磁領域に隣接して、逆方向に着磁されたピン止め着磁領域を設ける。ピン止め
着磁領域を設けることで、連続した着磁ピッチ領域の信号用着磁領域を個別に信号として
取り出すことができ、無着磁ピッチ領域と隣接する着磁ピッチ領域の磁界分布がいびつに
なることを防ぎ、高い信号精度が得られる磁気式アブソリュートエンコーダーが得られた
The magnetization directions of adjacent signal magnetization regions are opposite to each other, and the pinned magnetization region is magnetized in the opposite direction adjacent to the magnetization direction of the signal magnetization region and the signal magnetization region. Is provided. By providing a pinned magnetized region, the signal magnetized regions in the continuous magnetized pitch region can be taken out individually as signals, and the magnetic field distribution in the magnetized pitch region adjacent to the non-magnetized pitch region is distorted. Thus, a magnetic absolute encoder capable of obtaining high signal accuracy was obtained.

以下本発明を図面を参照しながら実施例に基づいて詳細に説明する。説明を判り易くす
るため、同一の部品、部位には同じ符号を用いている。
Hereinafter, the present invention will be described in detail based on examples with reference to the drawings. In order to make the explanation easy to understand, the same reference numerals are used for the same parts and parts.

図1に磁気媒体に着磁された着磁ピッチ領域と無着磁ピッチ領域を示す。
着磁は、Ф65.2mmの磁気ドラムの外周方向に512パルス(着磁ピッチ領域と無
着磁ピッチ領域の合計数)となるように、着磁ピッチ領域と無着磁ピッチ領域の媒体移動
方向長さは400μmとした。着磁は、リング型磁気ヘッドを磁気ドラムに接触させ、リ
ング型磁気ヘッドのコイルに相対移動距離に応じて所定方向に電流を流し信号用着磁領域
とピン止め着磁領域は連続して着磁を行った。図1は、磁気媒体の一部を示しており、着
磁ピッチ領域1は、着磁ピッチ領域1の移動方向長さの中心線を挟み対称に信号用着磁領
域3とピン止め着磁領域4を着磁した。信号用着磁領域3の長さは200μm、ピン止め
着磁領域4の長さは100μmとした。ピン止め着磁領域4の長さbと信号着磁領域3の
長さaとの比b/a=0.5である。符号5は、無着磁領域を示している。
FIG. 1 shows a magnetized pitch region and a non-magnetized pitch region magnetized on a magnetic medium.
Magnetization is 512 pulses (total number of magnetized pitch area and non-magnetized pitch area) in the outer circumferential direction of a magnetic drum having a diameter of 65.2 mm. The length was 400 μm. Magnetization is performed by bringing a ring-type magnetic head into contact with a magnetic drum and passing a current in a predetermined direction according to the relative movement distance to the coil of the ring-type magnetic head so that the signal magnetized region and the pinned magnetized region are continuously magnetized. Magnetized. FIG. 1 shows a part of a magnetic medium, and a magnetization pitch region 1 is symmetrical to a signal magnetization region 3 and a pinned magnetization region with a center line of the moving direction length of the magnetization pitch region 1 in between. 4 was magnetized. The length of the signal magnetized region 3 was 200 μm, and the length of the pinned magnetized region 4 was 100 μm. The ratio b / a = 0.5 of the length b of the pinned magnetization region 4 and the length a of the signal magnetization region 3 is 0.5. Reference numeral 5 denotes a non-magnetized region.

図2に、連続した6ヶの着磁ピッチ領域の出力電圧と符号化信号波形を示す。
図2の詳細説明の前に、図6を用いて、磁気媒体と磁気センサーについて述べる。
回転する磁気媒体10(本実施例では、磁気ドラムである)に所定の間隔を持って対向
して磁気センサー20を配している。本実施例では、磁気媒体10と磁気センサーの磁気
抵抗効型センサー素子22のとの間隔は250μmとした。磁気媒体10は、円周方向に
着磁ピッチ領域と無着磁ピッチ領域が混在する信号領域11と、並んで円周方向に比較領
域12を形成した。磁気センサー20は、複数の磁気センサー素子21からなり、磁気セ
ンサー素子21は、磁界により抵抗が変化する磁気抵抗効果型素子22と、磁気抵抗効果
型素子22に磁界が印加されていない時の抵抗値と同等の抵抗値を有する比較抵抗素子2
3が直列に接続されている。比較抵抗素子23の他端は接地、磁気抵抗効果型素子22の
他端は電源電圧Vccに接続している。磁気抵抗効果型素子22と比較抵抗素子23の接
続点24から中点電位を取り、この電圧が磁気センサー20の出力電圧となる。磁気抵抗
効果型素子22は磁気媒体の信号領域11と、比較抵抗素子23は比較領域12と対向し
ている。磁気抵抗効果素子22と比較抵抗素子23は、同一組成のパーマロイ(Ni−F
e合金)を用いた。比較抵抗素子23には磁界が印加されないので抵抗は一定であり、磁
気抵抗効果素子22の比較抵抗として働く。磁気抵抗効果型素子22が磁気媒体10の信
号領域11からの漏洩磁界を検知すると抵抗が変化し、中間電位が変化する。この中間電
位の変化を磁気媒体と磁気センサーの相対位置信号として検出する
FIG. 2 shows output voltages and encoded signal waveforms in six consecutive magnetization pitch regions.
Before the detailed description of FIG. 2, the magnetic medium and the magnetic sensor will be described with reference to FIG.
A magnetic sensor 20 is arranged facing the rotating magnetic medium 10 (in this embodiment, a magnetic drum) with a predetermined interval. In this embodiment, the distance between the magnetic medium 10 and the magnetoresistive sensor element 22 of the magnetic sensor is 250 μm. The magnetic medium 10 has a signal region 11 in which a magnetization pitch region and a non-magnetization pitch region are mixed in the circumferential direction, and a comparison region 12 in the circumferential direction. The magnetic sensor 20 includes a plurality of magnetic sensor elements 21, and the magnetic sensor element 21 includes a magnetoresistive element 22 whose resistance is changed by a magnetic field, and a resistance when no magnetic field is applied to the magnetoresistive element 22. Comparative resistance element 2 having a resistance value equivalent to the value
3 are connected in series. The other end of the comparison resistance element 23 is connected to the ground, and the other end of the magnetoresistive element 22 is connected to the power supply voltage Vcc. A midpoint potential is taken from the connection point 24 between the magnetoresistive effect element 22 and the comparative resistance element 23, and this voltage becomes the output voltage of the magnetic sensor 20. The magnetoresistive effect element 22 faces the signal region 11 of the magnetic medium, and the comparative resistance element 23 faces the comparison region 12. The magnetoresistive effect element 22 and the comparative resistance element 23 are permalloy (Ni-F) having the same composition.
e alloy). Since no magnetic field is applied to the comparison resistance element 23, the resistance is constant, and it acts as a comparison resistance for the magnetoresistance effect element 22. When the magnetoresistive element 22 detects a leakage magnetic field from the signal area 11 of the magnetic medium 10, the resistance changes and the intermediate potential changes. This change in intermediate potential is detected as a relative position signal between the magnetic medium and the magnetic sensor.

図2を示しながら、ピン止め着磁領域4を形成した時の、磁気センサーの出力電圧と符
号化信号波形を説明する。比較のため、ピン止め着磁を行なわず無着磁領域とした磁気媒
体の結果も示す。
図2a)に示すように、ピン止め着磁なしの磁気センサー出力電圧波形は、無着磁ピッ
チ領域と隣接する着磁ピッチ領域の出力電圧波形が、無着磁ピッチ領域側に広がっている
。ピン止め着磁有の磁気センサー出力電圧波形は、無着磁ピッチ領域と隣接する着磁ピッ
チ領域の出力電圧波形は無着磁ピッチ領域側に広がらず、全ての着磁ピッチ領域で出力さ
れる磁気センサー出力電圧波形の幅がほぼ同じとなった。図2b)に、ピン止め着磁なし
の出力電圧波形を符号化信号に変換した波形を示す。無着磁領域と接する着磁ピッチ領域
の信号幅が大きくなっている。図2c)に、ピン止め着磁有の符号化信号波形を示すが、
全ての信号幅は略同じで、無着磁領域に信号が掛かることは無かった。ピン止め着磁領域
を設けることで、確実なアブソリュート信号が得られた。
The output voltage and encoded signal waveform of the magnetic sensor when the pinned magnetized region 4 is formed will be described with reference to FIG. For comparison, the result of a magnetic medium in which a non-magnetized region is not used without pinning is also shown.
As shown in FIG. 2a), in the magnetic sensor output voltage waveform without pinning magnetization, the output voltage waveform in the magnetization pitch region adjacent to the non-magnetization pitch region is spread toward the non-magnetization pitch region. The output voltage waveform of the magnetic sensor with pinned magnetization does not spread to the non-magnetized pitch area side, but is output in all the magnetized pitch areas. The width of the magnetic sensor output voltage waveform is almost the same. FIG. 2b) shows a waveform obtained by converting an output voltage waveform without pinning magnetization into an encoded signal. The signal width of the magnetized pitch region in contact with the non-magnetized region is increased. FIG. 2c) shows an encoded signal waveform with pinned magnetization.
All signal widths were substantially the same, and no signal was applied to the non-magnetized region. By providing a pinned magnetized area, a reliable absolute signal was obtained.

本発明の第2の実施例を、図3を用いて説明する。
第2の実施例は第1の実施例と、信号用着磁領域3とピン止め着磁領域4の長さは同じ
であるが、ピン止め着磁領域を有するのが無着磁ピッチ領域に隣接する着磁ピッチ領域に
限っている点が異なっている。磁気センサーの出力電圧波形と符号化信号波形の図示は省
略するが、無着磁ピッチ領域に接する着磁ピッチ領域にのみピン止め着磁領域を設けても
、実施例1と同じ結果が得られた。また、無着磁ピッチ領域に接する着磁ピッチ領域のピ
ン止め着磁領域を、無着磁ピッチ領域側のみとしても、同様の結果が得られた。ピン止め
着磁を行わなかった領域は、着磁しない無着磁領域6である。
A second embodiment of the present invention will be described with reference to FIG.
The second embodiment is the same as the first embodiment in the length of the signal magnetized region 3 and the pinned magnetized region 4, but the pinned magnetized region has a non-magnetized pitch region. The difference is that it is limited to the adjacent magnetized pitch region. Although the output voltage waveform of the magnetic sensor and the encoded signal waveform are not shown, the same result as in the first embodiment can be obtained even if the pinned magnetization region is provided only in the magnetization pitch region in contact with the non-magnetization pitch region. It was. The same result was obtained even when the pinned magnetization region of the magnetization pitch region in contact with the non-magnetization pitch region was only the non-magnetization pitch region side. A region where no pinning magnetization is performed is a non-magnetized region 6 which is not magnetized.

本発明の第3の実施例を、図4を用いて説明する。
着磁ピッチ領域1の移動方向長さの中心線を挟み対称に信号用着磁領域3とピン止め着
磁領域4、無着磁領域7を形成した。信号用着磁領域3の長さは40μm、ピン止め着磁
領域4の長さは6μm、無着磁領域7の長さは4μmとした。ピン止め着磁領域4の長さ
bと無着磁領域7の長さcの合計(b+c)=10μmとした。信号着磁領域3の長さa
との比(b+c)/a=1/4である。ピン止め着磁領域4の長さbと無着磁領域7の長
さcの比、b/c=1.5である。実施例3の磁気媒体は、磁気ドラムではなく磁気スケ
ールを用いた。
A third embodiment of the present invention will be described with reference to FIG.
The signal magnetization region 3, the pinned magnetization region 4, and the non-magnetization region 7 are formed symmetrically across the center line of the moving direction length of the magnetization pitch region 1. The length of the signal magnetized region 3 is 40 μm, the length of the pinned magnetized region 4 is 6 μm, and the length of the non-magnetized region 7 is 4 μm. The sum of the length b of the pinned magnetized region 4 and the length c of the non-magnetized region 7 (b + c) = 10 μm. Length a of the signal magnetization region 3
(B + c) / a = 1/4. The ratio of the length b of the pinned magnetized region 4 to the length c of the non-magnetized region 7 is b / c = 1.5. The magnetic medium of Example 3 used a magnetic scale instead of a magnetic drum.

着磁ピッチ領域1の両端部に無着磁領域7を設けても、信号用着磁領域3の両端にピン
止め着磁領域4を設けることで、磁気センサーの出力電圧波形と符号化信号波形の図示は
省略するが、確実なアブソリュート信号が得られた。
Even if the non-magnetized region 7 is provided at both ends of the magnetized pitch region 1, the pinned magnetized region 4 is provided at both ends of the signal magnetized region 3, so that the output voltage waveform and the encoded signal waveform of the magnetic sensor are provided. Although an illustration of is omitted, a reliable absolute signal was obtained.

本発明の第4の実施例を、図5を用いて説明する。第4の実施例は第3の実施例と、信
号用着磁領域3とピン止め着磁領域4の長さ、無着磁領域7の長さは同じであるが、ピン
止め着磁領域4と無着磁領域7を有するのが無着磁ピッチ領域2に隣接する着磁ピッチ領
域1に限っている点が異なっている。磁気センサーの出力電圧波形と符号化信号波形の図
示は省略するが、無着磁ピッチ領域に接する着磁ピッチ領域にのみピン止め着磁領域と無
着磁領域を設けても、実施例1と同じ結果が得られた。また、無着磁ピッチ領域に接する
着磁ピッチ領域のピン止め着磁領域を、無着磁ピッチ領域側のみとしても、同様の結果が
得られた。
A fourth embodiment of the present invention will be described with reference to FIG. The fourth embodiment is the same as the third embodiment in that the signal magnetized region 3 and the pinned magnetized region 4 have the same length as the non-magnetized region 7, but the pinned magnetized region 4 has the same length. And the non-magnetized region 7 is limited to the magnetized pitch region 1 adjacent to the non-magnetized pitch region 2. Although illustration of the output voltage waveform and the encoded signal waveform of the magnetic sensor is omitted, even if the pinned magnetization region and the non-magnetization region are provided only in the magnetization pitch region in contact with the non-magnetization pitch region, The same result was obtained. The same result was obtained even when the pinned magnetization region of the magnetization pitch region in contact with the non-magnetization pitch region was only the non-magnetization pitch region side.

実施例1の着磁ピッチ領域で、信号用着磁領域3の長さaとピン止め着磁領域4の長さ
bの比率b/aを変えて着磁を行い、正確なアブソリュート信号が得られるb/aの比率
を検討した。b/aを1/200から1まで変化させ、アブソリュート信号にエラーが発
生するか否かで判定した。磁気ドラムの1万回転分つまり512パルス×1万回=512
万パルスで、1パルスでもエラーが出たものは使用できないとした。また、着磁のばらつ
きも考え、一つのb/aの比率で20個の磁気ドラムを供試した。詳細は省くが、b/a
の比率が1/120以上で0.75以下で有れば、エラーが発生しないことが確認できた
。b/aの比率が1/120未満では、ピン止め着磁領域が小さくなり過ぎて、ピン止め
効果が得られないためと考えられる。また、b/aが0.75を超えると、信号用着磁領
域が小さくなり過ぎ信号用着磁領域から漏洩する磁界が小さくなり、符号化比較電圧と同
程度の出力電圧となったためと考えられる。符号化比較電圧を下げれば、出力電圧が低い
ために発生するエラーは少なくなるが、ベースラインノイズを拾いエラーとなるため、符
号化比較電圧を変更することは余り好ましくない。余裕を見て、b/aは1/100以上
2/3以下と決めることができる。
In the magnetization pitch region of Example 1, magnetization is performed by changing the ratio b / a of the length a of the signal magnetization region 3 and the length b of the pinned magnetization region 4 to obtain an accurate absolute signal. The ratio of b / a obtained was examined. b / a was changed from 1/200 to 1, and it was determined whether or not an error occurred in the absolute signal. For 10,000 revolutions of the magnetic drum, that is, 512 pulses × 10,000 times = 512
It was assumed that 10,000 pulses with errors even in one pulse could not be used. Considering the variation in magnetization, 20 magnetic drums were tested at a ratio of 1 b / a. Details are omitted, but b / a
It was confirmed that no error occurred when the ratio of 1/120 or more and 0.75 or less. If the ratio of b / a is less than 1/120, the pinned magnetization region is too small, and the pinning effect cannot be obtained. Also, if b / a exceeds 0.75, the signal magnetization region becomes too small, and the magnetic field leaking from the signal magnetization region becomes small, resulting in an output voltage comparable to the encoded comparison voltage. It is done. If the encoding comparison voltage is lowered, errors that occur because the output voltage is low are reduced. However, since the baseline noise is picked up and an error occurs, it is not preferable to change the encoding comparison voltage. With a margin, b / a can be determined to be 1/100 or more and 2/3 or less.

実施例3の着磁ピッチ領域で、信号用着磁領域3の長さaとピン止め着磁領域4の長さ
b、無着磁領域7の長さcを変えて着磁を行い、正確なアブソリュート信号が得られる(
b+c)/aとb/cの比率を検討した。評価方法は、実施例5と同じである。(b+c
)/aを1/250から2まで変化させた。また、b/cの比率も0.2から8まで変化
させた。無着磁領域cの長さは、4μm一定とした。詳細は省くが、(b+c)/aの比
率が1/130以上で5/6以下で、b/cが0.8以上5.7以下であれば、エラーが
発生しないことが確認できた。余裕を見て、(b+c)/aは1/100以上1以下で、
b/cが1以上5以下と決める事ができる。
In the magnetization pitch region of Example 3, magnetization is performed by changing the length a of the signal magnetization region 3, the length b of the pinned magnetization region 4, and the length c of the non-magnetization region 7. A simple absolute signal (
The ratio of b + c) / a and b / c was examined. The evaluation method is the same as in Example 5. (B + c
) / A was changed from 1/250 to 2. Also, the ratio of b / c was changed from 0.2 to 8. The length of the non-magnetized region c was constant at 4 μm. Although details are omitted, it was confirmed that no error occurred when the ratio of (b + c) / a was 1/130 or more and 5/6 or less and b / c was 0.8 or more and 5.7 or less. Looking at the margin, (b + c) / a is 1/100 or more and 1 or less,
b / c can be determined to be 1 or more and 5 or less.

実施例5及び6で、信号用着磁領域3の長さaとピン止め着磁領域4の長さb、無着磁
領域7の長さcの最適な範囲を求めた。これら最適範囲で着磁された磁気媒体から漏洩す
る磁界強度を所定量離れた位置で測定した。実施例5の着磁ピッチ領域が600μmの場
合は250μm離れた位置で、実施例6の着磁ピッチ領域が60μmでは25μm離れた
位置で測定した。実施例5と6で最適範囲とした着磁パターンの、信号用着磁領域での磁
界強度fとピン止め着磁領域での磁界強度gを測定すると、磁界強度比g/fが1/2以
下の値であることが判った。
In Examples 5 and 6, the optimum ranges of the length a of the signal magnetized region 3, the length b of the pinned magnetized region 4, and the length c of the non-magnetized region 7 were obtained. The magnetic field strength leaking from the magnetic medium magnetized in these optimum ranges was measured at a position separated by a predetermined amount. When the magnetization pitch region of Example 5 was 600 μm, measurement was performed at a position 250 μm away, and when the magnetization pitch region of Example 6 was 60 μm, measurement was performed at a position 25 μm apart. When the magnetic field strength f in the signal magnetization region and the magnetic field strength g in the pinned magnetization region of the magnetization pattern set in the optimum range in Examples 5 and 6 were measured, the magnetic field strength ratio g / f was ½. The following values were found.

本発明の第1の実施例の着磁パターンを説明する図である。It is a figure explaining the magnetization pattern of the 1st Example of this invention. 本発明のピン止め着磁領域有無時の、磁気センサーの出力電圧と符号化信号波形を説明する図である。It is a figure explaining the output voltage and encoding signal waveform of a magnetic sensor at the time of the presence or absence of the pinning magnetization area | region of this invention. 本発明の第2の実施例の着磁パターンを説明する図である。It is a figure explaining the magnetization pattern of the 2nd Example of this invention. 本発明の第3の実施例の着磁パターンを説明する図である。It is a figure explaining the magnetization pattern of the 3rd Example of this invention. 本発明の第4の実施例の着磁パターンを説明する図である。It is a figure explaining the magnetization pattern of the 4th Example of this invention. 本発明の磁気式アブソリュートエンコーダーの、磁気媒体と磁気センサーを説明する図である。It is a figure explaining the magnetic medium and magnetic sensor of the magnetic-type absolute encoder of this invention. 従来の着磁ピッチ領域の信号着磁領域幅を小さくした、着磁パターンを説明する図である。It is a figure explaining the magnetization pattern which made the signal magnetization area | region width | variety of the conventional magnetization pitch area | region small. 従来の着磁ピッチ領域の不連続部分で磁界方向を反転させる、着磁パターンを説明する図である。It is a figure explaining the magnetization pattern which reverses a magnetic field direction in the discontinuous part of the conventional magnetization pitch area | region. 従来の隣接する全ての着磁パターン領域の信号用着磁領域の磁界方向が逆になる着磁パターンを説明する図である。It is a figure explaining the magnetization pattern from which the magnetic field direction of the signal magnetization area | region of all the adjacent magnetization pattern area | regions of the past is reverse. 従来の着磁ピッチ領域が6ヶ連続した時の、磁気センサー出力と符号化信号波形を説明する図である。It is a figure explaining a magnetic sensor output and an encoding signal waveform when the conventional magnetization pitch area | regions continue six.

符号の説明Explanation of symbols

1 着磁ピッチ領域、2 無着磁ピッチ領域、
3 信号用着磁領域、4 ピン止め着磁領域、
5,6,7 無着磁領域、10 磁気媒体、
11 信号領域、12 比較領域、
20 磁気センサー、21 磁気センサー素子、
22 磁気抵抗効果型素子、23 比較抵抗素子、
24 接続点。
1 magnetized pitch area, 2 non-magnetized pitch area,
3 Signal magnetization area, 4 Pinned magnetization area,
5, 6, 7 non-magnetized region, 10 magnetic medium,
11 signal area, 12 comparison area,
20 magnetic sensor, 21 magnetic sensor element,
22 magnetoresistive effect type elements, 23 comparative resistance elements,
24 connection point.

Claims (7)

ランダムに着磁されたアブソリュートパターンを有する磁気媒体と、対向して相対的に移動する磁気抵抗効果型磁気センサーを有する磁気式アブソリュートエンコーダーであって、
移動方向に配されたアブソリュートパターンは少なくとも一つ以上連続する着磁ピッチ領域と同一のピッチ領域幅で少なくとも一つ以上連続する無着磁ピッチ領域からなり、
着磁ピッチ領域は信号用着磁領域とピン止め着磁領域を有し、
ピン止め着磁領域は信号用着磁領域に隣接して両側に配され、
隣り合う信号用着磁領域の着磁方向は互いに逆方向であり、
信号用着磁領域の着磁方向と信号用着磁領域に隣接するピン止め着磁領域の着磁方向が逆方向であり、
着磁方向は移動方向に沿った方向であることを特徴とする磁気式アブソリュートエンコーダー。
A magnetic absolute encoder having a magnetic medium having an absolute pattern magnetized at random and a magnetoresistive effect type magnetic sensor that moves relative to each other.
The absolute pattern arranged in the moving direction is composed of at least one or more continuous non-magnetized pitch regions with the same pitch region width as the one or more continuous magnetized pitch regions,
The magnetization pitch area has a signal magnetization area and a pinned magnetization area,
The pinned magnetization area is located on both sides adjacent to the signal magnetization area,
The magnetization directions of adjacent signal magnetization regions are opposite to each other,
The magnetization direction of the signal magnetization region is opposite to the magnetization direction of the pinned magnetization region adjacent to the signal magnetization region ,
Magnetic absolute encoder characterized in that the magnetization direction is a direction along the moving direction .
ランダムに着磁されたアブソリュートパターンを有する磁気媒体と、対向して相対的に移動する磁気抵抗効果型磁気センサーを有する磁気式アブソリュートエンコーダーであって、
移動方向に配されたアブソリュートパターンは少なくとも一つ以上連続する着磁ピッチ領域と同一のピッチ領域幅で少なくとも一つ以上連続する無着磁ピッチ領域からなり、
着磁ピッチ領域は信号用着磁領域とピン止め着磁領域を有し、
ピン止め着磁領域は信号用着磁領域と隣接して両側に配され、
隣り合う信号用着磁領域の着磁方向は互いに逆方向であり、
無着磁ピッチ領域と隣接する着磁ピッチ領域の少なくとも無着磁ピッチ領域側のピン止め着磁領域は着磁されており、
信号用着磁領域の着磁方向と信号用着磁領域に隣接するピン止め着磁領域の着磁方向が逆方向であり、
着磁方向は移動方向に沿った方向であることを特徴とする磁気式アブソリュートエンコーダー。
A magnetic absolute encoder having a magnetic medium having an absolute pattern magnetized at random and a magnetoresistive effect type magnetic sensor that moves relative to each other.
The absolute pattern arranged in the moving direction is composed of at least one or more continuous non-magnetized pitch regions with the same pitch region width as the one or more continuous magnetized pitch regions,
The magnetization pitch area has a signal magnetization area and a pinned magnetization area,
The pinned magnetization area is located on both sides adjacent to the signal magnetization area,
The magnetization directions of adjacent signal magnetization regions are opposite to each other,
The pinned magnetized region on at least the non-magnetized pitch region side of the magnetized pitch region adjacent to the non-magnetized pitch region is magnetized,
The magnetization direction of the signal magnetization region is opposite to the magnetization direction of the pinned magnetization region adjacent to the signal magnetization region ,
Magnetic absolute encoder characterized in that the magnetization direction is a direction along the moving direction .
ランダムに着磁されたアブソリュートパターンを有する磁気媒体と、対向して相対的に移動する磁気抵抗効果型磁気センサーを有する磁気式アブソリュートエンコーダーであって、
移動方向に配されたアブソリュートパターンは少なくとも一つ以上連続する着磁ピッチ領域と同一のピッチ領域幅で少なくとも一つ以上連続する無着磁ピッチ領域からなり、
着磁ピッチ領域は信号用着磁領域とピン止め着磁領域,無着磁領域を有し、
ピン止め着磁領域は信号用着磁領域に隣接して両側に配され、ピン止め着磁領域に隣接して無着磁領域を有し、
隣り合う信号用着磁領域の着磁方向は互いに逆方向であり、
信号用着磁領域の着磁方向と信号用着磁領域に隣接するピン止め着磁領域の着磁方向が逆方向であることを特徴とする磁気式アブソリュートエンコーダー。
A magnetic absolute encoder having a magnetic medium having an absolute pattern magnetized at random and a magnetoresistive effect type magnetic sensor that moves relative to each other.
The absolute pattern arranged in the moving direction is composed of at least one or more continuous non-magnetized pitch regions with the same pitch region width as the one or more continuous magnetized pitch regions,
The magnetization pitch area has a signal magnetization area, a pinned magnetization area, and a non-magnetization area.
The pinned magnetization region is arranged on both sides adjacent to the signal magnetization region, and has a non-magnetized region adjacent to the pinned magnetization region,
The magnetization directions of adjacent signal magnetization regions are opposite to each other,
A magnetic absolute encoder characterized in that the magnetization direction of the signal magnetization region and the magnetization direction of the pinned magnetization region adjacent to the signal magnetization region are opposite to each other.
ランダムに着磁されたアブソリュートパターンを有する磁気媒体と、対向して相対的に移動する磁気抵抗効果型磁気センサーを有する磁気式アブソリュートエンコーダーであって、
移動方向に配されたアブソリュートパターンは少なくとも一つ以上連続する着磁ピッチ領域と同一のピッチ領域幅で少なくとも一つ以上連続する無着磁ピッチ領域からなり、
着磁ピッチ領域は信号用着磁領域とピン止め着磁領域,無着磁領域を有し、
ピン止め着磁領域は信号用着磁領域と隣接して両側に配され、ピン止め着磁了領域に隣接して無着磁領域を有し、
隣り合う信号用着磁領域の着磁方向は互いに逆方向であり、
無着磁ピッチ領域と隣接する着磁ピッチ領域の少なくとも無着磁ピッチ領域側のピン止め着磁領域は着磁されており、
信号用着磁領域の着磁方向と信号用着磁領域に隣接するピン止め着磁領域の着磁方向が逆方向であることを特徴とする磁気式アブソリュートエンコーダー。
A magnetic absolute encoder having a magnetic medium having an absolute pattern magnetized at random and a magnetoresistive effect type magnetic sensor that moves relative to each other.
The absolute pattern arranged in the moving direction is composed of at least one or more continuous non-magnetized pitch regions with the same pitch region width as the one or more continuous magnetized pitch regions,
The magnetization pitch area has a signal magnetization area, a pinned magnetization area, and a non-magnetization area.
The pinned magnetized region is arranged on both sides adjacent to the signal magnetized region, has a non-magnetized region adjacent to the pinned magnetized region,
The magnetization directions of adjacent signal magnetization regions are opposite to each other,
The pinned magnetized region on at least the non-magnetized pitch region side of the magnetized pitch region adjacent to the non-magnetized pitch region is magnetized,
A magnetic absolute encoder characterized in that the magnetization direction of the signal magnetization region and the magnetization direction of the pinned magnetization region adjacent to the signal magnetization region are opposite to each other.
着磁ピッチ領域の信号用着磁領域の移動方向長さaとピン止め着磁領域の移動方向長さbの比率b/aが、1/100以上2/3以下であることを特徴とする請求項1および2に記載の磁気式アブソリュートエンコーダー。   The ratio b / a between the movement direction length a of the signal magnetization region in the magnetization pitch region and the movement direction length b of the pinned magnetization region is 1/100 or more and 2/3 or less. The magnetic absolute encoder according to claim 1. 着磁ピッチ領域の信号用着磁領域の移動方向長さaとピン止め着磁領域の移動方向長さb,無着磁領域の移動方向長さcは、(b+c)/aが1/100以上2/3以下であり、b/cが1以上5以下であることを特徴とする請求項3および4に記載の磁気式アブソリュートエンコーダー。   The movement direction length a of the signal magnetization area in the magnetization pitch area, the movement direction length b of the pinned magnetization area, and the movement direction length c of the non-magnetization area are (b + c) / a being 1/100. 5. The magnetic absolute encoder according to claim 3, wherein the magnetic absolute encoder is 2/3 or less and b / c is 1 or more and 5 or less. 磁気式アブソリュートエンコーダー実装時、磁気抵抗効果型磁気センサーの感磁部に加わる磁気媒体からの磁界強度は、信号用着磁領域での磁界強度fとピン止め着磁領域での磁界強度gであり、磁界強度比g/fが1/2以下であることを特徴とする請求項1から4に記載の磁気式アブソリュートエンコーダー。
When the magnetic absolute encoder is mounted, the magnetic field strength from the magnetic medium applied to the magnetic sensing part of the magnetoresistive effect type magnetic sensor is the magnetic field strength f in the signal magnetization region and the magnetic field strength g in the pinned magnetization region. 5. The magnetic absolute encoder according to claim 1, wherein the magnetic field intensity ratio g / f is 1/2 or less.
JP2006018349A 2006-01-27 2006-01-27 Magnetic absolute encoder Expired - Fee Related JP4775705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006018349A JP4775705B2 (en) 2006-01-27 2006-01-27 Magnetic absolute encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006018349A JP4775705B2 (en) 2006-01-27 2006-01-27 Magnetic absolute encoder

Publications (2)

Publication Number Publication Date
JP2007198928A JP2007198928A (en) 2007-08-09
JP4775705B2 true JP4775705B2 (en) 2011-09-21

Family

ID=38453675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018349A Expired - Fee Related JP4775705B2 (en) 2006-01-27 2006-01-27 Magnetic absolute encoder

Country Status (1)

Country Link
JP (1) JP4775705B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015207275B4 (en) * 2015-04-22 2018-06-07 Robert Bosch Gmbh Measuring standard with signal-compensating markings

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3433606B2 (en) * 1996-03-29 2003-08-04 ソニー・プレシジョン・テクノロジー株式会社 Position detection device
JPH116744A (en) * 1997-06-16 1999-01-12 Sankyo Seiki Mfg Co Ltd Encoder device

Also Published As

Publication number Publication date
JP2007198928A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
TWI392856B (en) Origin position signal detector
CN101273247B (en) Magnetic sensor and magnetic sensing method
WO2011152266A1 (en) Magnetic encoder
JP2011525631A (en) Gear speed detection method and gear speed detection device
WO2021164632A1 (en) Linear displacement absolute position encoder
JP2018151181A (en) Magnetic position detecting device
JP6147637B2 (en) Position detection device
US20080218159A1 (en) Sensor System For Determining a Position or a Rotational Speed of an Object
US20150115940A1 (en) Position Measuring Device
JP4973869B2 (en) Moving body detection device
US7045997B2 (en) Magnetic detection apparatus
JP2008008699A (en) Rotation detecting apparatus
JP4775705B2 (en) Magnetic absolute encoder
JP6387788B2 (en) Magnetic medium for magnetic encoder, magnetic encoder, and method for manufacturing magnetic medium
US11512982B2 (en) Electromagnetic measuring system for detecting length and angle on the basis of the magnetoimpedance effect
JP2010008367A (en) Rotation detection device
JP2004109113A (en) Magnetism detection device
CN111492206B (en) Electromagnetic measuring system for distance or angle measurement based on the magnetoresistive effect
JP4506960B2 (en) Moving body position detection device
JP6127271B2 (en) Giant magnetoresistive element
JP2007256085A (en) Magnetic type absolute encoder
JP7064966B2 (en) Magnetic encoder
JP6041959B1 (en) Magnetic detector
JPH04160315A (en) Linear position sensor
JP2001099681A (en) Magnetic encoder apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

R150 Certificate of patent or registration of utility model

Ref document number: 4775705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees