JP4773260B2 - COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME - Google Patents

COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME Download PDF

Info

Publication number
JP4773260B2
JP4773260B2 JP2006120410A JP2006120410A JP4773260B2 JP 4773260 B2 JP4773260 B2 JP 4773260B2 JP 2006120410 A JP2006120410 A JP 2006120410A JP 2006120410 A JP2006120410 A JP 2006120410A JP 4773260 B2 JP4773260 B2 JP 4773260B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat
cooling
flow rate
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006120410A
Other languages
Japanese (ja)
Other versions
JP2007294655A (en
Inventor
憲治 荻路
義広 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006120410A priority Critical patent/JP4773260B2/en
Publication of JP2007294655A publication Critical patent/JP2007294655A/en
Application granted granted Critical
Publication of JP4773260B2 publication Critical patent/JP4773260B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子機器に搭載される高発熱体の冷却装置に係わり、冷媒の気化・凝縮の相変化を利用し、小型で効率の良い冷却装置及びこれを用いた電子機器を提供するものである。   The present invention relates to a cooling device for a high heating element mounted on an electronic device, and provides a small and efficient cooling device and an electronic device using the same, utilizing the phase change of vaporization / condensation of a refrigerant. is there.

近年の電子機器は、CPUに代表される半導体集積回路を備えている。この半導体集積回路は、処理の高速化に対応するために急速に高集積化を歩んでおり、それに伴う発熱量も増大してきている。しかるに、半導体集積回路は、所定の温度以上になると半導体が所有する性能を発揮できなくなるばかりか、破壊することさえ生じる。即ち、電子機器において半導体集積回路等で発生する発熱を冷却することは必須の要件である。   Recent electronic devices include a semiconductor integrated circuit represented by a CPU. This semiconductor integrated circuit is rapidly becoming highly integrated in order to cope with an increase in processing speed, and the amount of heat generated therewith is also increasing. However, a semiconductor integrated circuit not only fails to exhibit the performance possessed by the semiconductor when the temperature exceeds a predetermined temperature, but also breaks down. In other words, it is an indispensable requirement to cool the heat generated in a semiconductor integrated circuit or the like in an electronic device.

従来の電子機器における半導体集積回路等の冷却は、例えば、発熱体である半導体集積回路にヒートシンクを固定して、ファンによる通風で冷却する空冷方式が一般的に行われている。しかし、この空冷方式によると、電子機器の高発熱化に対応するために大形ファンの搭載が必要になるが、電子機器の高密度実装化に伴い半導体集積回路を搭載している周辺スペースの縮小もあって、高発熱体の冷却に対応する大形ファンの搭載が困難な状況にある。よって、搭載可能な小型ファンで冷却することになるが、この場合には、風量を増加するためファンを高速回転させるためファンの高速回転に伴う騒音が増大する問題がある。   For cooling a semiconductor integrated circuit or the like in a conventional electronic device, for example, an air cooling method is generally performed in which a heat sink is fixed to a semiconductor integrated circuit that is a heating element, and cooling is performed by ventilation with a fan. However, according to this air cooling method, it is necessary to install a large fan in order to cope with the high heat generation of electronic devices. However, as electronic devices are mounted with higher density, the peripheral space where semiconductor integrated circuits are mounted is increased. Due to the downsizing, it is difficult to mount a large fan that can cool a high heating element. Therefore, although cooling is performed with a small fan that can be mounted, in this case, since the fan is rotated at a high speed in order to increase the air volume, there is a problem that noise accompanying the high-speed rotation of the fan increases.

空冷方式における騒音の問題を解決するために、近年、新たな冷却方式として液体冷媒による水冷方式が注目されている。例えば特許文献1には、ノートPCのごとき薄型構造の電子機器に搭載する水冷方式の冷却装置の例が開示される。この冷却装置は、発熱部の熱を受熱ヘッダで冷媒液に受熱させる。受熱した冷媒液を配管で接続された流路を移送させ、表示装置の背面等の筐体壁面に設置され配管に接続された放熱ヘッダで冷媒液から放熱させる。放熱された冷媒液を、ポンプによって受熱ヘッダに循環させる構成である。水冷方式では、フレキシブルな配管等によって接続された受熱部と放熱部間で冷媒液を循環し熱移送して冷却するものであるから、受熱部と放熱部との配置関係を比較的自由に設定でき、放熱部の形状や大きさの制約も比較的少なく、冷却性能の向上が図りやすい。また、放熱部の冷却構造の工夫によってファンの小型化も可能であり、冷却時の騒音も軽減できる。   In order to solve the problem of noise in the air cooling system, in recent years, a water cooling system using a liquid refrigerant has attracted attention as a new cooling system. For example, Patent Document 1 discloses an example of a water-cooling type cooling device mounted on a thin electronic device such as a notebook PC. In this cooling device, the heat of the heat generating portion is received by the refrigerant liquid by the heat receiving header. The received refrigerant liquid is transferred through a flow path connected by a pipe, and is radiated from the refrigerant liquid by a heat radiation header installed on a wall of a housing such as the back surface of the display device and connected to the pipe. In this configuration, the radiated refrigerant liquid is circulated to the heat receiving header by a pump. In the water-cooling method, the refrigerant liquid is circulated between the heat receiving part and the heat radiating part connected by flexible piping, etc., and is cooled by heat transfer, so the arrangement relationship between the heat receiving part and the heat radiating part can be set relatively freely. In addition, there are relatively few restrictions on the shape and size of the heat radiating part, and it is easy to improve the cooling performance. Further, the fan can be downsized by devising the cooling structure of the heat radiating section, and noise during cooling can be reduced.

さらには、熱移送による水冷方式よりも冷却能力が優れる冷却方式として、冷媒の相変化(気化、凝縮)による潜熱を利用する方式(以下、潜熱方式)があり、特許文献2及び特許文献3には、これを用いた冷却装置が開示されている。この冷却装置は、半導体素子等の発熱を冷却板で受熱し、冷却板内の流路で冷媒を気化させて、その気化熱によって発熱体を冷却する。気化によって体積膨張した冷媒は、配管によってコンデンサ部に移送し、凝縮(液化)して放熱させる。液化した冷媒は、ポンプで配管を移送して冷却板に循環させる構成である。なお、特許文献2では、冷却板からコンデンサ部までの配管径を大きくして、配管内の圧力損失を緩和させている。また特許文献3では、冷媒ポンプを2台設けて、一方のポンプが故障しても他方のポンプにて冷媒の移送を継続できるようにしている。   Furthermore, as a cooling method having a cooling capacity superior to that of a water cooling method by heat transfer, there is a method using latent heat due to phase change (vaporization and condensation) of refrigerant (hereinafter, latent heat method). Discloses a cooling device using the same. This cooling device receives heat generated by a semiconductor element or the like by a cooling plate, vaporizes the refrigerant in a flow path in the cooling plate, and cools the heating element by the heat of vaporization. The refrigerant that has undergone volume expansion by vaporization is transferred to the condenser by piping, condensed (liquefied), and dissipated. The liquefied refrigerant is configured to be transferred to the cooling plate by piping through a pump. In Patent Document 2, the pipe diameter from the cooling plate to the condenser portion is increased to mitigate pressure loss in the pipe. In Patent Document 3, two refrigerant pumps are provided so that even if one of the pumps fails, the other pump can continue to transfer the refrigerant.

特開平7−142886号公報JP-A-7-142886 特開2005−5366号公報JP 2005-5366 A 特開2005−19907号公報Japanese Patent Laid-Open No. 2005-19907

上記した従来の冷却方式においては、以下の技術課題がある。
電子機器に搭載された発熱体の発熱量はさらに増大する状況にある。上記特許文献1に記載される熱移送による水冷方式は、その冷却性能を向上するためには、冷媒液の流量を増加させ冷媒への受熱量を増すと共に、放熱部を設置している筐体壁面を放熱性の良い大面積の金属材料等にて構成して、放熱量を大きくする必要がある。あるいは、放熱ヘッダを大形のラジエータとして構成し、またファンの追加により放熱ヘッダへの通風を促進する必要である。しかし、これらの対策は、空冷方式よりも構成部品が大形化・複雑化してコスト高になり、携帯用の電子機器の小型、軽量化を図る上で阻害要因となる。
The conventional cooling method described above has the following technical problems.
The amount of heat generated by the heating element mounted on the electronic device is still increasing. In order to improve the cooling performance of the water cooling method by heat transfer described in Patent Document 1, the casing in which the flow rate of the refrigerant liquid is increased to increase the amount of heat received by the refrigerant and the heat radiating unit is installed. It is necessary to increase the heat radiation amount by configuring the wall surface with a large area metal material having good heat dissipation. Alternatively, it is necessary to configure the heat radiating header as a large radiator and to promote ventilation to the heat radiating header by adding a fan. However, these measures increase the size and complexity of component parts compared to the air-cooling method and increase the cost, and are an obstacle to reducing the size and weight of portable electronic devices.

また、通常の水冷方式において、受熱部で受熱した後の冷媒の相状態は完全な液体状態ではなく、気液混合の二相流として移送されると想定される(気液混合の比率は、発熱体の熱量によって変化する)。この場合には、フレキシブルチューブ等のような気密性に劣る配管で構成した場合、気化した冷媒が外部に漏洩する恐れがある。これを防止するため水冷方式においては、大容量のポンプを搭載し大量の冷媒液を循環させ、受熱部での冷媒の気化を抑制するようにしている。これも、電子機器の小型、軽量化を阻害している。   Further, in a normal water cooling system, it is assumed that the phase state of the refrigerant after receiving heat at the heat receiving portion is not a complete liquid state but transferred as a two-phase flow of gas-liquid mixing (the ratio of gas-liquid mixing is Depending on the amount of heat of the heating element). In this case, when it is configured with piping having poor airtightness such as a flexible tube, the vaporized refrigerant may leak to the outside. In order to prevent this, in the water cooling system, a large-capacity pump is mounted to circulate a large amount of refrigerant liquid so as to suppress vaporization of the refrigerant in the heat receiving part. This also hinders downsizing and weight reduction of electronic devices.

一方、上記特許文献2、3に記載される冷媒の相変化を利用する潜熱方式は、気化熱により大きな吸熱量が期待でき、高温の発熱体の冷却に対し有効である。そのためには、通流する冷媒を完全に気化させねばならない。しかしながら、冷媒の気化による体積膨張と圧力増加のために、循環流路の構成部材には十分な機械強度と冷媒漏れに対する気密性が要求され、例えば特許文献2、3に記載されるような対策を要する。その結果、冷却装置の構造の簡素化を困難にしている。   On the other hand, the latent heat method using the phase change of the refrigerant described in Patent Documents 2 and 3 can be expected to have a large amount of heat absorption by the heat of vaporization, and is effective for cooling a high-temperature heating element. For this purpose, the flowing refrigerant must be completely vaporized. However, due to volume expansion and pressure increase due to vaporization of the refrigerant, the constituent members of the circulation flow path are required to have sufficient mechanical strength and airtightness against refrigerant leakage. For example, measures as described in Patent Documents 2 and 3 Cost. As a result, it is difficult to simplify the structure of the cooling device.

また、冷媒の気化による潜熱方式では、気化により得られる冷却温度は沸点温度が限界となる。よって、一般的な半導体の冷却仕様温度とされる60℃〜70℃を得る場合には、純水に代えて沸点の低い冷媒液を選定したり、沸点を下げるために循環流路内の圧力を大気圧以下に減圧して気化を促すなどの対策が必要となる。流路を減圧する場合にも、気密性を保つ構造が必要となる。   Further, in the latent heat system by vaporization of the refrigerant, the cooling temperature obtained by vaporization has a limit at the boiling point temperature. Therefore, when obtaining a general semiconductor cooling specification temperature of 60 ° C. to 70 ° C., a refrigerant liquid having a low boiling point is selected instead of pure water, or the pressure in the circulation channel is used to lower the boiling point. It is necessary to take measures such as reducing the pressure below atmospheric pressure to promote vaporization. Even when the flow path is decompressed, a structure that maintains airtightness is required.

ここで、上記潜熱方式において冷媒を完全に気化させ冷却効率を向上させるために、種々の工夫が必要である。なぜなら、発熱体から受熱した冷媒の相状態は、発熱体の発熱温度、冷媒の蒸発温度、冷媒の流量等による熱伝達状態により決定されるからである。すなわち、通流する冷媒は、受熱部との接触表面部分から熱伝達されて受熱し、冷媒の中央部分へと熱伝導するため、通流する冷媒の受熱部との接触表面部分とこれから離れた中央部分とでは受熱量が異なる。また熱伝達は、冷媒の流速によって異なるため、冷媒の気化量は流速に依存することになる。   Here, in order to completely evaporate the refrigerant and improve the cooling efficiency in the latent heat method, various devices are required. This is because the phase state of the refrigerant received from the heating element is determined by the heat transfer state depending on the heat generation temperature of the heating element, the evaporation temperature of the refrigerant, the flow rate of the refrigerant, and the like. That is, the flowing refrigerant receives heat from the contact surface portion with the heat receiving portion, receives heat, and conducts heat to the central portion of the refrigerant, so that it is separated from the contact surface portion with the heat receiving portion of the flowing refrigerant. The amount of heat received is different from the central part. In addition, since heat transfer varies depending on the flow rate of the refrigerant, the amount of vaporization of the refrigerant depends on the flow rate.

よって、潜熱方式においても、発熱体の温度上昇状況や冷媒の受熱状況によっては通流する冷媒が十分に気化されない場合があり、冷媒が気液混合の状態や、液体の状態で移送し、循環させることも想定して冷却装置を構成しておく必要がある。その対応として、気化した冷媒を凝縮して液化するコンデンサを水冷方式の放熱機能を有する放熱部として構成しておくことになる。ただしこの場合には、冷却性能が低下することになる。よって潜熱方式の冷却装置では、冷媒が完全に気化するように冷媒の流速などの冷却条件を考慮して設定することが肝要となる。   Therefore, even in the latent heat system, the flowing refrigerant may not be sufficiently vaporized depending on the temperature rise condition of the heating element and the heat receiving condition of the refrigerant, and the refrigerant is transferred in a gas-liquid mixed state or liquid state and circulated. It is necessary to configure the cooling device in consideration of the above. As a countermeasure, a condenser that condenses and liquefies the vaporized refrigerant is configured as a heat radiating unit having a water cooling type heat radiating function. However, in this case, the cooling performance is lowered. Therefore, in the latent heat type cooling device, it is important to set the cooling conditions in consideration of the cooling conditions such as the flow rate of the refrigerant so that the refrigerant is completely vaporized.

逆に発熱体の温度上昇が激しい状況においては、冷媒の気化が活発化されて、循環流路内部の体積膨張や圧力増加を吸収する構造が必要とされる。これが十分でないと、気化状態の冷媒がポンプに流入しポンプは冷媒を正常に循環できなくなる。その結果、受熱部において新たな冷媒が供給されず発熱体温度が上昇する問題を生じる。この対策として、特許文献3ではポンプを2台搭載するなどの冗長度を持たせることで対応しているが、根本的な解決法とは言い難い。これらの問題に対応するために、潜熱を利用した冷却装置では、ヒートパイプを多数個束ねて使用するなどが実用的な方法とされている。   On the other hand, in a situation where the temperature of the heating element is severely increased, vaporization of the refrigerant is activated, and a structure that absorbs volume expansion and pressure increase inside the circulation channel is required. If this is not sufficient, the vaporized refrigerant flows into the pump and the pump cannot circulate the refrigerant normally. As a result, a new refrigerant is not supplied in the heat receiving section, causing a problem that the temperature of the heating element rises. As a countermeasure against this, Japanese Patent Laid-Open No. 2004-228561 addresses this problem by providing redundancy such as mounting two pumps, but this is not a fundamental solution. In order to cope with these problems, in a cooling device using latent heat, it is considered to be a practical method such as bundling a plurality of heat pipes.

本発明は、上記した従来の冷却方式の課題に鑑み、発熱量の増加する電子機器においても、効率良く冷却を行うことのできる小型の冷却装置及びこれを用いた電子機器を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems of the conventional cooling method, and an object of the present invention is to provide a small cooling device that can efficiently perform cooling even in an electronic device that generates a large amount of heat, and an electronic device using the same. And

本発明では、電子機器に搭載された高発熱体を冷却するに際し、潜熱冷却方式と水冷冷却方式とを併用して冷却効率の良い冷却装置及びそれを用いた電子機器を実現する。   In the present invention, when cooling a high heating element mounted on an electronic device, a cooling device with good cooling efficiency and an electronic device using the same are realized by using both a latent heat cooling method and a water cooling method.

本発明の冷却装置は、冷却対象となる発熱体の発生する熱を冷媒に受熱する受熱部と、冷媒の受熱した熱を外部に放熱する放熱部と、受熱部と放熱部との間で冷媒を循環させる配管と、冷媒を貯留するタンクと、冷媒を駆動するポンプと、ポンプの駆動する冷媒の流量を制御する制御部とを備える。上記受熱部は、冷媒が気化する際の気化熱を利用する潜熱冷却モードと、冷媒が液体状態で熱移送する水冷冷却モードの2つの冷却モードが可能であり、上記放熱部は、受熱部で気化した冷媒を凝縮して液化する放熱機能と、受熱部で受熱した液体冷媒から放熱する放熱機能とを有する。上記制御部は、ポンプの駆動する冷媒の流量を制御することによって、受熱部における冷却モードを切り替える構成とする。   The cooling device of the present invention includes a heat receiving portion that receives heat generated by a heating element to be cooled by a refrigerant, a heat radiating portion that radiates heat received by the refrigerant to the outside, and a refrigerant between the heat receiving portion and the heat radiating portion. A pipe for circulating the refrigerant, a tank for storing the refrigerant, a pump for driving the refrigerant, and a control unit for controlling the flow rate of the refrigerant driven by the pump. The heat receiving part can be in two cooling modes, a latent heat cooling mode that uses the heat of vaporization when the refrigerant is vaporized, and a water cooling mode in which the refrigerant transfers heat in a liquid state, and the heat radiating part is a heat receiving part. It has a heat radiating function for condensing and liquefying the vaporized refrigerant, and a heat radiating function for radiating heat from the liquid refrigerant received by the heat receiving part. The said control part sets it as the structure which switches the cooling mode in a heat receiving part by controlling the flow volume of the refrigerant | coolant which a pump drives.

その際前記制御部は、前記ポンプの駆動する冷媒の流量を小さくすることによって、前記冷却モードを前記潜熱冷却モードに切り替え、冷媒の流量を大きくすることによって、前記水冷冷却モードに切り替える。   At that time, the control unit switches the cooling mode to the latent heat cooling mode by reducing the flow rate of the refrigerant driven by the pump, and switches to the water cooling cooling mode by increasing the flow rate of the refrigerant.

さらに本発明では、前記配管のうち、受熱部から放熱部へ向かう循環流路は少なくとも密閉性の高い金属配管とする。前記タンクは、受熱部から放熱部へ向かう循環流路の冷媒通流容積よりも大きい容積を有し、冷媒とともに空気層を貯留し、冷媒の気化による循環流路内の圧力増加を空気層により緩和する構造とする。   Furthermore, in the present invention, among the pipes, the circulation flow path from the heat receiving portion to the heat radiating portion is at least a metal pipe having high sealing performance. The tank has a volume larger than the refrigerant flow volume of the circulation channel from the heat receiving unit to the heat dissipation unit, stores an air layer together with the refrigerant, and increases the pressure in the circulation channel due to the vaporization of the refrigerant by the air layer. A structure that relaxes.

さらに本発明では、前記ポンプとして2台のポンプを有し、第1のポンプは、受熱部において潜熱冷却モードにて動作させるための流量の冷媒を駆動し、第2のポンプは、受熱部において水冷冷却モードにて動作させるための流量の冷媒を駆動する。前記制御部は、第1のポンプ及び第2のポンプのいずれか一方を駆動させ、あるいは両方同時に駆動させる。   Further, in the present invention, the pump has two pumps, the first pump drives a refrigerant having a flow rate for operating in the latent heat cooling mode in the heat receiving portion, and the second pump is in the heat receiving portion. A refrigerant having a flow rate for operating in the water cooling mode is driven. The control unit drives either one of the first pump and the second pump, or drives both at the same time.

本発明の電子機器は、内蔵する発熱体の発生する熱を冷媒に受熱する受熱部と、冷媒の受熱した熱を外部に放熱する放熱部と、受熱部と上記放熱部との間で上記冷媒を循環させる配管と、冷媒を貯留するタンクと、冷媒を駆動するポンプと、ポンプの駆動する冷媒の流量を制御する制御部と、発熱体の温度、あるいは受熱部における冷媒の温度を検出する温度検出部とを備える。上記受熱部は、冷媒が気化する際の気化熱を利用する潜熱冷却モードと、冷媒が液体状態で熱移送する水冷冷却モードの2つの冷却モードが可能であり、上記放熱部は、受熱部で気化した冷媒を凝縮して液化する放熱機能と、受熱部で受熱した液体冷媒から放熱する放熱機能とを有する。上記制御部は、上記温度検出部の検出した温度に基づいてポンプの駆動する冷媒の流量を制御することによって、受熱部における冷却モードを切り替える。   The electronic device according to the present invention includes a heat receiving unit that receives heat generated by a built-in heating element by a refrigerant, a heat radiating unit that radiates heat received by the refrigerant to the outside, and the refrigerant between the heat receiving unit and the heat radiating unit. A pipe for circulating the refrigerant, a tank for storing the refrigerant, a pump for driving the refrigerant, a control unit for controlling the flow rate of the refrigerant driven by the pump, and a temperature for detecting the temperature of the heating element or the temperature of the refrigerant in the heat receiving unit A detector. The heat receiving part can be in two cooling modes, a latent heat cooling mode that uses the heat of vaporization when the refrigerant is vaporized, and a water cooling mode in which the refrigerant transfers heat in a liquid state, and the heat radiating part is a heat receiving part. It has a heat radiating function for condensing and liquefying the vaporized refrigerant, and a heat radiating function for radiating heat from the liquid refrigerant received by the heat receiving part. The said control part switches the cooling mode in a heat receiving part by controlling the flow volume of the refrigerant | coolant which a pump drives based on the temperature which the said temperature detection part detected.

本発明によれば、電子機器の発熱量が増加しても、これを効率良く冷却を行うことのできる小型の冷却装置を提供することができ、また電子機器の小形化に寄与する。   ADVANTAGE OF THE INVENTION According to this invention, even if the emitted-heat amount of an electronic device increases, the small cooling device which can cool this efficiently can be provided, and it contributes to size reduction of an electronic device.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の冷却装置を搭載した電子機器の一実施例を示す概念構成図である。電子機器10には、回路基板9およびその発熱体(発熱部)1を有し、これを冷却の対象とする。冷却装置は、以下の構成からなる。受熱部2は発熱体1に熱接続して、内部に通流する冷媒によって吸熱、受熱する。本実施例での冷媒には純水(すなわち沸点100℃)を用いて、発熱体1の温度を、例えば130℃から70℃まで冷却する場合を想定する。放熱部3は冷媒の吸熱した熱を放熱管により放熱するが、その際、ファンで送風し放熱を促進させる。タンク4は、冷媒と空気とを貯留するが、その容積は、受熱部2から放熱部3に向かう循環流路の冷媒通流容積よりも大きい容積とする。ポンプ5は、タンク4の冷媒を受熱部2へ循環駆動させる。配管6は、上記各部材間を冷媒が循環するように接続されている。そのうち配管61は、受熱部2から放熱部3へ向かう循環流路であり気密性の高い金属配管で構成する。配管62は、放熱部3から受熱部2へ向かう循環流路である。温度検出部7は、発熱体1、または受熱部2における冷媒の温度を検出し、制御部8は、温度検出部7によって検出した温度に基づき、ポンプ5の駆動する冷媒の流量を制御する。   FIG. 1 is a conceptual block diagram showing an embodiment of an electronic device equipped with a cooling device of the present invention. The electronic device 10 includes a circuit board 9 and a heating element (heating unit) 1 thereof, which are to be cooled. The cooling device has the following configuration. The heat receiving unit 2 is thermally connected to the heating element 1 and absorbs and receives heat by the refrigerant flowing through the heat receiving unit 2. It is assumed that pure water (that is, boiling point 100 ° C.) is used as the refrigerant in this embodiment, and the temperature of the heating element 1 is cooled from 130 ° C. to 70 ° C., for example. The heat radiating section 3 radiates the heat absorbed by the refrigerant through the heat radiating pipe, and at that time, the air is blown by a fan to promote the heat radiation. The tank 4 stores the refrigerant and air, and the volume thereof is larger than the refrigerant flow volume of the circulation flow path from the heat receiving part 2 toward the heat radiating part 3. The pump 5 drives the refrigerant in the tank 4 to circulate to the heat receiving unit 2. The pipe 6 is connected so that the refrigerant circulates between the members. Among them, the pipe 61 is a circulation flow path from the heat receiving part 2 to the heat radiating part 3 and is constituted by a metal pipe having high airtightness. The pipe 62 is a circulation channel from the heat radiating unit 3 toward the heat receiving unit 2. The temperature detection unit 7 detects the temperature of the refrigerant in the heating element 1 or the heat receiving unit 2, and the control unit 8 controls the flow rate of the refrigerant driven by the pump 5 based on the temperature detected by the temperature detection unit 7.

ここに電子機器10は、特定の装置に限定するのものではなく、冷却対象の発熱体1も特定の回路基板9に限定するものではない。また、冷媒は純水に限定せず、適宜変更可能であることは言うまでもない。   Here, the electronic device 10 is not limited to a specific device, and the heating element 1 to be cooled is not limited to a specific circuit board 9. Needless to say, the refrigerant is not limited to pure water and can be changed as appropriate.

本実施例の冷却装置は、閉循環流路内で冷媒を移送し、発熱体1で発生した熱を受熱部2内を通流する冷媒にて吸熱させる。発熱体1からの吸熱にあたっては、冷媒が液体状態で熱移送する場合と、冷媒を液体から気体に相変化させ、気化熱として吸熱する場合とが可能であり、これらを併用して冷却効率を増大させたことに特徴がある。すなわち、受熱部2においては、冷媒が液体状態のままで温度上昇することで吸熱する水冷冷却モード(水冷方式、水冷モード)と、冷媒が気化することで吸熱する潜熱冷却モード(潜熱方式、潜熱モード)の2つの冷却モードが可能である。同様に、放熱部3においては、高温の液体状態の冷媒を放熱するモードと、気化した冷媒を凝縮して液化するモードの2つのモードが存在する。そしてこれらのモードは、ポンプ5から受熱部2へ供給する冷媒の流量を制御することで、水冷モードと潜熱モードとを切り替える。具体的には、冷媒の流量を小さくすることによって冷却モードを潜熱モードに切り替え、冷媒の流量を大きくすることによって水冷モードに切り替える。さらに、温度検出部7によって検出した発熱体1(または冷媒)の温度によって冷媒の流量を制御することで、温度に応じて効率の良い冷却モードを選択するものである。   The cooling device of the present embodiment transfers the refrigerant in the closed circulation channel, and absorbs the heat generated in the heating element 1 by the refrigerant flowing through the heat receiving unit 2. When absorbing heat from the heating element 1, it is possible to transfer heat in a liquid state or to change the phase of the refrigerant from a liquid to a gas and absorb the heat as vaporization heat. It is characterized by an increase. That is, in the heat receiving unit 2, a water cooling cooling mode (water cooling method, water cooling mode) that absorbs heat when the refrigerant rises in a liquid state and a latent heat cooling mode (latent heat method, latent heat) that absorbs heat when the refrigerant evaporates. Two cooling modes are possible. Similarly, in the heat radiating unit 3, there are two modes: a mode for radiating a high-temperature liquid refrigerant and a mode for condensing and liquefying the vaporized refrigerant. These modes are switched between the water cooling mode and the latent heat mode by controlling the flow rate of the refrigerant supplied from the pump 5 to the heat receiving unit 2. Specifically, the cooling mode is switched to the latent heat mode by decreasing the refrigerant flow rate, and the water cooling mode is switched by increasing the refrigerant flow rate. Furthermore, by controlling the flow rate of the refrigerant according to the temperature of the heating element 1 (or refrigerant) detected by the temperature detector 7, an efficient cooling mode is selected according to the temperature.

すなわち、本実施例の冷却方式は、従来の水冷方式あるいは潜熱方式のいずれか一方のみに固定するものではなく、同一装置において、発熱体の温度状況に応じて両者の方式を切り替えることで、所望の冷却仕様温度を実現する。その際、循環閉流路内を低圧力状態にしたり、低沸点温度の特殊な冷媒を使用することなく、通常の冷媒(純水)を常圧に近い状態で用いることができ、小型で効率の良い冷却装置を実現するものである。   That is, the cooling method of the present embodiment is not fixed to only one of the conventional water cooling method and the latent heat method, but is desired by switching both methods in accordance with the temperature condition of the heating element in the same device. The cooling specification temperature is achieved. At that time, normal refrigerant (pure water) can be used in a state close to normal pressure without lowering the pressure in the closed circulation channel or using a special refrigerant with a low boiling point temperature. It realizes a good cooling device.

以下、本実施例の冷却装置の動作を詳細に説明する。   Hereinafter, the operation of the cooling device of the present embodiment will be described in detail.

図2は、受熱部2における通流する冷媒の流量と吸熱量の関係(吸熱特性)を示す図である。受熱部2における2つの冷却モードを比較したもので、曲線(イ)は、冷媒の気化による吸熱量(潜熱モード)を、曲線(ロ)は、冷媒への熱移送による吸熱量(水冷モード)を概念的に示したものである。いずれも、冷媒による吸熱量Wは冷媒の流量Qに比例するが、潜熱モードの曲線(イ)は、水冷モードの曲線(ロ)よりもその勾配が急峻であって、流量あたりの吸熱量が大きい。この勾配の差は、冷媒の持つ比熱と気化熱の物性値の差に基づく(ただし、図示した両者の曲線の勾配は、定量的な意味を持たない)。   FIG. 2 is a diagram showing a relationship (endothermic characteristic) between the flow rate of the refrigerant flowing in the heat receiving unit 2 and the endothermic amount. The two cooling modes in the heat receiving unit 2 are compared. The curve (A) indicates the heat absorption amount due to the vaporization of the refrigerant (latent heat mode), and the curve (B) indicates the heat absorption amount due to the heat transfer to the refrigerant (water cooling mode). Is conceptually shown. In both cases, the endothermic amount W by the refrigerant is proportional to the refrigerant flow rate Q, but the latent heat mode curve (A) has a steeper slope than the water-cooled mode curve (B), and the endothermic amount per flow rate is large. This difference in gradient is based on the difference between the physical properties of the specific heat and the heat of vaporization of the refrigerant (however, the gradients of the two curves shown in the figure do not have a quantitative meaning).

理論的には、冷媒の密度をρ、比熱をC、気化熱をVとし、冷媒における受熱時の温度変化をΔT、受熱させる冷媒の流量をQとすると、受熱部2における吸熱量Wは、次式に示される。
W(潜熱モード)=ρ・V・Q ・・・(1)
W(水冷モード)=ρ・C・ΔT・Q ・・・(2)
まず、水冷方式の冷却動作とその問題点を説明する。
発熱体1の温度T1を所望の仕様冷却温度T2に冷却する場合、その吸熱すべき熱量をW1とする。W1は温度差(T1−T2)に比例する。曲線(ロ)に従って、吸熱量W1の得られる冷媒の流量Q1を求め、これを通流して発熱体1を冷却すればよい(動作点を符号Aで示す)。ここで発熱体が、T1より高い温度T1’で発熱する高発熱体1’の場合、これを仕様冷却温度T2まで冷却するためには、吸熱すべき熱量はW1’に増大する。W1’は温度差(T1’−T2)に比例する。この場合には、曲線(ロ)に従って、冷媒の流量をQ2まで増加しなければならない(動作点をA’で示す)。そのためには、冷媒を駆動するポンプの能力を高めなければならず、冷却装置が大形化する。
Theoretically, if the density of the refrigerant is ρ, the specific heat is C, the heat of vaporization is V, the temperature change at the time of receiving heat in the refrigerant is ΔT, and the flow rate of the refrigerant to be received is Q, the endothermic amount W in the heat receiving unit 2 is It is shown in the following formula.
W (latent heat mode) = ρ · V · Q (1)
W (water cooling mode) = ρ · C · ΔT · Q (2)
First, the cooling operation of the water cooling method and its problems will be described.
When the temperature T1 of the heating element 1 is cooled to the desired specification cooling temperature T2, the amount of heat to be absorbed is W1. W1 is proportional to the temperature difference (T1-T2). According to the curve (b), the flow rate Q1 of the refrigerant from which the endothermic amount W1 is obtained can be obtained and passed through this to cool the heating element 1 (the operating point is indicated by symbol A). Here, when the heating element is a high heating element 1 ′ that generates heat at a temperature T1 ′ higher than T1, in order to cool the heating element to the specified cooling temperature T2, the amount of heat to be absorbed increases to W1 ′. W1 ′ is proportional to the temperature difference (T1′−T2). In this case, the flow rate of the refrigerant must be increased to Q2 according to the curve (b) (the operating point is indicated by A ′). For this purpose, it is necessary to increase the capacity of the pump that drives the refrigerant, which increases the size of the cooling device.

さらに水冷方式は、一旦冷媒に受熱した熱を外気温度により放熱する熱移送によるものであるから、移送できる熱量は、冷媒液の沸騰温度(純水なら100℃)と放熱のための外気温度(例えば20℃)とにより制限される。つまり、冷媒の受熱時の温度上昇ΔTに自ずと限界を有する(ΔTが減少する)ために、流量Qを上げてもこれに比例して吸熱することができない飽和冷却状態(動作点をAsatで示す)が存在する。これは電子機器へ搭載する発熱体の冷却において、仕様冷却温度T2に限界値(下限値)が存在することを意味する。   Furthermore, since the water cooling method is based on heat transfer that dissipates the heat once received by the refrigerant according to the outside air temperature, the amount of heat that can be transferred depends on the boiling temperature of the refrigerant liquid (100 ° C for pure water) and the outside air temperature for heat dissipation ( For example, 20 ° C.). In other words, since the temperature rise ΔT at the time of heat reception of the refrigerant naturally has a limit (ΔT decreases), even if the flow rate Q is increased, the saturated cooling state in which heat cannot be absorbed in proportion to this (the operating point is indicated by Asat) ) Exists. This means that there is a limit value (lower limit value) for the specification cooling temperature T2 in cooling the heating element mounted on the electronic device.

一方潜熱方式は、気化熱を利用するため曲線(イ)のように吸熱特性が優れる。しかしながら、冷却可能温度が冷媒の沸点で制約されることから冷却温度を自由に変更できない。また、後述するように多量の冷媒を完全に気化させることは困難であり、冷媒の気化により体積膨張と圧力増加が伴うことから、これに対して流路配管の十分な強度対策を必要とする。よって、潜熱方式のみの冷却方式では装置の小型化は困難である。   On the other hand, the latent heat method uses heat of vaporization and has excellent endothermic characteristics as shown by curve (A). However, since the coolable temperature is restricted by the boiling point of the refrigerant, the cooling temperature cannot be freely changed. In addition, as described later, it is difficult to completely vaporize a large amount of refrigerant, and volume expansion and pressure increase are accompanied by vaporization of the refrigerant. . Therefore, it is difficult to reduce the size of the apparatus by the cooling method using only the latent heat method.

これに対し、本実施例における潜熱方式と水冷方式とを併用する冷却動作について説明する。本実施例の併用方式では、冷媒の最大流量をQ1としながら、高発熱体1’(温度T1’)の発熱量の増大によって、冷媒の一部分の流量Q3が気化されて気化熱により吸熱する潜熱方式を利用する。すると吸熱特性は曲線(イ)に移行し、吸熱量はB点まで増加する。そして残りの吸熱を水冷方式である曲線(ロ)の吸熱特性に従い、流量をQ1まで増加することでB点からC点まで吸熱させる。その結果、トータルとして所望の吸熱量W1’を効率よく達成することができる。この場合、潜熱方式による吸熱量がB点より少ないと、冷媒流量Q1だけでは必要な吸熱量W1’を得ることができず、仕様冷却温度T2まで冷却できない。よって、潜熱方式による吸熱量と、水冷方式による吸熱量を的確に配分することが重要であり、本実施例では、冷媒の流量にて制御することで両者の配分を最適化し、効率的な冷却特性を実現するものである。   On the other hand, the cooling operation using the latent heat method and the water cooling method in the present embodiment will be described. In the combined system of the present embodiment, the latent heat that is absorbed by the heat of vaporization is generated by evaporating the flow rate Q3 of a part of the refrigerant by increasing the heat generation amount of the high heating element 1 ′ (temperature T1 ′) while setting the maximum flow rate of the refrigerant to Q1. Use the method. Then, the endothermic characteristic shifts to the curve (A), and the endothermic amount increases up to the B point. Then, the remaining endotherm is absorbed from point B to point C by increasing the flow rate to Q1 in accordance with the endothermic characteristics of the curve (b), which is a water cooling system. As a result, the desired endothermic amount W1 'can be efficiently achieved as a total. In this case, if the heat absorption amount by the latent heat method is less than the point B, the necessary heat absorption amount W1 'cannot be obtained only by the refrigerant flow rate Q1, and it cannot be cooled to the specified cooling temperature T2. Therefore, it is important to accurately distribute the amount of heat absorbed by the latent heat method and the amount of heat absorbed by the water cooling method. In this example, the distribution of both is optimized by controlling the flow rate of the refrigerant, and efficient cooling is achieved. It realizes the characteristics.

本実施例の併用冷却方式では、気化状態の冷媒と液体状態(受熱後)の冷媒の通流を1つの冷却装置で構成し、潜熱方式と水冷方式を冷媒流量により意図的に切り替える制御を行う。冷媒を駆動するポンプ5の容量(流量能力)は、双方の方式を利用することで、小容量・小型化が図れる。言い換えれば、ポンプ5の容量が一定であっても、より大きな冷却性能が得られる。また、発熱体の発熱量が変動しても、ポンプ5の最大流量を一定としながら、潜熱方式の流量配分を制御することで対応することができる。   In the combined cooling system of this embodiment, the flow of the vaporized refrigerant and the liquid refrigerant (after receiving heat) is constituted by one cooling device, and control is performed to intentionally switch between the latent heat system and the water cooling system depending on the refrigerant flow rate. . The capacity (flow capacity) of the pump 5 that drives the refrigerant can be reduced in capacity and size by using both methods. In other words, even if the capacity of the pump 5 is constant, a larger cooling performance can be obtained. Further, even if the heat generation amount of the heating element fluctuates, it can be dealt with by controlling the flow distribution of the latent heat method while keeping the maximum flow rate of the pump 5 constant.

ここで、従来の冷却装置においても、冷媒が気液混合状態で駆動される場合があり得たが、本実施例の動作とは基本的に相違することを述べる。例えば、水冷方式の装置でありながら、発熱体の発熱により冷媒の一部が気化している場合、あるいは逆に潜熱方式の装置でありながら、冷媒の一部が気化されずに液体のままで駆動される場合がある。これらは、現象として気液混合の状態で使用されていることになるが、いずれも意図しないものであり、また好ましくない現象である。なぜなら、冷媒が気液混合状態で移送される場合、水冷方式においては、混入する気体によりポンプの駆動不能や、循環流路より冷媒漏れが生じる等の問題を生じる。一方潜熱方式においては、液体の逆流や、気化量の不足による冷却能力の低下の問題を生じる。よって、正常な冷却動作を維持し冷却能力の低下を防止するため、それぞれの方式において冷媒の気液混合状態の発生を極力排除する工夫が必要とされる。   Here, even in the conventional cooling device, the refrigerant may be driven in a gas-liquid mixed state, but it will be described that it is basically different from the operation of the present embodiment. For example, when a part of the refrigerant is vaporized due to the heat generated by the heating element while being a water-cooled apparatus, or conversely, while being a latent heat apparatus, a part of the refrigerant remains liquid without being vaporized. May be driven. These are used in a gas-liquid mixed state as a phenomenon, but none of them are intended and undesirable. This is because when the refrigerant is transported in a gas-liquid mixed state, problems such as inability to drive the pump due to mixed gas and refrigerant leakage from the circulation channel occur in the water cooling system. On the other hand, in the latent heat system, there arises a problem that the cooling capacity is lowered due to the back flow of the liquid or the insufficient amount of vaporization. Therefore, in order to maintain the normal cooling operation and prevent the cooling capacity from being lowered, a contrivance is required to eliminate the occurrence of the gas-liquid mixed state of the refrigerant as much as possible in each method.

これに対し本実施例は、この潜熱方式と水冷方式の双方を利用するために、通常の圧力環境で冷媒を気体と液体の2つの相状態で循環駆動を可能とさせ、上記した従来技術の問題を回避している。そのために、後述するように、冷媒流路である配管6やタンク4の構造を工夫している。   In contrast, in this embodiment, since both the latent heat method and the water cooling method are used, the refrigerant can be circulated and driven in two phases of gas and liquid in a normal pressure environment. The problem is avoided. Therefore, as will be described later, the structures of the pipe 6 and the tank 4 which are refrigerant flow paths are devised.

本実施例では2つの冷却方式を併用することで、冷却性能が向上させるだけでなく、発熱体の冷却温度の設定が自由となる。例えば冷媒として純水を大気圧環境で使用する場合、冷媒の沸点は約100℃である。よって、沸点を利用する潜熱方式の場合には、冷却温度は沸点(約100℃)以下にはならない。一般の電子機器に要求される仕様冷却温度を約70℃程度とすると、この要求を実現できないことになる。水冷方式との併用方式とすることで、沸点(約100℃)から、要求される冷却温度(約70℃)までさらに冷却することが可能となる。すなわち、沸点の低い冷媒に変えたり、流路内の圧力を大気圧以下に減圧したりすることなく、要求された冷却温度を実現できるので、使い勝手が大きく向上する。   In this embodiment, by using the two cooling methods in combination, not only the cooling performance is improved, but also the cooling temperature of the heating element can be set freely. For example, when pure water is used as a refrigerant in an atmospheric pressure environment, the boiling point of the refrigerant is about 100 ° C. Therefore, in the case of the latent heat method using the boiling point, the cooling temperature does not fall below the boiling point (about 100 ° C.). If the specification cooling temperature required for general electronic equipment is about 70 ° C., this requirement cannot be realized. By using a combined method with the water cooling method, it is possible to further cool from the boiling point (about 100 ° C.) to the required cooling temperature (about 70 ° C.). That is, since the required cooling temperature can be realized without changing to a refrigerant having a low boiling point or reducing the pressure in the flow path below atmospheric pressure, the usability is greatly improved.

本実施例の併用方式においては、潜熱方式と水冷方式とを冷媒の流量を制御することで切り替えるものである。そこで、受熱部2における冷媒の流量と吸熱動作(気化動作)との関係について説明する。   In the combined system of this embodiment, the latent heat system and the water cooling system are switched by controlling the flow rate of the refrigerant. Therefore, the relationship between the refrigerant flow rate and the heat absorption operation (vaporization operation) in the heat receiving unit 2 will be described.

冷媒の吸熱量は、発熱体1からの熱伝達によって行われる。この熱伝達される熱量Mは、熱伝達率をhとし、物質間の温度差をΔtとすると、(3)式に示される。
M=h(Q)・Δt ・・・(3)
ここに熱伝達率hは物性値ではなく、表面形状、流量、圧力などによって定まる値である。受熱部2は、発熱体1からの熱を冷媒に伝達して冷媒を気化しやすくするため、冷媒との接触面積の増大を図るように精細な流路で構成して、熱伝達率hを大きくしている。
The heat absorption amount of the refrigerant is performed by heat transfer from the heating element 1. The amount of heat M to be transferred is expressed by equation (3), where h is the heat transfer coefficient and Δt is the temperature difference between the substances.
M = h (Q) · Δt (3)
Here, the heat transfer coefficient h is not a physical property value but a value determined by the surface shape, flow rate, pressure, and the like. The heat receiving unit 2 is configured with a fine flow path so as to increase the contact area with the refrigerant so that the heat from the heating element 1 is transmitted to the refrigerant to facilitate vaporization of the refrigerant. It is getting bigger.

また、熱伝達率hは、冷媒の流量Qによっても影響を受ける。図2で説明したように、流量Qが大きくすると吸熱量Wは増大し、基本的には冷却能力向上のために好ましい。しかし流量Qが大きいことは、冷媒の流速と流路の断面積を大きくすることになる。よって、流量Qが過剰に大きい場合、発熱体1からの熱を冷媒内部まで十分熱伝達することができず、潜熱冷却方式において冷媒内部は気化できない状態となる。その結果、流量Qを増加させたのにもかかわらず、流量Qに見合う冷却能力が得られない現象に陥る。つまり、通流する冷媒の気化をより活発に行わせるためには、真夏の道路への打ち水を行う如く、受熱部2において発熱体1からの受熱面と冷媒との熱接触面積を最大化させることが肝要となる。   The heat transfer coefficient h is also affected by the flow rate Q of the refrigerant. As described in FIG. 2, when the flow rate Q is increased, the endothermic amount W increases, which is basically preferable for improving the cooling capacity. However, when the flow rate Q is large, the flow rate of the refrigerant and the cross-sectional area of the flow path are increased. Therefore, when the flow rate Q is excessively large, the heat from the heating element 1 cannot be sufficiently transferred to the inside of the refrigerant, and the inside of the refrigerant cannot be vaporized in the latent heat cooling method. As a result, although the flow rate Q is increased, the cooling capacity corresponding to the flow rate Q cannot be obtained. That is, in order to vaporize the refrigerant flowing more actively, the heat contact area between the heat receiving surface from the heat generating element 1 and the refrigerant is maximized in the heat receiving section 2 so as to spray water on the road in midsummer. It is important.

このように本実施例の冷却装置は、電子機器に発熱体の発熱量が増加する半導体回路等が搭載されても、冷却装置のポンプ性能等を変更することなく、小型で効率良い冷却を実現することができる。このことは、電子機器の顧客の要求による機種の多様化に容易に対応でき、ひいては生産性の向上にも寄与する。   As described above, the cooling device of the present embodiment realizes small and efficient cooling without changing the pump performance of the cooling device, etc., even if a semiconductor circuit or the like that increases the heat generation amount of the heating element is mounted on the electronic device. can do. This can easily cope with the diversification of models according to the demands of customers of electronic devices, and contributes to the improvement of productivity.

図3は、本実施例の冷却装置における冷却動作(受熱と放熱)を概念的に説明する図である。図3では、従来の水冷方式と本実施例の冷却併用方式とを比較している。   FIG. 3 is a diagram for conceptually explaining the cooling operation (heat reception and heat dissipation) in the cooling device of the present embodiment. In FIG. 3, the conventional water cooling method and the cooling combined method of the present embodiment are compared.

電子機器の発熱体1は発熱温度T1を有し、冷却装置はこれを仕様冷却温度T2まで冷却するものとする。これを実現するために冷却装置は、受熱部において、発熱体から冷媒へ熱量W1を受熱し、受熱した熱量は、放熱部において冷媒から外部へ熱量W2を放熱する。この際、受熱時の熱量W1と放熱時の熱量W2は等しく、放熱時は、冷媒の温度を受熱時の温度T2から放熱時の温度T3へ下げる必要がある。   The heating element 1 of the electronic device has a heat generation temperature T1, and the cooling device cools it to the specified cooling temperature T2. In order to realize this, the cooling device receives the amount of heat W1 from the heating element to the refrigerant in the heat receiving portion, and the amount of received heat radiates the amount of heat W2 from the refrigerant to the outside in the heat radiating portion. At this time, the heat amount W1 at the time of heat reception is equal to the heat amount W2 at the time of heat release, and at the time of heat release, it is necessary to lower the temperature of the refrigerant from the temperature T2 at the time of heat reception to the temperature T3 at the time of heat release.

従来の水冷方式においては、図3の左側に示すように、発熱体の発熱温度T1がより高い温度T1’である場合、同一の仕様冷却温度T2とするためには、受熱部にて受熱すべき熱量はW1’へ増加する。同様に放熱部にて放熱すべき熱量はW2’へ増加し、放熱時の温度をさらに低いT3’まで下げなければならない。このことは、冷媒の通流する流量をQ1(Q2)からQ1’(Q2’)へ多くするため駆動力の大きなポンプを搭載し、高発熱体に対応した大形、高性能な受熱部、放熱部とすることが必要になる。   In the conventional water cooling system, as shown on the left side of FIG. 3, when the heating temperature T1 of the heating element is a higher temperature T1 ′, in order to obtain the same specification cooling temperature T2, heat is received by the heat receiving unit. The amount of heat to be increased increases to W1 ′. Similarly, the amount of heat to be dissipated in the heat dissipating part increases to W2 ', and the temperature at the time of heat dissipating must be further lowered to T3'. In order to increase the flow rate of the refrigerant from Q1 (Q2) to Q1 ′ (Q2 ′), this is equipped with a pump with a large driving force. It is necessary to use a heat dissipation part.

これに対し、本実施例の潜熱方式と水冷方式との併用方式における冷却動作を説明する。図3の右側に示すように、高温の発熱体1の発熱温度T1’に対し、蒸発(気化)熱によって受熱して冷却を行うことで、冷媒の沸点温度(T4=100℃)まで下げることができる(潜熱方式)。さらに、一旦沸点まで下がった発熱体1の温度を、液体状態の冷媒にて受熱して仕様冷却温度T2まで下げる(水冷方式)。この場合の水冷方式による受熱温度差は(T4−T2)と狭くなることから、放熱温度差も(T2−T5)も狭くすることができる。その結果、小型の受熱部2と小型の放熱部3とした水冷装置で良いことになる。一方気化した冷媒を凝縮して液化するには、沸点を境にして温度をある程度下げれば液化し放熱が可能である。その際、この液化速度を速めるために、図1に示すように、タンク4内の冷媒液に放熱部3の放熱管の一部を熱接続させる構造とすることが有効である。   On the other hand, the cooling operation in the combined system of the latent heat system and the water cooling system of the present embodiment will be described. As shown on the right side of FIG. 3, the heat generation temperature T1 ′ of the high-temperature heat generator 1 is received and cooled by the evaporation (vaporization) heat to lower the refrigerant to the boiling point temperature (T4 = 100 ° C.). (Latent heat method). Further, the temperature of the heating element 1 once lowered to the boiling point is received by the liquid refrigerant and lowered to the specified cooling temperature T2 (water cooling method). In this case, the heat receiving temperature difference due to the water cooling method is narrowed to (T4-T2), so that both the heat radiation temperature difference and (T2-T5) can be narrowed. As a result, a water cooling device having a small heat receiving portion 2 and a small heat radiating portion 3 may be used. On the other hand, in order to condense and liquefy the vaporized refrigerant, it is possible to liquefy and dissipate heat by lowering the temperature to some extent at the boundary of the boiling point. At that time, in order to increase the liquefaction rate, it is effective to have a structure in which a part of the heat radiating pipe of the heat radiating section 3 is thermally connected to the refrigerant liquid in the tank 4 as shown in FIG.

以上のように併用方式とすることで、高温の発熱体に対する冷却効率を向上させ、装置の小形化を図ることができる。また、所定の流量を駆動するポンプ5を搭載した冷却装置において、高発熱体1’が搭載された場合にも潜熱冷却を最適に行わせることで、ポンプ5の駆動流量を増大することなく、所望の冷却特性を実現できる。   By using the combined method as described above, it is possible to improve the cooling efficiency for the high-temperature heating element and to reduce the size of the apparatus. Further, in the cooling device equipped with the pump 5 that drives a predetermined flow rate, even when the high heating element 1 ′ is installed, the latent heat cooling is performed optimally without increasing the drive flow rate of the pump 5, Desired cooling characteristics can be realized.

すなわち、ポンプ5の流量(最大能力)が所定の流量Q1とされた冷却装置を搭載した電子機器において、半導体回路Aを高発熱の半導体回路Bに置き換えた製品とする場合、従来は、水冷装置の仕様をより高性能(流量大)のものに変更する必要があった。本実施例の冷却装置においては、ポンプの最大流量Q1を変えず、発熱体の発熱温度T1’、仕様冷却温度T2に基づき、流量を最適に切り替えることで対応する。まず受熱温度差(T1’−T2)から吸熱すべき熱量W1’を求め、前記図2の吸熱特性(併用方式)において吸熱量W1’となる動作点C点を決定する。そして、水冷方式と潜熱方式を切り替えるべき動作点をB点とし、潜熱方式時のポンプの冷媒の流量をB点に相当するQ3と設定する。そして、まず流量Q3を供給して全量Q3を気化させ、その後流量をQ1に切り替えて残りの熱量を吸熱する。このように、ポンプ5の駆動流量をQ1とQ3の間で切り替えるように制御することで、所望の温度T2まで冷却することができる。   That is, in an electronic device equipped with a cooling device in which the flow rate (maximum capacity) of the pump 5 is set to a predetermined flow rate Q1, when a product in which the semiconductor circuit A is replaced with a semiconductor circuit B with high heat generation is used, a conventional water cooling device It was necessary to change the specifications of to higher performance (large flow rate). In the cooling device of this embodiment, the maximum flow rate Q1 of the pump is not changed, and the flow rate is optimally switched based on the heat generation temperature T1 'of the heating element and the specified cooling temperature T2. First, the heat amount W1 'to be absorbed is determined from the temperature difference (T1'-T2), and the operating point C at which the heat absorption amount W1' is obtained in the endothermic characteristic (combination method) of FIG. 2 is determined. The operating point at which the water cooling method and the latent heat method should be switched is set as B point, and the flow rate of the refrigerant in the pump in the latent heat method is set as Q3 corresponding to the B point. First, the flow rate Q3 is supplied to vaporize the entire amount Q3, and then the flow rate is switched to Q1 to absorb the remaining heat. Thus, by controlling the drive flow rate of the pump 5 to switch between Q1 and Q3, it is possible to cool to the desired temperature T2.

図1に示す本実施例の制御部8は、ポンプ5の流量をQ1とQ3との間で切り替える制御を行うものである。もしも、この流量切り替えを行わないで一定の流量(例えばQ1)を通流した場合、発熱体の発熱量の増加によって一部の冷媒が気化されるものの、目標とする流量Q3について十分な気化を行うことはできない。よって上記のような本実施例の動作を実現することはできない。またこの切り替え流量Q3の値は、発熱体の発熱量W1によって異なる値を設定する。この流量の切り替えは、発熱体1あるいは受熱部2についての温度検出部7による温度検出結果に基づいて切り替えるようにする。   The control unit 8 of the present embodiment shown in FIG. 1 performs control for switching the flow rate of the pump 5 between Q1 and Q3. If a constant flow rate (for example, Q1) is passed without switching the flow rate, a part of the refrigerant is vaporized due to an increase in the heat generation amount of the heating element, but the target flow rate Q3 is sufficiently vaporized. Can't do it. Therefore, the operation of the present embodiment as described above cannot be realized. Further, the value of the switching flow rate Q3 is set to be different depending on the heat generation amount W1 of the heating element. The flow rate is switched based on the temperature detection result by the temperature detection unit 7 for the heating element 1 or the heat receiving unit 2.

図4は、本発明による冷却装置の他の実施例を示す概念構成図である。この実施例では、双方の冷却方式に最適な流量を供給する専用のポンプを設けて、冷媒の駆動を切り替える構成としたものである。これは、潜熱方式と水冷方式における冷媒の通流する流量の差が大きい場合に有効である。すなわち、ポンプとして潜熱冷却用の小容量の冷媒流量Q3を供給するポンプ51と、水冷冷却用の大容量の冷媒流量Q1を供給するポンプ52をそれぞれ専用に設ける。その際受熱部2は、後述するように、潜熱冷却用の流路と水冷冷却用の流路を、上下あるいは並行に専用に配置して、冷媒の通流Q1,Q3を同時に行う構成とすれば、より冷却性能を向上させることができる。勿論、この構成においても、温度検出部7による温度検出結果に応じて流量Q3を変化させるようにすれば、よりきめ細かな冷却制御が可能となる。   FIG. 4 is a conceptual block diagram showing another embodiment of the cooling device according to the present invention. In this embodiment, a dedicated pump for supplying an optimum flow rate for both cooling systems is provided to switch the driving of the refrigerant. This is effective when there is a large difference in the flow rate of refrigerant between the latent heat method and the water cooling method. That is, a pump 51 that supplies a small-capacity refrigerant flow rate Q3 for cooling latent heat and a pump 52 that supplies a large-capacity refrigerant flow rate Q1 for water-cooling cooling are provided as dedicated pumps. At that time, as will be described later, the heat receiving section 2 is configured so that the flow path for latent heat cooling and the flow path for water cooling cooling are arranged vertically or in parallel, and the refrigerant flow Q1, Q3 is performed simultaneously. Thus, the cooling performance can be further improved. Of course, even in this configuration, if the flow rate Q3 is changed in accordance with the temperature detection result by the temperature detector 7, more precise cooling control can be performed.

図5は、図4の冷却装置における受熱部2の概略構成を示す斜視図である。この例では気化による潜熱冷却と熱移送による水冷冷却とを同時に行わせるために、受熱部2の流路を2系統設けた。まず、冷媒の気化を行わせる流路21を発熱体側に構成し、その上部あるいは隣部において液体の冷媒で熱移送する流路22を分離して構成する。これにより、潜熱冷却と水冷冷却とを独立に同時に実行できる。   FIG. 5 is a perspective view illustrating a schematic configuration of the heat receiving unit 2 in the cooling device of FIG. 4. In this example, in order to simultaneously perform latent heat cooling by vaporization and water cooling by heat transfer, two channels of the heat receiving unit 2 are provided. First, the flow path 21 for vaporizing the refrigerant is formed on the heating element side, and the flow path 22 for heat transfer with the liquid refrigerant is separated at the upper part or the adjacent part. Thereby, latent heat cooling and water cooling cooling can be performed simultaneously independently.

さらには本実施例の冷却装置において、冷媒は気化した状態、液体の状態、あるいは両者の混合された状態で循環通流することになる。このような冷媒を安定して循環させるために、図1または図4において次のような構成とした。   Furthermore, in the cooling device of the present embodiment, the refrigerant circulates in a vaporized state, a liquid state, or a mixture of both. In order to circulate such a refrigerant stably, the following configuration is adopted in FIG. 1 or FIG.

通流された冷媒の体積Vについてみると、受熱部2に通流される液体としての冷媒の体積V1は、受熱部2で気化されて瞬間的には数倍〜10数倍に膨張した体積V2となって配管61へ移送される。よって、この配管61は、冷媒の膨張による圧力増加に対応できる強度を有する必要があり、金属管等で構成する。配管61を通流した気化冷媒は、放熱部3に移送されて、例えばファン等で冷却されて凝縮し液化される。この液化された冷媒は、この放熱部3に接続された大容量の空気層を貯留するタンク4に流出される。このタンク4は、受熱部2から放熱部3までの区間で気化している状態の冷媒が占める配管容積V3の、数倍〜10数倍の空気層容積V4を貯留可能なアキュムレータ構造としている。よって、配管61で瞬間的に体積膨張V2によって圧力が増加しても、貯留されている空気層容積V4によって圧力分散され、流路全体の圧力は緩和される。その結果、冷却装置の全流路の圧力は、常圧に近い圧力状態に保持することができる。なお、空気層を貯留するアキュムレータは、放熱部3の手前の配管61の部分に設けてもよい。   Looking at the volume V of the flowed refrigerant, the volume V1 of the refrigerant as the liquid flowing through the heat receiving section 2 is a volume V2 that is vaporized in the heat receiving section 2 and instantaneously expands several to ten times. And transferred to the pipe 61. Therefore, the pipe 61 needs to have a strength that can cope with an increase in pressure due to expansion of the refrigerant, and is composed of a metal pipe or the like. The vaporized refrigerant that has flowed through the pipe 61 is transferred to the heat radiating unit 3, and is cooled, for example, by a fan or the like to be condensed and liquefied. The liquefied refrigerant flows out to the tank 4 that stores a large-capacity air layer connected to the heat radiating unit 3. The tank 4 has an accumulator structure that can store an air layer volume V4 that is several to ten times the pipe volume V3 occupied by the refrigerant vaporized in the section from the heat receiving unit 2 to the heat radiating unit 3. Therefore, even if the pressure is instantaneously increased by the volume expansion V <b> 2 in the pipe 61, the pressure is dispersed by the stored air layer volume V <b> 4 and the pressure of the entire flow path is relieved. As a result, the pressure in all the channels of the cooling device can be maintained in a pressure state close to normal pressure. The accumulator that stores the air layer may be provided in the portion of the pipe 61 in front of the heat radiating unit 3.

さらには、放熱部3で凝縮された冷媒は、放熱部3の放熱能力により多少の温度差はあるにしても、沸点温度T4より低い液体冷媒となってタンク4に流入するように構成する。ここで、タンク4に貯留されている液体の冷媒量は、受熱部2に通流された冷媒量V1よりも、数倍〜数10倍の大きな冷媒量を貯留している。よってタンク4に流入する液化したばかりのやや高温の液体冷媒は、このタンク4内の液体冷媒によってさらに冷却される。その後、タンク4内の液体冷媒は、流出口からポンプ5によって受熱部2へ循環駆動される。   Further, the refrigerant condensed in the heat radiating unit 3 is configured to flow into the tank 4 as a liquid refrigerant lower than the boiling point temperature T4 even though there is a slight temperature difference due to the heat radiating capability of the heat radiating unit 3. Here, the refrigerant amount of the liquid stored in the tank 4 stores a refrigerant amount that is several to several tens of times larger than the refrigerant amount V <b> 1 passed through the heat receiving unit 2. Therefore, the slightly high-temperature liquid refrigerant just liquefied flowing into the tank 4 is further cooled by the liquid refrigerant in the tank 4. Thereafter, the liquid refrigerant in the tank 4 is circulated and driven from the outlet to the heat receiving unit 2 by the pump 5.

この際、ポンプ5は受熱部2に通流する冷媒の量を制御する。すなわち、前記図2で説明したように、冷媒の通流量Qを、潜熱方式に適した流量Q3と、水冷方式に適した流量Q1とを切り替えて供給する。または前記図4で説明したように、2台のポンプ51,52は、それぞれ潜熱方式に適した流量Q3と水冷方式に適した流量Q1とを専用に供給する。   At this time, the pump 5 controls the amount of refrigerant flowing through the heat receiving unit 2. That is, as described with reference to FIG. 2, the refrigerant flow rate Q is switched between the flow rate Q3 suitable for the latent heat method and the flow rate Q1 suitable for the water cooling method. Alternatively, as described in FIG. 4, the two pumps 51 and 52 each supply a flow rate Q3 suitable for the latent heat method and a flow rate Q1 suitable for the water cooling method.

このように本実施例によれば、冷媒を2つの相状態で循環駆動するにもかかわらず、冷却装置の全流路の圧力は常圧に近い圧力状態に保持することができる。よって、ポンプの駆動不能や、循環流路からの冷媒漏れ等の問題がなく、正常な冷却動作を安定に維持することができる。   As described above, according to this embodiment, although the refrigerant is circulated and driven in two phases, the pressure in all the flow paths of the cooling device can be maintained in a pressure state close to normal pressure. Therefore, there is no problem such as inability to drive the pump or leakage of the refrigerant from the circulation channel, and normal cooling operation can be stably maintained.

本発明の冷却装置を搭載した電子機器の一実施例を示す概念構成図である。It is a conceptual block diagram which shows one Example of the electronic device carrying the cooling device of this invention. 受熱部2における通流する冷媒の流量と吸熱量の関係(吸熱特性)を示す図である。It is a figure which shows the relationship (endothermic characteristic) of the flow volume and heat-absorption amount of the refrigerant | coolant which flow in the heat receiving part. 本実施例の冷却装置における冷却動作(受熱と放熱)を概念的に説明する図である。It is a figure which illustrates notionally the cooling operation (heat reception and heat dissipation) in the cooling device of a present Example. 本発明による冷却装置の他の実施例を示す概念構成図である。It is a conceptual block diagram which shows the other Example of the cooling device by this invention. 図4の冷却装置における受熱部2の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the heat receiving part 2 in the cooling device of FIG.

符号の説明Explanation of symbols

1…発熱体、
2…受熱部、
3…放熱部、
4…タンク、
5,51,52…ポンプ、
6,61,62…配管、
7…温度検出部、
8…制御部、
10…電子機器。
1 ... heating element,
2 ... heat receiving part,
3 ... Radiating part,
4 ... Tank,
5, 51, 52 ... pump,
6, 61, 62 ... piping,
7 ... temperature detector,
8 ... control unit,
10: Electronic equipment.

Claims (5)

冷却対象となる発熱体の発生する熱を冷媒に受熱する受熱部と、
上記冷媒の受熱した熱を外部に放熱する放熱部と、
上記受熱部と上記放熱部との間で上記冷媒を循環させる配管と、
上記冷媒を貯留するタンクと、
上記冷媒を駆動するポンプと、
上記ポンプの駆動する冷媒の流量を制御する制御部とを備える冷却装置であって、
上記受熱部は、上記冷媒が気化する際の気化熱を利用する潜熱冷却モードと、上記冷媒が液体状態で熱移送する水冷冷却モードの2つの冷却モードが可能であり、
上記放熱部は、上記受熱部で気化した冷媒を凝縮して液化する放熱機能と、上記受熱部で受熱した液体冷媒から放熱する放熱機能とを有し、
上記制御部は、上記ポンプの駆動する冷媒の流量を制御することによって、上記受熱部における冷却モードを切り替えるものであって、冷媒の流量を小さくすることによって、上記冷却モードを上記潜熱冷却モードに切り替えることを特徴とする冷却装置。
A heat receiving part that receives heat generated by a heating element to be cooled by a refrigerant;
A heat radiating part for radiating the heat received by the refrigerant to the outside;
Piping for circulating the refrigerant between the heat receiving portion and the heat radiating portion;
A tank for storing the refrigerant;
A pump for driving the refrigerant;
A cooling device comprising a control unit for controlling the flow rate of the refrigerant driven by the pump,
The heat receiving unit is capable of two cooling modes, a latent heat cooling mode using heat of vaporization when the refrigerant is vaporized, and a water cooling cooling mode in which the refrigerant is thermally transferred in a liquid state,
The heat dissipating part has a heat dissipating function for condensing and liquefying the refrigerant vaporized in the heat receiving part, and a heat dissipating function for dissipating heat from the liquid refrigerant received by the heat receiving part,
The control unit switches the cooling mode in the heat receiving unit by controlling the flow rate of the refrigerant driven by the pump , and the cooling mode is changed to the latent heat cooling mode by reducing the flow rate of the refrigerant. A cooling device characterized by switching .
請求項1記載の冷却装置において、
前記制御部は、前記ポンプの駆動する冷媒の流量を大きくすることによって、前記冷却モードを前記水冷冷却モードに切り替えることを特徴とする冷却装置。
The cooling device according to claim 1, wherein
Wherein, by increasing the flow rate of the refrigerant for driving the front SL pump, cooling device and switches the cooling mode to the water-cooled mode.
請求項1または2記載の冷却装置において、
前記配管のうち、前記受熱部から前記放熱部へ向かう循環流路は少なくとも密閉性の高い金属配管とし、
前記タンクは、前記受熱部から前記放熱部へ向かう循環流路の冷媒通流容積よりも大きい容積を有し、前記冷媒とともに空気層を貯留し、前記冷媒の気化による循環流路内の圧力増加を該空気層により緩和する構造としたことを特徴とする冷却装置。
The cooling device according to claim 1 or 2,
Among the pipes, the circulation flow path from the heat receiving part to the heat radiating part is at least a metal pipe with high hermeticity,
The tank has a volume larger than a refrigerant flow volume of a circulation channel from the heat receiving unit to the heat dissipation unit, stores an air layer together with the refrigerant, and increases a pressure in the circulation channel due to vaporization of the refrigerant. A cooling device characterized by having a structure that relaxes by the air layer.
請求項1ないし3のいずれか1項に記載の冷却装置において、
前記ポンプとして2台のポンプを有し、
第1のポンプは、前記受熱部において潜熱冷却モードにて動作させるための流量の冷媒を駆動し、第2のポンプは、前記受熱部において水冷冷却モードにて動作させるための流量の冷媒を駆動するものであって、
前記制御部は、上記第1のポンプ及び上記第2のポンプのいずれか一方を駆動させ、あるいは両方同時に駆動させることを特徴とする冷却装置。
The cooling device according to any one of claims 1 to 3,
The pump has two pumps,
The first pump drives a refrigerant having a flow rate for operating in the latent heat cooling mode in the heat receiving unit, and the second pump drives a refrigerant having a flow rate for operating in the water cooling cooling mode in the heat receiving unit. To do,
The control unit drives one of the first pump and the second pump, or drives both at the same time.
内蔵する発熱体を冷却する機能を有する電子機器において、
上記発熱体の発生する熱を冷媒に受熱する受熱部と、
上記冷媒の受熱した熱を外部に放熱する放熱部と、
上記受熱部と上記放熱部との間で上記冷媒を循環させる配管と、
上記冷媒を貯留するタンクと、
上記冷媒を駆動するポンプと、
上記ポンプの駆動する冷媒の流量を制御する制御部と、
上記発熱体の温度、あるいは上記受熱部における冷媒の温度を検出する温度検出部とを備え、
上記受熱部は、上記冷媒が気化する際の気化熱を利用する潜熱冷却モードと、上記冷媒が液体状態で熱移送する水冷冷却モードの2つの冷却モードが可能であり、
上記放熱部は、上記受熱部で気化した冷媒を凝縮して液化する放熱機能と、上記受熱部で受熱した液体冷媒から放熱する放熱機能とを有し、
上記制御部は、上記温度検出部の検出した温度に基づいて上記ポンプの駆動する冷媒の流量を制御することによって、上記受熱部における冷却モードを切り替えるものであって、冷媒の流量を小さくすることによって上記冷却モードを上記潜熱冷却モードに切り替えることを特徴とする電子機器。
In an electronic device having a function of cooling a built-in heating element,
A heat receiving part for receiving heat generated by the heating element in the refrigerant;
A heat radiating part for radiating the heat received by the refrigerant to the outside;
Piping for circulating the refrigerant between the heat receiving portion and the heat radiating portion;
A tank for storing the refrigerant;
A pump for driving the refrigerant;
A control unit for controlling the flow rate of the refrigerant driven by the pump;
A temperature detection unit that detects the temperature of the heating element or the temperature of the refrigerant in the heat receiving unit;
The heat receiving unit is capable of two cooling modes, a latent heat cooling mode using heat of vaporization when the refrigerant is vaporized, and a water cooling cooling mode in which the refrigerant is thermally transferred in a liquid state,
The heat dissipating part has a heat dissipating function for condensing and liquefying the refrigerant vaporized in the heat receiving part, and a heat dissipating function for dissipating heat from the liquid refrigerant received by the heat receiving part,
The control unit switches the cooling mode in the heat receiving unit by controlling the flow rate of the refrigerant driven by the pump based on the temperature detected by the temperature detection unit, and reduces the flow rate of the refrigerant. The electronic device is characterized in that the cooling mode is switched to the latent heat cooling mode .
JP2006120410A 2006-04-25 2006-04-25 COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME Expired - Fee Related JP4773260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006120410A JP4773260B2 (en) 2006-04-25 2006-04-25 COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006120410A JP4773260B2 (en) 2006-04-25 2006-04-25 COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME

Publications (2)

Publication Number Publication Date
JP2007294655A JP2007294655A (en) 2007-11-08
JP4773260B2 true JP4773260B2 (en) 2011-09-14

Family

ID=38764978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006120410A Expired - Fee Related JP4773260B2 (en) 2006-04-25 2006-04-25 COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME

Country Status (1)

Country Link
JP (1) JP4773260B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6171826B2 (en) * 2013-10-16 2017-08-02 富士通株式会社 Electronic device, electronic device control method, and electronic device control program
CN109557749B (en) 2017-09-27 2021-11-12 精工爱普生株式会社 Projector with a light source
JP7192209B2 (en) 2017-12-27 2022-12-20 セイコーエプソン株式会社 projector
JP7047376B2 (en) 2017-12-27 2022-04-05 セイコーエプソン株式会社 projector
JP6992502B2 (en) 2017-12-27 2022-01-13 セイコーエプソン株式会社 projector
CN110095929A (en) 2018-01-29 2019-08-06 精工爱普生株式会社 Projector
JP7031373B2 (en) 2018-03-01 2022-03-08 セイコーエプソン株式会社 projector
JP7266400B2 (en) * 2018-04-25 2023-04-28 三菱重工業株式会社 Cooling system, its control method, control program, and waste heat utilization system
JP7151424B2 (en) * 2018-11-28 2022-10-12 株式会社デンソー cooling system
JP7332851B2 (en) 2018-12-28 2023-08-24 富士通株式会社 cooling system
JP2020134809A (en) 2019-02-22 2020-08-31 セイコーエプソン株式会社 projector
JP2020140092A (en) 2019-02-28 2020-09-03 セイコーエプソン株式会社 projector
JP6881491B2 (en) 2019-03-15 2021-06-02 セイコーエプソン株式会社 projector
JP7279433B2 (en) * 2019-03-15 2023-05-23 セイコーエプソン株式会社 projector
JP6828769B2 (en) 2019-05-27 2021-02-10 セイコーエプソン株式会社 projector
JP2020201303A (en) 2019-06-06 2020-12-17 セイコーエプソン株式会社 projector
JP2020201426A (en) 2019-06-12 2020-12-17 セイコーエプソン株式会社 projector
JP6888648B2 (en) 2019-07-10 2021-06-16 セイコーエプソン株式会社 projector
JP6919683B2 (en) 2019-07-12 2021-08-18 セイコーエプソン株式会社 projector
JP6874792B2 (en) 2019-07-19 2021-05-19 セイコーエプソン株式会社 projector
JP6919689B2 (en) 2019-09-20 2021-08-18 セイコーエプソン株式会社 projector
JP7223281B2 (en) 2019-09-24 2023-02-16 セイコーエプソン株式会社 projector
JP6962354B2 (en) 2019-10-11 2021-11-05 セイコーエプソン株式会社 projector
JP7416002B2 (en) 2021-03-29 2024-01-17 セイコーエプソン株式会社 Light modulator and projector
JP7334765B2 (en) 2021-07-28 2023-08-29 セイコーエプソン株式会社 Transmissive LCD panel
CN116249311A (en) * 2021-12-07 2023-06-09 中兴通讯股份有限公司 Mobile terminal heat dissipation device, mobile terminal heat dissipation method and mobile terminal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463992U (en) * 1990-09-29 1992-06-01
JPH05141831A (en) * 1991-11-15 1993-06-08 Nec Corp Structure of controlling liquid coolant circulation volume

Also Published As

Publication number Publication date
JP2007294655A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP4773260B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME
JP5644767B2 (en) Heat transport structure of electronic equipment
JP4033699B2 (en) Loop thermosyphon and Stirling refrigerator
JP5857964B2 (en) Electronic equipment cooling system
US20140331709A1 (en) Cooling device and electronic device using the same
JP2009529237A (en) System and method for cooling a server-based data center
JP6344385B2 (en) Cooling system and cooling method
KR20140058518A (en) Pumped liquid cooling system using a phase change fluid with additional sub-ambient cooling
CN111800982B (en) Cooling system and method for cooling electronic cabinets
US9696094B2 (en) Cooling unit
EP2719268B1 (en) Pumped loop cooling system
WO2008041737A1 (en) Cooling apparatus
JP2011122779A (en) Refrigerating cycle device
WO2019017297A1 (en) Phase change refrigerating device and phase change refrigerating method
JPWO2016047098A1 (en) Refrigerant relay device, cooling device using the same, and cooling method
CN103538722A (en) Heat dissipation of power electronics of a cooling unit
JP2007010211A (en) Cooling device of electronics device
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
US10302339B2 (en) Refrigeration appliance with a heat exchanging element
JP2019207032A (en) Apparatus temperature control device
WO2014007354A1 (en) Ebullient cooling device
TW200521657A (en) Pumped liquid cooling system using a phase change refrigerant
JP5874935B2 (en) Flat plate cooling device and method of using the same
WO2019060792A1 (en) Heat pipes, methods for transferring heat using heat pipes, and heat transfer fluids for use in heat pipes
JP6825615B2 (en) Cooling system and cooler and cooling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4773260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees