JP4771096B2 - Protection circuit - Google Patents

Protection circuit Download PDF

Info

Publication number
JP4771096B2
JP4771096B2 JP2008144294A JP2008144294A JP4771096B2 JP 4771096 B2 JP4771096 B2 JP 4771096B2 JP 2008144294 A JP2008144294 A JP 2008144294A JP 2008144294 A JP2008144294 A JP 2008144294A JP 4771096 B2 JP4771096 B2 JP 4771096B2
Authority
JP
Japan
Prior art keywords
heating resistor
protection circuit
protection
series
battery pack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008144294A
Other languages
Japanese (ja)
Other versions
JP2008263776A (en
Inventor
裕治 古内
和隆 古田
雅巳 川津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemical and Information Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical and Information Device Corp filed Critical Sony Chemical and Information Device Corp
Priority to JP2008144294A priority Critical patent/JP4771096B2/en
Publication of JP2008263776A publication Critical patent/JP2008263776A/en
Application granted granted Critical
Publication of JP4771096B2 publication Critical patent/JP4771096B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、基板上に発熱抵抗体とヒューズエレメントを設けた保護素子を用いて、電池パックの過電流と過電圧を防止する保護回路に関する。   The present invention relates to a protection circuit for preventing overcurrent and overvoltage of a battery pack using a protection element in which a heating resistor and a fuse element are provided on a substrate.

携帯電話やノートパソコン等のモバイル電子機器の普及と共に、リチウムイオン電池の市場が拡大してきた。これらのモバイル電子機器では、通常、電源として、リチウムイオン電池を1〜4個直列に接続した電池パックが用いられている。このような電池パックでは、リチウムイオン電池が充電時に過充電(即ち、過電圧)になると、発火や発煙の可能性があり、これを防止するために保護回路が設けられている。   With the spread of mobile electronic devices such as mobile phones and laptop computers, the market for lithium ion batteries has expanded. In these mobile electronic devices, a battery pack in which 1 to 4 lithium ion batteries are connected in series is usually used as a power source. In such a battery pack, if the lithium ion battery is overcharged (i.e., overvoltage) during charging, there is a possibility of fire or smoke, and a protection circuit is provided to prevent this.

この保護回路には、過電流と過電圧の双方から電池を保護することが必要とされる。そこで、基板上に発熱抵抗体とヒューズエレメントを設けた保護素子と、過電圧を検出し、保護素子に流れる電流をスイッチする検知素子とを用いた保護回路が使用されている。この保護回路は、過電流時にはヒューズエレメントが溶断し、一方、過電圧時には、検知素子が発熱抵抗体に急激に電流を流し、それにより発熱抵抗体が発熱し、その熱でヒューズエレメントが溶断するようにしたものである(特許文献1)。   This protection circuit needs to protect the battery from both overcurrent and overvoltage. Therefore, a protection circuit using a protection element in which a heating resistor and a fuse element are provided on a substrate and a detection element that detects an overvoltage and switches a current flowing through the protection element is used. In this protection circuit, the fuse element is blown in the event of an overcurrent, while in the event of an overvoltage, the sensing element abruptly passes a current through the heating resistor, causing the heating resistor to generate heat, and the heat causes the fuse element to blow. (Patent Document 1).

特許2790433号公報Japanese Patent No. 2790433

近年、大電流で使用するモバイル電子機器の市場の拡大に伴い、電池パックとしては、リチウムイオン電池の直列数4以下の従前の定格電圧を超え、直列数10程度の定格電圧のものも使用されるようになっている。   In recent years, with the expansion of the market for mobile electronic devices used with large currents, battery packs with a rated voltage of about 10 in series exceeding the conventional rated voltage of 4 or less in series of lithium ion batteries are also used. It has become so.

一方、上述の電池パックの保護回路において、保護素子の発熱抵抗体にかかる電圧は電池パックを構成する電池の直列数に依存する。そのため、過充電時に保護素子のヒューズエレメントを確実に溶断させるためには、電池の直列数ごとに適切な抵抗値を有する発熱抵抗体を設けた保護素子をラインアップしなくてはならず、電池パックの電圧定格が、リチウムイオン電池の直列数が4以下のものから10程度のものまでに多様化した今日では、多品種生産によるコストアップないしプライスアップが問題となっていた。   On the other hand, in the protection circuit for the battery pack described above, the voltage applied to the heating resistor of the protection element depends on the number of batteries in the battery pack. Therefore, in order to blow out the fuse element of the protection element reliably at the time of overcharge, a protection element provided with a heating resistor having an appropriate resistance value for each series of batteries must be lined up. Today, the voltage rating of packs has diversified from 4 or fewer lithium ion batteries to about 10 in series, and there has been a problem of cost increase or price increase due to multi-product production.

例えば、図10の保護回路1Xや図11の保護回路1Yにおいて、保護素子2A、2Bがそれぞれ基板上に設けた発熱抵抗体3とヒューズエレメント4からなり、その動作可能電力が10〜20Wであり、電池パック5内の1つの電池6の最大電圧が4Vであり、検知手段7として電圧検知用IC8とFET9が設けられていると仮定すると、保護素子2としては、電池パック5を構成する電池6の直列数ごとに、発熱抵抗体3として表1の抵抗値を有するものを揃えなくてはならない。   For example, in the protection circuit 1X of FIG. 10 and the protection circuit 1Y of FIG. 11, the protection elements 2A and 2B are each composed of the heating resistor 3 and the fuse element 4 provided on the substrate, and the operable power is 10 to 20 W. Assuming that the maximum voltage of one battery 6 in the battery pack 5 is 4 V and that the voltage detection IC 8 and the FET 9 are provided as the detection means 7, the protection element 2 includes a battery constituting the battery pack 5. For every 6 serial numbers, the heating resistors 3 having the resistance values shown in Table 1 must be prepared.

Figure 0004771096
Figure 0004771096

仮に、直列数が10の電池パック5において、直列数が4の電池パック5に対応した25Ωの発熱抵抗体を用いて図10の保護回路1Xを組むと、過充電時に、電圧検知用IC8が電池パック5の両端の過電圧を検出することによりFET9のゲート電位が変化し、発熱抵抗体3に大電流が流れたときの発熱抵抗体3での消費電力Wは、
W=V*V/R=40*40/25=64W
により64Wにもなり、動作可能範囲の10〜20Wを大きく超える。そのため、ヒューズエレメント4が溶断する前に、この発熱抵抗体3が焼き切れてしまう。
If the protection circuit 1X of FIG. 10 is assembled using a 25Ω heating resistor corresponding to the battery pack 5 having a series number of 4 in the battery pack 5 having a series number of 10, the voltage detection IC 8 is connected during overcharge. By detecting the overvoltage at both ends of the battery pack 5, the gate potential of the FET 9 changes, and the power consumption W at the heating resistor 3 when a large current flows through the heating resistor 3 is:
W = V * V / R = 40 * 40/25 = 64W
As a result, the power becomes 64 W, greatly exceeding the operable range of 10 to 20 W. Therefore, before the fuse element 4 is melted, the heating resistor 3 is burned out.

このように保護素子2A、2Bの発熱抵抗体3としては、抵抗値が、電池パック5の電圧に応じたものを使用することが必要となる。   Thus, it is necessary to use a resistance value corresponding to the voltage of the battery pack 5 as the heating resistor 3 of the protection elements 2A and 2B.

一方、大電流用途のモバイル電子機器に使用する電池パックでは、保護素子のヒューズエレメントも大電流用のものが必要とされ、この点からも種々の定格のヒューズエレメントを備えた保護素子のラインナップが必要とされ、保護素子のコストアップないしプライスアップが問題となっていた。   On the other hand, battery packs used in mobile electronic devices for high current applications require protective element fuse elements for large currents. From this point of view, there is a lineup of protective elements with fuse elements of various ratings. Therefore, the cost of the protection element or the price increase has been a problem.

そこで、本発明は、基板上に抵抗発熱体とヒューズエレメントを設けた保護素子、及び検知手段を用いて、過電流と過電圧から電池パックを保護する保護回路において、電池パックの電流定格によらず、また、電池パック内の電池の直列数によらず、共通の保護素子を使用できる保護回路を提供することを目的とする。   Therefore, the present invention provides a protection circuit that protects a battery pack from overcurrent and overvoltage using a protection element provided with a resistance heating element and a fuse element on a substrate, and a detection means, regardless of the current rating of the battery pack. Moreover, it aims at providing the protection circuit which can use a common protection element irrespective of the serial number of the batteries in a battery pack.

本発明者らは、複数の二次電池が直列に接続されている電池パックを過電流や過電圧から保護する保護回路において、過電圧により保護回路が作動した時に、保護素子の動作可能範囲で該保護素子の発熱抵抗体に電圧が印加されるようにするためには、(1)過電圧時に、電池パック内で直列に接続された電池数の全数ではなく、所定数個分の電池の電圧が発熱抵抗体に印加されるようにするのが有効であること、(2)検知手段で過電圧を検出するにあたり、検出する電圧は、必ずしも、電池パック内で直列に接続された電池の全数分の電圧とする必要はなく、直列に接続された所定数個の電池の電圧を検出すればよいことを見出し、また、大電流用途において通常用途と共通の定格の保護素子を使用するためは、保護素子を並列に複数段に配列すればよいことを見出し、本発明を完成させた。   In the protection circuit that protects a battery pack in which a plurality of secondary batteries are connected in series from overcurrent or overvoltage, when the protection circuit is activated by overvoltage, the protection element operates within the operable range of the protection element. In order to apply a voltage to the heating resistor of the element, (1) When overvoltage occurs, the voltage of a predetermined number of batteries is generated rather than the total number of batteries connected in series in the battery pack. It is effective to be applied to the resistor. (2) When detecting the overvoltage by the detection means, the voltage to be detected is not necessarily the voltage for the total number of batteries connected in series in the battery pack. It is not necessary to detect the voltage of a predetermined number of batteries connected in series, and in order to use a protective element with the same rating as a normal application in a large current application, Are arranged in multiple stages in parallel It found that Bayoi, has led to the completion of the present invention.

即ち、第1の本発明は、二次電池が直列に接続された電池パックを過電流と過電圧から保護する保護回路であって、
該保護回路が、基板上に発熱抵抗体とヒューズエレメントを設けた保護素子、及び過電圧を検出し該発熱抵抗体に流れる電流をスイッチする検知手段を有し、
過電流時にヒューズエレメントが溶断すると共に、
過電圧時に検知手段によって発熱抵抗体に流れる電流がスイッチオンすることにより、電池パック内の所定数個の電池の電圧が発熱抵抗体に印加され、発熱抵抗体が発熱し、ヒューズエレメントが溶断するようにした保護回路を提供する。
That is, the first aspect of the present invention is a protection circuit for protecting a battery pack in which secondary batteries are connected in series from overcurrent and overvoltage,
The protection circuit has a protection element provided with a heating resistor and a fuse element on a substrate, and detection means for detecting an overvoltage and switching a current flowing through the heating resistor,
As the fuse element melts during overcurrent,
When the current flowing through the heating resistor is switched on by the detecting means at the time of overvoltage, the voltage of a predetermined number of batteries in the battery pack is applied to the heating resistor so that the heating resistor generates heat and the fuse element is blown. A protection circuit is provided.

第2の本発明は、二次電池が直列に接続された電池パックを過電流と過電圧から保護する保護回路であって、
該保護回路が、基板上に発熱抵抗体とヒューズエレメントを設けた保護素子、及び電池パック内の任意の電池間の過電圧を検出し該発熱抵抗体に流れる電流をスイッチする検知手段を有し、
過電流時にヒューズエレメントが溶断すると共に、
前記電池間の過電圧時に検知手段によって発熱抵抗体に流れる電流がスイッチオンすることにより発熱抵抗体が発熱し、ヒューズエレメントが溶断するようにした保護回路を提供し、特にこの保護回路において、異なる電池間の過電圧を検出する複数の検知手段を設けた態様を提供する。
2nd this invention is a protection circuit which protects the battery pack with which the secondary battery was connected in series from overcurrent and overvoltage,
The protection circuit includes a protection element provided with a heating resistor and a fuse element on a substrate, and detection means for detecting an overvoltage between arbitrary batteries in the battery pack and switching a current flowing through the heating resistor,
As the fuse element melts during overcurrent,
Provided is a protection circuit in which the heating resistor is heated by the current flowing through the heating resistor being switched on by the detecting means at the time of overvoltage between the batteries, and the fuse element is blown. An aspect is provided in which a plurality of detection means for detecting an overvoltage between them are provided.

第3の本発明は、二次電池が直列に接続された電池パックを過電流と過電圧から保護する保護回路であって、
該保護回路が、基板上に発熱抵抗体とヒューズエレメントを設けた保護素子、及び過電圧を検出し該発熱抵抗体に流れる電流をスイッチする検知手段を有し、
保護素子は並列に複数接続され、
過電流時に各保護素子においてヒューズエレメントが溶断すると共に、
過電圧時に検知手段によって各保護素子の発熱抵抗体に流れる電流がスイッチオンすることにより、各保護素子の発熱抵抗体が発熱し、ヒューズエレメントが溶断するようにした保護回路を提供する。
3rd this invention is a protection circuit which protects the battery pack with which the secondary battery was connected in series from overcurrent and overvoltage,
The protection circuit has a protection element provided with a heating resistor and a fuse element on a substrate, and detection means for detecting an overvoltage and switching a current flowing through the heating resistor,
Multiple protection elements are connected in parallel,
At the time of overcurrent, the fuse element melts in each protection element,
Provided is a protection circuit in which a current flowing through a heating resistor of each protection element is switched on by a detection means when an overvoltage occurs, whereby the heating resistor of each protection element generates heat and the fuse element is blown.

また、第4の本発明は、二次電池が直列に接続された電池パックを過電流と過電圧から保護する保護回路であって、
該保護回路が、基板上に発熱抵抗体とヒューズエレメントを設けた保護素子、及び電池パック内の任意の電池間の過電圧を検出し該発熱抵抗体に流れる電流をスイッチする検知手段を有し、
保護素子は並列に複数接続され、
過電流時に各保護素子においてヒューズエレメントが溶断すると共に、
前記電池間の過電圧時に検知手段によって発熱抵抗体に流れる電流がスイッチオンすることにより、電池パック内の所定数個の電池の電圧が、各保護素子の発熱抵抗体に印加され、発熱抵抗体が発熱し、ヒューズエレメントが溶断するようにした保護回路を提供する。
The fourth aspect of the present invention is a protection circuit for protecting a battery pack in which secondary batteries are connected in series from overcurrent and overvoltage,
The protection circuit includes a protection element provided with a heating resistor and a fuse element on a substrate, and detection means for detecting an overvoltage between arbitrary batteries in the battery pack and switching a current flowing through the heating resistor,
Multiple protection elements are connected in parallel,
At the time of overcurrent, the fuse element melts in each protection element,
When the current flowing in the heating resistor is switched on by the detecting means when the battery is overvoltaged, the voltage of a predetermined number of batteries in the battery pack is applied to the heating resistor of each protection element, and the heating resistor is Provided is a protection circuit that generates heat and blows a fuse element.

第1、第2、第3、第4の本発明は、それぞれ、二次電池が直列に接続された電池パックを過電流と過電圧から保護する保護回路であって、基板上に発熱抵抗体とヒューズエレメントを設けた保護素子、及び過電圧の検知手段を有する。   Each of the first, second, third, and fourth aspects of the present invention is a protection circuit that protects a battery pack in which secondary batteries are connected in series from overcurrent and overvoltage, and includes a heating resistor on the substrate. It has a protection element provided with a fuse element and an overvoltage detection means.

このうち、第1の保護回路では、検知手段が過電圧を検知して保護素子の発熱抵抗体に流れる電流をスイッチオンし、該保護素子の発熱抵抗体に電圧を印加するにあたり、その印加電圧は、電池パック内で直列に接続された電池の全数分の電圧ではなく、電池パック内で直列に接続された所定数個分の電池の電圧となる。このため、電池の直列数の多い電池パック用の保護回路で使用する保護素子と、電池の直列数の少ない電池パック用の保護回路で使用する保護素子とで、発熱抵抗体を共通化することができる。よって、保護素子の多品種生産を回避し、保護回路の製造コストを下げることが可能となる。   Among these, in the first protection circuit, when the detection means detects an overvoltage to switch on the current flowing through the heating resistor of the protection element, and the voltage is applied to the heating resistor of the protection element, the applied voltage is The voltage is not the voltage of all the batteries connected in series in the battery pack, but the voltage of a predetermined number of batteries connected in series in the battery pack. For this reason, a common heating resistor must be used for the protection element used in the protection circuit for battery packs with a large number of batteries in series and the protection element used in a protection circuit for battery packs with a low number of batteries in series. Can do. Therefore, it is possible to avoid the production of various types of protection elements and reduce the manufacturing cost of the protection circuit.

第2の保護回路では、検知手段が過電圧を検知して保護素子の発熱抵抗体に流れる電流をスイッチオンし、該保護素子の発熱抵抗体に電圧を印加するにあたり、検知電圧は、電パック内で直列に接続された電池の全数分の電圧ではなく、直列に接続された任意の電池間の電圧である。このため、この保護回路によれば、電圧定格の低い電圧検知用ICで、電圧定格の高い電池パックにおける過電圧を検出することができる。ここで、検知電圧を任意の電池間における個々の電池間の電圧とすると、電池パック内の個々の電池ごとの特性のばらつきに応じた充電状態を観察することができる。また、この保護回路において、電池パック内の異なる電池間の過電圧を検出するために、複数の検知手段を設けると、電池の直列数が多いために電池パック全体としては、過電圧を検出する電圧定格の高い電圧検知用ICが存在しない場合でも、電池の直列数の少ない電池パックに対応した既存の電圧定格の低い電圧検知用ICを用いて保護回路を組むことが可能となる。   In the second protection circuit, when the detection means detects an overvoltage to switch on the current flowing through the heating resistor of the protection element, and the voltage is applied to the heating resistor of the protection element, the detection voltage is This is not the voltage for the whole number of batteries connected in series, but the voltage between any batteries connected in series. For this reason, according to this protection circuit, an overvoltage in a battery pack having a high voltage rating can be detected by a voltage detection IC having a low voltage rating. Here, assuming that the detection voltage is the voltage between individual batteries among arbitrary batteries, it is possible to observe the state of charge according to the variation in characteristics of each individual battery in the battery pack. In this protection circuit, if a plurality of detection means are provided to detect overvoltage between different batteries in the battery pack, the battery pack as a whole has a voltage rating for detecting overvoltage because of the large number of batteries in series. Even when a high voltage detection IC does not exist, a protection circuit can be assembled using an existing voltage detection IC with a low voltage rating corresponding to a battery pack with a small number of batteries in series.

第3の保護回路では、保護素子が並列に接続されているので、ヒューズエレメントが並列に接続されている。このため、電池パックに大電流が流れる保護回路と、電池パックに小電流が流れる保護回路とで、保護素子のヒューズエレメントを共通化することができ、保護素子の製造コストを下げることができる。   In the third protection circuit, since the protection elements are connected in parallel, the fuse elements are connected in parallel. For this reason, the fuse element of the protection element can be shared by the protection circuit in which a large current flows in the battery pack and the protection circuit in which a small current flows in the battery pack, and the manufacturing cost of the protection element can be reduced.

第4の保護回路は、上述の第1、第2、第3の保護回路の特徴を備えているので、保護回路を、そこで使用する保護素子の発熱抵抗体についても、ヒューズエレメントについても、また、保護回路で使用する検知手段についても低コスト化することができ、保護回路全体を顕著に低コスト化することができる。   Since the fourth protection circuit has the characteristics of the first, second, and third protection circuits described above, the protection circuit is used for the heating resistor of the protection element used therein, the fuse element, and the like. Also, the detection means used in the protection circuit can be reduced in cost, and the entire protection circuit can be significantly reduced in cost.

以下、本発明を図面に基いて詳細に説明する。なお、各図中、同一符号は同一又は同等の構成要素を表している。   Hereinafter, the present invention will be described in detail with reference to the drawings. In each figure, the same numerals indicate the same or equivalent components.

図1は、第1の本発明の一実施例の保護回路1Aである。この保護回路1Aは、10個の二次電池6-1〜6-10が直列に接続された電池パック5を過電流と過電圧から保護するものであって、保護素子2Aと検知手段7を有する。   FIG. 1 shows a protection circuit 1A according to an embodiment of the first invention. The protection circuit 1A protects the battery pack 5 in which ten secondary batteries 6-1 to 6-10 are connected in series from overcurrent and overvoltage, and includes a protection element 2A and a detection means 7. .

保護素子2Aは、特許2790433号公報(特許文献1)、特開2000−285778号公報等に記載されているように、基板上に発熱抵抗体3とヒューズエレメント4を設け、発熱抵抗体3が通電発熱することによりヒューズエレメント4が溶断するようにしたものである。   As described in Japanese Patent No. 2790433 (Patent Document 1), Japanese Patent Application Laid-Open No. 2000-285778, etc., the protective element 2A is provided with a heating resistor 3 and a fuse element 4 on a substrate. The fuse element 4 is blown by heating with energization.

検知手段7は、電圧検知用IC8とFET9からなる。電圧検知用IC8は、電池パック5の両端の電圧を検出し、その検出信号をFET9のゲートに出力する。   The detection means 7 comprises a voltage detection IC 8 and an FET 9. The voltage detection IC 8 detects the voltage across the battery pack 5 and outputs the detection signal to the gate of the FET 9.

この保護回路1Aで電池パック5に過電流が生じると、保護素子2Aのヒューズエレメント4が溶断し、また、電池パック5に過電圧が生じると、FET9のゲート電位が所定電位以上となってスイッチオンの状態となり、FET9のドレイン-ソース間に急激に電流がながれ、したがって、保護素子1Aの発熱抵抗体3に急激に電流が流れ、発熱抵抗体3が発熱し、ヒューズエレメント4が溶断する。   When an overcurrent is generated in the battery pack 5 by the protection circuit 1A, the fuse element 4 of the protection element 2A is blown, and when an overvoltage is generated in the battery pack 5, the gate potential of the FET 9 becomes equal to or higher than a predetermined potential and the switch is turned on. As a result, a current suddenly flows between the drain and source of the FET 9, so that a current suddenly flows through the heating resistor 3 of the protective element 1A, the heating resistor 3 generates heat, and the fuse element 4 is blown.

ここで、FET9のソース側端子が電池パック5内の電池6-4〜と電池6-5の間に接続されていることから、スイッチオンの状態で発熱抵抗体3にかかる電圧は、この接続位置により定まる4個分の電池の直列電圧となり、電池パック5の両端の電圧ではない。よって、この保護回路によれば、スイッチオンの状態で発熱抵抗体3に印加される4個分の電池の直列電圧に適した発熱抵抗体3を用いて、10個の電池が直列に接続された電池パック5両端の過電圧にも対応することが可能となり、保護回路の低コスト化を図ることができる。   Here, since the source side terminal of the FET 9 is connected between the batteries 6-4 to 6-5 in the battery pack 5, the voltage applied to the heating resistor 3 in the switched-on state is the connection voltage. It is a series voltage of four batteries determined by the position, and is not a voltage across the battery pack 5. Therefore, according to this protection circuit, ten batteries are connected in series using the heating resistor 3 suitable for the series voltage of the four batteries applied to the heating resistor 3 in the switched-on state. In addition, it is possible to cope with an overvoltage at both ends of the battery pack 5 and to reduce the cost of the protection circuit.

なお、電池間のショートによるトラブルを考慮した場合、スイッチオンの状態で、できるだけ多い直列数の電池の電圧が発熱抵抗体3に印加されるようにするのがよいが、電池間のショートの可能性は極めて低いため、実用上は、直列数2以上の電池の電圧が発熱抵抗体3に印加されるようにすればよい。   In consideration of troubles due to short-circuit between batteries, it is preferable to apply as many series battery voltages as possible to the heating resistor 3 in the switch-on state. Therefore, in practice, the voltage of the battery having two or more in series may be applied to the heating resistor 3.

図2は、第2の本発明の一実施例の保護回路1Bである。この保護回路1Bも上述の保護回路1Aと同様に、10個の二次電池6-1〜6-10が直列に繋げられた電池パック5を過電流と過電圧から保護するものであって、保護素子2Aと検知手段7を有する。この保護回路1Bでも、検知手段7は電圧検知用IC8とFET9からなるが、電圧検知用IC8は、第1番目の電池6-1との第4番目の電池6-4の間の電圧を検知するように接続されている。このように電圧検知用IC8を接続することにより、4個分の電池の直列電圧の検知に適した電圧検知用IC8を用いて、10個の電池が直列に接続された電池パック5で過電圧を防止することができる。特に、この保護回路1Bでは、電圧検知用IC8が、第1番目の電池6-1との第4番目の電池6-4の間の個々の電池間の電圧も検出するように接続されているので、電池パック5に収容される個々の電池に特性のばらつきがあり、充電時に個々の電池電圧にばらつきがあっても、電池ごとに過電圧を防止することができる。   FIG. 2 shows a protection circuit 1B according to an embodiment of the second invention. Similarly to the above-described protection circuit 1A, this protection circuit 1B also protects the battery pack 5 in which ten secondary batteries 6-1 to 6-10 are connected in series from overcurrent and overvoltage. It has the element 2A and the detection means 7. Even in this protection circuit 1B, the detection means 7 comprises a voltage detection IC 8 and an FET 9. The voltage detection IC 8 detects the voltage between the first battery 6-1 and the fourth battery 6-4. To be connected. By connecting the voltage detection IC 8 in this way, an overvoltage is generated in the battery pack 5 in which 10 batteries are connected in series using the voltage detection IC 8 suitable for detecting the series voltage of the four batteries. Can be prevented. In particular, in this protection circuit 1B, the voltage detection IC 8 is connected so as to detect the voltage between the individual batteries between the first battery 6-1 and the fourth battery 6-4. Therefore, even if individual batteries accommodated in the battery pack 5 have variations in characteristics, and even if there are variations in individual battery voltages during charging, overvoltage can be prevented for each battery.

なお、図2の保護回路1Bで、FET9のゲートとソースの間に抵抗Rを設けているのは、電圧検知用IC8が過電圧を検出した場合にNチャンネルTFTをスイッチオンとするためには、FET9のゲート電位をソース電位よりもある程度高くする必要があるためである。   In the protection circuit 1B of FIG. 2, the resistor R is provided between the gate and the source of the FET 9 in order to switch on the N-channel TFT when the voltage detection IC 8 detects an overvoltage. This is because the gate potential of the FET 9 needs to be higher than the source potential to some extent.

図3の保護回路1Cは、図2の保護回路1Bと同様に、電圧検知用IC8-1を、第1番目の電池6-1との第4番目の電池6-4の間の電圧を検知するように接続し、さらに残りの電池6-5との第4番目の電池6-7の電池間にも電圧検知用IC8-2を接続することにより電圧検知用ICを2段に設け、いずれの電圧検知用IC8-1、8-2で過電圧が検知された場合にも保護素子2Aのヒューズエレメント4が溶断し、過充電から電池パック5が保護されるようにしたものである。   The protection circuit 1C in FIG. 3 detects the voltage between the first battery 6-1 and the fourth battery 6-4 using the voltage detection IC 8-1 in the same manner as the protection circuit 1B in FIG. Further, by connecting the voltage detection IC 8-2 between the remaining batteries 6-5 and the fourth battery 6-7, the voltage detection ICs are provided in two stages. When the overvoltage is detected by the voltage detection ICs 8-1 and 8-2, the fuse element 4 of the protection element 2A is melted to protect the battery pack 5 from overcharging.

即ち、第1番目の電池6-1との第4番目の電池6-4の間で、いずれか1つの電池であっても過電圧が生じると、電圧検知用IC8-1によってFET9-3のゲート電位があがり、FET9-3がスイッチオンとなり、保護素子の発熱抵抗体3に急激に電流が流れ、発熱体3が発熱してヒューズエレメント4が溶断する。   That is, if an overvoltage occurs between any one of the first battery 6-1 and the fourth battery 6-4, the gate of the FET 9-3 is detected by the voltage detection IC 8-1. The potential rises, the FET 9-3 is switched on, a current flows suddenly through the heating resistor 3 of the protective element, the heating element 3 generates heat, and the fuse element 4 is melted.

一方、第5番目の電池6-5との第7番目の電池6-7の間で、いずれか1つの電池であっても過電圧が生じると、まず、電圧検知用IC8-2によってFET9-1のゲート電位が高くなり、このFET9-1のドレイン-ソース間に急激に電流が流れ、それによりFET9-2のゲート電位が下がる。このFET9-2は、PチャンネルFETであるから、ゲート電位の降下によりスイッチオンとなり、そのドレイン−ソース間に急激に電流が流れる。これにより、FET9-3のゲート電位があがり、FET9-3がスイッチオンとなり、保護素子の発熱抵抗体3に急激に電流が流れ,発熱体3が発熱してヒューズエレメント4が溶断する。なお、ダイオードD-1、D-2は、FET9-3のゲート電位があげられたときに、他の回路を伝わって電位が下がらないようにするために設けられている。   On the other hand, if an overvoltage occurs between any of the fifth batteries 6-5 and the seventh battery 6-7, first, the FET 9-1 is detected by the voltage detection IC 8-2. The gate potential of the FET 9-1 becomes high, and a current suddenly flows between the drain and source of the FET 9-1, thereby lowering the gate potential of the FET 9-2. Since this FET 9-2 is a P-channel FET, it is switched on due to a drop in the gate potential, and a current flows rapidly between its drain and source. As a result, the gate potential of the FET 9-3 is raised, the FET 9-3 is switched on, a current suddenly flows through the heat generating resistor 3 of the protective element, the heat generating body 3 generates heat, and the fuse element 4 is blown. The diodes D-1 and D-2 are provided in order to prevent the potential from being lowered through another circuit when the gate potential of the FET 9-3 is raised.

したがって、この保護回路1Cによれば、例えば、電池の直列数4又は3に対応した電圧検知用IC8-1、8-2を用いて、直列数10の電池パックに起こる過電圧を完全に防止することができる。言い換えれば、電池の直列数が多いために電池パック全体としては、過電圧を検出する高い電圧定格の電圧検知用ICが存在しない場合でも、電池の直列数の少ない電池パックに対応した既存の電圧定格の低い電圧検知用ICを用いて保護回路を組むことが可能となる。   Therefore, according to the protection circuit 1C, for example, by using the voltage detection ICs 8-1 and 8-2 corresponding to the series number 4 or 3 of the batteries, an overvoltage occurring in the battery pack of the series number 10 is completely prevented. be able to. In other words, because the number of series of batteries is large, the entire battery pack has an existing voltage rating corresponding to a battery pack with a small number of series of batteries, even if there is no voltage detection IC with a high voltage rating for detecting overvoltage. A protection circuit can be assembled using a low voltage detection IC.

図4は大電流用の電池パックに対応させた第3の本発明の一実施例の保護回路1Dである。この保護回路1Dでは、上述と同様の保護素子2Aが3個並列に設けられている。したがって、電池パック5の通常の通電状態で大電流が流れ、保護素子2Aが単独で設けられている場合には、ヒューズエレメント4が溶断するときでも、この保護回路1Dによれば、保護素子2Aにおいて通電経路が3つに枝分かれるするので、ヒューズエレメント4が溶断しないようにできる。   FIG. 4 shows a protection circuit 1D according to an embodiment of the third aspect of the present invention corresponding to a battery pack for large current. In this protection circuit 1D, three protection elements 2A similar to those described above are provided in parallel. Therefore, when a large current flows in the normal energization state of the battery pack 5 and the protection element 2A is provided alone, even when the fuse element 4 is blown, the protection circuit 1D can protect the protection element 2A. Since the energization path branches into three in FIG. 3, the fuse element 4 can be prevented from fusing.

一方、過電流時には各保護素子2Aのヒューズエレメント4が溶断する。したがって、この保護回路1Dによれば、電池パックに大電流が流れる保護回路と、電池パックに小電流が流れる保護回路とで、保護素子のヒューズエレメントを共通化することができ、保護素子の製造コストを下げることができる。   On the other hand, at the time of overcurrent, the fuse element 4 of each protection element 2A is melted. Therefore, according to the protection circuit 1D, the protection element that allows a large current to flow through the battery pack and the protection circuit that allows a small current to flow through the battery pack can share the fuse element of the protection element. Cost can be reduced.

なお、過電流によりヒューズエレメント4が溶断する場合に、例えば、図5又は図6に示すように溶断が生じると、ヒューズエレメント4が溶断した後にも回路に矢印のように導通経路が残ることとなる。そこで、ヒューズエレメント4の溶断後にこのような導通経路が残ることを防止するため、発熱抵抗体に整流素子を接続することが好ましく、具体的には、図7に示す保護回路1Eのように、保護素子2Aにダイオードを接続するか、あるいは、図8に示す保護回路1Fのように、保護素子2AにFETを接続することが好ましい。   In addition, when the fuse element 4 is blown by an overcurrent, for example, as shown in FIG. 5 or FIG. 6, a conduction path remains in the circuit as indicated by an arrow even after the fuse element 4 is blown. Become. Therefore, in order to prevent such a conduction path from remaining after the fuse element 4 is blown, it is preferable to connect a rectifying element to the heating resistor. Specifically, as in a protection circuit 1E shown in FIG. It is preferable to connect a diode to the protective element 2A or connect an FET to the protective element 2A as in the protective circuit 1F shown in FIG.

以上の第1、第2、第3の本発明の保護回路は、それぞれ図示した態様に限られない。またこれらの特徴は、任意の2種以上を組み合わせることができ、これにより、多様な電圧定格又は電流定格の電池パックに適した保護回路を、より一層、低コストで製造することが可能となる。   The protection circuits of the first, second, and third aspects of the present invention are not limited to the illustrated modes. In addition, these features can be combined with any two or more, thereby making it possible to manufacture a protection circuit suitable for battery packs having various voltage ratings or current ratings at a lower cost. .

例えば、図9に示す保護回路1Gは、図3の保護回路1Cで電圧検知用ICを2段に設けたのに準じて、電圧検知用ICを3段に設けたものであり、各電圧検知用IC8-1、8-2、8-3には、電池の直列数2〜4の電圧の検知に適したものが使用される。また、各電圧検知用IC8-1、8-2、8-3は、それぞれが検知する電池列の両端の電圧だけでなく、個々の電池の電圧も検知する。したがって、この保護回路1Gによれば、10個の電池6-1〜6-10のいずれに過充電が生じた場合でも、3つの電圧検知用IC8-1、8-2、8-3のいずれかがそれを検知し、FET9-3がスイッチオンとなり、保護素子2Aの各発熱抵抗体3に電池6-1〜6-4の4つ分の直列電圧が印加され、発熱抵抗体3が発熱し、ヒューズエレメント4が溶断することとなる。こうして、この保護回路1Gによれば、電池の直列数2〜4の電圧の検知に適した電圧検知用ICと保護素子を用いて、電池の直列数10の電池パックの良好な保護回路を組むことができる。   For example, the protection circuit 1G shown in FIG. 9 is provided with three voltage detection ICs in accordance with the voltage detection ICs provided in two stages in the protection circuit 1C shown in FIG. ICs 8-1, 8-2, and 8-3 that are suitable for detecting the voltage of 2 to 4 batteries in series are used. Further, each of the voltage detection ICs 8-1, 8-2, 8-3 detects not only the voltage at both ends of the battery array detected by each, but also the voltage of each battery. Therefore, according to this protection circuit 1G, any of the three voltage detection ICs 8-1, 8-2, and 8-3 can be used when any of the ten batteries 6-1 to 6-10 is overcharged. Is detected, the FET 9-3 is switched on, and the series voltage of four batteries 6-1 to 6-4 is applied to each heating resistor 3 of the protective element 2A, and the heating resistor 3 generates heat. As a result, the fuse element 4 is melted. Thus, according to this protection circuit 1G, a good protection circuit for a battery pack having 10 battery series is assembled using a voltage detection IC and a protection element suitable for detecting a voltage having 2 to 4 battery series. be able to.

また、保護回路1Gでは、4つの保護素子2Aが並列に接続されている。したがって、各保護素子2Aは通常の定格電流用途のものであっても、この保護回路1Gは、大電流用途のものとなる。   In the protection circuit 1G, four protection elements 2A are connected in parallel. Therefore, even if each protection element 2A is for a normal rated current application, this protection circuit 1G is for a large current application.

本発明の保護回路は、携帯電話、ノートパソコン、電動自動車、電動バイクなど、種々の電圧定格、電流定格の電池パックの保護回路として有用である。   The protection circuit of the present invention is useful as a protection circuit for battery packs having various voltage ratings and current ratings, such as mobile phones, notebook computers, electric automobiles, and electric motorcycles.

本発明の一態様の保護回路である。4 is a protection circuit according to one embodiment of the present invention. 本発明の異なる態様の保護回路である。It is a protection circuit of a different mode of the present invention. 本発明の異なる態様の保護回路である。It is a protection circuit of a different mode of the present invention. 本発明の異なる態様の保護回路である。It is a protection circuit of a different mode of the present invention. 本発明の異なる態様の保護回路において、ヒューズエレメントが溶断した場合の導通路の説明図である。In the protection circuit of the different aspect of this invention, it is explanatory drawing of the conduction path when a fuse element fuses. 本発明の異なる態様の保護回路において、ヒューズエレメントが溶断した場合の導通路の説明図である。In the protection circuit of the different aspect of this invention, it is explanatory drawing of the conduction path when a fuse element fuses. 本発明の異なる態様の保護回路である。It is a protection circuit of a different mode of the present invention. 本発明の異なる態様の保護回路である。It is a protection circuit of a different mode of the present invention. 本発明の異なる態様の保護回路である。It is a protection circuit of a different mode of the present invention. 従来の保護回路の問題点の説明図である。It is explanatory drawing of the problem of the conventional protection circuit. 従来の保護回路の問題点の説明図である。It is explanatory drawing of the problem of the conventional protection circuit.

符号の説明Explanation of symbols

1X、1Y 従来の保護回路
1A、1B、1C、1D、1E、1F、1G 実施例の保護回路
2A、2B 保護素子
3 発熱抵抗体
4 ヒューズエレメント
5 電池パック
6、6-1〜6-10 電池
7 検知手段
8、8-1、8-2、8-3 電圧検知用IC
9、9-1、9-2、9-3 FET
1X, 1Y Conventional protection circuit 1A, 1B, 1C, 1D, 1E, 1F, 1G Example protection circuit 2A, 2B Protection element 3 Heating resistor 4 Fuse element 5 Battery pack 6, 6-1 to 6-10 Battery 7 Detection means 8, 8-1, 8-2, 8-3 Voltage detection IC
9, 9-1, 9-2, 9-3 FET

Claims (4)

二次電池が直列に接続された電池パックを過電流と過電圧から保護する保護回路であって、
該保護回路が、基板上に発熱抵抗体とヒューズエレメントを設けた保護素子、及び電池パック内において直列に接続された二次電池の全数分の過電圧を検出し該発熱抵抗体に流れる電流をスイッチする検知手段を有し、
保護素子は並列に複数接続され、
過電流時に各保護素子においてヒューズエレメントが溶断すると共に、
過電圧時に検知手段によって各保護素子の発熱抵抗体に流れる電流がスイッチオンすることにより、電池パック内において直列に接続された二次電池の全数分よりも少ない所定数個の直列に接続された電池の電圧が、各保護素子の発熱抵抗体に印加され、各保護素子の発熱抵抗体が発熱し、ヒューズエレメントが溶断するようにした保護回路。
A protection circuit for protecting a battery pack in which secondary batteries are connected in series from overcurrent and overvoltage,
The protection circuit detects overvoltages for the total number of secondary batteries connected in series in the protection element provided with the heating resistor and the fuse element on the substrate, and switches the current flowing through the heating resistor. Detecting means for
Multiple protection elements are connected in parallel,
At the time of overcurrent, the fuse element melts in each protection element,
A predetermined number of batteries connected in series smaller than the total number of secondary batteries connected in series in the battery pack by switching on the current flowing through the heating resistor of each protection element by the detection means at the time of overvoltage Is applied to the heating resistor of each protection element, the heating resistor of each protection element generates heat, and the fuse element is blown.
過電流でヒューズエレメントが不完全に溶断した場合に、発熱抵抗体を介して導通抵抗が残らないように、発熱抵抗体に整流素子が接続されている請求項1記載の保護回路。   2. The protection circuit according to claim 1, wherein a rectifying element is connected to the heating resistor so that no conduction resistance remains through the heating resistor when the fuse element is blown incompletely due to overcurrent. 二次電池が直列に接続された電池パックを過電流と過電圧から保護する保護回路であって、
該保護回路が、基板上に発熱抵抗体とヒューズエレメントを設けた保護素子、及び電池パック内において直列に接続された二次電池の全数分より少ない数で直列に接続されている任意の電池間の過電圧を検出し該発熱抵抗体に流れる電流をスイッチする検知手段を有し、
保護素子は並列に複数接続され、
過電流時に各保護素子においてヒューズエレメントが溶断すると共に、
前記電池間の過電圧時に検知手段によって発熱抵抗体に流れる電流がスイッチオンすることにより、電池パック内において直列に接続された二次電池の全数分よりも少ない所定数個の直列に接続された電池の電圧が、各保護素子の発熱抵抗体に印加され、発熱抵抗体が発熱し、ヒューズエレメントが溶断するようにした保護回路。
A protection circuit for protecting a battery pack in which secondary batteries are connected in series from overcurrent and overvoltage,
Between the protection element in which the protection circuit is provided with the heating resistor and the fuse element on the substrate, and any battery connected in series in a number smaller than the total number of secondary batteries connected in series in the battery pack Detecting means for detecting the overvoltage of the heating resistor and switching the current flowing through the heating resistor,
Multiple protection elements are connected in parallel,
At the time of overcurrent, the fuse element melts in each protection element,
A predetermined number of batteries connected in series smaller than the total number of secondary batteries connected in series in the battery pack by switching on the current flowing in the heating resistor by the detecting means at the time of overvoltage between the batteries. Is applied to the heating resistor of each protection element, the heating resistor generates heat, and the fuse element is blown.
過電流でヒューズエレメントが不完全に溶断した場合に、発熱抵抗体を介して導通抵抗が残らないように、発熱抵抗体に整流素子が接続されている請求項3記載の保護回路。   4. The protection circuit according to claim 3, wherein a rectifying element is connected to the heating resistor so that no conduction resistance remains through the heating resistor when the fuse element is blown incompletely due to overcurrent.
JP2008144294A 2008-06-02 2008-06-02 Protection circuit Expired - Lifetime JP4771096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008144294A JP4771096B2 (en) 2008-06-02 2008-06-02 Protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008144294A JP4771096B2 (en) 2008-06-02 2008-06-02 Protection circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004291756A Division JP4207877B2 (en) 2004-10-04 2004-10-04 Protection circuit

Publications (2)

Publication Number Publication Date
JP2008263776A JP2008263776A (en) 2008-10-30
JP4771096B2 true JP4771096B2 (en) 2011-09-14

Family

ID=39985842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008144294A Expired - Lifetime JP4771096B2 (en) 2008-06-02 2008-06-02 Protection circuit

Country Status (1)

Country Link
JP (1) JP4771096B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6110651B2 (en) * 2012-12-13 2017-04-05 デクセリアルズ株式会社 Protection circuit and control method of protection circuit
KR102042569B1 (en) * 2014-01-15 2019-11-11 데쿠세리아루즈 가부시키가이샤 Protection circuit and protection circuit control method
JP2016067165A (en) * 2014-09-25 2016-04-28 エスアイアイ・セミコンダクタ株式会社 Charge discharge controller and battery device
JP6645401B2 (en) * 2016-11-04 2020-02-14 トヨタ自動車株式会社 Protective equipment
EP3595046A1 (en) * 2018-07-09 2020-01-15 Hilti Aktiengesellschaft Rechargeable battery protection device
JP7129355B2 (en) * 2019-02-01 2022-09-01 デクセリアルズ株式会社 protection circuit
JP7377070B2 (en) * 2019-11-08 2023-11-09 デクセリアルズ株式会社 Protection circuit, battery pack and protection circuit operation method
KR102710076B1 (en) * 2019-12-23 2024-09-26 한국전력공사 Battery array and battery stack
KR102504270B1 (en) * 2020-09-22 2023-02-24 삼성에스디아이 주식회사 Battery protection apparatus and battery system including the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066251A (en) * 1996-08-13 1998-03-06 Sony Corp Protective device for secondary battery
JP2000133318A (en) * 1998-08-21 2000-05-12 Sony Corp Battery pack
JP4342657B2 (en) * 1999-10-26 2009-10-14 株式会社東芝 Secondary battery device and secondary battery protection device
JP4095426B2 (en) * 2002-12-12 2008-06-04 ソニーケミカル&インフォメーションデバイス株式会社 Secondary battery device

Also Published As

Publication number Publication date
JP2008263776A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
JP4207877B2 (en) Protection circuit
JP4771096B2 (en) Protection circuit
KR101014939B1 (en) Secondary battery with protective circuit
CN106058330B (en) Battery protection circuit
US9130383B2 (en) Charging/discharging control device, battery pack, electrical equipment, and charging/discharging control method
JP2006158195A (en) Protection circuit for battery pack
US9923362B2 (en) Protective device
KR20070024606A (en) Battery pack protecting circuit and battery pack
KR20160035588A (en) Protection device
KR101729730B1 (en) Apparatus for protecting battery from overcurrent
JP6544805B2 (en) Protection circuit
KR101274227B1 (en) Packaging layout structure of battery protection circuits
KR20160036506A (en) Charging/discharging control device and battery device
WO2015037210A1 (en) Switching circuit
JP2006121827A (en) Protection circuit for secondary battery
WO2004070908A1 (en) Secondary cell with bypass resistor and secondary cell protective method
TW201630292A (en) Protection circuit, rechargeable battery pack, composite protection element
JP2012182890A (en) Protective device for secondary battery, secondary battery device, and secondary battery
JP7570295B2 (en) Protection Circuit
TWI813352B (en) Safety unit, battery pack, and electrical device
JP2007259656A (en) Protective device and charging apparatus
KR101724025B1 (en) Battery protection apparatus for breaking power at high temperature or high current based on metal-insulator transition
JP2018082535A (en) Circuit protection device and power supply monitoring device
JP2017184865A (en) Charge/discharge protection system and rechargeable vacuum cleaner
KR20170006965A (en) Protection circuit device for battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4771096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250