JP2001099681A - Magnetic encoder apparatus - Google Patents

Magnetic encoder apparatus

Info

Publication number
JP2001099681A
JP2001099681A JP28254199A JP28254199A JP2001099681A JP 2001099681 A JP2001099681 A JP 2001099681A JP 28254199 A JP28254199 A JP 28254199A JP 28254199 A JP28254199 A JP 28254199A JP 2001099681 A JP2001099681 A JP 2001099681A
Authority
JP
Japan
Prior art keywords
signal
magnetized
output
magnetoresistive elements
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28254199A
Other languages
Japanese (ja)
Inventor
Shogo Momose
正吾 百瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Sankyo Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP28254199A priority Critical patent/JP2001099681A/en
Publication of JP2001099681A publication Critical patent/JP2001099681A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a magnetic encoder apparatus whose magnetization for Z-phase detection is contrived, in which a high-accuracy Z-phase signal can be obtained even when a magnetoresistance effect element is arranged so as to be brought close to, or moved away from, a magnetization body, in which a processing operation by an electric circuit is not required and which does not have a cause of an increase in costs. SOLUTION: A magnetization body is provided in such a way that it is composed of constant-wavelength signal parts 11 in which a repetitive magnetic signal at a set wavelength λ is magnetized and recorded and that it is composed of discontinuous magnetization parts 12 which are formed between the constantwavelength signal parts 11 and which are at a discontinuous interval of λ/2 with reference to the constant-wavelength signal parts 11. A detection part is provided in such a way that it comprises two magnetoresistance effect elements MR1, MR2 which are installed so as to be separated at an interval of, λ/2 with reference to the magnetization body and that it comprises an output terminal part which is connected across the magnetoresistance effect elements. Only signals which correspond to the discontinuous magnetization parts 12 are output from the output terminal part. The output signals are used as a Z-phase signal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回転検出器や直線
移動検出器等に用いることができる磁気式エンコーダ装
置に関するもので、特にZ相と称する原点位置検出に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic encoder device which can be used for a rotation detector, a linear movement detector, and the like, and more particularly to the detection of an origin position called a Z phase.

【0002】[0002]

【従来の技術】磁気式エンコーダ装置は、着磁体に一定
間隔で着磁を施し、この着磁部の磁気信号を、位相を9
0度ずらして配置された一対の磁気抵抗効果素子でA相
とB相の検出信号を得、これらA相とB相の検出信号を
処理してカウントすることによって被検出体の回転量あ
るいは移動量を検出し、また、A相とB相相互の位相の
ずれによって回転方向または移動方向を検出するように
なっている。
2. Description of the Related Art In a magnetic encoder device, a magnetized body is magnetized at a constant interval, and a magnetic signal of the magnetized portion is phase-shifted by nine.
A pair of magnetoresistive elements arranged at 0 degrees are used to obtain A-phase and B-phase detection signals, and the A-phase and B-phase detection signals are processed and counted, whereby the rotation amount or movement of the detection target is obtained. The amount of rotation is detected, and the direction of rotation or the direction of movement is detected based on the phase shift between the A phase and the B phase.

【0003】しかしながら、A相とB相の検出信号のみ
では、基準位置からの回転量や移動量がわからない。ま
た、当初、基準位置がわかっていたとしても、回転や移
動を繰り返しているうちに、検出誤差や検出の誤り等が
累積することによって、基準位置からの回転量や移動量
にも誤差が生じることになる。そこで、着磁体に、上記
一定間隔の着磁のほかに、原点検出用のいわゆるZ相信
号を得るための着磁を施し、これをZ相検出用の磁気抵
抗効果素子で検出するようになっている。
However, the rotation amount and the movement amount from the reference position cannot be determined only by the A-phase and B-phase detection signals. In addition, even if the reference position is known at first, errors occur in the rotation amount and the movement amount from the reference position due to accumulation of detection errors and detection errors while repeating rotation and movement. Will be. Therefore, in addition to the above-described magnetizing at a fixed interval, the magnetized body is magnetized to obtain a so-called Z-phase signal for detecting the origin, and this is detected by a Z-phase detecting magnetoresistive element. ing.

【0004】従来の磁気式エンコーダ装置は、例えば特
公平8−20271号公報に記載されているように、着
磁体に、A,B相検出用の第1のトラックとZ相検出用
の第2のトラックとを設け、A,B相検出用の着磁は一
定波長の繰り返し着磁からなり、Z相検出用の着磁は、
図4(b)に示すような所定位置への単独着磁部20か
らなる。着磁体は回転または直線移動し、この着磁体の
上記単独着磁部20の通過位置に対向させて磁気抵抗効
果素子等の磁気センサが配置され、この磁気センサの対
向位置を上記単独着磁部20が通過するとき、磁気セン
サからZ相検出信号を得ることができる。
[0004] As described in Japanese Patent Publication No. 8-20271, for example, a conventional magnetic encoder device includes a magnetized body having a first track for detecting A and B phases and a second track for detecting Z phases. The tracks for A and B phases are formed by repeated magnetization of a certain wavelength, and the magnetization for Z phase detection is
It comprises a single magnetized part 20 at a predetermined position as shown in FIG. The magnetized body rotates or moves linearly, and a magnetic sensor such as a magnetoresistive element is disposed so as to face a position where the magnetized body passes through the single magnetized section 20. The opposed position of the magnetic sensor is set to the single magnetized section. When 20 passes, a Z-phase detection signal can be obtained from the magnetic sensor.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
ようにZ相検出用の着磁を単独着磁とすると、次のよう
な問題点が生じる。すなわち、図4(b)に示すよう
に、単独着磁部20のN極からS極に向かう成分をX成
分とし、単独着磁部20のN極から出て単独着磁部20
のS極に戻る磁束を見ると、始めにN極から出て行くと
きはX成分に逆らう方向すなわち−Xの成分を持ち、次
にX成分を持ち、S極に向かうときは再び−Xの成分を
持つ。このような磁束を磁気抵抗効果素子で検出するも
のとすると、磁気抵抗効果素子は極性に無関係に磁気を
検出するので、図4(c)に示すように、大きな山の両
側に小さな山を従えた3つの山を有する検出信号とな
る。
However, if the magnetization for detecting the Z phase is solely magnetized as in the prior art, the following problems occur. That is, as shown in FIG. 4B, the component from the N pole to the S pole of the single magnetized portion 20 is defined as the X component, and the component exits from the N pole of the single magnetized portion 20 and becomes the single magnetized portion 20.
Looking at the magnetic flux returning to the S-pole, when first going out of the N-pole, it has a direction against the X component, that is, the component of -X, then has the X component, and when heading to the S-pole, it again has the -X Has components. Assuming that such a magnetic flux is detected by the magnetoresistive element, the magnetoresistive element detects magnetism irrespective of the polarity. Therefore, as shown in FIG. The detection signal has three peaks.

【0006】このような3つの山を有する検出信号から
Z相信号を得るには、大きな山の両側の、小さな山の信
号の影響を受けないようにしなければならない。小さな
山の信号は、原点検出位置からずれた位置より出力され
るため、その影響を受けると、正確なZ相信号を得るこ
とができないからである。そこで従来の一つの対処法と
して、磁気センサとしての磁気抵抗効果素子を着磁体か
ら遠ざけ、中央の強いX成分のみを検出し、両側の弱い
X成分は検出しないようにしたものがある。しかし、磁
気抵抗効果素子を着磁体から遠ざけて配置しなければな
らないという配置上の制約条件があるとともに、中央の
有効な出力範囲は狭いという難点がある。
In order to obtain a Z-phase signal from such a detection signal having three peaks, it is necessary to avoid the influence of signals of small peaks on both sides of the large peak. This is because the signal of the small peak is output from a position shifted from the origin detection position, and if it is affected, an accurate Z-phase signal cannot be obtained. Therefore, as a conventional countermeasure, there is a method in which a magnetoresistive element as a magnetic sensor is moved away from a magnetized body to detect only a strong X component at the center and not detect a weak X component on both sides. However, there are restrictions on the arrangement that the magnetoresistive element must be arranged away from the magnetized body, and there is a disadvantage that the effective output range at the center is narrow.

【0007】また、別の対処法として、図4(c)に示
すような磁気抵抗効果素子の検出信号を電気的に処理
し、中央の大きな信号一つだけに基づいたZ相信号を得
るようにしたものもある。しかし、電気回路的な処理を
する必要があるため、コストアップの要因となる難点が
ある。
As another countermeasure, a detection signal of a magnetoresistive element as shown in FIG. 4C is electrically processed to obtain a Z-phase signal based on only one large central signal. Some have been made. However, since it is necessary to perform processing like an electric circuit, there is a problem that causes an increase in cost.

【0008】本発明は以上のような従来技術の問題点を
解消するためになされたもので、Z相検出のための磁気
抵抗効果素子による検出信号に3つの山が生じないよう
にZ相検出用着磁を工夫し、磁気抵抗効果素子を着磁体
に近づけて配置しても、着磁体から遠ざけて配置して
も、精度のよいZ相信号を得ることができ、また、電気
回路的な処理が不要でコストアップの要因がない磁気式
エンコーダ装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and it has been proposed to detect a Z-phase so that three peaks are not generated in a detection signal by a magnetoresistive element for detecting a Z-phase. Even if the magnetizing effect is devised and the magnetoresistive effect element is arranged close to the magnetized body or arranged away from the magnetized body, an accurate Z-phase signal can be obtained. An object of the present invention is to provide a magnetic encoder device that does not require processing and does not cause a cost increase.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
一定波長λの繰り返し磁気信号を着磁記録した定波長信
号部と、この定波長信号部の間に形成され上記定波長信
号部に対して不連続なλ/2間隔の不連続着磁部とから
なる着磁体と、この着磁体に対してλ/2間隔離間させ
て設けられ直列接続された二つの磁気抵抗効果素子およ
びこの磁気抵抗効果素子の間に接続された出力端子部を
有する検出部とを具備してなり、上記出力端子部より不
連続着磁部に対応する信号のみが出力され、この出力信
号をZ相信号として用いることを特徴とする。
According to the first aspect of the present invention,
A constant wavelength signal section in which a repetitive magnetic signal of a constant wavelength λ is magnetized and recorded; and a discontinuous magnetization section formed between the constant wavelength signal section and discontinuous with respect to the constant wavelength signal section at an interval of λ / 2. Comprising: a magnetized body comprising: a magnetized body; two magnetoresistive elements connected in series separated by λ / 2 from the magnetized body and connected in series; and an output terminal connected between the magnetoresistive elements. Wherein only a signal corresponding to the discontinuous magnetized portion is output from the output terminal portion, and this output signal is used as a Z-phase signal.

【0010】請求項2記載の発明は、請求項1記載の発
明において、上記不連続着磁部は、一定着磁とし、また
は、着磁の大きさを異ならせることにより、着磁パター
ンをλ/2間隔のみ非繰り返し波形として一定波長λの
繰り返し磁気信号に対し異ならせ、出力端子部より不連
続着磁部に対応する信号が一つ形成されるようにしたこ
とを特徴とする。
According to a second aspect of the present invention, in the first aspect of the present invention, the discontinuous magnetized portion has a fixed magnetized shape or a different magnetized size to change the magnetized pattern to λ. The repetitive magnetic signal of the constant wavelength λ is made different as a non-repetitive waveform only at the interval of / 2, so that one signal corresponding to the discontinuous magnetized portion is formed from the output terminal portion.

【0011】請求項3記載の発明は、請求項2記載の発
明において、着磁体に対してλ/2間隔離間させて設け
られ直列接続されたもう一組の二つの磁気抵抗効果素子
を設け、2組の磁気抵抗効果素子を上記λ/2間隔以内
の範囲で離間させて設け、上記二つの磁気抵抗効果素子
の間に接続された出力端子部間の差動出力を取り出し、
この差動出力をZ相信号として用いるようにしたことを
特徴とする。
According to a third aspect of the present invention, in the second aspect of the present invention, another pair of two magnetoresistive elements provided in series with each other and separated by λ / 2 from the magnetized body are provided, Two sets of magnetoresistive elements are provided apart from each other within the range of λ / 2, and a differential output between output terminals connected between the two magnetoresistive elements is taken out.
The differential output is used as a Z-phase signal.

【0012】請求項4記載の発明は、請求項3記載の発
明において、二つの磁気抵抗効果素子およびこの二つの
磁気抵抗効果素子の間に接続された出力端子部を、一定
波長λの繰り返し磁気信号に対しては一定レベルの信号
が出力され、不連続着磁部に対しては一定レベルの信号
とは異なる一つの出力が形成されるように構成したこと
を特徴とする。
According to a fourth aspect of the present invention, in the third aspect of the invention, the two magnetoresistive elements and the output terminal connected between the two magnetoresistive elements are provided with a repetitive magnetic field having a constant wavelength λ. A signal of a constant level is output for the signal, and one output different from the signal of the constant level is formed for the discontinuous magnetized portion.

【0013】[0013]

【発明の実施の形態】以下、図面を参照しながら本発明
にかかる磁気式エンコーダ装置の実施の形態について説
明する。図1において、正弦波状の信号波形1は、図示
されない着磁体に着磁記録されたZ相検出用の着磁波形
の例を示す。信号波形1は、正弦波状の一定波長λで周
期が2aの繰り返し磁気信号を着磁記録した定波長信号
部11と、この定波長信号部11の間に形成された波長
λ/2すなわち間隔がaの、上記定波長信号部11に対
して不連続な不連続着磁部12とからなる。この不連続
着磁部12は、この例では一定レベルのまま変化のない
一定着磁部となっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a magnetic encoder device according to the present invention will be described with reference to the drawings. In FIG. 1, a sinusoidal signal waveform 1 is an example of a Z-phase detection magnetization waveform recorded on a magnetized body (not shown). The signal waveform 1 has a constant wavelength signal portion 11 in which a repetitive magnetic signal having a constant sinusoidal wavelength λ and a period of 2a is magnetized and recorded, and a wavelength λ / 2 formed between the constant wavelength signal portions 11, that is, an interval is set. a, a discontinuous magnetized portion 12 discontinuous with respect to the constant wavelength signal portion 11. In this example, the discontinuous magnetized portion 12 is a constant magnetized portion that remains unchanged at a constant level.

【0014】上記着磁体に対して、上記λ/2の間隔す
なわち間隔aと同一の間隔をおいて二つの磁気抵抗効果
素子MR1,MR2が対向配置されている。また、同様に
して、λ/2間隔すなわち間隔aをおいて二つの磁気抵
抗効果素子MR3,MR4が対向配置されている。これ
ら2組の磁気抵抗効果素子、すなわち1組の磁気抵抗効
果素子MR1,MR2と、他の1組の磁気抵抗効果素子
MR3,MR4相互の間隔bは、上記λ/2(=a)間
隔以内、より具体的には0≦b≦aの範囲となってい
て、この範囲で離間させて設けられ検出素子部が構成さ
れている。
Two magnetoresistive elements MR1 and MR2 are opposed to the magnetized body at an interval of λ / 2, that is, the same interval as the interval a. Similarly, two magnetoresistive elements MR3 and MR4 are arranged facing each other at an interval of λ / 2, that is, at an interval a. The interval b between these two sets of magnetoresistive elements, that is, one set of magnetoresistive elements MR1 and MR2 and the other set of magnetoresistive elements MR3 and MR4 is within the above-mentioned λ / 2 (= a) interval. More specifically, it is in the range of 0 ≦ b ≦ a, and the detection element section is provided separated in this range.

【0015】上記各磁気抵抗効果素子を用いた検出回路
の例を図3に示す。図3において、1組の磁気抵抗効果
素子MR1,MR2は直列接続され、この直列接続の一
端は電源Vccに、他端はアースに接続され、この磁気
抵抗効果素子MR1と磁気抵抗効果素子MR2との間に
出力端子が接続されている。他の1組の磁気抵抗効果素
子MR3と磁気抵抗効果素子MR4も直列接続され、こ
の直列接続の一端は電源Vccに、他端はアースに接続
され、この磁気抵抗効果素子MR3と磁気抵抗効果素子
MR4との間に出力端子が接続されている。これら4つ
の磁気抵抗効果素子はブリッジ接続され、磁気抵抗効果
素子MR1と磁気抵抗効果素子MR4とがブリッジの対
角にあり、磁気抵抗効果素子MR2と磁気抵抗効果素子
MR3とがブリッジの別の対角にある。
FIG. 3 shows an example of a detection circuit using each of the above magnetoresistive elements. In FIG. 3, a pair of magnetoresistive elements MR1 and MR2 are connected in series, one end of the series connection is connected to a power supply Vcc and the other end is connected to ground. The output terminal is connected between them. Another pair of magnetoresistive elements MR3 and MR4 are also connected in series. One end of the series connection is connected to the power supply Vcc and the other end is connected to ground. An output terminal is connected to the MR4. These four magnetoresistive elements are bridge-connected, the magnetoresistive elements MR1 and MR4 are at diagonals of the bridge, and the magnetoresistive elements MR2 and MR3 are connected to another pair of bridges. On the corner.

【0016】磁気抵抗効果素子MR1と磁気抵抗効果素
子MR2との間の出力端子はオペアンプ10のマイナス
入力端子に接続され、磁気抵抗効果素子MR3と磁気抵
抗効果素子MR4との間の出力端子はオペアンプ10の
プラス入力端子に接続されている。オペアンプ10は減
算回路8を構成していて、上記磁気抵抗効果素子MR
1、MR2間の出力V1と、磁気抵抗効果素子MR3、M
R4間の出力V2との差の信号Voutを出力するよう
になっている。
An output terminal between the magnetoresistive element MR1 and the magnetoresistive element MR2 is connected to a minus input terminal of the operational amplifier 10, and an output terminal between the magnetoresistive elements MR3 and MR4 is an operational amplifier. It is connected to 10 positive input terminals. The operational amplifier 10 constitutes a subtraction circuit 8, and the magnetoresistive element MR
1, the output V1 between MR2 and the magnetoresistive elements MR3, M
A signal Vout of a difference from the output V2 between R4 is output.

【0017】いま、図1において、着磁波形に対して検
出素子部が矢印で示すように右側に相対移動するものと
して、各磁気抵抗効果素子の検出出力を考える。図2に
は、4つの磁気抵抗効果素子MR1、MR2、MR3、
MR4の出力波形を示す。ここではまず、磁気抵抗効果
素子MR1と磁気抵抗効果素子MR2それぞれの検出出
力を考える。符号30は磁気抵抗効果素子MR1の検出
出力を、符号40は磁気抵抗効果素子MR2の検出出力
を示す。磁気抵抗効果素子MR1の検出出力30は、図1
に示すZ相検出用の着磁波形1に倣って、正弦波状の一
定波長λの定波長信号部11に対応する定波長検出信号
部31と、この定波長検出信号部31の間に形成され、
一定レベルのまま変化のない一定着磁部からなる前記不
連続着磁部12に対応する不連続検出信号部32とから
なる。同様にして、磁気抵抗効果素子MR2の検出出力
40は、上記着磁波形1に倣って、定波長信号部11に
対応する定波長検出信号部41と、この定波長検出信号
部41の間に形成され、前記不連続着磁部12に対応す
る不連続検出信号部42とからなる。上記検出出力3
0,40相互間には、磁気抵抗効果素子MR1、MR2
の配置位置のずれに対応したλ/2の位相ずれが生じて
いる。
In FIG. 1, the detection output of each magnetoresistive effect element is considered assuming that the detection element portion relatively moves to the right with respect to the magnetization waveform as shown by the arrow. FIG. 2 shows four magnetoresistive elements MR1, MR2, MR3,
3 shows an output waveform of MR4. First, the detection output of each of the magnetoresistive elements MR1 and MR2 will be considered. Reference numeral 30 indicates a detection output of the magnetoresistive element MR1, and reference numeral 40 indicates a detection output of the magnetoresistive element MR2. The detection output 30 of the magnetoresistive element MR1 is shown in FIG.
Is formed between the constant wavelength detection signal section 31 corresponding to the sinusoidal constant wavelength signal section 11 having the constant wavelength λ and the constant wavelength detection signal section 31 according to the magnetization waveform 1 for Z phase detection shown in FIG. ,
A discontinuous detection signal section 32 corresponding to the discontinuous magnetized section 12 which is a constant magnetized section which remains unchanged at a constant level. Similarly, the detection output 40 of the magnetoresistive effect element MR2 follows the magnetization waveform 1 between the constant wavelength detection signal section 41 corresponding to the constant wavelength signal section 11 and the constant wavelength detection signal section 41. And a discontinuous detection signal section 42 corresponding to the discontinuous magnetized section 12. The above detection output 3
0, 40, the magnetoresistive effect elements MR1, MR2
Has a phase shift of λ / 2 corresponding to the shift of the arrangement position.

【0018】着磁体に着磁記録されたZ相検出用の着磁
波形1は、前述のように、また図4(a)に示すよう
に、一定波長λの繰り返し磁気信号を着磁記録した定波
長信号部11と、この定波長信号部11の間に形成され
λ/2間隔の上記定波長信号部11に対して不連続な不
連続着磁部12とからなるため、各着磁部は互いに隣接
して形成されることになり、一つの着磁部のN極から出
てS極に至る磁束は、隣接する着磁部の磁束に押され
て、図4(b)に示すような回り込みがなく、一方向の
成分のみとなる。従って、個々の着磁部に対応する磁気
抵抗効果素子の検出出力の山は一つだけとなり、図4
(c)に示すような三つの山が生じることはない。
As described above and as shown in FIG. 4 (a), the magnetized waveform 1 for Z-phase detection magnetized and recorded on the magnetized body is obtained by magnetizing and recording a repetitive magnetic signal of a constant wavelength λ. Each of the magnetized portions is composed of a constant-wavelength signal portion 11 and a discontinuous magnetized portion 12 formed between the fixed-wavelength signal portion 11 and discontinuous with respect to the constant-wavelength signal portion 11 at an interval of λ / 2. Are formed adjacent to each other, and the magnetic flux coming out of the N pole of one magnetized portion and reaching the S pole is pushed by the magnetic flux of the adjacent magnetized portion, as shown in FIG. There is no wraparound and there is only one direction component. Therefore, there is only one peak of the detection output of the magnetoresistive element corresponding to each magnetized portion, and FIG.
There are no three peaks as shown in FIG.

【0019】また、図2に示すように、磁気抵抗効果素
子MR3、MR4の検出出力もZ相検出用の着磁波形1
に倣って上記検出出力30,40と同様の波形となる。
ただし、磁気抵抗効果素子MR3、MR4の配置位置に
対応した位相で検出信号が出力される。
As shown in FIG. 2, the detection outputs of the magnetoresistive elements MR3 and MR4 also have a magnetization waveform 1 for Z-phase detection.
The waveforms are the same as those of the detection outputs 30 and 40 following the above.
However, the detection signal is output at a phase corresponding to the arrangement position of the magnetoresistive elements MR3 and MR4.

【0020】図2(a)は、直列接続された磁気抵抗効
果素子MR1、MR2間の電圧V1と、磁気抵抗効果素
子MR3、MR4間の電圧V2を示す。図2(a)から
もわかるとおり、磁気抵抗効果素子MR1、MR2の検
出出力30、40中の定波長検出信号部31、41に対
応する部分は、それぞれ波形が重なった状態になってい
るため電圧V1は一定の電圧レベルで変化がなく、不連
続検出信号部32、42に対応する部分で、上記一定の
電圧レベルとは異なった一周期分の交番信号が形成され
る。同様に、磁気抵抗効果素子MR3、MR4間の電圧
V2も、不連続検出信号部に対応する部分で、一定の電
圧レベルとは異なった一周期分の交番信号が形成され
る。上記電圧V1、V2の上記交番信号相互間には、一
組の磁気抵抗効果素子MR1、MR2と他の一組の磁気
抵抗効果素子MR3、MR4相互の配置位置のずれに対
応した位相差が生じている。
FIG. 2A shows a voltage V1 between the magnetoresistive elements MR1 and MR2 connected in series and a voltage V2 between the magnetoresistive elements MR3 and MR4. As can be seen from FIG. 2A, the portions corresponding to the constant wavelength detection signal portions 31 and 41 in the detection outputs 30 and 40 of the magnetoresistive elements MR1 and MR2 are in a state where the waveforms overlap each other. The voltage V1 does not change at a constant voltage level, and an alternating signal for one cycle different from the constant voltage level is formed at a portion corresponding to the discontinuity detection signal units 32 and 42. Similarly, in the voltage V2 between the magnetoresistive elements MR3 and MR4, an alternating signal of one cycle different from a constant voltage level is formed in a portion corresponding to the discontinuity detection signal portion. Between the alternating signals of the voltages V1 and V2, a phase difference corresponding to the displacement of one set of magnetoresistive elements MR1 and MR2 and another set of magnetoresistive elements MR3 and MR4 occurs. ing.

【0021】上記のように、一組の磁気抵抗効果素子M
R1、MR2の間に接続された出力端子からは、不連続
着磁部12に対応する位置でのみ図2(a)に曲線V1
で示すような交番信号が出力されるため、この交番信号
から、例えば所定のしきい値を設定して矩形波を得るこ
とによってZ相信号を得ることができる。上記交番信号
は1周期分だけであり、図4(c)に示したような、大
きな山の両側に小さな山を従えた3つの山を有する検出
信号とはならないので、従来のように、磁気抵抗効果素
子を着磁体からやむを得ず遠ざける必要はなく、また、
磁気抵抗効果素子の検出信号を電気的に処理し、中央の
大きな信号一つだけに基づいたZ相信号を得るようにす
る必要もないから、着磁部分の検出が容易で信頼性が高
く、かつ、コストアップ要因がなく低コストの磁気式エ
ンコーダ装置を得ることができる。
As described above, a set of magnetoresistive elements M
From the output terminal connected between R1 and MR2, the curve V1 shown in FIG.
Since the alternating signal as shown by the symbol is output, a Z-phase signal can be obtained from the alternating signal by obtaining a rectangular wave by setting a predetermined threshold value, for example. The above-mentioned alternating signal is only for one cycle, and is not a detection signal having three peaks following a small peak on both sides of a large peak as shown in FIG. 4C. It is not necessary to move the resistance effect element away from the magnetized body,
Since it is not necessary to electrically process the detection signal of the magnetoresistive effect element and obtain a Z-phase signal based on only one large central signal, it is easy and reliable to detect the magnetized portion, In addition, it is possible to obtain a low-cost magnetic encoder device without causing any cost increase.

【0022】他の一組の磁気抵抗効果素子MR3、MR
4の間に接続された出力端子からも、不連続着磁部12
に対応する位置でのみ図2(a)に曲線V2で示すよう
な交番信号が出力されるため、上記の例と同様に、上記
交番信号から、例えば所定のしきい値を設定して矩形波
を得ることによってZ相信号を得ることができ、上記と
同様の効果を得ることができる。
Another set of magnetoresistive elements MR3, MR
4 from the output terminal connected between the
2 (a) is output only at the position corresponding to the square wave, so that, for example, a predetermined threshold value is set from the alternating signal as in the above-described example. , A Z-phase signal can be obtained, and the same effect as described above can be obtained.

【0023】このように、一組の磁気抵抗効果素子MR
1、MR2からも、また、他の一組の磁気抵抗効果素子
MR3、MR4からもZ相信号を得ることができるが、
図3に示す回路例のように、2組の磁気抵抗効果素子を
ブリッジ接続し、一組の磁気抵抗効果素子MR1、MR
2の間に接続された出力端子部と、他の一組の磁気抵抗
効果素子MR3、MR4の間に接続された出力端子部と
の差動出力、すなわち前記電圧V1、V2の差動出力
を、オペアンプ10を含む減算回路8から取り出し、こ
れをZ相信号として用いてもよい。
As described above, a set of magnetoresistive effect elements MR
1, a Z-phase signal can be obtained from MR2 and from another set of magnetoresistive elements MR3 and MR4.
As in the circuit example shown in FIG. 3, two sets of magnetoresistive elements are bridge-connected to form one set of magnetoresistive elements MR1 and MR1.
2 and an output terminal connected between another pair of magnetoresistive elements MR3 and MR4, that is, a differential output of the voltages V1 and V2. , May be taken out from the subtraction circuit 8 including the operational amplifier 10 and used as a Z-phase signal.

【0024】図2(b)に示す曲線は上記オペアンプ1
0の出力Voutを示す。電圧V1、V2相互間には位
相差があるため、この電圧V1、V2相互の差動出力
は、図2(b)に示すように、中央の高い山の両側に谷
を従えた形の信号になる。この中央の高い山は前記不連
続着磁部12の位置に対応する。この中央の高い山の部
分に対して適宜のしきい値を設定し矩形波を得ることに
よって、これをZ相信号として使用することができる。
上記出力Voutから得られる矩形波の幅は、一組の磁
気抵抗効果素子の相互間隔a、すなわちλ/2にほぼ近
い幅となる。
The curve shown in FIG.
0 indicates an output Vout. Since there is a phase difference between the voltages V1 and V2, the differential output between the voltages V1 and V2 becomes a signal having a valley on both sides of a central high mountain as shown in FIG. become. The high peak at the center corresponds to the position of the discontinuous magnetized portion 12. An appropriate threshold value is set for the central high mountain portion to obtain a square wave, which can be used as a Z-phase signal.
The width of the rectangular wave obtained from the output Vout is a width substantially close to the mutual interval a between a pair of magnetoresistive elements, that is, λ / 2.

【0025】上記オペアンプ10の出力Voutは、上
記のように中央の高い山とその両側の谷とを有する形に
なっており、図4(c)に示したような、大きな山の両
側に小さな山を従えた3つの山を有する検出信号とはな
らないので、従来のように、磁気抵抗効果素子を着磁体
からやむを得ず遠ざける必要はなく、また、磁気抵抗効
果素子の検出信号を電気的に処理し、中央の大きな信号
一つだけに基づいたZ相信号を得るようにする必要もな
い。従って、着磁部分の検出が容易で信頼性が高く、か
つ、コストアップ要因がなく低コストの磁気式エンコー
ダ装置を得ることができる。
The output Vout of the operational amplifier 10 has a high peak in the center and valleys on both sides as described above, and a small peak on both sides of a large peak as shown in FIG. Since the detection signal does not have three peaks following the peak, it is not necessary to move the magnetoresistive effect element away from the magnetized body unlike the related art, and the detection signal of the magnetoresistive effect element is electrically processed. It is not necessary to obtain a Z-phase signal based on only one large central signal. Therefore, it is possible to obtain a low-cost magnetic encoder device that can easily detect a magnetized portion, has high reliability, and has no cost increase factor.

【0026】さらに、図3に示すように、二組の磁気抵
抗効果素子から得られる電圧V1、V2相互の差動出力
VoutをZ相信号として使用するものにおいては、上
記電圧V1、V2よりも振幅の大きい差動出力Vout
が得られる。従って、磁気抵抗効果素子による着磁の検
出が容易であり、検出の信頼性を高めることができる。
別の面から見れば、磁気抵抗効果素子を着磁体から離し
て配置しても着磁部分を検出することが可能であるとい
うことにもなる。従って、着磁体と磁気抵抗効果素子と
の間に塵埃が溜まりにくく、この点からも信頼性の高い
磁気式エンコーダ装置を得ることができる。
Further, as shown in FIG. 3, in the case where the differential output Vout between the voltages V1 and V2 obtained from the two sets of magnetoresistive elements is used as the Z-phase signal, the voltage is higher than the voltages V1 and V2. Differential output Vout with large amplitude
Is obtained. Therefore, the detection of magnetization by the magnetoresistive effect element is easy, and the reliability of the detection can be improved.
From another viewpoint, it is possible to detect the magnetized portion even if the magnetoresistive effect element is arranged away from the magnetized body. Therefore, dust hardly accumulates between the magnetized body and the magnetoresistive effect element, and a highly reliable magnetic encoder device can be obtained in this respect as well.

【0027】一組の磁気抵抗効果素子MR1、MR2
と、他の一組の磁気抵抗効果素子MR3、MR4相互の
間隔をbとしたとき、この間隔bは、前述のように0≦
b≦aの範囲にあればよい。従って、一組の磁気抵抗効
果素子MR1、MR2と、他の一組の磁気抵抗効果素子
MR3、MR4の位置に差がなく、互いに重なり合って
いてもよい。このように、b=0のとき、上記差動出力
Voutは、上記電圧V1と電圧V2とを合わせた電
圧、すなわち、V1の最大2倍またはV2の最大2倍の
出力となる。
A set of magnetoresistive effect elements MR1, MR2
And the distance between the other set of magnetoresistive elements MR3 and MR4 is b, this distance b is 0 ≦
What is necessary is just to be in the range of b ≦ a. Accordingly, there is no difference between the positions of one set of magnetoresistive elements MR1 and MR2 and the other set of magnetoresistive elements MR3 and MR4, and they may overlap each other. As described above, when b = 0, the differential output Vout is a voltage obtained by combining the voltage V1 and the voltage V2, that is, an output that is at most twice V1 or at most twice V2.

【0028】着磁体の一定波長λの繰り返し磁気信号を
着磁記録した定波長信号部に対し、λ/2間隔の不連続
着磁部は、必ずしも一定着磁とする必要はなく、上記定
波長信号部に対して着磁の大きさが異なっていればよ
い。例えば、図1に示す波形中に2点差線の想像線12
Aのように、定波長信号部11から大きく突出させた着
磁波形としてこれを不連続着磁部としてもよい。このよ
うに着磁した着磁体に対向配置する磁気抵抗効果素子
は、前述の実施の形態と同様に一組または二組とする。
各組の磁気抵抗効果素子からは、上記不連続着磁部に対
応する位置でのみ図3に示すような検出信号が得られる
ので、これをZ相信号として用いることができる。
In contrast to a constant-wavelength signal portion in which a repetitive magnetic signal of a fixed wavelength λ of a magnetized body is recorded by magnetization, a discontinuous-magnetization portion at an interval of λ / 2 is not necessarily required to be a constant magnetization. It suffices that the magnitude of the magnetization differs for the signal portion. For example, in the waveform shown in FIG.
As shown in A, a discontinuous magnetized portion may be formed as a magnetized waveform protruding greatly from the constant wavelength signal portion 11. One or two sets of magnetoresistive elements are disposed opposite to the magnetized body in the same manner as in the above-described embodiment.
A detection signal as shown in FIG. 3 is obtained from each set of magnetoresistive elements only at positions corresponding to the discontinuous magnetized portions, and can be used as a Z-phase signal.

【0029】[0029]

【発明の効果】請求項1記載の発明は、一定波長λの繰
り返し磁気信号を着磁記録した定波長信号部と、この定
波長信号部の間に形成され上記定波長信号部に対して不
連続なλ/2間隔の不連続着磁部とからなる着磁体と、
この着磁体に対してλ/2間隔離間させて設けられ直列
接続された二つの磁気抵抗効果素子およびこの磁気抵抗
効果素子の間に接続された出力端子部を有する検出部と
を具備し、上記出力端子部より上記不連続着磁部に対応
する信号のみが出力され、この出力信号をZ相信号とし
て用いるようにしたものである。Z相信号を得るための
着磁は連続着磁であるため、これを検出するために直列
接続された二つの磁気抵抗効果素子間に接続された出力
端子部からの検出出力は、従来のように、大きな山の両
側に小さな山を従えた3つの山を有する検出信号とはな
らないので、磁気抵抗効果素子を着磁体からやむを得ず
遠ざける必要はなく、また、磁気抵抗効果素子の検出信
号を電気的に処理し、中央の大きな信号一つだけに基づ
いたZ相信号を得るようにする必要もない。そのため、
着磁部分の検出が容易で信頼性が高く、かつ、コストア
ップ要因がなく低コストの磁気式エンコーダ装置を得る
ことができる。
According to the first aspect of the present invention, there is provided a constant-wavelength signal section in which a repetitive magnetic signal of a constant wavelength λ is magnetized and recorded, and the constant-wavelength signal section formed between the fixed-wavelength signal section is incompatible with the constant-wavelength signal section. A magnetized body consisting of discontinuous magnetized portions at continuous λ / 2 intervals;
A detecting unit having two magnetoresistive elements connected in series and separated from each other by λ / 2 with respect to the magnetized body and having an output terminal connected between the magnetoresistive elements; Only a signal corresponding to the discontinuous magnetized portion is output from the output terminal portion, and this output signal is used as a Z-phase signal. Since the magnetization for obtaining the Z-phase signal is continuous magnetization, the detection output from the output terminal connected between the two magnetoresistive elements connected in series to detect this is the same as in the prior art. In addition, since the detection signal does not have three peaks followed by the small peaks on both sides of the large peak, it is not necessary to move the magnetoresistive effect element away from the magnetized body, and the detection signal of the magnetoresistive effect element is electrically transmitted. And it is not necessary to obtain a Z-phase signal based on only one large central signal. for that reason,
It is possible to obtain a low-cost magnetic encoder device which can easily detect the magnetized portion, has high reliability, and has no cost increase factor.

【0030】請求項2記載の発明は、請求項1記載の発
明において、不連続着磁部は、一定着磁とし、または、
着磁の大きさを異ならせることにより、着磁パターンを
λ/2間隔のみ非繰り返し波形として一定波長λの繰り
返し磁気信号に対し異ならせ、出力端子部より不連続着
磁部に対応する信号が一つ形成されるようにしたもので
あって、請求項1記載の発明と同様の効果を得ることが
できる。
According to a second aspect of the present invention, in the first aspect of the invention, the discontinuous magnetized portion has a constant magnetized state, or
By changing the magnitude of the magnetization, the magnetization pattern is made different from the repetition magnetic signal of a constant wavelength λ as a non-repetitive waveform only at intervals of λ / 2, and the signal corresponding to the discontinuous magnetization portion is output from the output terminal portion. Since one is formed, the same effect as the first aspect of the invention can be obtained.

【0031】請求項3記載の発明は、請求項1記載の発
明において、着磁体に対してλ/2間隔離間させて設け
られ直列接続されたもう一組の二つの磁気抵抗効果素子
を設け、2組の磁気抵抗効果素子を上記λ/2間隔以内
の範囲で離間させて設け、上記二つの磁気抵抗効果素子
の間に接続された出力端子部間の差動出力を取り出し、
この差動出力をZ相信号として用いるようにしたもので
ある。この発明によれば、二組の磁気抵抗効果素子から
得られる電圧よりも振幅の大きい上記差動出力が得られ
る。従って、磁気抵抗効果素子による着磁の検出が容易
であり、検出の信頼性を高めることができる。換言すれ
ば、磁気抵抗効果素子を着磁体から離して配置しても着
磁部分を検出することが可能であるということにもな
る。従って、着磁体と磁気抵抗効果素子との間に塵埃が
溜まりにくく、この点からも信頼性の高い磁気式エンコ
ーダ装置を得ることができる。
According to a third aspect of the present invention, in the first aspect of the present invention, another pair of two magnetoresistive effect elements provided in a manner separated by λ / 2 from the magnetized body and connected in series are provided. Two sets of magnetoresistive elements are provided apart from each other within the range of λ / 2, and a differential output between output terminals connected between the two magnetoresistive elements is taken out.
This differential output is used as a Z-phase signal. According to the present invention, the above differential output having an amplitude larger than the voltage obtained from the two magnetoresistive elements can be obtained. Therefore, the detection of magnetization by the magnetoresistive effect element is easy, and the reliability of the detection can be improved. In other words, the magnetized portion can be detected even if the magnetoresistive element is arranged away from the magnetized body. Therefore, dust hardly accumulates between the magnetized body and the magnetoresistive effect element, and a highly reliable magnetic encoder device can be obtained in this respect as well.

【0032】請求項4記載の発明は、請求項3記載の発
明において、二つの磁気抵抗効果素子およびこの二つの
磁気抵抗効果素子の間に接続された出力端子部を、一定
波長λの繰り返し磁気信号に対しては一定レベルの信号
が出力され、不連続着磁部に対しては一定レベルの信号
とは異なる一つの出力が形成されるように構成したもの
で、請求項4記載の発明によれば、請求項3記載の発明
と同様の効果を得ることができる。
According to a fourth aspect of the present invention, in the third aspect of the present invention, the two magnetoresistive elements and an output terminal connected between the two magnetoresistive elements are provided with a repetitive magnetic field having a constant wavelength λ. The invention according to claim 4, wherein a signal of a constant level is output for the signal, and one output different from the signal of the constant level is formed for the discontinuous magnetized portion. According to this, the same effect as that of the third aspect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる磁気式エンコーダ装置の実施の
形態を概念的に示す着磁波形図および磁気抵抗効果素子
配置図である。
FIG. 1 is a diagram showing a magnetization waveform and a layout diagram of a magnetoresistive effect element, conceptually showing an embodiment of a magnetic encoder device according to the present invention.

【図2】上記磁気抵抗効果素子から得られる検出信号の
例および二組の磁気抵抗効果素子から得られる信号の差
動出力の例を示す波形図である。
FIG. 2 is a waveform diagram showing an example of a detection signal obtained from the magnetoresistive element and an example of a differential output of signals obtained from two sets of magnetoresistive elements.

【図3】本発明に用いることができる検出回路の例を示
す回路図である。
FIG. 3 is a circuit diagram illustrating an example of a detection circuit that can be used in the present invention.

【図4】(a)は本発明にかかる着磁体の着磁パターン
の例を示す概念図、(b)は従来のZ相検出用着磁の例
を示す概念図、(c)は従来のZ相検出用着磁から得ら
れる磁気抵抗効果素子の検出信号の例を示す斜視図であ
る。
4A is a conceptual diagram showing an example of a magnetization pattern of a magnetized body according to the present invention, FIG. 4B is a conceptual diagram showing an example of a conventional magnetization for Z-phase detection, and FIG. It is a perspective view showing an example of a detection signal of a magnetoresistive effect element obtained from magnetization for Z phase detection.

【符号の説明】[Explanation of symbols]

11 定波長信号部 12 不連続着磁部 12A 不連続着磁部 MR1 磁気抵抗効果素子 MR2 磁気抵抗効果素子 MR3 磁気抵抗効果素子 MR4 磁気抵抗効果素子 11 constant wavelength signal section 12 discontinuous magnetized section 12A discontinuous magnetized section MR1 magnetoresistive element MR2 magnetoresistive element MR3 magnetoresistive element MR4 magnetoresistive element

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一定波長λの繰り返し磁気信号を着磁記
録した定波長信号部と、この定波長信号部の間に形成さ
れ上記定波長信号部に対して不連続なλ/2間隔の不連
続着磁部とからなる着磁体と、この着磁体に対してλ/
2間隔離間させて設けられ直列接続された二つの磁気抵
抗効果素子およびこの磁気抵抗効果素子の間に接続され
た出力端子部を有する検出部とを具備してなり、上記出
力端子部より上記不連続着磁部に対応する信号のみが出
力され、この出力信号をZ相信号として用いる磁気式エ
ンコーダ装置。
1. A constant-wavelength signal section in which a repetitive magnetic signal of a constant wavelength λ is magnetized and recorded, and a non-continuous λ / 2 interval formed between the constant-wavelength signal section and the discontinuous λ / 2 signal section. A magnetized body composed of a continuous magnetized portion and a λ /
Two magnetoresistive elements connected in series and separated from each other, and a detector having an output terminal connected between the magnetoresistive elements. A magnetic encoder device that outputs only a signal corresponding to a continuous magnetized portion and uses the output signal as a Z-phase signal.
【請求項2】 不連続着磁部は、一定着磁とし、また
は、着磁の大きさを異ならせることにより、着磁パター
ンをλ/2間隔のみ非繰り返し波形として一定波長λの
繰り返し磁気信号に対し異ならせ、出力端子部より不連
続着磁部に対応する信号が一つ形成されるようにした請
求項1記載の磁気式エンコーダ装置。
2. A repetitive magnetic signal of a constant wavelength λ, wherein the discontinuous magnetized portion is made to have a constant magnetization or by making the magnitude of the magnetization different so that the magnetization pattern has a non-repetitive waveform only at intervals of λ / 2. 2. The magnetic encoder device according to claim 1, wherein one signal corresponding to the discontinuous magnetized portion is formed from the output terminal portion.
【請求項3】 着磁体に対してλ/2間隔離間させて設
けられ直列接続されたもう一組の二つの磁気抵抗効果素
子を設け、2組の磁気抵抗効果素子を上記λ/2間隔以
内の範囲で離間させて設け、上記二つの磁気抵抗効果素
子の間に接続された出力端子部間の差動出力を取り出
し、この差動出力をZ相信号として用いるようにした請
求項2記載の磁気式エンコーダ装置。
3. A pair of two magnetoresistive elements, which are provided at an interval of λ / 2 from the magnetized body and are connected in series, and two sets of the magnetoresistive elements are arranged within the above λ / 2 interval. The differential output between the output terminals connected between the two magnetoresistive elements is taken out, and the differential output is used as a Z-phase signal. Magnetic encoder device.
【請求項4】 二つの磁気抵抗効果素子およびこの二つ
の磁気抵抗効果素子の間に接続された出力端子部を、一
定波長λの繰り返し磁気信号に対しては一定レベルの信
号が出力され、不連続着磁部に対しては一定レベルの信
号とは異なる一つの出力が形成されるように構成した請
求項3記載の磁気式エンコーダ装置。
4. A signal of a fixed level is output to two magnetoresistive elements and an output terminal connected between the two magnetoresistive elements, for a repetitive magnetic signal of a constant wavelength λ. 4. The magnetic encoder device according to claim 3, wherein one output different from a signal of a fixed level is formed for the continuous magnetized portion.
JP28254199A 1999-10-04 1999-10-04 Magnetic encoder apparatus Pending JP2001099681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28254199A JP2001099681A (en) 1999-10-04 1999-10-04 Magnetic encoder apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28254199A JP2001099681A (en) 1999-10-04 1999-10-04 Magnetic encoder apparatus

Publications (1)

Publication Number Publication Date
JP2001099681A true JP2001099681A (en) 2001-04-13

Family

ID=17653820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28254199A Pending JP2001099681A (en) 1999-10-04 1999-10-04 Magnetic encoder apparatus

Country Status (1)

Country Link
JP (1) JP2001099681A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517108A (en) * 2012-04-20 2015-06-18 ザ ティムケン カンパニー Magnetic encoder for generating an index signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517108A (en) * 2012-04-20 2015-06-18 ザ ティムケン カンパニー Magnetic encoder for generating an index signal

Similar Documents

Publication Publication Date Title
US5019776A (en) Magnetic position detection apparatus having two magnetic recording medium tracks with magnetoresistors arranged in a bridge circuit so as to eliminate even order harmonic distortion
US9719805B2 (en) Position detecting device
TWI392856B (en) Origin position signal detector
JPS62204118A (en) Magnetically detecting device for position or speed
JP4859903B2 (en) Moving direction detection device
US5680042A (en) Magnetoresistive sensor with reduced output signal jitter
JPH1151693A (en) Linear encoder
CN1236285C (en) Magnetic encoder
JP2018151181A (en) Magnetic position detecting device
JP5116751B2 (en) Magnetic detector
US20080218159A1 (en) Sensor System For Determining a Position or a Rotational Speed of an Object
US6459261B1 (en) Magnetic incremental motion detection system and method
JPH10170212A (en) Absolute value type magnetic displacement detecting device
CN108369113A (en) position detecting device
JP2001099681A (en) Magnetic encoder apparatus
KR20070054075A (en) Magnetic detection device
JP2722605B2 (en) Magnetic encoder
JP2810695B2 (en) Zero detection method for incremental magnetic encoder
JPH01301113A (en) Signal processing circuit for magneto-resistance element
JP7064966B2 (en) Magnetic encoder
JPH0618279A (en) Detecting apparatus for position
JP2001165700A (en) Magnetic position or moving speed detecting device
JPH0569446B2 (en)
JPH01136018A (en) Apparatus for magnetically detecting position and speed
JP2021135161A (en) Rotation detection device