JP4772518B2 - Manufacturing method of power transmission belt - Google Patents

Manufacturing method of power transmission belt Download PDF

Info

Publication number
JP4772518B2
JP4772518B2 JP2006021928A JP2006021928A JP4772518B2 JP 4772518 B2 JP4772518 B2 JP 4772518B2 JP 2006021928 A JP2006021928 A JP 2006021928A JP 2006021928 A JP2006021928 A JP 2006021928A JP 4772518 B2 JP4772518 B2 JP 4772518B2
Authority
JP
Japan
Prior art keywords
layer
rubber layer
rubber
belt
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006021928A
Other languages
Japanese (ja)
Other versions
JP2007205374A (en
Inventor
孝史 大仁田
亀壽郎 谷田
浩孝 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2006021928A priority Critical patent/JP4772518B2/en
Publication of JP2007205374A publication Critical patent/JP2007205374A/en
Application granted granted Critical
Publication of JP4772518B2 publication Critical patent/JP4772518B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、スノーモービル、スクーター及び一般産業用の変速ベルトとして使用されるローエッジシングルコグドベルト、ローエッジダブルコグドベルトであって、圧縮ゴム層のコグ山部と接着ゴム層との界面付近で亀裂が発生しにくい動力伝動用ベルト製造方法に関する。 The present invention is a low-edge single cogged belt or a low-edge double cogged belt used as a transmission belt for snowmobiles, scooters and general industries, and cracks are generated near the interface between the cogging portion of the compressed rubber layer and the adhesive rubber layer. The present invention relates to a manufacturing method of a difficult power transmission belt.

従来から、スクーターまたは一般産業用の機械分野の駆動系において、駆動プーリと従動プーリに伝動用ベルトを懸架し、プーリの有効径を変化させて変速させるベルト式変速装置が用いられている。ここで使用されている伝動用ベルトは圧縮ゴム層と伸張ゴム層の少なくとも一方のゴム層にコグ山部とコグ谷部を交互に配したコグ部を有し、心線を接着ゴム層内に埋設した構成からなり、ローエッジシングルコグドベルトあるいはローエッジダブルコグドベルトなどのローエッジコグドベルトが知られている。   2. Description of the Related Art Conventionally, in a drive system in the mechanical field for scooters or general industries, a belt-type transmission that suspends a transmission belt between a driving pulley and a driven pulley and changes the effective diameter of the pulley to change the speed is used. The power transmission belt used here has a cog portion in which a cog crest portion and a cog trough portion are alternately arranged on at least one of the compression rubber layer and the stretch rubber layer, and the core wire is placed in the adhesive rubber layer. Low-edge cogged belts such as a low-edge single cogged belt or a low-edge double cogged belt are known.

上記ローエッジコグドベルトの製造方法としては、成形金型上に装着した外補強布、伸張ゴム層のゴムシート、心線、圧縮ゴム層のゴムシート、そして内補強布を順次巻き付け、突状部と溝状部を交互に有する円筒状母型を嵌入した後、加硫するもので、加硫時の圧力により内補強布を収縮させて、圧縮ゴム層のゴムシートを型付けする方法が一般的であった。   The low edge cogged belt is manufactured by sequentially winding the outer reinforcing cloth mounted on the molding die, the rubber sheet of the stretched rubber layer, the core wire, the rubber sheet of the compressed rubber layer, and the inner reinforcing cloth. In general, a cylindrical base mold having alternating shaped parts is inserted and then vulcanized, and the inner reinforcing cloth is shrunk by pressure during vulcanization, and a method of molding the rubber sheet of the compressed rubber layer is generally used. It was.

しかし、この方法で作製されたベルトは伸張しやすい傾向があることから、以下の方法が提案された。即ち、予め用意したベルト周長よりも長い平面状の溝付金型の上に未加硫ゴムシートを設置し、プレスにより加熱加圧してコグ形状に型付けしたコグパッドを作製する。このコグパッドを成形ドラム上に装着した円筒状母型の突状部と溝状部に嵌め込み、コグパッドのカット面を突き合わせてジョイントした後、心線を巻き付け、更に他のゴム層、補強布をこの上から巻き付けて成型を終え、加硫していた。(例えば、特許文献1に開示。)   However, since the belt produced by this method tends to stretch easily, the following method has been proposed. That is, an unvulcanized rubber sheet is placed on a planar grooved mold longer than the belt circumference prepared in advance, and a cog pad molded in a cog shape by heating and pressing with a press is produced. This cog pad is fitted into the projecting part and groove part of a cylindrical master mold mounted on a molding drum, the cut surfaces of the cog pad are brought into contact with each other, a core wire is wound, and another rubber layer and reinforcing cloth are attached to this cog pad. It was wound from above and finished forming and vulcanized. (For example, disclosed in Patent Document 1)

更に、他の方法として、圧縮ゴム層の構成材料である補強布やゴムシートを、突状部と溝状部を交互に有する成形型に巻き付け、ジャケットを被せた後に加熱加圧して成形型の突状部と溝状部にコグ部を型付けした未加硫のスリーブを成形した。この未加硫のスリーブの背面には、ゴムが溝状部へ流れ込むためにそれぞれのコグ山部にへこみ部が発生することがあった。へこみ部を残したままでベルトを成形すると、ベルトにピンホールが発生し、亀裂を発生させる原因になっていた。これを除去するためにスリーブの背面を切削、研削、又は研磨加工して平坦に仕上げた後、心線および伸張ゴム層を形成するゴムシートを順次巻き付けてベルト成形体を作製後、加硫していた。(例えば、特許文献2に開示。)
特開2002−1691号公報 特開2005−54851号公報
Further, as another method, a reinforcing cloth or a rubber sheet, which is a constituent material of the compressed rubber layer, is wound around a mold having alternating protruding portions and groove-shaped portions, covered with a jacket, and heated and pressed to form a mold. An unvulcanized sleeve was formed by cogging the protrusions and the grooves. On the back surface of the unvulcanized sleeve, dents may occur at the respective cog peaks because rubber flows into the groove-like part. If the belt was molded with the dent remaining, pinholes were generated in the belt, causing cracks. To remove this, the back side of the sleeve is cut, ground, or polished to finish it flat, and then a rubber sheet that forms the core wire and the stretched rubber layer is wound in order to produce a belt molded body, which is then vulcanized. It was. (For example, it is disclosed in Patent Document 2.)
JP 2002-1691 A JP 2005-54851 A

しかし、スリーブの背面に発生したへこみ部を削除するために、背面を切削、研削、又は研磨加工して平坦に仕上げることは、切削屑、研削屑、又は研磨屑のようなスクラップが多量に発生させていた。このため、このスクラップの発生を少なくする対策が強く望まれていた。   However, in order to remove the indentation that occurred on the back of the sleeve, cutting, grinding, or polishing the back to make it flat will generate a lot of scrap, such as cutting, grinding, or polishing. I was letting. For this reason, a countermeasure for reducing the generation of scrap has been strongly desired.

本発明は上記の点に鑑みてなされたものであり、切削屑、研削屑、又は研磨屑のようなスクラップの発生を抑え、圧縮ゴム層のコグ山部と接着ゴム層との界面付近に発生するピンホールを無くし、ベルト走行時における早期の亀裂発生を阻止した動力伝動用ベルト製造方法を提供することを目的とする。 The present invention has been made in view of the above points, and suppresses generation of scraps such as cutting scraps, grinding scraps, or polishing scraps, and is generated near the interface between the cogging portion of the compressed rubber layer and the adhesive rubber layer. An object of the present invention is to provide a method of manufacturing a power transmission belt that eliminates pinholes that occur and prevents early cracking during belt travel.

本発明の第1の観点によれば、圧縮ゴム層と伸張ゴム層との間に心線を介在させ、少なくとも圧縮ゴム層にコグ部を設けた動力伝動用ベルトの製造方法であり、
圧縮ゴム層になる材料として背面に所定間隔で隆起部を設けた圧縮ゴム用シートを、突状部と溝状部を交互に設けた成形型に巻き付け、かつ上記隆起部を溝状部の上に配置
上記圧縮ゴム用シートを加熱下で加圧して、コグ部とともに平坦な背面を有する未加硫のスリーブを成形し、
上記スリーブの背面に少なくとも心線および伸張ゴム層となる材料を巻き付けてベルト成形体を作製後、
該ベルト成形体を加熱加圧して加硫成形する、動力伝動用ベルトの製造方法である。
この方法では、圧縮ゴム用シートに設けた隆起部を成形型の溝状部の上に配置し、この状態で圧縮ゴム用シートを加熱加圧することで、ボリュームのある隆起部が溝状部で充分に圧入されてへこみ部のない平坦な背面の未加硫のスリーブになる。これにより、圧縮ゴム層と接着ゴム層との界面におけるピンホールの発生が抑制され、ベルトの走行寿命も長くなる。
According to a first aspect of the present invention, there is provided a method for producing a power transmission belt in which a core wire is interposed between a compressed rubber layer and an extended rubber layer, and at least a cogg portion is provided in the compressed rubber layer.
A sheet for compressed rubber having ridges at predetermined intervals on the back as a material to become a compressed rubber layer is wound around a mold having alternating protrusions and grooves, and the ridges above the groove Placed in
Pressurizing the compressed rubber sheet under heating to form an unvulcanized sleeve having a flat back surface with a cog,
After producing a belt molded body by winding at least a material to be a core wire and a stretched rubber layer around the back surface of the sleeve,
This is a method for producing a power transmission belt, in which the belt molded body is heated and pressurized to be vulcanized.
In this method, the raised portion provided on the compressed rubber sheet is placed on the groove-shaped portion of the mold, and the compressed rubber sheet is heated and pressed in this state, so that the raised portion having a volume is the groove-shaped portion. A flat back unvulcanized sleeve that is fully press-fitted and has no dents. Thereby, generation | occurrence | production of the pinhole in the interface of a compression rubber layer and an adhesive rubber layer is suppressed, and the running life of a belt also becomes long.

本発明の第2の観点によれば、背面に所定間隔で隆起部を設けた圧縮ゴム用シートは、隆起部を設けた層と平坦な層を積層したもので、隆起部を設けた層の硬度が平坦な層のそれより大きくなっている動力伝動用ベルトの製造方法であり、隆起部を設けた層を硬くすることで、溝状部への圧入が確実なものになり、圧縮ゴム層と接着ゴム層との界面におけるピンホールの発生が抑制される。 According to the second aspect of the present invention, a sheet for compressed rubber having raised portions on the back surface at predetermined intervals is a laminate of a layer provided with raised portions and a flat layer. This is a method for manufacturing power transmission belts whose hardness is larger than that of a flat layer. By hardening the layer provided with the raised portions, the press fit into the groove-shaped portion is ensured, and the compressed rubber layer Generation of pinholes at the interface between the adhesive rubber layer and the adhesive rubber layer is suppressed.

本発明の動力伝動用ベルトでは、圧縮ゴム層が下部接着ゴム層から離れたところに位置する第1層と下部接着ゴム層に密着する第2層に区分され、第1層と第2層の界面が凹凸パターンになって、圧縮ゴム層の第2層と下部接着ゴム層との界面では平坦面を維持している。これによってピンホールの発生も無く、ベルト走行時に亀裂の発生を軽減することができる。
一方、動力伝動用ベルトの製造方法では、圧縮ゴム用シートの隆起部を成形型の溝状部の上に配置し、この状態で圧縮ゴム用シートの背面を加熱加圧することで、ボリュームのある隆起部が充分に溝状部に圧入されてへこみ部のない平坦な背面の未加硫のスリーブになる。これにより、圧縮ゴム層と接着ゴム層との界面におけるピンホールの発生が抑制され、ベルトの走行寿命も長くなる効果がある。
In the power transmission belt of the present invention, the compressed rubber layer is divided into a first layer located away from the lower adhesive rubber layer and a second layer closely contacting the lower adhesive rubber layer, and the first layer and the second layer are separated from each other. The interface is an uneven pattern, and a flat surface is maintained at the interface between the second layer of the compressed rubber layer and the lower adhesive rubber layer. As a result, there is no occurrence of pinholes, and the occurrence of cracks during belt running can be reduced.
On the other hand, in the method for manufacturing a power transmission belt, the protruding portion of the compressed rubber sheet is disposed on the groove-shaped portion of the mold, and in this state, the back surface of the compressed rubber sheet is heated and pressed to increase the volume. The raised portion is fully press-fitted into the groove-like portion, resulting in a flat, unvulcanized sleeve with no dents. Thereby, the occurrence of pinholes at the interface between the compressed rubber layer and the adhesive rubber layer is suppressed, and the running life of the belt is also increased.

以下、本発明の実施例を添付図面に従って説明する。
図1は本発明方法によって得られた動力伝動用ベルトの部分正面図である。
動力伝動用ベルト1は、上下部接着ゴム層2a、2b内にコードからなる心線3が埋め込まれ、上部接着ゴム層2aの上部位置にはゴム層5aからなる伸張ゴム層6、下部接着ゴム層2bの下部位置には補強布4とゴム層5bを積層した圧縮ゴム層7がある。伸張ゴム層6および圧縮ゴム層7には、それぞれ一定ピッチでベルト長手方向に沿ってコグ谷部8(8a)とコグ山部9(9b)とを交互に配した上下コグ部11、12が設けられている。尚、伸張ゴム層6にも、補強布4を積層してもよい。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a partial front view of a power transmission belt obtained by the method of the present invention.
In the power transmission belt 1, a cord 3 made of a cord is embedded in the upper and lower adhesive rubber layers 2a and 2b, and an extension rubber layer 6 made of a rubber layer 5a and a lower adhesive rubber are positioned above the upper adhesive rubber layer 2a. At the lower position of the layer 2b, there is a compressed rubber layer 7 in which a reinforcing cloth 4 and a rubber layer 5b are laminated. The stretch rubber layer 6 and the compression rubber layer 7 have upper and lower cog portions 11 and 12 in which cog valley portions 8 (8a) and cog mountain portions 9 (9b) are alternately arranged along the longitudinal direction of the belt at a constant pitch. Is provided. The reinforcing cloth 4 may also be laminated on the stretch rubber layer 6.

圧縮ゴム層7は下部接着ゴム層2bから離れたところに位置する第1層7aと下部接着ゴム層2bに密着する第2層7bに区分され、第1層7aと第2層7bの界面が緩やかな凹凸パターンになっている。ゴク山部9は第1層7aと第2層7bで充満されているため、圧縮ゴム層の第2層7bと下部接着ゴム層2bとの界面が平坦面に維持され、ピンホールの発生も無く、ベルト走行時に亀裂の発生を軽減する。   The compressed rubber layer 7 is divided into a first layer 7a located away from the lower adhesive rubber layer 2b and a second layer 7b closely contacting the lower adhesive rubber layer 2b, and the interface between the first layer 7a and the second layer 7b is It has a gentle uneven pattern. Since the bump 9 is filled with the first layer 7a and the second layer 7b, the interface between the second layer 7b of the compression rubber layer and the lower adhesive rubber layer 2b is maintained on a flat surface, and pinholes are also generated. No cracks are generated when the belt is running.

尚、第1層7aと第2層7bは同質のゴム組成物であってもよく、また第2層7bの硬度を第1層7aのそれより大きく設定してもよく、更には第2層7bの短繊維の添加量を第1層7aのそれより多くしてもよい。   The first layer 7a and the second layer 7b may be the same rubber composition, and the hardness of the second layer 7b may be set larger than that of the first layer 7a, and further the second layer The amount of the short fibers 7b may be larger than that of the first layer 7a.

上記圧縮ゴム層7と下部接着ゴム層2bとの界面13では、凹凸が少なく比較的平坦面で、第2層7bへ深く入り込んだへこみ部が発生していない。このため、下部接着ゴム層2bが第2層7b内へ侵入することなく、下部接着ゴム層2bの厚みがベルト全周囲にわたってほぼ均一な厚みになっている。また、上記界面13ではゴム組成物によって充填されているためにピンホール等のボイド発生が無くなり、ベルト走行時に亀裂の発生を軽減している。   At the interface 13 between the compressed rubber layer 7 and the lower adhesive rubber layer 2b, there is little unevenness and a relatively flat surface, and there is no dent in the second layer 7b. Therefore, the lower adhesive rubber layer 2b does not penetrate into the second layer 7b, and the thickness of the lower adhesive rubber layer 2b is substantially uniform over the entire belt. In addition, since the interface 13 is filled with the rubber composition, no voids such as pinholes are generated, and the occurrence of cracks is reduced during belt running.

ベルト側面の形状は、伸張ゴム層6の頂部14から心線3の上端Pまでの距離をLとしたとき、伸張ゴム層6の頂部14からLの90〜100%に相当する境界位置Uまでの領域を伸張ゴム層6の頂部14に対して直角カット面に、そして上記境界位置Uから圧縮ゴム層の底面にかけてバイアスカット面になっている。バイアスカット面の角度は20〜60度であり、広角度ベルトも含まれる。無論、ベルト側面の形状は、バイアスカット面のみであってもよい。   The shape of the belt side surface is from the top portion 14 of the stretch rubber layer 6 to the boundary position U corresponding to 90 to 100% of L, where L is the distance from the top portion 14 of the stretch rubber layer 6 to the upper end P of the core wire 3. Is a cut surface perpendicular to the top 14 of the stretched rubber layer 6, and a bias cut surface from the boundary position U to the bottom surface of the compressed rubber layer. The angle of the bias cut surface is 20 to 60 degrees, and a wide angle belt is also included. Of course, the shape of the belt side surface may be only the bias cut surface.

心線3としては、ポリエステル繊維、アラミド繊維、ガラス繊維が使用され、中でもエチレン−2,6−ナフタレートを主たる構成単位とするポリエステル繊維フィラメント群を撚り合わせた総デニール数を4,000〜8,000の接着処理したコードが、ベルトスリップ率を低くでき、ベルト寿命を延長させるために好ましい。このコードの上撚り数は10〜23/10cmであり、また下撚り数は17〜38/10cmである。総デニールが4,000未満の場合には、心線のモジュラス、強力が低くなり過ぎ、また8,000を越えると、ベルトの厚みが厚くなって、屈曲疲労性が悪くなる。   As the core 3, polyester fiber, aramid fiber, and glass fiber are used, and the total number of deniers obtained by twisting together polyester fiber filament groups mainly composed of ethylene-2,6-naphthalate is 4,000 to 8, A cord subjected to adhesion treatment of 000 is preferable in order to reduce the belt slip ratio and extend the belt life. The number of upper twists of this cord is 10 to 23/10 cm, and the number of lower twists is 17 to 38/10 cm. When the total denier is less than 4,000, the modulus and strength of the cord are too low. When the total denier is more than 8,000, the belt becomes thick and the bending fatigue property is deteriorated.

上記圧縮ゴム層7および伸張ゴム層6に使用するゴムとしては、天然ゴム、ブチルゴム、スチレン−ブタジエンゴム、クロロプレンゴム、エチレン−プロピレンゴム、アルキル化クロロスルフォン化ポリエチレン、水素化ニトリルゴム、水素化ニトリルゴムと不飽和カルボン酸金属塩との混合ポリマー等のゴム材の単独、またはこれらの混合物が使用される。   Examples of the rubber used for the compression rubber layer 7 and the stretch rubber layer 6 include natural rubber, butyl rubber, styrene-butadiene rubber, chloroprene rubber, ethylene-propylene rubber, alkylated chlorosulfonated polyethylene, hydrogenated nitrile rubber, and hydrogenated nitrile. A rubber material such as a mixed polymer of rubber and unsaturated carboxylic acid metal salt alone or a mixture thereof is used.

そして、上記圧縮ゴム層7に使用される短繊維としては、アラミド繊維、ポリアミド繊維、ポリエステル繊維、綿等の繊維からなり繊維の長さは繊維の種類によって異なるが1〜10mm程度である。例えば、アラミド繊維であると3〜5mm程度、ポリアミド繊維、ポリエステル繊維、綿であると5〜10mm程度のものが用いられる。そして、上記ゴム層中の短繊維の方向はベルトの長手方向に対して直角方向を向いているのを90°としたときほとんどの短繊維が70〜110°の範囲内に配向されている。伸張ゴム層5には、短繊維16を含めなくてもよい。また、接着ゴム層2a、2bには、上記短繊維を含めてもよいが、心線3との接着を考慮すると含めない方がよい。   And as a short fiber used for the said compression rubber layer 7, it consists of fibers, such as an aramid fiber, a polyamide fiber, a polyester fiber, cotton, and the length of a fiber is about 1-10 mm although it changes with kinds of fiber. For example, aramid fibers are about 3 to 5 mm, and polyamide fibers, polyester fibers, and cotton are about 5 to 10 mm. And the direction of the short fiber in the said rubber layer is orientating in the range of 70-110 degrees, when the direction of the perpendicular direction with respect to the longitudinal direction of a belt is set to 90 degrees. The stretched rubber layer 5 may not include the short fibers 16. The adhesive rubber layers 2a and 2b may include the above short fibers, but it is preferable not to include them in consideration of adhesion to the core wire 3.

補強布4は綿、ポリエステル繊維、ナイロン等を素材とした平織、綾織、朱子織等に製織した布であって、経糸と緯糸との交差角が90〜120°程度の帆布である。補強布4はRFL処理した後、ゴム組成物をフィリクション・コーチングしてゴム付帆布とする。   The reinforcing cloth 4 is a cloth woven in plain weave, twill weave, satin weave, etc. made of cotton, polyester fiber, nylon or the like, and is a canvas whose warp and weft crossing angle is about 90-120 °. The reinforcing cloth 4 is subjected to RFL treatment, and then the rubber composition is subjected to fiction and coaching to obtain a canvas with rubber.

RFL液はレゾルシンとホルムアルデヒドとの初期縮合物をラテックスに混合したものであり、ここで使用するラテックスとしてはクロロプレン、スチレン・ブタジエン・ビニルピリジン三元共重合体、水素化ニトリル、NBRなどである。   The RFL liquid is obtained by mixing an initial condensate of resorcin and formaldehyde into a latex. Examples of the latex used here include chloroprene, styrene / butadiene / vinylpyridine terpolymer, hydrogenated nitrile, and NBR.

次に、動力伝動用ベルトの製造方法の工程を図2〜図5に基づいて説明する。   Next, the steps of the method for manufacturing the power transmission belt will be described with reference to FIGS.

図2は動力伝動用ベルト1の製造方法の一例であって突状部と溝状部を交互に設けた成形型上で補強布を型付している。   FIG. 2 shows an example of a method for manufacturing the power transmission belt 1, in which a reinforcing cloth is formed on a forming die in which protrusions and grooves are provided alternately.

即ち、補強布40の型付けでは、ゴム糊であるゴム系接着剤を成形型41(金型に円筒状母型を装着したもの)の突状部42の表面にスプレー、刷毛、ローラー等で塗布した後、接着処理済みもしくは未処理の補強布40を引き出して突状部42の表面に載置する。ピニオンロール50を下ろして歯部52が成形型41の溝状部43に入っていることを確認した後、成形型41を回転させて前方突状部42aに位置する補強布40をピニオンロールの底面51で押圧し、続いてピニオンロール50の歯部52を成形型41の溝状部43に噛合わせて歯部先端面44を成形型41の溝状部底面45に当接して押圧変形する。ピニオンロール50は成形型41の回転とともに回転する。   That is, in the molding of the reinforcing cloth 40, a rubber adhesive, which is a rubber paste, is applied to the surface of the projecting portion 42 of the molding die 41 (with a cylindrical mother die attached to the mold) by spraying, brushing, rollers, or the like. After that, the reinforcing cloth 40 that has been subjected to the bonding process or not yet processed is pulled out and placed on the surface of the protrusion 42. After the pinion roll 50 is lowered and it is confirmed that the tooth portion 52 is in the groove-like portion 43 of the forming die 41, the forming die 41 is rotated and the reinforcing cloth 40 positioned on the front protruding portion 42a is attached to the pinion roll. Pressing at the bottom surface 51, and then engaging the tooth portion 52 of the pinion roll 50 with the groove-like portion 43 of the mold 41 and bringing the tooth tip end surface 44 into contact with the groove-like bottom surface 45 of the mold 41 for pressure deformation. . The pinion roll 50 rotates with the rotation of the mold 41.

そして、隣接する後方突状部42bにある補強布40を隣接する他のピニオンロールの底面51で押圧することにより補強布40を伸張させずに無理なく1つの溝状部43に沿って完全に変形し、これを順次繰り返して補強布40を成形型41の全周囲に密着するように型付けする。本実施例の場合、ピニオンロール50の1つの歯部52が成形型41の溝状部43に入っているとき、他のピニオンロール50の歯部52が補強布40を押付けしないために、補強布40が突っ張ってしまったり、浮いたりすることはない。これを繰り返しながらモールド41の全表面に1〜4プライまで被覆する。そして、補強布40の終端はカッターにより切断して、成形型41に貼着する。   Then, by pressing the reinforcing cloth 40 in the adjacent rear protrusion 42b with the bottom surface 51 of another adjacent pinion roll, the reinforcing cloth 40 is completely stretched along one groove-like part 43 without stretching. Deformation is repeated in sequence, and the reinforcing cloth 40 is molded so as to be in close contact with the entire periphery of the mold 41. In the case of the present embodiment, when one tooth portion 52 of the pinion roll 50 is in the groove-like portion 43 of the molding die 41, the tooth portion 52 of the other pinion roll 50 does not press the reinforcing cloth 40. The cloth 40 does not stretch or float. While repeating this, the entire surface of the mold 41 is coated up to 1-4 plies. Then, the end of the reinforcing cloth 40 is cut by a cutter and attached to the forming die 41.

尚、補強布40の型付けでは、上記のようなピニオンロールを用いる必要はなく、溝状部に嵌合するロッドを使用してもよい。   Note that in the molding of the reinforcing cloth 40, it is not necessary to use the pinion roll as described above, and a rod that fits into the groove-shaped portion may be used.

ここで使用するゴム系接着剤は、各種のゴム配合物をメチルエチルケトン(MEK)、トルエン等の溶剤に溶解し、混合して得られたものであり、補強布40のモールド41面への密着をよくする。   The rubber-based adhesive used here is obtained by dissolving various rubber compounds in a solvent such as methyl ethyl ketone (MEK) and toluene and mixing them, and the adhesion of the reinforcing cloth 40 to the mold 41 surface is obtained. Well.

続いて、図3に示すように、予め隆起部55cを設けた層55aと平坦な層55bを積層した未加硫の圧縮ゴム用シート55の両端面を厚み方向に傾斜したカット(通常ベベカットともいう)したものを、上記補強布40を型付けした成形型41に巻き付ける。この場合、上記隆起部55cは成形型41の溝状部43の上に配置する必要がある。これは、ボリュームをもった隆起部55cを溝状部43に充分に圧入することでへこみ部のない平坦な背面の未加硫のスリーブに仕上げるためである。   Subsequently, as shown in FIG. 3, both end faces of the unvulcanized compressed rubber sheet 55 in which the layer 55a provided with the raised portion 55c and the flat layer 55b are laminated are inclined in the thickness direction (normally bebe cut). What is said is wound around a forming die 41 on which the reinforcing cloth 40 is formed. In this case, the raised portion 55 c needs to be disposed on the groove-like portion 43 of the mold 41. This is because the raised portion 55c having a volume is fully press-fitted into the groove-like portion 43 to finish a flat unvulcanized sleeve having no dent portion.

圧縮ゴム用シート55は隆起部を設けた層55aと平坦な層55bを積層一体化したものを使用する。隆起部を設けた層55aと平坦な層55bは同質のゴム組成物であってもよく、また上記隆起部を設けた層55aの硬度を上記平坦な層55bのそれより大きく設定してもよい。更には、隆起部を設けた層55aの短繊維の添加量を平坦な層55bのそれより多くしてもよい。このようにすることで、型付け工程において隆起部を設けた層55aのゴム流れを阻止し、硬度を維持することによって、圧縮ゴム用シート55を溝状部43へ充分に圧入することができる。   As the compressed rubber sheet 55, a layer 55a provided with raised portions and a flat layer 55b are laminated and integrated. The layer 55a provided with the raised portion and the flat layer 55b may be the same rubber composition, and the hardness of the layer 55a provided with the raised portion may be set larger than that of the flat layer 55b. . Further, the amount of short fibers added to the layer 55a provided with the raised portions may be larger than that of the flat layer 55b. By doing in this way, the rubber | gum flow of the layer 55a which provided the protruding part in the shaping | molding process is blocked | prevented, and the sheet | seat 55 for compressed rubber can fully be press-fit in the groove-shaped part 43 by maintaining hardness.

そして、圧縮ゴム用シート55のカット面を突合せた後、カット面の表面を加圧治具(図示せず)で軽く押圧してジョイントした後、加熱プレス(図示せず)を用いて加熱加圧してジョイント部(図示せず)を形成する。加熱加圧条件は温度が80〜120℃、面圧が1〜2kg/cm、時間が10〜30秒である。ジョイントの位置は通常成形型41の溝状部43で行う。突状部42にジョイントの位置がくると、ベルトコグ谷部にジョイントがくるため、割れが発生しやすくなる。 Then, after abutting the cut surfaces of the compressed rubber sheet 55, the surfaces of the cut surfaces are lightly pressed with a pressure jig (not shown) and joined, and then heated with a heating press (not shown). To form a joint (not shown). The heating and pressing conditions are a temperature of 80 to 120 ° C., a surface pressure of 1 to 2 kg / cm 2 , and a time of 10 to 30 seconds. The joint is usually positioned at the groove 43 of the mold 41. When the position of the joint comes to the projecting portion 42, the joint comes to the belt cog valley portion, so that cracking is likely to occur.

上記圧縮ゴム用シート55の隆起部55cを設けた層55aの表面に沿うように離型材56であるポリメチルペンテンあるいはポリエチレンテレフタレートからなる耐熱性、離型性に優れる樹脂フィルムまたは離型紙を1プライ巻き付け重ね合わせて接合し、その上に内周を平坦面とする押付材66によって包囲する。押付材66はシート体や筒状体であり、例えばゴム製のジャケットが適用される。   One ply of a resin film or release paper made of polymethylpentene or polyethylene terephthalate, which is a release material 56, having excellent heat resistance and release properties along the surface of the layer 55a provided with the raised portions 55c of the compressed rubber sheet 55. It is wound and overlapped and joined, and is surrounded by a pressing member 66 having a flat inner surface. The pressing material 66 is a sheet body or a cylindrical body, and for example, a rubber jacket is applied.

続いて、圧縮ゴム用シート55の型付け工程へ移行する。このゴムシート型付け工程は、例えば加硫缶を使用することができる。この場合、押付材66の外側に蒸気遮断材であるゴム製のジャケット57を被せた後、成形型41を加硫缶へ設置し、温度160〜180℃、外圧0.1〜0.9MPaのみで5〜10分程度型付けし、図4に示すようにコグ部59を有する未加硫のスリーブ60を形成する。加硫缶で型付けしても、スリーブ60のジョイント部の割れは起こらない。
無論、型付けは加硫缶でなく、圧縮ゴム用シート55の外側を加圧バンド、プレス方式等によって加熱、加圧してもよいことは言うまでもない。
Subsequently, the process proceeds to a molding process for the compressed rubber sheet 55. In this rubber sheet molding step, for example, a vulcanization can can be used. In this case, after covering the outer side of the pressing material 66 with a rubber jacket 57 as a steam blocking material, the molding die 41 is placed in a vulcanizing can, and the temperature is 160 to 180 ° C. and the external pressure is only 0.1 to 0.9 MPa. Then, molding is performed for about 5 to 10 minutes to form an unvulcanized sleeve 60 having a cog 59 as shown in FIG. Even if it molds with a vulcanizing can, the joint part of the sleeve 60 does not crack.
Needless to say, the molding is not a vulcanized can, and the outside of the compressed rubber sheet 55 may be heated and pressurized by a pressure band, a press method, or the like.

未加硫のスリーブ60は、図4に示すように加熱、加圧された圧縮ゴム用シート55が溝状部43へ流れ込むときに、押付材66によって隆起部55cが溝状部43へ圧入され、また同時にボリュームが補填されるために、コグ部59には背面61から深く入り込んだへこみ部を発生しない平坦な背面の未加硫のスリーブを形成する。これにより、圧縮ゴム層と接着ゴム層との界面におけるピンホールの発生が抑制され、ベルトの走行寿命も長くなる。   As shown in FIG. 4, when the compressed rubber sheet 55 heated and pressurized flows into the groove-like portion 43, the unvulcanized sleeve 60 is pressed into the groove-like portion 43 by the pressing material 66. At the same time, since the volume is compensated, the cog portion 59 is formed with a flat unvulcanized sleeve on the back surface that does not generate a dent portion that penetrates deeply from the back surface 61. Thereby, generation | occurrence | production of the pinhole in the interface of a compression rubber layer and an adhesive rubber layer is suppressed, and the running life of a belt also becomes long.

図5に示す方法によって作製された圧縮ゴム層70の背面にはベルト成形体が作製される。即ち、型付けされた圧縮ゴム層70の背面にベルト成形体を作製する状態を示すものであり、成形型41を成形機(図示せず)に装着し、コードからなる心線71を圧縮ゴム層70(スリーブ60の背面61)上にスパイラルに巻き付けた後、接着ゴム層を形成する接着ゴムシート72、伸張ゴム層を形成する伸張ゴムシート73、上面補強布74、そして空気抜き材75を順次巻き付けてベルト成形体76を作製する。そして、成形機から取り出した成形型41を支持台上に設置して円筒状母型77を嵌入する。円筒状母型77の突状部78と溝状部79の表面には、ナイロン等の織物が被覆されている。   A belt molded body is produced on the back surface of the compressed rubber layer 70 produced by the method shown in FIG. That is, it shows a state in which a belt molded body is produced on the back surface of the molded compression rubber layer 70. The molding die 41 is mounted on a molding machine (not shown), and the cord 71 made of a cord is connected to the compression rubber layer. 70 (back surface 61 of the sleeve 60) is wound in a spiral, and then an adhesive rubber sheet 72 for forming an adhesive rubber layer, an elastic rubber sheet 73 for forming an elastic rubber layer, an upper surface reinforcing cloth 74, and an air vent 75 are sequentially wound. Thus, a belt molded body 76 is produced. Then, the molding die 41 taken out from the molding machine is placed on the support base, and the cylindrical mother die 77 is inserted. The surface of the projecting portion 78 and the groove portion 79 of the cylindrical mother die 77 is covered with a woven fabric such as nylon.

ここで使用する空気抜き材75は離型材56と同様にポリメチルペンテンあるいはポリエチレンテレフタレートからなる耐熱性、離型性に優れる樹脂フィルムである。しかし、空気抜き材75を必ず使用する必要はない。   The air vent 75 used here is a resin film made of polymethylpentene or polyethylene terephthalate, which is excellent in heat resistance and releasability, like the release material 56. However, it is not always necessary to use the air vent 75.

続いて、成形型41を加硫缶へ移して通常の方法で加硫を行う。加硫した後、円筒状母型77、続いて円筒状のベルトスリーブを成形型41から抜き取る。   Subsequently, the mold 41 is transferred to a vulcanizing can and vulcanized by a normal method. After vulcanization, the cylindrical mother die 77 and then the cylindrical belt sleeve are extracted from the molding die 41.

上面補強布74の表面に巻付けた空気抜き材75は、コグ山部成形時における空気の滞留を抑えて流れをよくしてコグ山形状を正確に成形する。   The air venting material 75 wound around the surface of the upper surface reinforcing cloth 74 suppresses stagnation of air at the time of forming the cog mountain portion, improves the flow, and accurately forms the cog mountain shape.

次に、ベルトスリーブをマントルに装着し、カッターにより所定幅にバイアスに切断してコグドベルト1を作製する。また、ベルトスリーブを所定幅に直角カットし、矩形断面をもつ単一のベルトに仕上げ、これを2軸のプーリに装着して回転させながら境界位置Uから圧縮ゴム層の底面までのベルト側面を一対のカッターによってバイアスにカットしてリング屑を除去して動力伝動用ベルト1に仕上げることができる。   Next, a belt sleeve is attached to the mantle, and a cogged belt 1 is manufactured by cutting the belt sleeve to a predetermined width with a cutter. In addition, the belt sleeve is cut at a right angle to a predetermined width, finished into a single belt having a rectangular cross section, and attached to a biaxial pulley and rotated while rotating the belt side surface from the boundary position U to the bottom surface of the compressed rubber layer. The power transmission belt 1 can be finished by cutting the bias with a pair of cutters to remove ring debris.

実施例1
心線として、1,500デニールのアラミド繊維(商品名:トワロン)を上撚り数19.7回/10cm、下撚り数15.8回/10cmで上下逆方向に撚糸して2×3の撚り構成とし、トータルデニール9,000の未処理コードを準備した。次いで、この未処理コードをイソシアネート系接着剤でプレディプした後、約170〜180°Cで乾燥し、RFL液に浸漬した後、200〜240°Cで延伸熱固定処理を行なって処理コードとした。
Example 1
As a core wire, a 1,500 denier aramid fiber (trade name: Twaron) is twisted 2 × 3 by twisting it upside down at an upper twist number of 19.7 times / 10 cm and a lower twist number of 15.8 times / 10 cm. An unprocessed code with a total denier of 9,000 was prepared. Next, this untreated cord was pre-dipped with an isocyanate-based adhesive, then dried at about 170 to 180 ° C., immersed in an RFL solution, and then subjected to a stretching and heat setting treatment at 200 to 240 ° C. to obtain a treated cord. .

補強布として、アラミド繊維(商品名:トワロン)とポリエチレンテレフタレート繊維を重量比で50:50の混撚糸を使用したワイドアングルの平織帆布を用いた。これらの帆布をRFL液に浸漬した後、150°Cで2分間熱処理して処理帆布とした。その後、これらの処理帆布にゴム組成物をフリクション・コーチングしてゴム付帆布とした。   A wide-angle plain woven canvas using a 50:50 blended yarn of aramid fiber (trade name: Twaron) and polyethylene terephthalate fiber in a weight ratio was used as the reinforcing fabric. These canvases were immersed in an RFL solution and then heat treated at 150 ° C. for 2 minutes to obtain treated canvases. Thereafter, a rubber composition was friction coated with these treated canvases to obtain rubberized canvases.

圧縮ゴム層と伸張ゴム層はアラミド短繊維(ゴム100重量部に対して25重量部)を含んだクロロプレンゴムからなるゴム組成物を用い、また接着ゴム層は短繊維を含まないクロロプレンゴムからなるゴム組成物を用いた。   The compression rubber layer and the stretch rubber layer are made of a rubber composition made of chloroprene rubber containing aramid short fibers (25 parts by weight with respect to 100 parts by weight of rubber), and the adhesive rubber layer is made of chloroprene rubber containing no short fibers. A rubber composition was used.

突状部と溝状部を交互に有する円筒状母型を断面真円の型の装着した成形型を支軸に設置し、クロロプレンゴム組成物をメチルエチルケトンで溶かしたゴム糊を突状部の表面に吹き付けて塗装した。そして、補強布を成形金型とピニオンロールの間に挟み込み、成形金型とピニオンロールを同期回転しながら型付けしながら1プライ積層した。   A cylindrical mold having alternating protrusions and grooves is mounted on a spindle with a mold having a perfect circular cross section, and rubber paste prepared by dissolving chloroprene rubber composition with methyl ethyl ketone is the surface of the protrusion. Painted by spraying on. Then, the reinforcing cloth was sandwiched between the molding die and the pinion roll, and one ply was laminated while molding the molding die and the pinion roll while synchronously rotating.

続いて、溝状部のピッチ間隔の隆起部をもった一枚の圧縮ゴム用シートをバイアスにカットし、これを成形金型の補強布の上に巻き付けた。この場合、圧縮ゴムシートの隆起部は円筒状母型の溝状部の上にくるように配置された。そして、圧縮ゴムシートの端面を突き合わせ、ジョイント部をステッチャーで軽く接合した後、更に加熱プレス(温度100℃、面圧1〜2kg/cm、15秒間)を用いて接着した。 Subsequently, one sheet for compressed rubber having ridges with pitch intervals between the groove portions was cut to a bias, and this was wound on a reinforcing cloth of a molding die. In this case, the raised portion of the compressed rubber sheet was disposed so as to be on the groove-shaped portion of the cylindrical matrix. Then, the end surfaces of the compressed rubber sheet were butted together and the joint portion was lightly joined with a stitcher, and then further bonded using a heating press (temperature 100 ° C., surface pressure 1-2 kg / cm 2 , 15 seconds).

その後、厚さ0.05mmのポリメチルペンテンフィルム(離型材)を圧縮ゴムシートの表面に1プライ巻き付け、更に歯部と溝部を交互に有する押付材(S3Mの広幅の歯付ベルト)を包囲し、その外側にゴム製のジャケットを被せて加硫缶に設置し、加熱加圧条件(温度170℃、外圧0.8MPaのみで7分程度)によって圧縮ゴムシートを円筒状母型の突状部と溝状部へ型付けし、へこみ部の存在しない凹凸パターン面を有する背面とコグ部を有する未加硫のスリーブを作製した。   Thereafter, a polymethylpentene film (release material) having a thickness of 0.05 mm is wound around the surface of the compressed rubber sheet by 1 ply, and further a pressing material (S3M wide toothed belt) having teeth and grooves alternately is surrounded. A rubber jacket is put on the outside and placed in a vulcanizing can, and the compressed rubber sheet is projected on the cylindrical mother mold by heating and pressing conditions (temperature 170 ° C., external pressure 0.8 MPa only for about 7 minutes). And an unvulcanized sleeve having a back surface having a concavo-convex pattern surface having no dent portion and a cog portion.

更に、未加硫のスリーブの背面(圧縮ゴム層の表面)上に、心線、接着ゴムシート、伸張ゴムシート、補強布、を順次巻き付けてベルト成形体を作製し、突状部と溝状部を交互に有する円筒状母型とジャケットを順次被せて成形型を加硫缶に設置し、通常の条件で加硫してベルトスリーブを得た。このスリーブをカッターによってV状に切断してスクーター用のコグドベルトに仕上げた。   Further, a belt molded body is produced by winding a core wire, an adhesive rubber sheet, a stretch rubber sheet, and a reinforcing cloth on the back surface of the unvulcanized sleeve (the surface of the compressed rubber layer) in order, and forming a protruding portion and a groove shape. Cylindrical mother molds and jackets having alternating parts were sequentially covered, and the mold was placed in a vulcanizing can and vulcanized under normal conditions to obtain a belt sleeve. This sleeve was cut into a V shape by a cutter to finish a scooped cogged belt.

得られたベルトにおける圧縮ゴム層のコグ山部と下部接着ゴム層との界面は、平坦面になり、また下部接着ゴム層がコグ山部内へ侵入することなく、下部接着ゴム層の厚みがベルト全周囲にわたってほぼ均一な厚みになっていた。更に、肉眼で観察しても圧縮ゴム層ではゴム組成物によって充填されているためにピンホール等のボイド発生は見られなかった。また、圧縮ゴム層の第1層と第2層の界面が緩やかな凹凸パターンになっていた。   In the obtained belt, the interface between the cogging portion of the compressed rubber layer and the lower adhesive rubber layer is a flat surface, and the thickness of the lower adhesive rubber layer is reduced without the lower adhesive rubber layer entering the cog mountain portion. The thickness was almost uniform over the entire circumference. Furthermore, even when observed with the naked eye, no voids such as pinholes were observed in the compressed rubber layer because it was filled with the rubber composition. Further, the interface between the first layer and the second layer of the compressed rubber layer was a gentle uneven pattern.

本発明は、スノーモービル、スクーター及び一般産業用の変速ベルトとして使用されるスノーモービル、スクーター及び一般産業用の変速ベルトとして使用されるローエッジシングルコグドベルト、ローエッジダブルコグドベルトを含むローエッジコグドベルト等の動力伝動用ベルト製造方法である。 The present invention relates to a power transmission for a snowmobile, a scooter and a low edge cogged belt including a low edge double cogged belt used as a snowmobile, a scooter and a general industrial speed change belt. It is a manufacturing method of a belt.

本発明の製造方法によって得られた動力伝動用ベルトの部分正面図である。It is a partial front view of the power transmission belt obtained by the manufacturing method of the present invention. 本発明に係る製造工程であって成形型上で補強布を型付している状態を示す工程である。It is a manufacturing process which concerns on this invention, and is a process which shows the state which has shape | molded the reinforcement cloth on the shaping | molding die. 本発明に係る製造工程であって圧縮ゴム用シートを成形型に巻き付けて未加硫のスリーブを作製する前の工程を示す。The manufacturing process which concerns on this invention, and shows the process before winding the sheet | seat for compressed rubber around a shaping | molding die, and producing an unvulcanized sleeve. 作製した未加硫のスリーブの断面を示す。The cross section of the produced unvulcanized sleeve is shown. 本発明に係る製造工程であって型付けされた未加硫のスリーブ(圧縮ゴム層)の背面にベルト成形体を作製する工程を示す。The process which produces a belt molded object on the back surface of the unvulcanized sleeve (compression rubber layer) which was the manufacturing process which concerns on this invention, and is shown.

符号の説明Explanation of symbols

1 動力伝動用ベルト
2a 上部接着ゴム層
2b 下部接着ゴム層
3 心線
6 伸張ゴム層
7 圧縮ゴム層
40 補強布
41 成形型
43 溝状部
55 圧縮ゴム用シート
55a 隆起部を設けた層
55b 平坦な層
55 隆起部
60 未加硫のスリーブ
61 背面
66 押付材
DESCRIPTION OF SYMBOLS 1 Power transmission belt 2a Upper adhesive rubber layer 2b Lower adhesive rubber layer 3 Core wire 6 Stretch rubber layer 7 Compressed rubber layer 40 Reinforcement cloth 41 Molding die 43 Grooved portion 55 Compression rubber sheet 55a Layer 55b provided with a raised portion Flat Na layer 55 ridge 60 unvulcanized sleeve 61 back surface 66 pressing material

Claims (2)

圧縮ゴム層と伸張ゴム層との間に心線を介在させ、少なくとも圧縮ゴム層にコグ部を設けた動力伝動用ベルトの製造方法であり、
圧縮ゴム層になる材料として背面に所定間隔で隆起部を設けた圧縮ゴム用シートを、突状部と溝状部を交互に設けた成形型に巻き付け、かつ上記隆起部を溝状部の上に配置
上記圧縮ゴム用シートを加熱下で加圧して、コグ部とともに平坦な背面を有する未加硫のスリーブを成形し、
上記スリーブの背面に少なくとも心線および伸張ゴム層となる材料を巻き付けてベルト成形体を作製後、
該ベルト成形体を加熱加圧して加硫成形する、
ことを特徴とする動力伝動用ベルトの製造方法。
It is a method for producing a power transmission belt in which a core wire is interposed between a compression rubber layer and an extension rubber layer, and a cog portion is provided at least on the compression rubber layer.
A sheet for compressed rubber having ridges at predetermined intervals on the back as a material to become a compressed rubber layer is wound around a mold having alternating protrusions and grooves, and the ridges above the groove Placed in
Pressurizing the compressed rubber sheet under heating to form an unvulcanized sleeve having a flat back surface with a cog,
After producing a belt molded body by winding at least a material to be a core wire and a stretched rubber layer around the back surface of the sleeve,
The belt molded body is heated and pressurized to be vulcanized,
A method of manufacturing a power transmission belt characterized by the above.
背面に所定間隔で隆起部を設けた圧縮ゴム用シートは、隆起部を設けた層と平坦な層を積層したもので、隆起部を設けた層の硬度が平坦な層のそれより大きくなっている請求項1記載の動力伝動用ベルトの製造方法。 A sheet for compressed rubber having ridges on the back at predetermined intervals is a laminate of a layer provided with ridges and a flat layer, and the layer provided with the ridges has a higher hardness than that of the flat layer. 2. The method for producing a power transmission belt according to claim 1 .
JP2006021928A 2006-01-31 2006-01-31 Manufacturing method of power transmission belt Expired - Fee Related JP4772518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006021928A JP4772518B2 (en) 2006-01-31 2006-01-31 Manufacturing method of power transmission belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006021928A JP4772518B2 (en) 2006-01-31 2006-01-31 Manufacturing method of power transmission belt

Publications (2)

Publication Number Publication Date
JP2007205374A JP2007205374A (en) 2007-08-16
JP4772518B2 true JP4772518B2 (en) 2011-09-14

Family

ID=38485021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006021928A Expired - Fee Related JP4772518B2 (en) 2006-01-31 2006-01-31 Manufacturing method of power transmission belt

Country Status (1)

Country Link
JP (1) JP4772518B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008332A1 (en) * 2021-07-27 2023-02-02 三ツ星ベルト株式会社 Toothed belt and manufacturing method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681577B2 (en) * 1987-01-13 1994-10-19 有限会社飯田製作所 Vacuum cooling type kneader
JP2521538B2 (en) * 1989-08-18 1996-08-07 ユニッタ株式会社 Toothed belt
JP2000018338A (en) * 1998-07-01 2000-01-18 Bando Chem Ind Ltd Cogged v belt
JP4642970B2 (en) * 2000-05-22 2011-03-02 三ツ星ベルト株式会社 Power transmission belt and manufacturing method thereof
JP4094976B2 (en) * 2003-03-20 2008-06-04 三ツ星ベルト株式会社 Manufacturing method of transmission belt

Also Published As

Publication number Publication date
JP2007205374A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
US8002922B2 (en) Power transmission belt and method of making a power transmission belt
JP4813098B2 (en) Power transmission belt manufacturing method and bias cut device
KR102062739B1 (en) Transmission belt and manufacturing method therefor
JPS62381B2 (en)
JPH0531012B2 (en)
JP3745963B2 (en) Power transmission belt and manufacturing method thereof
JP5329613B2 (en) Manufacturing method of power transmission belt
JP4772518B2 (en) Manufacturing method of power transmission belt
JP4589136B2 (en) Manufacturing method of transmission belt
JP4495294B2 (en) Low edge cog belt
JP2007051765A (en) Power transmission belt and its manufacturing method
JP4094976B2 (en) Manufacturing method of transmission belt
JP3833901B2 (en) Manufacturing method of power transmission belt
JPS5834697B2 (en) Multi-rib belt and its manufacturing method
JP4774069B2 (en) Toothed belt
JP2006347094A (en) Method of manufacturing power transmitting belt
JP4566320B2 (en) Manufacturing method of power transmission belt
JP3068200U (en) Power transmission belt
JP4642970B2 (en) Power transmission belt and manufacturing method thereof
JP4094978B2 (en) Manufacturing method of transmission belt
JP2006132784A (en) Power transmission belt
JP2002340102A (en) Manufacturing method for low edge belt and low edge belt transmission system obtained by using the same method
JP2005351317A (en) Driving belt
JP2002089631A (en) Belt for power transmission
JP2006062347A (en) Method for manufacturing driving belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4772518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees