WO2015037210A1 - Switching circuit - Google Patents

Switching circuit Download PDF

Info

Publication number
WO2015037210A1
WO2015037210A1 PCT/JP2014/004503 JP2014004503W WO2015037210A1 WO 2015037210 A1 WO2015037210 A1 WO 2015037210A1 JP 2014004503 W JP2014004503 W JP 2014004503W WO 2015037210 A1 WO2015037210 A1 WO 2015037210A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
open
switch
short
heating element
Prior art date
Application number
PCT/JP2014/004503
Other languages
French (fr)
Japanese (ja)
Inventor
吉弘 米田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201480049871.0A priority Critical patent/CN105531895B/en
Priority to KR1020167006387A priority patent/KR102180652B1/en
Publication of WO2015037210A1 publication Critical patent/WO2015037210A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a switching circuit that switches current paths.
  • protection elements there is one that performs overcharge protection or overdischarge protection operation of the battery pack by turning on / off the output using an FET switch built in the battery pack.
  • FET switch is short-circuit-broken for some reason, a lightning surge or the like is applied and a momentary large current flows, or the life of the battery cell abnormally decreases the output voltage, or conversely, an excessive abnormality Even when a voltage is output, the battery pack or the electronic device must be protected from an accident such as ignition. Therefore, in order to safely shut off the output of the battery cell under any such conceivable abnormal condition, a protection element consisting of a fuse element having a function of interrupting the current path by an external signal is used. .
  • a protection element of a protection circuit for a lithium ion secondary battery or the like it is possible to extend across the first electrode, the heating element lead electrode, and the second electrode on the current path.
  • a molten conductor is connected to be a part of a current path, and the soluble conductor on this current path is fused and cut by self-heating due to an overcurrent or a heating element provided inside a protective element.
  • the current path is interrupted by collecting the molten liquid soluble conductor on the conductor layer connected to the heating element.
  • an element which reliably switches the current path of the battery cell from the charge / discharge path in the normal state to the discharge path in the abnormal state.
  • an object of the present invention is to provide a switching circuit that switches a current path irreversibly by performing shutoff of a current path that is short-circuited in a normal state and shorting of a current path used in an abnormal state in a predetermined order. I assume.
  • the switching circuit according to the present invention is connected to the first heating element that generates heat when current flows, one end connected to the first heating element, and the other end connected to the main circuit And a switch connected to the main circuit at one end and to the first circuit at the other end, and connected at one end to the first circuit.
  • the short-circuited soluble conductor is fused by the heat generated by the body, and the switch is short-circuited by the molten conductor, a second heating element generating heat when current flows, and the second heating element
  • the open-side soluble conductor includes an open-side soluble conductor connected at one end and connected to the second circuit at the other end and connected to the main circuit at the other end, and the heat generated by the second heating element generates heat.
  • a switch element for receiving current from the main circuit is connected to the second heating element in response to the switching signal, and the open end of the first heating element of the short circuit
  • the second heating element of the open circuit is connected to the connection end of the open-side soluble conductor, and the switch element is operated, whereby the second heating element of the open circuit is energized and generates heat.
  • the main circuit and the second circuit are cut off, and the first heating element of the short circuit is energized and generates heat due to the melting of the open side soluble conductor.
  • the short circuit side soluble conductor melts, the switch is short circuited, and the main circuit and the first circuit are energized.
  • the first heating element that generates heat when a current flows and the short-circuit side soluble conductor having one end connected to the first heating element and the other end connected to the main circuit
  • a switch having one end connected to the short circuit side soluble conductor and the other connected to the main circuit, and the other end connected to the first circuit, the heat generated by the first heating element generating heat
  • a short circuit which melts the short circuit side soluble conductor and shorts the switch by the molten conductor
  • a second heating element which generates heat when current flows, and the second heating element are connected with one end being the first
  • An open circuit comprising an open-side soluble conductor connected to the second circuit and having the other end connected to the main circuit, wherein the heat generated by the second heat generating member melts the open-side soluble conductor
  • a first switch element for receiving current from the main circuit is connected to the first heat generating body in response to the switching signal, and a switching signal is received at one end of the second heat generating
  • a second switch element for conducting current from the main circuit is connected to the body, and the second heating element of the open circuit is energized and generates heat when the second switch element is operated.
  • the soluble conductor is melted off, the main circuit and the second circuit are disconnected, and the first switch element operates to cause the first heating element of the short circuit to conduct electricity and generate heat.
  • the short circuit side soluble conductor melts, the switch is short circuited, and the main circuit and the first circuit are energized.
  • the heating element is connected to a first switch element for receiving current from the main circuit in response to the switching signal to cause the first heating element to conduct current, and the second heating element receives the switching signal to receive the second signal.
  • the heating element is connected to a second switch element for supplying a current from the main circuit, and the second switching element operates to cause the second heating element in the open portion to conduct electricity, generate heat, and open the opening.
  • the side soluble conductor is melted off, the main circuit and the second circuit are disconnected, and the first switch element operates to cause the first heating element of the short circuit portion to conduct electricity and generate heat.
  • the short circuit side soluble conductor melts, the switch is short circuited, and the main circuit and the first circuit are energized.
  • the switch element by operating the switch element, the current path from the main circuit to the second circuit is cut off and a current path to the first circuit is constructed, and the current path of the main circuit is set to the second
  • the circuit can be switched to the first circuit.
  • interruption and short circuit of the current path can be performed irreversibly by melting the first, open-side soluble conductor.
  • FIG. 1 is a circuit diagram of a short circuit constituting a switching circuit, in which (A) shows before a short circuit and (B) shows after a short circuit.
  • FIG. 2 is a circuit diagram of an open circuit constituting the switching circuit, in which (A) shows the state before opening and (B) shows the state after opening.
  • FIG. 3 is a block diagram showing the configuration of the first switching circuit.
  • FIG. 4 is a circuit diagram showing a first switching circuit before switching, in which (A) is an example provided with two open-side soluble conductors, (B) an example provided with one open-side soluble conductor Indicates
  • FIG. 5 is a circuit diagram showing a first switching circuit in which the second heating element is energized by the switch element.
  • FIG. 6 is a circuit diagram showing a first switching circuit in which the first heating element is energized.
  • FIG. 7 is a circuit diagram showing a first switching circuit after switching.
  • FIG. 8 is a circuit diagram of a battery pack to which the first switching circuit is applied.
  • FIG. 9 is a circuit diagram showing a modification of the first switching circuit.
  • FIG. 10 is a circuit diagram of a battery pack to which a first switching circuit according to a modification is applied.
  • FIG. 11 is a block diagram showing the configuration of the second switching circuit.
  • FIG. 12 is a circuit diagram showing a second switching circuit, wherein (A) shows an example provided with two open-side soluble conductors, and (B) shows an example provided with one open-side soluble conductor.
  • FIG. 13 is a circuit diagram of a battery pack to which the second switching circuit is applied.
  • FIG. 14 is a circuit diagram showing a modification of the second switching circuit.
  • FIG. 15 is a circuit diagram of a battery pack to which a second switching circuit according to a modification is applied.
  • FIG. 16 is a circuit diagram showing a third switching circuit, in which (A) shows an example having two open-side soluble conductors, and (B) shows an example having one open-side soluble conductor.
  • FIG. 17 is a circuit diagram of a battery pack to which the third switching circuit is applied.
  • FIG. 18 is a circuit diagram showing a modification of the third switching circuit.
  • FIG. 19 is a circuit diagram of a battery pack to which a third switching circuit according to a modification is applied.
  • the switching circuit to which the present invention is applied is a short circuit or a short circuit part connected between electrodes mutually opened through the melting conductor by melting the fusible conductor, and a short circuit through the fusible conductor Between the electrodes being made has an open circuit or opening that is interrupted by melting the fusible conductor.
  • the short circuit 1 is connected in series to the first heating element 2 and the first heating element 2, and the short circuit side melts due to the heat generation of the first heating element 2.
  • a conductor 3 is provided with first and second electrodes 5 and 6 which constitute a switch 4 which is open to each other and which is short-circuited through the molten conductor by melting the short-circuit side soluble conductor 3.
  • the first electrode 5 is connected to a power supply (not shown), and the second electrode 6 is connected to an external circuit to be connected when the switch 4 is turned on.
  • the first heat generating body 2 is connected to a switch element such as a FET (not shown) via the first heat generating body electrode 7 so that energization is controlled.
  • the short circuit 1 is supplied with power to the first heating element 2 through the first electrode 5 and the short circuit soluble conductor 3. Due to the heat generation of the first heating element 2, the short circuit side soluble conductor 3 is fused and cut. Then, in the short circuit 1, the molten conductor of the short circuit side soluble conductor 3 agglomerates between the first and second electrodes 5 and 6, thereby shorting the first and second electrodes 5 and 6. As a result, in the short circuit 1, the switch 4 is turned on to energize the power supply and the external circuit.
  • the open circuit 10 includes the second heat generating body 11, the open side soluble conductor 12 which is melted and cut by the heat generation of the second heat generating body 11, and the open side soluble conductor 12 And third and fourth electrodes 13 and 14 connected to each other.
  • the third and fourth electrodes 13 and 14 are provided on the current path, and the second heat generating body 11 is connected to a switch element such as an FET (not shown) via the second heat generating electrode 15 to energize it. Is controlled.
  • the open circuit 10 As shown in FIG. 2 (B), when the switch element is operated, power is supplied to the second heat generating body 11 through the third electrode 13 and the open side soluble conductor 12; Due to the heat generation of the second heat generating body 11, the open side soluble conductor 12 is melted down. Thereby, the open circuit 10 can cut off the current path.
  • the first switching circuit 30 constitutes the short circuit 1 and is opened with the short circuit element 21 connected to the power supply circuit 25 serving as the main circuit and the first external circuit 23 to be energized after switching.
  • the circuit 10 is configured, and includes a power supply circuit 25 and an open element 22 connected to a second external circuit 24 to be energized before switching.
  • the first switching circuit 30 is supplied with power to the second heating element 11 by the switch element 26 that has received the switching signal. Thereby, the second heat generating body 11 generates heat, and after the third and fourth electrodes 13 and 14 are shut off, the first heat generating body 2 generates heat, and the first and second electrodes 5 and 6 are generated. There is a short circuit between them.
  • the first switching circuit 30 can switch the current path of the power supply circuit 25 from the second external circuit 24 to the first external circuit 23.
  • the first switching circuit 30 has a circuit configuration shown in FIG.
  • the short circuit 1 includes a first heating element 2 that generates heat when a current flows, and a short circuit soluble conductor 3 having one end connected to the first heating element 2 and the other end connected to a power supply circuit 25;
  • the switch 4 includes one end connected to the short circuit side soluble conductor 3 and the power supply circuit 25 and the other end connected to the first external circuit 23.
  • the switch 4 is connected to the power supply circuit 25 through the first electrode 5 and to the first external circuit 23 through the second electrode 6. Further, the first heat generating body 2 is connected to the connection end electrode 16 of the open circuit 10 via the first heat generating body electrode 7.
  • the open circuit 10 is connected to the second heating element 11 that generates heat when a current flows, and the second heating element 11, and one end is connected to the power supply circuit 25, and the other end is the second external circuit.
  • an open-side fusible conductor 12 connected to the T.24.
  • the open side soluble conductor 12 has one end connected to the power supply circuit 25 through the third electrode 13 and the other end connected to the second heating element 11 A first open-ended soluble conductor 12 a, and one end connected to the second external circuit 24 via the fourth electrode 14 and the other end connected to the second heating element 11.
  • an open side soluble conductor 12b is an open side soluble conductor 12b.
  • one end of the first open-side soluble conductor 12 a is connected to the power supply circuit 25 through the third electrode 13, and the other end is connected through the second heating element 11 and the fourth electrode 14. It is connected to the second external circuit 24.
  • the first switching circuit 30 receives the switching signal at one end of the second heat generating body 11 via the second heat generating body electrode 15 and supplies a current from the power supply circuit 25 to the second heat generating body 11.
  • a switch element 26 to be energized is connected.
  • the first heating element electrode 7 of the short circuit 1 and the connection end electrode 16 to which the second heating element 11 of the open circuit 10 and the open side soluble conductor 12 are connected are included. It is connected.
  • Switch element 26 is formed of, for example, a field effect transistor (FET), and controls conduction and interruption of the current path to second heating element 11 by controlling the gate voltage.
  • FET field effect transistor
  • the first switching circuit 30 In the initial state, the first switching circuit 30 having such a configuration forms a current path from the power supply circuit 25 to the second external circuit 24 via the open circuit 10, as shown in FIG. At this time, in the first switching circuit 30, power supply to the second heat generating body 11 is restricted by the switch element 26, and both ends of the first heat generating body 2 have substantially the same potential. Hardly flows.
  • a switching signal is output to the switch element 26.
  • the switch element 26 receives the switching signal, it controls the current so as to supply power to the second heating element 11.
  • the second heating element 11 of the open circuit 10 is energized and generates heat, and the open-side soluble conductor 12 is melted and disconnected. Therefore, the current path from the power supply circuit 25 to the second external circuit 24 is cut off.
  • the current from the power supply circuit 25 flows into the short circuit 1 through the first electrode 5, and the short-side soluble conductor 3, the first heating element 2, and the first It flows to the open circuit 10 and the switch element 26 side through the heating element electrode 7.
  • the first heating element 2 of the short circuit 1 is energized and generates heat, and as shown in FIG. A short circuit occurs between the first and second electrodes 5 and 6, that is, the switch 4 is turned on, and a current path from the power supply circuit 25 to the first external circuit 23 is established.
  • the 2nd heat generating body 11 stops heat generation.
  • the feeding path is cut off by melting the short-circuit side soluble conductor 3 in the first heating element 2, the heat generation is stopped.
  • the current path to the second external circuit 24 through the third and fourth electrodes 13 and 14 is interrupted.
  • a current path from the power supply circuit 25 to the first external circuit 23 through the first electrode 5, the switch 4 and the second electrode 6 is constructed, and the current path of the power supply circuit 25 is It is possible to switch to the one external circuit 23.
  • the open side soluble conductor 12 is a short circuit between the third and fourth electrodes 13 and 14 and the short circuit between the first and second electrodes 5 and 6 Irreversible by melting the side soluble conductor 3. Therefore, as compared with the case of electronically switching by software or the like, it is possible to improve the switching failure due to a malfunction and to improve the vulnerability to illegal switching due to cracking or the like.
  • Such a first switching circuit 30 is used by being incorporated into a circuit in a battery pack 40 of a lithium ion secondary battery, for example, as shown in FIG.
  • the battery pack 40 has, for example, a battery stack 45 consisting of battery cells 41 to 44 of a total of four lithium ion secondary batteries.
  • the battery pack 40 includes a battery stack 45, a charge / discharge control circuit 50 for controlling charge / discharge of the battery stack 45, and the present invention for interrupting charging when the battery stack 45 is abnormal and for radiating the electric energy in the battery stack 45.
  • the battery stack 45 is a series connection of battery cells 41 to 44 requiring control for protection from an overcharge and an overdischarge state, and is detachable via the positive electrode terminal 40 a and the negative electrode terminal 40 b of the battery pack 40.
  • the charging circuit 55 is connected to the charging circuit 55, and the charging voltage from the charging circuit 55 is applied.
  • the battery pack 40 charged by the charging circuit 55 can operate the electronic device by connecting the positive electrode terminal 40 a and the negative electrode terminal 40 b to the electronic device operated by the battery.
  • the charge and discharge control circuit 50 controls the operation of the two current control elements 51 and 52 connected in series in the current path flowing from the battery stack 45 to the charge circuit 55.
  • Current control elements 51 and 52 are formed of, for example, a field effect transistor (hereinafter referred to as FET), and control of the gate voltage by charge / discharge control circuit 50 allows conduction and interruption of the current path of battery stack 45. Control.
  • the charge / discharge control circuit 50 operates by receiving power supply from the charge circuit 55, and cuts off the current path when the battery stack 45 is overdischarged or overcharged according to the detection result by the detection circuit 46, The operation of the current control elements 51 and 52 is controlled.
  • the short circuiting element 21 is connected in parallel to the battery stack 45 and is connected in series to the protective resistor 31 for discharging the electric energy stored in the battery stack 45 with the upper limit discharge current of the battery cells 41 to 44 or less.
  • the first switching circuit 30 constitutes a discharge circuit 32 provided with the short circuiting element 21 and the protective resistor 31.
  • the open element 22 is connected on the charge / discharge current circuit 33 between the battery stack 45 and the charge circuit 55, and the operation is controlled by the switch element 26.
  • the detection circuit 46 is connected to each of the battery cells 41 to 44, detects the voltage value of each of the battery cells 41 to 44, and supplies each voltage value to the charge and discharge control circuit 50. Further, the detection circuit 46 outputs a control signal for controlling the switch element 26 when any one of the battery cells 41 to 44 becomes the overcharge voltage.
  • Switch element 26 is formed of, for example, an FET, and when the voltage value of battery cells 41 to 44 becomes a voltage exceeding a predetermined overcharge state by a detection signal output from detection circuit 46, first switching circuit 30. To shut off the charge / discharge current circuit 33 of the battery stack 45 regardless of the switch operation of the current control elements 51 and 52, and the current path of the battery stack 45 through the open / close element 22. Then, control is made to switch to the discharge circuit 32 via the shorting element 21.
  • the battery pack 40 outputs a switching signal to the switch element 26.
  • the switch element 26 controls the current of the battery stack 45 so as to energize the second heating element 11 of the open element 22.
  • the first switching circuit 30 melts the open-side soluble conductor 12 and cuts off the charge / discharge current circuit 33 of the battery stack 45.
  • the first heating element 2 is energized and the short-circuit side soluble conductor 2 is fused, whereby the first and second electrodes 5, 6 are short-circuited.
  • the current path is switched to the discharge circuit 32 side provided with the protective resistor 31.
  • the battery pack 40 in which the first switching circuit 30 is incorporated cuts off the charge / discharge current circuit 33 of the battery stack 45 which has caused an abnormality, and a battery stack in which a large electric energy corresponding to the battery capacity is stored.
  • the 45 current paths are switched to the discharge circuit 32 provided with the protective resistor 31. Therefore, the battery pack 40 can be discharged until the internal battery cells 41 to 44 drop to a safe voltage after stopping use.
  • the protective resistor 31 may be incorporated in the short circuit 1 as shown in FIG. In this case, as shown in FIG. 10, the discharge circuit 32 of the battery pack 40 does not need to have the protective resistor 31.
  • the second switching circuit 60 constitutes the short circuit 1, and constitutes the open circuit 10 and the short circuit element 21 connected to the power supply circuit 25 and the first external circuit 23 to be energized after switching. And an open element 22 connected to a power supply circuit 25 and a second external circuit 24 which is energized before switching.
  • the short circuit element 21 is connected to the first switch element 61, and the open element 22 is connected to the second switch element 62.
  • the short circuiting element 21 is supplied with power to the first heating element 2 by the first switch element 61 which has received the switching signal.
  • the open element 22 is supplied with power to the second heating element 11 by the second switch element 62 that has received the switching signal. Therefore, according to the second switching circuit 60, the order of the short circuit by the short circuit element 21 and the opening by the open element 22 is changed according to the output sequence of the switching signals to the first and second switch elements 61 and 62. Can.
  • the second switching circuit 60 has a circuit configuration shown in FIG.
  • the short circuit 1 includes a first heating element 2, a short circuit soluble conductor 3 and a switch 4, and the heat generated by the first heating element 2 causes the short circuit soluble conductor 3 to melt and cut. Short-circuits the switch 4.
  • the short circuit 1 includes the first switching circuit 30 except that the first heating element 2 is connected to the first switch element 61 via the first heating element electrode 7. The same configuration as
  • the open circuit 10 includes the second heat generating body 11 and the open side soluble conductor 12, and the heat generated by the second heat generating body 11 causes the open side soluble conductor 12 to melt and cut.
  • the open circuit 10 is a first switching circuit except that the second heating element 11 is connected to the second switch element 62 via the second heating element electrode 15. It has the same configuration as 30.
  • one end of the open-side soluble conductor 12 is connected to the power supply circuit 25 through the third electrode 13 and the other end is the second heating element 11.
  • a first open-ended soluble conductor 12a connected to the second external circuit 24 via the fourth electrode 14 at one end and a second heating element 11 at the other end And two open side soluble conductors 12b.
  • the open circuit 10 may be configured by only the first open-side soluble conductor 12a.
  • one end of the first open side soluble conductor 12 a is connected to the power supply circuit 25 via the third electrode 13, and the other end is connected via the second heating element 11 and the fourth electrode 14 to the first open side soluble conductor 12 a. It is connected to the two external circuits 24.
  • the second switching circuit 60 having such a configuration configures a current path from the power supply circuit 25 to the second external circuit 24 via the open circuit 10, as shown in FIG.
  • the short circuit 1 the power supply to the first heating element 2 is restricted by the first switch element 61, and the switch 4 is turned off.
  • the open circuit 10 the power supply to the second heating element 11 is restricted by the second switch element 62.
  • a switching signal is output to the second switch element 62.
  • the second switch element 62 receives the switching signal, it controls the current to supply power to the second heating element 11.
  • the second heating element 11 of the open circuit 10 is energized and generates heat, and the open-side soluble conductor 12 is fused. Therefore, the current path from the power supply circuit 25 to the second external circuit 24 is cut off.
  • the second switching circuit 60 outputs a switching signal to the first switch element 61.
  • the first switch element 61 controls the current so as to supply power to the first heating element 2.
  • the first heating element 2 of the short circuit 1 is energized and generates heat, and the short circuit side soluble conductor 3 is fused and disconnected, and the first and second electrodes 5 are made by this molten conductor. , 6 are shorted, that is, the switch 4 is turned on, and a current path from the power supply circuit 25 to the first external circuit 23 is established.
  • the second switching circuit 60 first outputs a switching signal to the first switch element 61 when the current path of the power supply circuit 25 needs to be switched from the second external circuit 24 to the first external circuit 23. After the current path from the power supply circuit 25 to the first external circuit 23 is constructed, a switching signal is output to the second switch element 62 to interrupt the current path leading to the second external circuit 24. It is also good. Thus, the current path can be switched from the second external circuit 24 to the first external circuit 23 without interruption of the power of the power supply circuit 25.
  • the 2nd heat generating body 11 stops heat generation.
  • the feeding path is cut off by melting the short-circuit side soluble conductor 3 in the first heating element 2, the heat generation is stopped.
  • the first and second switch elements 61 and 62 are operated to pass the third and fourth electrodes 13 and 14 to the first external circuit 23.
  • the current path from the power supply circuit 25 to the first external circuit 23 via the first electrode 5, the switch 4 and the second electrode 6 is constructed, and the current path of the power supply circuit 25 is
  • the second external circuit 24 can be switched to the first external circuit 23.
  • the short circuit between the third and fourth electrodes 13 and 14 and the short circuit between the first and second electrodes 5 and 6 is released. Irreversible by melting the side soluble conductor 12. Therefore, as compared with the case of electronically switching by software or the like, it is possible to improve the switching failure due to a malfunction and to improve the vulnerability to illegal switching due to cracking or the like.
  • the order of the short circuit by the short circuit element 21 and the opening by the open element 22 is changed according to the output sequence of the switching signals to the first and second switch elements 61 and 62. Can.
  • Such a second switching circuit 60 is incorporated in a circuit in a battery pack 40 of a lithium ion secondary battery, for example, as shown in FIG.
  • the switching signal is sequentially output from the detection circuit 46 to the second switch element 62 and the first switch element 61, so that the charge / discharge current circuit 33 is first interrupted by the open element 22. Then, the discharge circuit 32 is shorted by the shorting element 21.
  • the battery pack 40 first outputs a switching signal to the second switch element 62.
  • the second switch element 62 controls the current of the battery stack 45 so as to energize the second heating element 11 of the open element 22.
  • the second switching circuit 60 melts the open-side soluble conductor 12 and cuts off the charge / discharge current circuit 33 of the battery stack 45.
  • the detection circuit 46 outputs a switching signal to the first switch element 61.
  • the first switch element 61 controls the current of the battery stack 45 such that the first heating element 2 of the short circuit element 21 is energized.
  • the first heating element 2 is energized, and the short-circuit side soluble conductor 3 is fused, whereby the first and second electrodes 5 and 6 are shorted, and the current path of the battery stack 45 is protected. It switches to the provided discharge circuit 32 side.
  • the battery pack 40 in which the second switching circuit 60 is incorporated cuts off the charge / discharge current circuit 33 of the battery stack 45 which has caused an abnormality, and a battery stack in which a large electric energy corresponding to the battery capacity is stored.
  • the 45 current paths are switched to the discharge circuit 32 provided with a protective resistance. Therefore, the battery pack 40 can be discharged until the internal battery cells drop to a safe voltage after the use is stopped.
  • the protective resistance 31 may be provided on the discharge circuit 32.
  • the protective resistance 31 may be incorporated in the short circuit 1. .
  • the discharge circuit 32 of the battery pack 40 does not need to have the protective resistor 31.
  • the third switching circuit 70 will be described.
  • a short circuit portion 71 having the same function as the short circuit 1 described above and an open portion 72 having the same function as the open circuit 10 described above are integrally formed. There is.
  • the shorting portion 71 includes a first heating element 2 and a shorting-side soluble conductor 3 having one end connected to the first heating element 2 and the other end connected to the first external circuit 23 and one end on the shorting side
  • the switch 4 is connected to the fusible conductor 3 and to the first external circuit 23, and the other end is connected to the power supply circuit 25.
  • the open portion 72 is connected to the second heat generating body 11 and the second heat generating body 11 and has one end connected to the other end of the switch 4 and the power supply circuit 25 and the other end connected to the second external circuit 24 And the open side soluble conductor 12.
  • the first heat generating body 2 is connected to the first switch element 61 via the first heat generating body electrode 7.
  • the switch 4 is connected to the first external circuit 23 through the first electrode 5 and to the power supply circuit 25 through the second electrode 6.
  • the second electrode 6 is also connected to one end side of the open side soluble conductor 12 provided in the open portion 72.
  • the second heat generating body 11 is connected to the second switch element 62 through the second heat generating body electrode 15. Further, in the open part 72, the open side soluble conductor 12 is connected to the second external circuit 24 through the fourth electrode 14, and connected to the power supply circuit 25 through the second electrode 6.
  • the open side soluble conductor 12 has one end connected to the second external circuit 24 via the fourth electrode 14 and the other end a second heating element 11, a first open-side soluble conductor 12a connected to the second power supply circuit 25 via the second electrode 6 and a second heat-generating member 11 having the other end connected to the second heating element 11 And an open side soluble conductor 12b.
  • one end of the first open side soluble conductor 12 a is connected to the power supply circuit 25 through the second electrode 6, and the other end is connected through the second heat generating body 11 and the fourth electrode 14. It is connected to the second external circuit 24.
  • the third switching circuit 70 having such a configuration forms a current path from the power supply circuit 25 to the second external circuit 24 through the open portion 72, as shown in FIG.
  • the short circuit portion 71 power supply to the first heating element 2 is restricted by the first switch element 61, and the switch 4 is turned off.
  • the open portion 72 power supply to the second heating element 11 is restricted by the second switch element 62.
  • a switching signal is output to the second switch element 62.
  • the second switch element 62 receives the switching signal, it controls the current to supply power to the second heating element 11.
  • the third switching circuit 70 the second heating element 11 of the open portion 72 is energized and generates heat, and the open-side soluble conductor 12 is fused. Therefore, the current path from the power supply circuit 25 to the second external circuit 24 is cut off.
  • the third switching circuit 70 outputs a switching signal to the first switch element 61.
  • the first switch element 61 controls the current so as to supply power to the first heating element 2.
  • the first heating element 2 of the short circuit portion 71 is energized and generates heat, and the short circuit side soluble conductor 3 is fused and cut, and the first and second electrodes 5 are made by the molten conductor. , 6 are shorted, that is, the switch 4 is turned on, and a current path from the power supply circuit 25 to the first external circuit 23 is established.
  • the third switching circuit 70 first outputs a switching signal to the first switch element 61 when the current path of the power supply circuit 25 needs to be switched from the second external circuit 24 to the first external circuit 23. After the current path from the power supply circuit 25 to the first external circuit 23 is constructed, a switching signal is output to the second switch element 62 to interrupt the current path leading to the second external circuit 24. It is also good. Thus, the current path can be switched from the second external circuit 24 to the first external circuit 23 without interruption of the power of the power supply circuit 25.
  • the 2nd heat generating body 11 stops heat generation.
  • the feeding path is cut off by melting the short-circuit side soluble conductor 3 in the first heating element 2, the heat generation is stopped.
  • the first and second switch elements 61 and 62 are operated to pass the second and fourth electrodes 6 and 14 to the first external circuit 24.
  • the current path from the power supply circuit 25 to the first external circuit 23 via the second electrode 6, the switch 4 and the first electrode 5 is constructed, and the current path of the power supply circuit 25 is The second external circuit 24 can be switched to the first external circuit 23.
  • the short circuit between the second and fourth electrodes 6 and 14 and the short circuit between the first and second electrodes 5 and 6 are opened. Irreversible by melting the side soluble conductor 12. Therefore, as compared with the case of electronically switching by software or the like, it is possible to improve the switching failure due to a malfunction and to improve the vulnerability to illegal switching due to cracking or the like.
  • the order of the short circuit by the short circuit element 21 and the opening by the open element 22 is changed according to the output order of the switching signals to the first and second switch elements 61 and 62. Can.
  • Such a third switching circuit 70 is incorporated in a circuit in a battery pack 40 of a lithium ion secondary battery, for example, as shown in FIG.
  • the first switch element 61 connects between the first heat generating electrode 7 of the switching circuit 70 and the + side terminal of the battery stack 45.
  • the second switch element 62 connects between the second heating element electrode 15 of the switching circuit 70 and the negative side terminal of the battery stack 45.
  • the first electrode 5 connected to the negative side terminal of the battery stack 45 is at the negative potential
  • the second electrode 6 connected to the positive side terminal of the battery stack 45 is at the positive potential
  • the first heating element electrode 7 connected to the first switch element 61 is set to a positive potential.
  • the fourth electrode 14 connected to the charge / discharge current circuit 33 is set to the positive potential
  • the second heating element electrode 15 connected to the second switch element 62 is set to the negative potential.
  • a switching signal is sequentially output from the detection circuit 46 to the second switch element 62 and the first switch element 61.
  • the charge / discharge current circuit 33 is interrupted by the open portion 72, and then the discharge circuit 32 is shorted by the short circuit portion 71.
  • the battery pack 40 first outputs a switching signal to the second switch element 62.
  • the second switch element 62 controls the current of the battery stack 45 so that the second heating element 11 of the open portion 72 is energized.
  • the third switching circuit 70 melts the open-side soluble conductor 12 and cuts off the charge / discharge current circuit 33 of the battery stack 45.
  • the detection circuit 46 outputs a switching signal to the first switch element 61.
  • the first switch element 61 controls the current of the battery stack 45 so that the first heating element 2 of the short circuit portion 71 is energized.
  • the first heating element 2 is energized, and the short-circuit side soluble conductor 2 is fused, whereby the first and second electrodes 5 and 6 are shorted, and the current path of the battery stack 45 is protected. It switches to the provided discharge circuit 32 side.
  • the battery pack 40 in which the third switching circuit 70 is incorporated cuts off the charge / discharge current circuit 33 of the battery stack 45 which has caused an abnormality, and the battery stack in which a large electric energy corresponding to the battery capacity is stored.
  • the 45 current paths are switched to the discharge circuit 32 provided with a protective resistance. Therefore, the battery pack 40 can be discharged until the internal battery cells drop to a safe voltage after the use is stopped.
  • the protective resistance 31 may be provided on the discharge circuit 32.
  • the protective resistance 31 may be built in the short circuit portion 71. .
  • the discharge circuit 32 of the battery pack 40 does not need to have the protective resistor 31.
  • the first external circuit 23 a light emitting circuit, a sound generating circuit, a circuit with electric signal generation or the like, the state in which the open circuit 10 or the open portion 72 operates can be notified as an alarm to the outside It can also be applied to an open circuit with an alarm function.
  • the present invention can be applied as a circuit for activation of various devices and software.
  • the first external circuit 23 is a functional circuit of various devices and software
  • the second external circuit 24 is a circuit in which a part of the function is limited
  • the initial setting is a second function limited function.
  • External circuit 24 is connected.
  • the user performs a license contract procedure to activate the device, the user is switched to the first external circuit 23 which is a functional circuit of the device.
  • the present invention can be applied as an information security circuit for protecting information of a database.
  • the second external circuit 24 is a functional circuit connected to a database
  • the first external circuit 23 is configured as a circuit separated from the database
  • the database is set via the second external circuit 24 in initialization. It is supposed to be accessible to When hacking or cracking is detected, switching is made to the first external circuit 23 separated from the database in order to protect information in the database.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Protection Of Static Devices (AREA)
  • Fuses (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Keying Circuit Devices (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

The present invention disconnects a shorted current path and shorts an open current path in a prescribed order and irreversibly switches a current path. A switch element (26) for energizing a second heating element (11) is connected to the second heating element (11). An open terminal of a first heating element (2) is connected to a connecting terminal (16) for the second heating element (11) and an open-side soluble conductor (12). As a result of the operation of the switch element (26), the second heating element (11) is energized and generates heat, the open-side soluble conductor (12) fuses, and a main circuit (25) and second circuit (24) are disconnected. As a result of the the fusing of the open-side soluble conductor (12), the first heating element (2) is energized and generates heat, a short-side soluble conductor (3) fuses, a switch (4) is shorted, and current flows between the main circuit (25) and a first circuit (23).

Description

切替回路Switching circuit 関連出願へのクロスリファレンスCross-reference to related applications
 本出願は、日本国特許出願2013-188804号(2013年9月11日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。 This application claims the priority of Japanese Patent Application No. 2013-188804 (filed on September 11, 2013), the entire disclosure of which is incorporated herein by reference.
 本発明は、電流経路を切り替える切替回路に関する。 The present invention relates to a switching circuit that switches current paths.
 充電して繰り返し利用することのできる二次電池の多くは、バッテリパックに加工されてユーザに提供される。特に重量エネルギー密度の高いリチウムイオン二次電池においては、ユーザ及び電子機器の安全を確保するために、一般的に、過充電保護、過放電保護等のいくつもの保護回路をバッテリパックに内蔵し、所定の場合にバッテリパックの出力を遮断する機能を有している。 Many of secondary batteries that can be charged and repeatedly used are processed into a battery pack and provided to the user. In particular, in lithium ion secondary batteries with high weight energy density, in order to ensure the safety of users and electronic devices, a number of protection circuits such as overcharge protection and overdischarge protection are generally incorporated in the battery pack, It has a function to shut off the output of the battery pack in a predetermined case.
 この種の保護素子には、バッテリパックに内蔵されたFETスイッチを用いて出力のON/OFFを行うことにより、バッテリパックの過充電保護又は過放電保護動作を行うものがある。しかしながら、何らかの原因でFETスイッチが短絡破壊した場合、雷サージ等が印加されて瞬間的な大電流が流れた場合、あるいはバッテリセルの寿命によって出力電圧が異常に低下したり、逆に過大な異常電圧を出力した場合であっても、バッテリパックや電子機器は、発火等の事故から保護されなければならない。そこで、このような想定し得るいかなる異常状態においても、バッテリセルの出力を安全に遮断するために、外部からの信号によって電流経路を遮断する機能を有するヒューズ素子からなる保護素子が用いられている。 Among such protection elements, there is one that performs overcharge protection or overdischarge protection operation of the battery pack by turning on / off the output using an FET switch built in the battery pack. However, if the FET switch is short-circuit-broken for some reason, a lightning surge or the like is applied and a momentary large current flows, or the life of the battery cell abnormally decreases the output voltage, or conversely, an excessive abnormality Even when a voltage is output, the battery pack or the electronic device must be protected from an accident such as ignition. Therefore, in order to safely shut off the output of the battery cell under any such conceivable abnormal condition, a protection element consisting of a fuse element having a function of interrupting the current path by an external signal is used. .
 リチウムイオン二次電池等向けの保護回路の保護素子としては、特許文献1に記載されているように、電流経路上の第1の電極,発熱体引出電極,第2の電極間に亘って可溶導体を接続して電流経路の一部とし、この電流経路上の可溶導体を、過電流による自己発熱、あるいは保護素子内部に設けた発熱体によって溶断するものがある。このような保護素子では、溶融した液体状の可溶導体を発熱体に繋がる導体層上に集めることにより電流経路を遮断する。 As described in Patent Document 1, as a protection element of a protection circuit for a lithium ion secondary battery or the like, it is possible to extend across the first electrode, the heating element lead electrode, and the second electrode on the current path. In some cases, a molten conductor is connected to be a part of a current path, and the soluble conductor on this current path is fused and cut by self-heating due to an overcurrent or a heating element provided inside a protective element. In such a protective element, the current path is interrupted by collecting the molten liquid soluble conductor on the conductor layer connected to the heating element.
特開2010-003665号公報JP, 2010-003665, A 特開2004-185960号公報JP 2004-185960 A 特開2012-003878号公報JP 2012-003878 A
 しかし、異常を起こしたリチウムイオン二次電池の充放電電流回路を遮断しても、バッテリセルには、バッテリ容量分の大きなエネルギーが蓄えられたままであり、保護回路に異常が生じた場合等に、当該バッテリセルからの漏れ電流による発熱事故等のリスクが想定される。したがって、バッテリパックの使用を停止した後には、内部のバッテリセルが安全な電圧に降下するまで放電させることが好ましい。 However, even if the charge / discharge current circuit of the abnormal lithium ion secondary battery is shut off, a large amount of energy corresponding to the battery capacity is still stored in the battery cell, and an abnormality occurs in the protection circuit, etc. Risks such as heat generation accident due to leakage current from the battery cell are assumed. Therefore, after stopping use of the battery pack, it is preferable to discharge the internal battery cells until the voltage drops to a safe voltage.
 このように、例えばリチウムイオン二次電池のバッテリパックにおいては、バッテリセルの電流経路を、正常時における充放電経路から、異常時における放電経路へ確実に切り替える素子が求められる。 Thus, for example, in a battery pack of a lithium ion secondary battery, an element is required which reliably switches the current path of the battery cell from the charge / discharge path in the normal state to the discharge path in the abnormal state.
 そこで、本発明は、正常時において短絡されている電流経路の遮断と、異常時において使用する電流経路の短絡を、所定の順序で行い、電流経路を不可逆的に切り替える切替回路を提供すること目的とする。 Therefore, an object of the present invention is to provide a switching circuit that switches a current path irreversibly by performing shutoff of a current path that is short-circuited in a normal state and shorting of a current path used in an abnormal state in a predetermined order. I assume.
 上述した課題を解決するために、本発明に係る切替回路は、電流が流れることにより発熱する第1の発熱体と、一端が上記第1の発熱体と接続され、他端が主たる回路と接続された短絡側可溶導体と、一端が上記短絡側可溶導体と接続されるとともに上記主たる回路と接続され、他端が第1の回路と接続されたスイッチとを備え、上記第1の発熱体の発熱した熱により上記短絡側可溶導体を溶断させ、該溶融導体によって上記スイッチを短絡させる短絡回路と、電流が流れることにより発熱する第2の発熱体と、上記第2の発熱体と接続されるとともに一端が第2の回路と接続され、他端が上記主たる回路と接続された開放側可溶導体とを備え、上記第2の発熱体の発熱した熱により上記開放側可溶導体を溶断させる開放回路とを有し、上記第2の発熱体の一端には、切替信号を受けて上記第2の発熱体に上記主たる回路から電流を通電させるスイッチ素子が接続され、上記短絡回路の上記第1の発熱体の開放端と、上記開放回路の上記第2の発熱体と上記開放側可溶導体との接続端とを接続し、上記スイッチ素子が動作することにより上記開放回路の上記第2の発熱体が通電、発熱して上記開放側可溶導体が溶断し、上記主たる回路と上記第2の回路とが遮断され、上記開放側可溶導体の溶断により、上記短絡回路の上記第1の発熱体が通電、発熱して上記短絡側可溶導体が溶融し、上記スイッチが短絡されて、上記主たる回路と上記第1の回路とが通電されるものである。 In order to solve the problems described above, the switching circuit according to the present invention is connected to the first heating element that generates heat when current flows, one end connected to the first heating element, and the other end connected to the main circuit And a switch connected to the main circuit at one end and to the first circuit at the other end, and connected at one end to the first circuit. The short-circuited soluble conductor is fused by the heat generated by the body, and the switch is short-circuited by the molten conductor, a second heating element generating heat when current flows, and the second heating element The open-side soluble conductor includes an open-side soluble conductor connected at one end and connected to the second circuit at the other end and connected to the main circuit at the other end, and the heat generated by the second heating element generates heat. Open circuit to melt the At one end of the second heating element, a switch element for receiving current from the main circuit is connected to the second heating element in response to the switching signal, and the open end of the first heating element of the short circuit The second heating element of the open circuit is connected to the connection end of the open-side soluble conductor, and the switch element is operated, whereby the second heating element of the open circuit is energized and generates heat. And the main circuit and the second circuit are cut off, and the first heating element of the short circuit is energized and generates heat due to the melting of the open side soluble conductor. The short circuit side soluble conductor melts, the switch is short circuited, and the main circuit and the first circuit are energized.
 また、本発明に係る切替回路は、電流が流れることにより発熱する第1の発熱体と、一端が上記第1の発熱体と接続され、他端が主たる回路と接続された短絡側可溶導体と、一端が上記短絡側可溶導体と接続されるとともに上記主たる回路と接続され、他端が第1の回路と接続されたスイッチとを備え、上記第1の発熱体の発熱した熱により上記短絡側可溶導体を溶断させ、該溶融導体によって上記スイッチを短絡させる短絡回路と、電流が流れることにより発熱する第2の発熱体と、上記第2の発熱体と接続されるとともに一端が第2の回路と接続され、他端が上記主たる回路と接続された開放側可溶導体とを備え、上記第2の発熱体の発熱した熱により上記開放側可溶導体を溶断させる開放回路とを有し、上記第1の発熱体の一端には、切替信号を受けて上記第1の発熱体に上記主たる回路から電流を通電させる第1のスイッチ素子が接続され、上記第2の発熱体の一端には、切替信号を受けて上記第2の発熱体に上記主たる回路から電流を通電させる第2のスイッチ素子が接続され、上記第2のスイッチ素子が動作することにより、上記開放回路の上記第2の発熱体が通電、発熱して上記開放側可溶導体が溶断し、上記主たる回路と上記第2の回路とが遮断され、上記第1のスイッチ素子が動作することにより、上記短絡回路の上記第1の発熱体が通電、発熱して上記短絡側可溶導体が溶融し、上記スイッチが短絡されて、上記主たる回路と上記第1の回路とが通電されるものである。 In the switching circuit according to the present invention, the first heating element that generates heat when a current flows, and the short-circuit side soluble conductor having one end connected to the first heating element and the other end connected to the main circuit And a switch having one end connected to the short circuit side soluble conductor and the other connected to the main circuit, and the other end connected to the first circuit, the heat generated by the first heating element generating heat A short circuit which melts the short circuit side soluble conductor and shorts the switch by the molten conductor, a second heating element which generates heat when current flows, and the second heating element are connected with one end being the first An open circuit comprising an open-side soluble conductor connected to the second circuit and having the other end connected to the main circuit, wherein the heat generated by the second heat generating member melts the open-side soluble conductor At one end of the first heating element A first switch element for receiving current from the main circuit is connected to the first heat generating body in response to the switching signal, and a switching signal is received at one end of the second heat generating body to generate the second heat generation. A second switch element for conducting current from the main circuit is connected to the body, and the second heating element of the open circuit is energized and generates heat when the second switch element is operated. The soluble conductor is melted off, the main circuit and the second circuit are disconnected, and the first switch element operates to cause the first heating element of the short circuit to conduct electricity and generate heat. The short circuit side soluble conductor melts, the switch is short circuited, and the main circuit and the first circuit are energized.
 また、本発明に係る切替回路は、電流が流れることにより発熱する第1の発熱体と、一端が上記第1の発熱体と接続され、他端が第1の回路と接続された短絡側可溶導体と、一端が上記短絡側可溶導体と接続されるとともに上記第1の回路と接続され、他端が主たる回路と接続されたスイッチとを備え、上記第1の発熱体の発熱した熱により上記短絡側可溶導体を溶断させ、該溶融導体によって上記スイッチを短絡させる短絡部と、電流が流れることにより発熱する第2の発熱体と、上記第2の発熱体と接続されるとともに一端が上記スイッチの他端及び上記主たる回路と接続され、他端が第2の回路と接続された開放側可溶導体とを備え、上記第2の発熱体の発熱した熱により上記開放側可溶導体を溶断させる開放部とを有し、上記第1の発熱体は、切替信号を受けて上記第1の発熱体に上記主たる回路から電流を通電させる第1のスイッチ素子と接続され、上記第2の発熱体は、切替信号を受けて上記第2の発熱体に上記主たる回路から電流を通電させる第2のスイッチ素子と接続され、上記第2のスイッチ素子が動作することにより、上記開放部の上記第2の発熱体が通電、発熱して上記開放側可溶導体が溶断し、上記主たる回路と上記第2の回路とが遮断され、上記第1のスイッチ素子が動作することにより、上記短絡部の上記第1の発熱体が通電、発熱して上記短絡側可溶導体が溶融し、上記スイッチが短絡されて、上記主たる回路と上記第1の回路とが通電されるものである。 Further, in the switching circuit according to the present invention, the first heating element that generates heat when a current flows and the short-circuit side whose one end is connected to the first heating element and the other end is connected to the first circuit A heat conductor, and a switch having one end connected to the short circuit side soluble conductor and the switch connected to the first circuit and the other end connected to the main circuit, the heat generated by the first heating element Is connected to the second heating element that generates heat when current flows, and the short-circuited portion that melts the short-circuit side soluble conductor and short-circuits the switch by the molten conductor, and is connected to the second heating element Is connected to the other end of the switch and the main circuit, and the other end is connected to the second circuit, and the open side soluble is generated by the heat generated by the second heating element. And an open portion for melting the conductor; The heating element is connected to a first switch element for receiving current from the main circuit in response to the switching signal to cause the first heating element to conduct current, and the second heating element receives the switching signal to receive the second signal. The heating element is connected to a second switch element for supplying a current from the main circuit, and the second switching element operates to cause the second heating element in the open portion to conduct electricity, generate heat, and open the opening. The side soluble conductor is melted off, the main circuit and the second circuit are disconnected, and the first switch element operates to cause the first heating element of the short circuit portion to conduct electricity and generate heat. The short circuit side soluble conductor melts, the switch is short circuited, and the main circuit and the first circuit are energized.
 本発明によれば、スイッチ素子を動作させることによって、主たる回路から第2の回路へ至る電流経路を遮断するとともに第1の回路へ至る電流経路が構築され、主たる回路の電流経路を第2の回路から第1の回路へ切り替えることができる。このとき、本発明によれば、電流経路の遮断及び短絡を、第1、開放側可溶導体を溶融させることにより、不可逆的に行うことができる。 According to the present invention, by operating the switch element, the current path from the main circuit to the second circuit is cut off and a current path to the first circuit is constructed, and the current path of the main circuit is set to the second The circuit can be switched to the first circuit. At this time, according to the present invention, interruption and short circuit of the current path can be performed irreversibly by melting the first, open-side soluble conductor.
図1は、切替回路を構成する短絡回路の回路図であり、(A)は短絡前、(B)は短絡後を示す。FIG. 1 is a circuit diagram of a short circuit constituting a switching circuit, in which (A) shows before a short circuit and (B) shows after a short circuit. 図2は、切替回路を構成する開放回路の回路図であり、(A)は開放前、(B)は開放後を示す。FIG. 2 is a circuit diagram of an open circuit constituting the switching circuit, in which (A) shows the state before opening and (B) shows the state after opening. 図3は、第1の切替回路の構成を示すブロック図である。FIG. 3 is a block diagram showing the configuration of the first switching circuit. 図4は、切替前における第1の切替回路を示す回路図であり、(A)は2つの開放側可溶導体を備えた例、(B)は1つの開放側可溶導体を備えた例を示す。FIG. 4 is a circuit diagram showing a first switching circuit before switching, in which (A) is an example provided with two open-side soluble conductors, (B) an example provided with one open-side soluble conductor Indicates 図5は、スイッチ素子によって第2の発熱体が通電された第1の切替回路を示す回路図である。FIG. 5 is a circuit diagram showing a first switching circuit in which the second heating element is energized by the switch element. 図6は、第1の発熱体が通電された第1の切替回路を示す回路図である。FIG. 6 is a circuit diagram showing a first switching circuit in which the first heating element is energized. 図7は、切替後における第1の切替回路を示す回路図である。FIG. 7 is a circuit diagram showing a first switching circuit after switching. 図8は、第1の切替回路が適用されたバッテリパックの回路図である。FIG. 8 is a circuit diagram of a battery pack to which the first switching circuit is applied. 図9は、第1の切替回路の変形例を示す回路図である。FIG. 9 is a circuit diagram showing a modification of the first switching circuit. 図10は、変形例に係る第1の切替回路が適用されたバッテリパックの回路図である。FIG. 10 is a circuit diagram of a battery pack to which a first switching circuit according to a modification is applied. 図11は、第2の切替回路の構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of the second switching circuit. 図12は、第2の切替回路を示す回路図であり、(A)は2つの開放側可溶導体を備えた例、(B)は1つの開放側可溶導体を備えた例を示す。FIG. 12 is a circuit diagram showing a second switching circuit, wherein (A) shows an example provided with two open-side soluble conductors, and (B) shows an example provided with one open-side soluble conductor. 図13は、第2の切替回路が適用されたバッテリパックの回路図である。FIG. 13 is a circuit diagram of a battery pack to which the second switching circuit is applied. 図14は、第2の切替回路の変形例を示す回路図である。FIG. 14 is a circuit diagram showing a modification of the second switching circuit. 図15は、変形例に係る第2の切替回路が適用されたバッテリパックの回路図である。FIG. 15 is a circuit diagram of a battery pack to which a second switching circuit according to a modification is applied. 図16は、第3の切替回路を示す回路図であり、(A)は2つの開放側可溶導体を備えた例、(B)は1つの開放側可溶導体を備えた例を示す。FIG. 16 is a circuit diagram showing a third switching circuit, in which (A) shows an example having two open-side soluble conductors, and (B) shows an example having one open-side soluble conductor. 図17は、第3の切替回路が適用されたバッテリパックの回路図である。FIG. 17 is a circuit diagram of a battery pack to which the third switching circuit is applied. 図18は、第3の切替回路の変形例を示す回路図である。FIG. 18 is a circuit diagram showing a modification of the third switching circuit. 図19は、変形例に係る第3の切替回路が適用されたバッテリパックの回路図である。FIG. 19 is a circuit diagram of a battery pack to which a third switching circuit according to a modification is applied.
 以下、本発明が適用された切替回路について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Hereinafter, the switching circuit to which the present invention is applied will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments, and it goes without saying that various modifications can be made without departing from the scope of the present invention. Further, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions and the like should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios among the drawings are included.
 本発明が適用された切替回路は、可溶導体を溶融させることにより、この溶融導体を介して互いに開放されている電極間が接続される短絡回路又は短絡部と、可溶導体を介して短絡されている電極間が、可溶導体を溶融させることにより遮断される開放回路又は開放部を有する。先ず、短絡回路及び開放回路の動作原理について説明する。 The switching circuit to which the present invention is applied is a short circuit or a short circuit part connected between electrodes mutually opened through the melting conductor by melting the fusible conductor, and a short circuit through the fusible conductor Between the electrodes being made has an open circuit or opening that is interrupted by melting the fusible conductor. First, the operation principle of the short circuit and the open circuit will be described.
 短絡回路1は、図1(A)に示すように、第1の発熱体2と、第1の発熱体2と直列に接続され、第1の発熱体2の発熱により溶融する短絡側可溶導体3と、互いに開放され、短絡側可溶導体3が溶融することにより、この溶融導体を介して短絡するスイッチ4を構成する第1、第2の電極5,6とを備える。第1の電極5は図示しない電源と接続され、第2の電極6は、スイッチ4がオンになると接続される外部回路と接続されている。また、第1の発熱体2は、第1の発熱体電極7を介して、図示しないFET等のスイッチ素子と接続され、通電が制御されている。 As shown in FIG. 1A, the short circuit 1 is connected in series to the first heating element 2 and the first heating element 2, and the short circuit side melts due to the heat generation of the first heating element 2. A conductor 3 is provided with first and second electrodes 5 and 6 which constitute a switch 4 which is open to each other and which is short-circuited through the molten conductor by melting the short-circuit side soluble conductor 3. The first electrode 5 is connected to a power supply (not shown), and the second electrode 6 is connected to an external circuit to be connected when the switch 4 is turned on. Further, the first heat generating body 2 is connected to a switch element such as a FET (not shown) via the first heat generating body electrode 7 so that energization is controlled.
 短絡回路1は、スイッチ素子が動作することにより、第1の電極5及び短絡側可溶導体3を介して第1の発熱体2に給電されると、図1(B)に示すように、第1の発熱体2の発熱により短絡側可溶導体3が溶断する。すると、短絡回路1は、短絡側可溶導体3の溶融導体が第1、第2の電極5,6間にわたって凝集し、第1、第2の電極5,6間が短絡する。これにより、短絡回路1は、スイッチ4がオンとなり、電源と外部回路とを通電させる。 As shown in FIG. 1B, when the switch element is operated, the short circuit 1 is supplied with power to the first heating element 2 through the first electrode 5 and the short circuit soluble conductor 3. Due to the heat generation of the first heating element 2, the short circuit side soluble conductor 3 is fused and cut. Then, in the short circuit 1, the molten conductor of the short circuit side soluble conductor 3 agglomerates between the first and second electrodes 5 and 6, thereby shorting the first and second electrodes 5 and 6. As a result, in the short circuit 1, the switch 4 is turned on to energize the power supply and the external circuit.
 開放回路10は、図2(A)に示すように、第2の発熱体11と、第2の発熱体11の発熱により溶断する開放側可溶導体12と、開放側可溶導体12を介して接続されている第3、第4の電極13,14とを備える。第3、第4の電極13,14は、電流経路上に設けられ、第2の発熱体11は、第2の発熱体電極15を介して、図示しないFET等のスイッチ素子と接続され、通電が制御されている。 As shown in FIG. 2A, the open circuit 10 includes the second heat generating body 11, the open side soluble conductor 12 which is melted and cut by the heat generation of the second heat generating body 11, and the open side soluble conductor 12 And third and fourth electrodes 13 and 14 connected to each other. The third and fourth electrodes 13 and 14 are provided on the current path, and the second heat generating body 11 is connected to a switch element such as an FET (not shown) via the second heat generating electrode 15 to energize it. Is controlled.
 開放回路10は、スイッチ素子が動作することにより、第3の電極13及び開放側可溶導体12を介して第2の発熱体11に給電されると、図2(B)に示すように、第2の発熱体11の発熱により開放側可溶導体12が溶断する。これにより、開放回路10は、電流経路を遮断することができる。 In the open circuit 10, as shown in FIG. 2 (B), when the switch element is operated, power is supplied to the second heat generating body 11 through the third electrode 13 and the open side soluble conductor 12; Due to the heat generation of the second heat generating body 11, the open side soluble conductor 12 is melted down. Thereby, the open circuit 10 can cut off the current path.
 [第1の切替回路]
 第1の切替回路30は、図3に示すように、短絡回路1を構成し、主たる回路となる電源回路25及び切替後に通電する第1の外部回路23に接続された短絡素子21と、開放回路10を構成し、電源回路25及び切替前に通電する第2の外部回路24に接続された開放素子22とを備える。また、第1の切替回路30は、切替信号を受けたスイッチ素子26によって、第2の発熱体11へ給電される。これにより、第2の発熱体11が発熱し、第3、第4の電極13,14間が遮断された後、第1の発熱体2が発熱し、第1、第2の電極5,6間が短絡される。これにより、第1の切替回路30は、電源回路25の電流経路を第2の外部回路24から第1の外部回路23へ切り替えることができる。
[First switching circuit]
As shown in FIG. 3, the first switching circuit 30 constitutes the short circuit 1 and is opened with the short circuit element 21 connected to the power supply circuit 25 serving as the main circuit and the first external circuit 23 to be energized after switching. The circuit 10 is configured, and includes a power supply circuit 25 and an open element 22 connected to a second external circuit 24 to be energized before switching. The first switching circuit 30 is supplied with power to the second heating element 11 by the switch element 26 that has received the switching signal. Thereby, the second heat generating body 11 generates heat, and after the third and fourth electrodes 13 and 14 are shut off, the first heat generating body 2 generates heat, and the first and second electrodes 5 and 6 are generated. There is a short circuit between them. Thus, the first switching circuit 30 can switch the current path of the power supply circuit 25 from the second external circuit 24 to the first external circuit 23.
 具体的に、第1の切替回路30は、図4に示す回路構成を有する。短絡回路1は、電流が流れることにより発熱する第1の発熱体2と、一端が第1の発熱体2と接続され、他端が電源回路25と接続された短絡側可溶導体3と、一端が短絡側可溶導体3と接続されるとともに電源回路25と接続され、他端が第1の外部回路23と接続されたスイッチ4とを備える。 Specifically, the first switching circuit 30 has a circuit configuration shown in FIG. The short circuit 1 includes a first heating element 2 that generates heat when a current flows, and a short circuit soluble conductor 3 having one end connected to the first heating element 2 and the other end connected to a power supply circuit 25; The switch 4 includes one end connected to the short circuit side soluble conductor 3 and the power supply circuit 25 and the other end connected to the first external circuit 23.
 スイッチ4は、第1の電極5を介して電源回路25と接続され、第2の電極6を介して第1の外部回路23と接続されている。また、第1の発熱体2は、第1の発熱体電極7を介して開放回路10の接続端電極16と接続されている。 The switch 4 is connected to the power supply circuit 25 through the first electrode 5 and to the first external circuit 23 through the second electrode 6. Further, the first heat generating body 2 is connected to the connection end electrode 16 of the open circuit 10 via the first heat generating body electrode 7.
 また、開放回路10は、電流が流れることにより発熱する第2の発熱体11と、第2の発熱体11と接続されるとともに一端が電源回路25と接続され、他端が第2の外部回路24と接続された開放側可溶導体12とを備える。図4(A)に示す第1の切替回路30において、開放側可溶導体12は、一端を第3の電極13を介して電源回路25と接続され他端を第2の発熱体11と接続されている第1の開放側可溶導体12aと、一端を第4の電極14を介して第2の外部回路24と接続され他端を第2の発熱体11と接続されている第2の開放側可溶導体12bとを有する。 In addition, the open circuit 10 is connected to the second heating element 11 that generates heat when a current flows, and the second heating element 11, and one end is connected to the power supply circuit 25, and the other end is the second external circuit. And an open-side fusible conductor 12 connected to the T.24. In the first switching circuit 30 shown in FIG. 4A, the open side soluble conductor 12 has one end connected to the power supply circuit 25 through the third electrode 13 and the other end connected to the second heating element 11 A first open-ended soluble conductor 12 a, and one end connected to the second external circuit 24 via the fourth electrode 14 and the other end connected to the second heating element 11. And an open side soluble conductor 12b.
 なお、開放回路10は、図4(B)に示すように、第1の開放側可溶導体12aのみで構成してもよい。この場合、第1の開放側可溶導体12aは、一端が第3の電極13を介して電源回路25と接続され、他端が第2の発熱体11と、第4の電極14を介して第2の外部回路24とに接続される。 In addition, you may comprise the open circuit 10 only by the 1st open | release side soluble conductor 12a, as shown to FIG. 4 (B). In this case, one end of the first open-side soluble conductor 12 a is connected to the power supply circuit 25 through the third electrode 13, and the other end is connected through the second heating element 11 and the fourth electrode 14. It is connected to the second external circuit 24.
 また、第1の切替回路30は、第2の発熱体11の一端には、第2の発熱体電極15を介して、切替信号を受けて第2の発熱体11に電源回路25から電流を通電させるスイッチ素子26が接続されている。また、第1の切替回路30は、短絡回路1の第1の発熱体電極7と、開放回路10の第2の発熱体11と開放側可溶導体12が接続された接続端電極16とが接続されている。 In addition, the first switching circuit 30 receives the switching signal at one end of the second heat generating body 11 via the second heat generating body electrode 15 and supplies a current from the power supply circuit 25 to the second heat generating body 11. A switch element 26 to be energized is connected. In the first switching circuit 30, the first heating element electrode 7 of the short circuit 1 and the connection end electrode 16 to which the second heating element 11 of the open circuit 10 and the open side soluble conductor 12 are connected are included. It is connected.
 スイッチ素子26は、たとえば電界効果トランジスタ(FET)により構成され、ゲート電圧を制御することによって、第2の発熱体11への電流経路の導通と遮断とを制御する。 Switch element 26 is formed of, for example, a field effect transistor (FET), and controls conduction and interruption of the current path to second heating element 11 by controlling the gate voltage.
 [第1の切替回路の動作]
 このような構成を有する第1の切替回路30は、初期状態においては、図4に示すように、電源回路25から開放回路10を介して第2の外部回路24に至る電流経路となる。このとき、第1の切替回路30は、スイッチ素子26によって第2の発熱体11への給電は規制され、また、第1の発熱体2の両端はほぼ同電位であり短絡回路1へは電流がほとんど流れない。
[Operation of first switching circuit]
In the initial state, the first switching circuit 30 having such a configuration forms a current path from the power supply circuit 25 to the second external circuit 24 via the open circuit 10, as shown in FIG. At this time, in the first switching circuit 30, power supply to the second heat generating body 11 is restricted by the switch element 26, and both ends of the first heat generating body 2 have substantially the same potential. Hardly flows.
 電源回路25の電流経路を第2の外部回路24から第1の外部回路23へ切り替える必要が生じると、スイッチ素子26に切替信号が出力される。スイッチ素子26は、切替信号を受けると、第2の発熱体11に給電するように、電流を制御する。これにより、第1の切替回路30は、図5に示すように、開放回路10の第2の発熱体11が通電、発熱し、開放側可溶導体12が溶断する。したがって、電源回路25から第2の外部回路24へ至る電流経路が遮断される。 When it becomes necessary to switch the current path of the power supply circuit 25 from the second external circuit 24 to the first external circuit 23, a switching signal is output to the switch element 26. When the switch element 26 receives the switching signal, it controls the current so as to supply power to the second heating element 11. Thereby, in the first switching circuit 30, as shown in FIG. 5, the second heating element 11 of the open circuit 10 is energized and generates heat, and the open-side soluble conductor 12 is melted and disconnected. Therefore, the current path from the power supply circuit 25 to the second external circuit 24 is cut off.
 すると、図6に示すように、電源回路25からの電流が第1の電極5を介して短絡回路1側に流入し、短絡側可溶導体3、第1の発熱体2、及び第1の発熱体電極7を介して開放回路10及びスイッチ素子26側へ流れる。これにより、第1の切替回路30は、短絡回路1の第1の発熱体2が通電、発熱し、図7に示すように、短絡側可溶導体3が溶断するとともに、この溶融導体により第1、第2の電極5,6間が短絡、すなわちスイッチ4がオンとなり、電源回路25から第1の外部回路23へ至る電流経路が構築される。 Then, as shown in FIG. 6, the current from the power supply circuit 25 flows into the short circuit 1 through the first electrode 5, and the short-side soluble conductor 3, the first heating element 2, and the first It flows to the open circuit 10 and the switch element 26 side through the heating element electrode 7. As a result, in the first switching circuit 30, the first heating element 2 of the short circuit 1 is energized and generates heat, and as shown in FIG. A short circuit occurs between the first and second electrodes 5 and 6, that is, the switch 4 is turned on, and a current path from the power supply circuit 25 to the first external circuit 23 is established.
 なお、第2の発熱体11は、開放側可溶導体12と短絡側可溶導体3の両方が溶断することにより給電経路が遮断されるため発熱が停止される。また第1の発熱体2は、短絡側可溶導体3が溶断することにより給電経路が遮断されるため発熱が停止される。 In addition, since the electric power feeding path is interrupted | blocked by melting and cutting both the open side soluble conductor 12 and the short circuit side soluble conductor 3, the 2nd heat generating body 11 stops heat generation. In addition, since the feeding path is cut off by melting the short-circuit side soluble conductor 3 in the first heating element 2, the heat generation is stopped.
 このように、第1の切替回路30によれば、スイッチ素子26を動作させることによって、第3、第4の電極13,14を経て第2の外部回路24へ至る電流経路を遮断するとともに、電源回路25から、第1の電極5、スイッチ4、第2の電極6を経て第1の外部回路23へ至る電流経路が構築され、電源回路25の電流経路を第2の外部回路24から第1の外部回路23へ切り替えることができる。 Thus, according to the first switching circuit 30, by operating the switch element 26, the current path to the second external circuit 24 through the third and fourth electrodes 13 and 14 is interrupted. A current path from the power supply circuit 25 to the first external circuit 23 through the first electrode 5, the switch 4 and the second electrode 6 is constructed, and the current path of the power supply circuit 25 is It is possible to switch to the one external circuit 23.
 また、第1の切替回路30によれば、第3、第4の電極13,14間の遮断、及び第1、第2の電極5,6間の短絡を、開放側可溶導体12、短絡側可溶導体3を溶融させることにより不可逆的に行う。したがって、ソフトウェア等により電子的に切り替える場合に比べて、誤動作による切替不良の改善を図ることができ、またクラッキング等による不正な切替に対する脆弱性を改善することができる。 Further, according to the first switching circuit 30, the open side soluble conductor 12 is a short circuit between the third and fourth electrodes 13 and 14 and the short circuit between the first and second electrodes 5 and 6 Irreversible by melting the side soluble conductor 3. Therefore, as compared with the case of electronically switching by software or the like, it is possible to improve the switching failure due to a malfunction and to improve the vulnerability to illegal switching due to cracking or the like.
 [第1の切替回路の実装例]
 このような第1の切替回路30は、図8に示すように、例えばリチウムイオン二次電池のバッテリパック40内の回路に組み込まれて用いられる。バッテリパック40は、例えば、合計4個のリチウムイオン二次電池のバッテリセル41~44からなるバッテリスタック45を有する。
[Implementation example of first switching circuit]
Such a first switching circuit 30 is used by being incorporated into a circuit in a battery pack 40 of a lithium ion secondary battery, for example, as shown in FIG. The battery pack 40 has, for example, a battery stack 45 consisting of battery cells 41 to 44 of a total of four lithium ion secondary batteries.
 バッテリパック40は、バッテリスタック45と、バッテリスタック45の充放電を制御する充放電制御回路50と、バッテリスタック45の異常時に充電を遮断するとともにバッテリスタック45内の電気エネルギーを放熱させる本発明が適用された第1の切替回路30を構成する短絡素子21及び開放素子22と、各バッテリセル41~44の電圧を検出する検出回路46と、検出回路46の検出結果に応じて第1の切替回路30の動作を制御するスイッチ素子26とを備える。 The battery pack 40 includes a battery stack 45, a charge / discharge control circuit 50 for controlling charge / discharge of the battery stack 45, and the present invention for interrupting charging when the battery stack 45 is abnormal and for radiating the electric energy in the battery stack 45. First switching according to the detection result of the short circuit 21 and open circuit 22 constituting the first switching circuit 30 applied, the detection circuit 46 detecting the voltage of each of the battery cells 41 to 44, and the detection circuit 46 And a switch element 26 for controlling the operation of the circuit 30.
 バッテリスタック45は、過充電及び過放電状態から保護するための制御を要するバッテリセル41~44が直列接続されたものであり、バッテリパック40の正極端子40a、負極端子40bを介して、着脱可能に充電回路55に接続され、充電回路55からの充電電圧が印加される。充電回路55により充電されたバッテリパック40は、正極端子40a、負極端子40bをバッテリで動作する電子機器に接続することによって、この電子機器を動作させることができる。 The battery stack 45 is a series connection of battery cells 41 to 44 requiring control for protection from an overcharge and an overdischarge state, and is detachable via the positive electrode terminal 40 a and the negative electrode terminal 40 b of the battery pack 40. The charging circuit 55 is connected to the charging circuit 55, and the charging voltage from the charging circuit 55 is applied. The battery pack 40 charged by the charging circuit 55 can operate the electronic device by connecting the positive electrode terminal 40 a and the negative electrode terminal 40 b to the electronic device operated by the battery.
 充放電制御回路50は、バッテリスタック45から充電回路55に流れる電流経路に直列接続された2つの電流制御素子51、52の動作を制御する。電流制御素子51、52は、たとえば電界効果トランジスタ(以下、FETと呼ぶ。)により構成され、充放電制御回路50によりゲート電圧を制御することによって、バッテリスタック45の電流経路の導通と遮断とを制御する。充放電制御回路50は、充電回路55から電力供給を受けて動作し、検出回路46による検出結果に応じて、バッテリスタック45が過放電又は過充電であるとき、電流経路を遮断するように、電流制御素子51、52の動作を制御する。 The charge and discharge control circuit 50 controls the operation of the two current control elements 51 and 52 connected in series in the current path flowing from the battery stack 45 to the charge circuit 55. Current control elements 51 and 52 are formed of, for example, a field effect transistor (hereinafter referred to as FET), and control of the gate voltage by charge / discharge control circuit 50 allows conduction and interruption of the current path of battery stack 45. Control. The charge / discharge control circuit 50 operates by receiving power supply from the charge circuit 55, and cuts off the current path when the battery stack 45 is overdischarged or overcharged according to the detection result by the detection circuit 46, The operation of the current control elements 51 and 52 is controlled.
 短絡素子21は、バッテリスタック45と並列に接続されるとともに、バッテリスタック45に蓄積された電気エネルギーをバッテリセル41~44の上限放電電流以下で放電させるための保護抵抗31と直列に接続されている。これにより、第1の切替回路30は、短絡素子21及び保護抵抗31が設けられた放電回路32を構成する。 The short circuiting element 21 is connected in parallel to the battery stack 45 and is connected in series to the protective resistor 31 for discharging the electric energy stored in the battery stack 45 with the upper limit discharge current of the battery cells 41 to 44 or less. There is. Thus, the first switching circuit 30 constitutes a discharge circuit 32 provided with the short circuiting element 21 and the protective resistor 31.
 開放素子22は、バッテリスタック45と充電回路55との間の充放電電流回路33上に接続され、その動作がスイッチ素子26によって制御される。 The open element 22 is connected on the charge / discharge current circuit 33 between the battery stack 45 and the charge circuit 55, and the operation is controlled by the switch element 26.
 検出回路46は、各バッテリセル41~44と接続され、各バッテリセル41~44の電圧値を検出して、各電圧値を充放電制御回路50に供給する。また、検出回路46は、いずれか1つのバッテリセル41~44が過充電電圧になったときにスイッチ素子26を制御する制御信号を出力する。 The detection circuit 46 is connected to each of the battery cells 41 to 44, detects the voltage value of each of the battery cells 41 to 44, and supplies each voltage value to the charge and discharge control circuit 50. Further, the detection circuit 46 outputs a control signal for controlling the switch element 26 when any one of the battery cells 41 to 44 becomes the overcharge voltage.
 スイッチ素子26は、たとえばFETにより構成され、検出回路46から出力される検出信号によって、バッテリセル41~44の電圧値が所定の過充電状態を超える電圧になったとき、第1の切替回路30を動作させて、バッテリスタック45の充放電電流回路33を電流制御素子51、52のスイッチ動作によらず遮断するとともに、バッテリスタック45の電流経路を、開放素子22を介した充放電電流回路33から、短絡素子21を介した放電回路32に切り替えるように制御する。 Switch element 26 is formed of, for example, an FET, and when the voltage value of battery cells 41 to 44 becomes a voltage exceeding a predetermined overcharge state by a detection signal output from detection circuit 46, first switching circuit 30. To shut off the charge / discharge current circuit 33 of the battery stack 45 regardless of the switch operation of the current control elements 51 and 52, and the current path of the battery stack 45 through the open / close element 22. Then, control is made to switch to the discharge circuit 32 via the shorting element 21.
 具体的に、バッテリパック40は、検出回路46によってバッテリセル41~44のいずれかに異常電圧が検出された場合、スイッチ素子26に切替信号を出力する。スイッチ素子26は、開放素子22の第2の発熱体11へ通電するように、バッテリスタック45の電流を制御する。これにより、第1の切替回路30は、開放側可溶導体12が溶断し、バッテリスタック45の充放電電流回路33を遮断する。さらに、第1の切替回路30は、第1の発熱体2が通電され、短絡側可溶導体2が溶断することにより、第1、第2の電極5,6が短絡し、バッテリスタック45の電流経路を保護抵抗31が設けられた放電回路32側に切り替える。 Specifically, when the detection circuit 46 detects an abnormal voltage in any of the battery cells 41 to 44, the battery pack 40 outputs a switching signal to the switch element 26. The switch element 26 controls the current of the battery stack 45 so as to energize the second heating element 11 of the open element 22. Thereby, the first switching circuit 30 melts the open-side soluble conductor 12 and cuts off the charge / discharge current circuit 33 of the battery stack 45. Furthermore, in the first switching circuit 30, the first heating element 2 is energized and the short-circuit side soluble conductor 2 is fused, whereby the first and second electrodes 5, 6 are short-circuited. The current path is switched to the discharge circuit 32 side provided with the protective resistor 31.
 このように、第1の切替回路30が組み込まれたバッテリパック40は、異常を起こしたバッテリスタック45の充放電電流回路33を遮断するとともに、バッテリ容量分の大きな電気エネルギーが蓄えられたバッテリスタック45の電流経路を、保護抵抗31が設けられた放電回路32に切り替える。したがって、バッテリパック40は、使用を停止した後に、内部のバッテリセル41~44が安全な電圧に降下するまで放電させることができる。 Thus, the battery pack 40 in which the first switching circuit 30 is incorporated cuts off the charge / discharge current circuit 33 of the battery stack 45 which has caused an abnormality, and a battery stack in which a large electric energy corresponding to the battery capacity is stored. The 45 current paths are switched to the discharge circuit 32 provided with the protective resistor 31. Therefore, the battery pack 40 can be discharged until the internal battery cells 41 to 44 drop to a safe voltage after stopping use.
 [保護素子内蔵]
 なお、第1の切替回路30は、図8に示すように、放電回路32上に保護抵抗31を設ける他、図9に示すように、短絡回路1に保護抵抗31を内蔵してもよい。この場合、図10に示すように、バッテリパック40の放電回路32には保護抵抗31を設ける必要がない。
[Built-in protection element]
In the first switching circuit 30, as shown in FIG. 8, in addition to providing the protective resistor 31 on the discharge circuit 32, the protective resistor 31 may be incorporated in the short circuit 1 as shown in FIG. In this case, as shown in FIG. 10, the discharge circuit 32 of the battery pack 40 does not need to have the protective resistor 31.
 [第2の切替回路]
 次いで、第2の切替回路60について説明する。なお、以下の説明において、上述した第1の切替回路30と同じ構成については同一の符号を付してその詳細を省略する。第2の切替回路60は、図11に示すように、短絡回路1を構成し、電源回路25及び切替後に通電する第1の外部回路23に接続された短絡素子21と、開放回路10を構成し、電源回路25及び切替前に通電する第2の外部回路24に接続された開放素子22とを備える。
[Second switching circuit]
Next, the second switching circuit 60 will be described. In the following description, the same components as those of the first switching circuit 30 described above are denoted by the same reference numerals, and the details thereof are omitted. As shown in FIG. 11, the second switching circuit 60 constitutes the short circuit 1, and constitutes the open circuit 10 and the short circuit element 21 connected to the power supply circuit 25 and the first external circuit 23 to be energized after switching. And an open element 22 connected to a power supply circuit 25 and a second external circuit 24 which is energized before switching.
 第2の切替回路60においては、短絡素子21が第1のスイッチ素子61と接続され、開放素子22が第2のスイッチ素子62と接続されている。短絡素子21は、切替信号を受けた第1のスイッチ素子61によって、第1の発熱体2へ給電される。また、開放素子22は、切替信号を受けた第2のスイッチ素子62によって、第2の発熱体11へ給電される。したがって、第2の切替回路60によれば、第1、第2のスイッチ素子61,62への切替信号の出力順序に応じて、短絡素子21による短絡と開放素子22による開放の順序を変えることができる。 In the second switching circuit 60, the short circuit element 21 is connected to the first switch element 61, and the open element 22 is connected to the second switch element 62. The short circuiting element 21 is supplied with power to the first heating element 2 by the first switch element 61 which has received the switching signal. Further, the open element 22 is supplied with power to the second heating element 11 by the second switch element 62 that has received the switching signal. Therefore, according to the second switching circuit 60, the order of the short circuit by the short circuit element 21 and the opening by the open element 22 is changed according to the output sequence of the switching signals to the first and second switch elements 61 and 62. Can.
 具体的に、第2の切替回路60は、図12に示す回路構成を有する。短絡回路1は、第1の発熱体2と、短絡側可溶導体3と、スイッチ4とを備え、第1の発熱体2の発熱した熱により短絡側可溶導体3を溶断させ、溶融導体によってスイッチ4を短絡させる。第2の切替回路60において、短絡回路1は、第1の発熱体2が第1の発熱体電極7を介して第1のスイッチ素子61と接続されている他は、第1の切替回路30と同じ構成である。 Specifically, the second switching circuit 60 has a circuit configuration shown in FIG. The short circuit 1 includes a first heating element 2, a short circuit soluble conductor 3 and a switch 4, and the heat generated by the first heating element 2 causes the short circuit soluble conductor 3 to melt and cut. Short-circuits the switch 4. In the second switching circuit 60, the short circuit 1 includes the first switching circuit 30 except that the first heating element 2 is connected to the first switch element 61 via the first heating element electrode 7. The same configuration as
 また、開放回路10は、第2の発熱体11と、開放側可溶導体12とを備え、第2の発熱体11の発熱した熱により開放側可溶導体12を溶断させる。第2の切替回路60において、開放回路10は、第2の発熱体11が、第2の発熱体電極15を介して第2のスイッチ素子62と接続されている他は、第1の切替回路30と同じ構成である。 In addition, the open circuit 10 includes the second heat generating body 11 and the open side soluble conductor 12, and the heat generated by the second heat generating body 11 causes the open side soluble conductor 12 to melt and cut. In the second switching circuit 60, the open circuit 10 is a first switching circuit except that the second heating element 11 is connected to the second switch element 62 via the second heating element electrode 15. It has the same configuration as 30.
 なお、図12(A)に示す第2の切替回路60において、開放側可溶導体12は、一端を第3の電極13を介して電源回路25と接続され他端を第2の発熱体11と接続されている第1の開放側可溶導体12aと、一端を第4の電極14を介して第2の外部回路24と接続され他端を第2の発熱体11と接続されている第2の開放側可溶導体12bとを有する。 In the second switching circuit 60 shown in FIG. 12A, one end of the open-side soluble conductor 12 is connected to the power supply circuit 25 through the third electrode 13 and the other end is the second heating element 11. A first open-ended soluble conductor 12a connected to the second external circuit 24 via the fourth electrode 14 at one end and a second heating element 11 at the other end And two open side soluble conductors 12b.
 また、切替回路60においても、開放回路10は、図12(B)に示すように、第1の開放側可溶導体12aのみで構成してもよい。この場合、第1の開放側可溶導体12aは、一端が第3の電極13を介して電源回路25と接続され、他端が第2の発熱体11及び第4の電極14を介して第2の外部回路24と接続される。 Further, also in the switching circuit 60, as shown in FIG. 12B, the open circuit 10 may be configured by only the first open-side soluble conductor 12a. In this case, one end of the first open side soluble conductor 12 a is connected to the power supply circuit 25 via the third electrode 13, and the other end is connected via the second heating element 11 and the fourth electrode 14 to the first open side soluble conductor 12 a. It is connected to the two external circuits 24.
 [第2の切替回路の動作]
 このような構成を有する第2の切替回路60は、初期状態においては、図12に示すように、電源回路25から開放回路10を介して第2の外部回路24に至る電流経路を構成する。このとき、短絡回路1は、第1のスイッチ素子61によって第1の発熱体2への給電が規制され、スイッチ4はオフとされている。また、開放回路10は、第2のスイッチ素子62によって第2の発熱体11への給電が規制されている。
[Operation of second switching circuit]
In the initial state, the second switching circuit 60 having such a configuration configures a current path from the power supply circuit 25 to the second external circuit 24 via the open circuit 10, as shown in FIG. At this time, in the short circuit 1, the power supply to the first heating element 2 is restricted by the first switch element 61, and the switch 4 is turned off. Further, in the open circuit 10, the power supply to the second heating element 11 is restricted by the second switch element 62.
 電源回路25の電流経路を第2の外部回路24から第1の外部回路23へ切り替える必要が生じると、先ず第2のスイッチ素子62に切替信号が出力される。第2のスイッチ素子62は、切替信号を受けると、第2の発熱体11に給電するように、電流を制御する。これにより、第2の切替回路60は、開放回路10の第2の発熱体11が通電、発熱し、開放側可溶導体12が溶断する。したがって、電源回路25から第2の外部回路24へ至る電流経路が遮断される。 When it becomes necessary to switch the current path of the power supply circuit 25 from the second external circuit 24 to the first external circuit 23, first, a switching signal is output to the second switch element 62. When the second switch element 62 receives the switching signal, it controls the current to supply power to the second heating element 11. As a result, in the second switching circuit 60, the second heating element 11 of the open circuit 10 is energized and generates heat, and the open-side soluble conductor 12 is fused. Therefore, the current path from the power supply circuit 25 to the second external circuit 24 is cut off.
 次いで、第2の切替回路60は、第1のスイッチ素子61に切替信号が出力される。第1のスイッチ素子61は、切替信号を受けると、第1の発熱体2に給電するように、電流を制御する。これにより、第2の切替回路60は、短絡回路1の第1の発熱体2が通電、発熱し、短絡側可溶導体3が溶断するとともに、この溶融導体により第1、第2の電極5,6間が短絡、すなわちスイッチ4がオンとなり、電源回路25から第1の外部回路23へ至る電流経路が構築される。 Next, the second switching circuit 60 outputs a switching signal to the first switch element 61. When receiving the switching signal, the first switch element 61 controls the current so as to supply power to the first heating element 2. As a result, in the second switching circuit 60, the first heating element 2 of the short circuit 1 is energized and generates heat, and the short circuit side soluble conductor 3 is fused and disconnected, and the first and second electrodes 5 are made by this molten conductor. , 6 are shorted, that is, the switch 4 is turned on, and a current path from the power supply circuit 25 to the first external circuit 23 is established.
 また、第2の切替回路60は、電源回路25の電流経路を第2の外部回路24から第1の外部回路23へ切り替える必要が生じたとき、先ず第1のスイッチ素子61に切替信号を出力し、電源回路25から第1の外部回路23に至る電流経路を構築した後に、第2のスイッチ素子62に切替信号を出力し、第2の外部回路24へ至る電流経路を遮断するようにしてもよい。これにより、電源回路25の電力が途切れることなく、第2の外部回路24から第1の外部回路23へと電流経路を切り替えることができる。 The second switching circuit 60 first outputs a switching signal to the first switch element 61 when the current path of the power supply circuit 25 needs to be switched from the second external circuit 24 to the first external circuit 23. After the current path from the power supply circuit 25 to the first external circuit 23 is constructed, a switching signal is output to the second switch element 62 to interrupt the current path leading to the second external circuit 24. It is also good. Thus, the current path can be switched from the second external circuit 24 to the first external circuit 23 without interruption of the power of the power supply circuit 25.
 なお、第2の発熱体11は、開放側可溶導体12が溶断することにより給電経路が遮断されるため発熱が停止される。また第1の発熱体2は、短絡側可溶導体3が溶断することにより給電経路が遮断されるため発熱が停止される。 In addition, since the electric power feeding path is interrupted | blocked by the melting | disruption of the open side soluble conductor 12, the 2nd heat generating body 11 stops heat generation. In addition, since the feeding path is cut off by melting the short-circuit side soluble conductor 3 in the first heating element 2, the heat generation is stopped.
 このように、第2の切替回路60によれば、第1、第2のスイッチ素子61,62を動作させることによって、第3、第4の電極13,14を経て第1の外部回路23へ至る電流経路を遮断するとともに、電源回路25から、第1の電極5、スイッチ4、第2の電極6を経て第1の外部回路23へ至る電流経路が構築され、電源回路25の電流経路を第2の外部回路24から第1の外部回路23へ切り替えることができる。 As described above, according to the second switching circuit 60, the first and second switch elements 61 and 62 are operated to pass the third and fourth electrodes 13 and 14 to the first external circuit 23. The current path from the power supply circuit 25 to the first external circuit 23 via the first electrode 5, the switch 4 and the second electrode 6 is constructed, and the current path of the power supply circuit 25 is The second external circuit 24 can be switched to the first external circuit 23.
 このとき、第2の切替回路60においても、第3、第4の電極13,14間の遮断、及び第1、第2の電極5,6間の短絡を、短絡側可溶導体3、開放側可溶導体12を溶融させることにより不可逆的に行う。したがって、ソフトウェア等により電子的に切り替える場合に比べて、誤動作による切替不良の改善を図ることができ、またクラッキング等による不正な切替に対する脆弱性を改善することができる。 At this time, also in the second switching circuit 60, the short circuit between the third and fourth electrodes 13 and 14 and the short circuit between the first and second electrodes 5 and 6 is released. Irreversible by melting the side soluble conductor 12. Therefore, as compared with the case of electronically switching by software or the like, it is possible to improve the switching failure due to a malfunction and to improve the vulnerability to illegal switching due to cracking or the like.
 また、第2の切替回路60によれば、第1、第2のスイッチ素子61,62への切替信号の出力順序に応じて、短絡素子21による短絡と開放素子22による開放の順序を変えることができる。 Further, according to the second switching circuit 60, the order of the short circuit by the short circuit element 21 and the opening by the open element 22 is changed according to the output sequence of the switching signals to the first and second switch elements 61 and 62. Can.
 [第2の切替回路の実装例]
 このような第2の切替回路60は、図13に示すように、例えばリチウムイオン二次電池のバッテリパック40内の回路に組み込まれて用いられる。この場合、検出回路46から第2のスイッチ素子62、及び第1のスイッチ素子61へ、順次、切替信号が出力されることにより、先ず、開放素子22による充放電電流回路33の遮断が行われ、次いで、短絡素子21による放電回路32の短絡が行われる。
[Implementation example of second switching circuit]
Such a second switching circuit 60 is incorporated in a circuit in a battery pack 40 of a lithium ion secondary battery, for example, as shown in FIG. In this case, the switching signal is sequentially output from the detection circuit 46 to the second switch element 62 and the first switch element 61, so that the charge / discharge current circuit 33 is first interrupted by the open element 22. Then, the discharge circuit 32 is shorted by the shorting element 21.
 すなわち、バッテリパック40は、検出回路46によってバッテリセル41~44のいずれかに異常電圧が検出された場合、先ず第2のスイッチ素子62に切替信号を出力する。第2のスイッチ素子62は、開放素子22の第2の発熱体11へ通電するように、バッテリスタック45の電流を制御する。これにより、第2の切替回路60は、開放側可溶導体12が溶断し、バッテリスタック45の充放電電流回路33を遮断する。充放電電流回路33の遮断が検知されると、次いで、検出回路46は、第1のスイッチ素子61に切替信号を出力する。第1のスイッチ素子61は、短絡素子21の第1の発熱体2へ通電するように、バッテリスタック45の電流を制御する。これにより、第1の発熱体2が通電され、短絡側可溶導体3が溶断することにより、第1、第2の電極5,6が短絡し、バッテリスタック45の電流経路を保護抵抗31が設けられた放電回路32側に切り替える。 That is, when the detection circuit 46 detects an abnormal voltage in any of the battery cells 41 to 44, the battery pack 40 first outputs a switching signal to the second switch element 62. The second switch element 62 controls the current of the battery stack 45 so as to energize the second heating element 11 of the open element 22. Thereby, the second switching circuit 60 melts the open-side soluble conductor 12 and cuts off the charge / discharge current circuit 33 of the battery stack 45. When the interruption of the charge / discharge current circuit 33 is detected, then the detection circuit 46 outputs a switching signal to the first switch element 61. The first switch element 61 controls the current of the battery stack 45 such that the first heating element 2 of the short circuit element 21 is energized. As a result, the first heating element 2 is energized, and the short-circuit side soluble conductor 3 is fused, whereby the first and second electrodes 5 and 6 are shorted, and the current path of the battery stack 45 is protected. It switches to the provided discharge circuit 32 side.
 このように、第2の切替回路60が組み込まれたバッテリパック40は、異常を起こしたバッテリスタック45の充放電電流回路33を遮断するとともに、バッテリ容量分の大きな電気エネルギーが蓄えられたバッテリスタック45の電流経路を、保護抵抗が設けられた放電回路32に切り替える。したがって、バッテリパック40は、使用を停止した後に、内部のバッテリセルが安全な電圧に降下するまで放電させることができる。 Thus, the battery pack 40 in which the second switching circuit 60 is incorporated cuts off the charge / discharge current circuit 33 of the battery stack 45 which has caused an abnormality, and a battery stack in which a large electric energy corresponding to the battery capacity is stored. The 45 current paths are switched to the discharge circuit 32 provided with a protective resistance. Therefore, the battery pack 40 can be discharged until the internal battery cells drop to a safe voltage after the use is stopped.
 [保護素子内蔵]
 なお、第2の切替回路60においても、図13に示すように、放電回路32上に保護抵抗31を設ける他、図14に示すように、短絡回路1に保護抵抗31を内蔵してもよい。この場合、図15に示すように、バッテリパック40の放電回路32には保護抵抗31を設ける必要がない。
[Built-in protection element]
In the second switching circuit 60, as shown in FIG. 13, the protective resistance 31 may be provided on the discharge circuit 32. Alternatively, as shown in FIG. 14, the protective resistance 31 may be incorporated in the short circuit 1. . In this case, as shown in FIG. 15, the discharge circuit 32 of the battery pack 40 does not need to have the protective resistor 31.
 [第3の切替回路]
 次いで、第3の切替回路70について説明する。第3の切替回路70は、図16に示すように、上述した短絡回路1と同機能を有する短絡部71と、上述した開放回路10と同機能を有する開放部72とが一体に形成されている。
[Third switching circuit]
Next, the third switching circuit 70 will be described. In the third switching circuit 70, as shown in FIG. 16, a short circuit portion 71 having the same function as the short circuit 1 described above and an open portion 72 having the same function as the open circuit 10 described above are integrally formed. There is.
 短絡部71は、第1の発熱体2と、一端が第1の発熱体2と接続され、他端が第1の外部回路23と接続された短絡側可溶導体3と、一端が短絡側可溶導体3と接続されるとともに第1の外部回路23と接続され、他端が電源回路25と接続されたスイッチ4とを備える。 The shorting portion 71 includes a first heating element 2 and a shorting-side soluble conductor 3 having one end connected to the first heating element 2 and the other end connected to the first external circuit 23 and one end on the shorting side The switch 4 is connected to the fusible conductor 3 and to the first external circuit 23, and the other end is connected to the power supply circuit 25.
 開放部72は、第2の発熱体11と、第2の発熱体11と接続されるとともに一端がスイッチ4の他端及び電源回路25と接続され、他端が第2の外部回路24と接続された開放側可溶導体12とを備える。 The open portion 72 is connected to the second heat generating body 11 and the second heat generating body 11 and has one end connected to the other end of the switch 4 and the power supply circuit 25 and the other end connected to the second external circuit 24 And the open side soluble conductor 12.
 短絡部71は、第1の発熱体2が、第1の発熱体電極7を介して第1のスイッチ素子61と接続される。また、短絡部71は、スイッチ4が、第1の電極5を介して第1の外部回路23と接続され、第2の電極6を介して電源回路25と接続されている。なお、第2の電極6は、開放部72に設けられた開放側可溶導体12の一端側とも接続されている。 In the short circuit portion 71, the first heat generating body 2 is connected to the first switch element 61 via the first heat generating body electrode 7. In the short circuit portion 71, the switch 4 is connected to the first external circuit 23 through the first electrode 5 and to the power supply circuit 25 through the second electrode 6. The second electrode 6 is also connected to one end side of the open side soluble conductor 12 provided in the open portion 72.
 開放部72は、第2の発熱体11が、第2の発熱体電極15を介して第2のスイッチ素子62と接続される。また、開放部72は、開放側可溶導体12が、第4の電極14を介して第2の外部回路24と接続され、第2の電極6を介して電源回路25と接続されている。図16(A)に示す第3の切替回路70において、開放側可溶導体12は、一端を第4の電極14を介して第2の外部回路24と接続され他端を第2の発熱体11と接続されている第1の開放側可溶導体12aと、一端を第2の電極6を介して電源回路25と接続され他端を第2の発熱体11と接続されている第2の開放側可溶導体12bとを有する。 In the open portion 72, the second heat generating body 11 is connected to the second switch element 62 through the second heat generating body electrode 15. Further, in the open part 72, the open side soluble conductor 12 is connected to the second external circuit 24 through the fourth electrode 14, and connected to the power supply circuit 25 through the second electrode 6. In the third switching circuit 70 shown in FIG. 16 (A), the open side soluble conductor 12 has one end connected to the second external circuit 24 via the fourth electrode 14 and the other end a second heating element 11, a first open-side soluble conductor 12a connected to the second power supply circuit 25 via the second electrode 6 and a second heat-generating member 11 having the other end connected to the second heating element 11 And an open side soluble conductor 12b.
 なお、開放部72は、図16(B)に示すように、第1の開放側可溶導体12aのみで構成してもよい。この場合、第1の開放側可溶導体12aは、一端が第2の電極6を介して電源回路25と接続され、他端が第2の発熱体11と、第4の電極14を介して第2の外部回路24とに接続される。 In addition, you may comprise the open part 72 only by the 1st open | release side soluble conductor 12a, as shown to FIG. 16 (B). In this case, one end of the first open side soluble conductor 12 a is connected to the power supply circuit 25 through the second electrode 6, and the other end is connected through the second heat generating body 11 and the fourth electrode 14. It is connected to the second external circuit 24.
 [第3の切替回路の動作]
 このような構成を有する第3の切替回路70は、初期状態においては、図16に示すように、電源回路25から開放部72を介して第2の外部回路24に至る電流経路を構成する。このとき、短絡部71は、第1のスイッチ素子61によって第1の発熱体2への給電が規制され、スイッチ4はオフとされている。また、開放部72は、第2のスイッチ素子62によって第2の発熱体11への給電が規制されている。
[Operation of third switching circuit]
In the initial state, the third switching circuit 70 having such a configuration forms a current path from the power supply circuit 25 to the second external circuit 24 through the open portion 72, as shown in FIG. At this time, in the short circuit portion 71, power supply to the first heating element 2 is restricted by the first switch element 61, and the switch 4 is turned off. Further, in the open portion 72, power supply to the second heating element 11 is restricted by the second switch element 62.
 電源回路25の電流経路を第2の外部回路24から第1の外部回路23へ切り替える必要が生じると、先ず第2のスイッチ素子62に切替信号が出力される。第2のスイッチ素子62は、切替信号を受けると、第2の発熱体11に給電するように、電流を制御する。これにより、第3の切替回路70は、開放部72の第2の発熱体11が通電、発熱し、開放側可溶導体12が溶断する。したがって、電源回路25から第2の外部回路24へ至る電流経路が遮断される。 When it becomes necessary to switch the current path of the power supply circuit 25 from the second external circuit 24 to the first external circuit 23, first, a switching signal is output to the second switch element 62. When the second switch element 62 receives the switching signal, it controls the current to supply power to the second heating element 11. As a result, in the third switching circuit 70, the second heating element 11 of the open portion 72 is energized and generates heat, and the open-side soluble conductor 12 is fused. Therefore, the current path from the power supply circuit 25 to the second external circuit 24 is cut off.
 次いで、第3の切替回路70は、第1のスイッチ素子61に切替信号が出力される。第1のスイッチ素子61は、切替信号を受けると、第1の発熱体2に給電するように、電流を制御する。これにより、第3の切替回路70は、短絡部71の第1の発熱体2が通電、発熱し、短絡側可溶導体3が溶断するとともに、この溶融導体により第1、第2の電極5,6間が短絡、すなわちスイッチ4がオンとなり、電源回路25から第1の外部回路23へ至る電流経路が構築される。 Next, the third switching circuit 70 outputs a switching signal to the first switch element 61. When receiving the switching signal, the first switch element 61 controls the current so as to supply power to the first heating element 2. Thereby, in the third switching circuit 70, the first heating element 2 of the short circuit portion 71 is energized and generates heat, and the short circuit side soluble conductor 3 is fused and cut, and the first and second electrodes 5 are made by the molten conductor. , 6 are shorted, that is, the switch 4 is turned on, and a current path from the power supply circuit 25 to the first external circuit 23 is established.
 また、第3の切替回路70は、電源回路25の電流経路を第2の外部回路24から第1の外部回路23へ切り替える必要が生じたとき、先ず第1のスイッチ素子61に切替信号を出力し、電源回路25から第1の外部回路23に至る電流経路を構築した後に、第2のスイッチ素子62に切替信号を出力し、第2の外部回路24へ至る電流経路を遮断するようにしてもよい。これにより、電源回路25の電力が途切れることなく、第2の外部回路24から第1の外部回路23へと電流経路を切り替えることができる。 The third switching circuit 70 first outputs a switching signal to the first switch element 61 when the current path of the power supply circuit 25 needs to be switched from the second external circuit 24 to the first external circuit 23. After the current path from the power supply circuit 25 to the first external circuit 23 is constructed, a switching signal is output to the second switch element 62 to interrupt the current path leading to the second external circuit 24. It is also good. Thus, the current path can be switched from the second external circuit 24 to the first external circuit 23 without interruption of the power of the power supply circuit 25.
 なお、第2の発熱体11は、開放側可溶導体12が溶断することにより給電経路が遮断されるため発熱が停止される。また第1の発熱体2は、短絡側可溶導体3が溶断することにより給電経路が遮断されるため発熱が停止される。 In addition, since the electric power feeding path is interrupted | blocked by the melting | disruption of the open side soluble conductor 12, the 2nd heat generating body 11 stops heat generation. In addition, since the feeding path is cut off by melting the short-circuit side soluble conductor 3 in the first heating element 2, the heat generation is stopped.
 このように、第3の切替回路70によれば、第1、第2のスイッチ素子61,62を動作させることによって、第2、第4の電極6,14を経て第1の外部回路24へ至る電流経路を遮断するとともに、電源回路25から、第2の電極6、スイッチ4、第1の電極5を経て第1の外部回路23へ至る電流経路が構築され、電源回路25の電流経路を第2の外部回路24から第1の外部回路23へ切り替えることができる。 Thus, according to the third switching circuit 70, the first and second switch elements 61 and 62 are operated to pass the second and fourth electrodes 6 and 14 to the first external circuit 24. The current path from the power supply circuit 25 to the first external circuit 23 via the second electrode 6, the switch 4 and the first electrode 5 is constructed, and the current path of the power supply circuit 25 is The second external circuit 24 can be switched to the first external circuit 23.
 このとき、第3の切替回路70においても、第2、第4の電極6,14間の遮断、及び第1、第2の電極5,6間の短絡を、短絡側可溶導体3、開放側可溶導体12を溶融させることにより不可逆的に行う。したがって、ソフトウェア等により電子的に切り替える場合に比べて、誤動作による切替不良の改善を図ることができ、またクラッキング等による不正な切替に対する脆弱性を改善することができる。 At this time, also in the third switching circuit 70, the short circuit between the second and fourth electrodes 6 and 14 and the short circuit between the first and second electrodes 5 and 6 are opened. Irreversible by melting the side soluble conductor 12. Therefore, as compared with the case of electronically switching by software or the like, it is possible to improve the switching failure due to a malfunction and to improve the vulnerability to illegal switching due to cracking or the like.
 また、第3の切替回路70によれば、第1、第2のスイッチ素子61,62への切替信号の出力順序に応じて、短絡素子21による短絡と開放素子22による開放の順序を変えることができる。 Further, according to the third switching circuit 70, the order of the short circuit by the short circuit element 21 and the opening by the open element 22 is changed according to the output order of the switching signals to the first and second switch elements 61 and 62. Can.
 [第3の切替回路の実装例]
 このような第3の切替回路70は、図17に示すように、例えばリチウムイオン二次電池のバッテリパック40内の回路に組み込まれて用いられる。この場合、第1のスイッチ素子61は、切替回路70の第1の発熱体電極7とバッテリスタック45の+側端子との間を接続している。また、第2のスイッチ素子62は、切替回路70の第2の発熱体電極15とバッテリスタック45の-側端子との間を接続している。また、切替回路70は、バッテリスタック45の-側端子と接続される第1の電極5は-電位とされ、バッテリスタック45の+側端子と接続される第2の電極6は+電位とされ、第1のスイッチ素子61と接続される第1の発熱体電極7は+電位とされる。また、切替回路70は、充放電電流回路33と接続される第4の電極14は+電位とされ、第2のスイッチ素子62と接続される第2の発熱体電極15は-電位とされる。
[Implementation example of the third switching circuit]
Such a third switching circuit 70 is incorporated in a circuit in a battery pack 40 of a lithium ion secondary battery, for example, as shown in FIG. In this case, the first switch element 61 connects between the first heat generating electrode 7 of the switching circuit 70 and the + side terminal of the battery stack 45. Further, the second switch element 62 connects between the second heating element electrode 15 of the switching circuit 70 and the negative side terminal of the battery stack 45. Further, in the switching circuit 70, the first electrode 5 connected to the negative side terminal of the battery stack 45 is at the negative potential, and the second electrode 6 connected to the positive side terminal of the battery stack 45 is at the positive potential The first heating element electrode 7 connected to the first switch element 61 is set to a positive potential. Further, in the switching circuit 70, the fourth electrode 14 connected to the charge / discharge current circuit 33 is set to the positive potential, and the second heating element electrode 15 connected to the second switch element 62 is set to the negative potential. .
 バッテリパック40は、バッテリセル41~44のいずれかに電圧異常が検出されると、検出回路46から第2のスイッチ素子62、及び第1のスイッチ素子61へ、順次、切替信号が出力されることにより、先ず、開放部72による充放電電流回路33の遮断が行われ、次いで、短絡部71による放電回路32の短絡が行われる。 In the battery pack 40, when a voltage abnormality is detected in any of the battery cells 41 to 44, a switching signal is sequentially output from the detection circuit 46 to the second switch element 62 and the first switch element 61. Thus, first, the charge / discharge current circuit 33 is interrupted by the open portion 72, and then the discharge circuit 32 is shorted by the short circuit portion 71.
 すなわち、バッテリパック40は、検出回路46によってバッテリセル41~44のいずれかに異常電圧が検出された場合、先ず第2のスイッチ素子62に切替信号を出力する。第2のスイッチ素子62は、開放部72の第2の発熱体11へ通電するように、バッテリスタック45の電流を制御する。これにより、第3の切替回路70は、開放側可溶導体12が溶断し、バッテリスタック45の充放電電流回路33を遮断する。充放電電流回路33の遮断が検知されると、次いで、検出回路46は、第1のスイッチ素子61に切替信号を出力する。第1のスイッチ素子61は、短絡部71の第1の発熱体2へ通電するように、バッテリスタック45の電流を制御する。これにより、第1の発熱体2が通電され、短絡側可溶導体2が溶断することにより、第1、第2の電極5,6が短絡し、バッテリスタック45の電流経路を保護抵抗31が設けられた放電回路32側に切り替える。 That is, when the detection circuit 46 detects an abnormal voltage in any of the battery cells 41 to 44, the battery pack 40 first outputs a switching signal to the second switch element 62. The second switch element 62 controls the current of the battery stack 45 so that the second heating element 11 of the open portion 72 is energized. Thereby, the third switching circuit 70 melts the open-side soluble conductor 12 and cuts off the charge / discharge current circuit 33 of the battery stack 45. When the interruption of the charge / discharge current circuit 33 is detected, then the detection circuit 46 outputs a switching signal to the first switch element 61. The first switch element 61 controls the current of the battery stack 45 so that the first heating element 2 of the short circuit portion 71 is energized. As a result, the first heating element 2 is energized, and the short-circuit side soluble conductor 2 is fused, whereby the first and second electrodes 5 and 6 are shorted, and the current path of the battery stack 45 is protected. It switches to the provided discharge circuit 32 side.
 このように、第3の切替回路70が組み込まれたバッテリパック40は、異常を起こしたバッテリスタック45の充放電電流回路33を遮断するとともに、バッテリ容量分の大きな電気エネルギーが蓄えられたバッテリスタック45の電流経路を、保護抵抗が設けられた放電回路32に切り替える。したがって、バッテリパック40は、使用を停止した後に、内部のバッテリセルが安全な電圧に降下するまで放電させることができる。 Thus, the battery pack 40 in which the third switching circuit 70 is incorporated cuts off the charge / discharge current circuit 33 of the battery stack 45 which has caused an abnormality, and the battery stack in which a large electric energy corresponding to the battery capacity is stored. The 45 current paths are switched to the discharge circuit 32 provided with a protective resistance. Therefore, the battery pack 40 can be discharged until the internal battery cells drop to a safe voltage after the use is stopped.
 [保護素子内蔵]
 なお、第3の切替回路70においても、図17に示すように、放電回路32上に保護抵抗31を設ける他、図18に示すように、短絡部71に保護抵抗31を内蔵してもよい。この場合、図19に示すように、バッテリパック40の放電回路32には保護抵抗31を設ける必要がない。
[Built-in protection element]
In the third switching circuit 70, as shown in FIG. 17, the protective resistance 31 may be provided on the discharge circuit 32. Alternatively, as shown in FIG. 18, the protective resistance 31 may be built in the short circuit portion 71. . In this case, as shown in FIG. 19, the discharge circuit 32 of the battery pack 40 does not need to have the protective resistor 31.
 [産業上の利用可能性]
 本発明によれば、第1の外部回路23を、発光回路、発音回路、電気信号発生を伴う回路等とすることで、開放回路10あるいは開放部72が動作した状態を外部にアラームとして知らしめる警報機能付き開放回路に応用することもできる。
[Industrial availability]
According to the present invention, by making the first external circuit 23 a light emitting circuit, a sound generating circuit, a circuit with electric signal generation or the like, the state in which the open circuit 10 or the open portion 72 operates can be notified as an alarm to the outside It can also be applied to an open circuit with an alarm function.
 また、本発明によれば、各種デバイスやソフトウェアのアクティベーション用の回路としても応用することができる。例えば、第1の外部回路23を各種デバイスやソフトウェアの機能回路とし、第2の外部回路24を当該機能の一部が制限された回路として構成し、初期設定では、機能が制限された第2の外部回路24が接続されている。ユーザがライセンス契約手続きを行い、当該デバイスのアクティベーションを行う場合、デバイスの機能回路である第1の外部回路23に切り替えられる。 Further, according to the present invention, the present invention can be applied as a circuit for activation of various devices and software. For example, the first external circuit 23 is a functional circuit of various devices and software, the second external circuit 24 is a circuit in which a part of the function is limited, and the initial setting is a second function limited function. External circuit 24 is connected. When the user performs a license contract procedure to activate the device, the user is switched to the first external circuit 23 which is a functional circuit of the device.
 また、本発明によれば、データベースの情報を保護する情報セキュリティ回路として応用することができる。例えば、第2の外部回路24をデータベースと接続された機能回路とし、第1の外部回路23を当該データベースから切り離された回路として構成し、初期設定では、第2の外部回路24を介してデータベースにアクセス可能とされている。ハッキングやクラッキングを検知した場合、データベース内の情報を保護するために、データベースと切り離された第1の外部回路23に切り替えられる。 Further, according to the present invention, the present invention can be applied as an information security circuit for protecting information of a database. For example, the second external circuit 24 is a functional circuit connected to a database, the first external circuit 23 is configured as a circuit separated from the database, and the database is set via the second external circuit 24 in initialization. It is supposed to be accessible to When hacking or cracking is detected, switching is made to the first external circuit 23 separated from the database in order to protect information in the database.
 本発明では、機能回路への切り替えを短絡側可溶導体3及び開放側可溶導体12の溶断によりを行うことから、物理的、不可逆的に機能の切り替えを制御することができる。したがって、ソフトウェアによって電子的に回路を切り替える場合と異なり、誤動作による切替不良に対する改善を図り、あるいはハッキング、クラッキング等による不正な切り替えに対する脆弱性を改善することができる。 In the present invention, since switching to the functional circuit is performed by melting the short-circuit side soluble conductor 3 and the open-side soluble conductor 12, it is possible to control the switching of the function physically and irreversibly. Therefore, unlike a case where a circuit is electronically switched by software, it is possible to improve the switching failure due to a malfunction or to improve the vulnerability to an unauthorized switching due to hacking, cracking or the like.
1 短絡回路、2 第1の発熱体、3 短絡側可溶導体、4 スイッチ、5 第1の電極、6 第2の電極、7 第1の発熱体電極、10 開放回路、11 第2の発熱体、12 開放側可溶導体、13 第3の電極、14 第4の電極、15 第2の発熱体電極、16 接続端電極、21 短絡素子、22 開放素子、23 第1の外部回路、24 第2の外部回路、25 電源回路、26 スイッチ素子、30 第1の切替回路、31 保護抵抗、32 放電回路、33 充放電電流回路、40 バッテリパック、41~44 バッテリセル、45 バッテリスタック、46 検出回路、50 充放電制御回路、51 電流制御素子、52 電流制御素子、55 充電回路、60 第2の切替回路、61 第1のスイッチ素子、62 第2のスイッチ素子、70 第3の切替回路、71 短絡部、72 開放部 DESCRIPTION OF SYMBOLS 1 short circuit, 2 1st heat generating body, 3 short circuit side soluble conductor, 4 switches, 5 1st electrode, 6 2nd electrode, 7 1st heat generating electrode, 10 open circuit, 11 2nd heat generation Body, 12 open side soluble conductor, 13 third electrode, 14 fourth electrode, 15 second heat generating electrode, 16 connection end electrode, 21 short circuit element, 22 open element, 23 first external circuit, 24 Second external circuit, 25 power supply circuit, 26 switch elements, 30 first switching circuit, 31 protection resistors, 32 discharge circuits, 33 charge / discharge current circuits, 40 battery packs, 41 to 44 battery cells, 45 battery stacks, 46 Detection circuit, 50 charge and discharge control circuit, 51 current control element, 52 current control element, 55 charge circuit, 60 second switching circuit, 61 first switch element, 62 first Switch element, 70 a third switching circuit, 71 short circuit portion 72 opening

Claims (20)

  1.  電流が流れることにより発熱する第1の発熱体と、一端が上記第1の発熱体と接続され、他端が主たる回路と接続された短絡側可溶導体と、一端が上記短絡側可溶導体と接続されるとともに上記主たる回路と接続され、他端が第1の回路と接続されたスイッチとを備え、上記第1の発熱体の発熱した熱により上記短絡側可溶導体を溶断させ、該溶融導体によって上記スイッチを短絡させる短絡回路と、
     電流が流れることにより発熱する第2の発熱体と、上記第2の発熱体と接続されるとともに一端が第2の回路と接続され、他端が上記主たる回路と接続された開放側可溶導体とを備え、上記第2の発熱体の発熱した熱により上記開放側可溶導体を溶断させる開放回路とを有し、
     上記第2の発熱体の一端には、切替信号を受けて上記第2の発熱体に上記主たる回路から電流を通電させるスイッチ素子が接続され、
     上記短絡回路の上記第1の発熱体の開放端と、上記開放回路の上記第2の発熱体と上記開放側可溶導体との接続端とを接続し、
     上記スイッチ素子が動作することにより上記開放回路の上記第2の発熱体が通電、発熱して上記開放側可溶導体が溶断し、上記主たる回路と上記第2の回路とが遮断され、
     上記開放側可溶導体の溶断により、上記短絡回路の上記第1の発熱体が通電、発熱して上記短絡側可溶導体が溶融し、上記スイッチが短絡されて、上記主たる回路と上記第1の回路とが通電される切替回路。
    A first heat generating body that generates heat when a current flows, a short circuit side soluble conductor whose one end is connected to the first heat generating body and the other end is connected to the main circuit, and one end is the short circuit side soluble conductor And a switch connected to the main circuit and the other end connected to the first circuit, and the short circuit side soluble conductor is fused and cut by the heat generated by the first heating element, A short circuit which shorts the switch by a molten conductor;
    An open-side soluble conductor connected to a second heating element that generates heat when a current flows and to the second heating element, and having one end connected to the second circuit and the other end connected to the main circuit And an open circuit for melting the open-side soluble conductor by the heat generated by the second heating element,
    At one end of the second heat generating body, a switch element for receiving a switching signal and causing a current to flow from the main circuit to the second heat generating body is connected.
    Connecting the open end of the first heating element of the short circuit to the connection end of the second heating element of the open circuit and the open-side soluble conductor;
    When the switch element operates, the second heating element of the open circuit is energized and generates heat to melt the open-side soluble conductor, and the main circuit and the second circuit are disconnected.
    The first heat generating element of the short circuit is energized and generates heat by melting of the open side soluble conductor, the short circuit side soluble conductor melts, and the switch is shorted, thereby the main circuit and the first circuit. A switching circuit that is energized with the circuit.
  2.  上記主たる回路は、バッテリスタックを有する電源系回路であり、
     上記第1の回路は、上記バッテリスタックの電気を放電させる放電回路であり
     上記第2の回路は、上記バッテリスタックの充放電電流回路であり、
     上記開放回路によって上記電源系回路と上記充放電電流回路を遮断して上記バッテリスタックへの充電を停止し、上記短絡回路によって上記電源系回路と上記放電回路を短絡して上記バッテリスタック内に蓄積した電気エネルギーを放電させる請求項1記載の切替回路。
    The main circuit is a power supply circuit having a battery stack,
    The first circuit is a discharge circuit that discharges the electricity of the battery stack, and the second circuit is a charge / discharge current circuit of the battery stack,
    The power supply circuit and the charge / discharge current circuit are disconnected by the open circuit to stop charging the battery stack, and the power supply circuit and the discharge circuit are shorted by the short circuit to accumulate in the battery stack The switching circuit according to claim 1, wherein the switched electric energy is discharged.
  3.  上記短絡回路の上記スイッチの他端に、上記バッテリスタック内に蓄積した電気エネルギーをバッテリセルの上限放電電流以下で放電させるための保護抵抗が設けられている請求項2記載の切替回路。 3. The switching circuit according to claim 2, wherein the other end of the switch of the short circuit is provided with a protective resistance for discharging the electrical energy stored in the battery stack at a maximum discharge current of the battery cell or less.
  4.  上記放電回路は、上記バッテリスタックに蓄積した電気エネルギーをバッテリセルの上限放電電流以下で放電させるための保護抵抗が、上記短絡回路の上記スイッチの他端と接続されている請求項2記載の切替回路。 3. The switch according to claim 2, wherein said discharge circuit is connected to the other end of said switch of said short circuit, wherein a protective resistance for discharging the electrical energy stored in said battery stack below the upper limit discharge current of the battery cell. circuit.
  5.  上記開放側可溶導体は、一端が上記主たる回路と接続され他端が上記第2の発熱体と接続された第1の開放側可溶導体と、一端が上記第2の回路と接続され他端が上記第2の発熱体と接続された第2の開放側可溶導体とを有する請求項1~4のいずれか1項に記載の切替回路。 The open side soluble conductor is connected to the first open side soluble conductor whose one end is connected to the main circuit and whose other end is connected to the second heat generating body, and one end is connected to the second circuit and the other The switching circuit according to any one of claims 1 to 4, further comprising a second open-side soluble conductor whose end is connected to the second heating element.
  6.  電流が流れることにより発熱する第1の発熱体と、一端が上記第1の発熱体と接続され、他端が主たる回路と接続された短絡側可溶導体と、一端が上記短絡側可溶導体と接続されるとともに上記主たる回路と接続され、他端が第1の回路と接続されたスイッチとを備え、上記第1の発熱体の発熱した熱により上記短絡側可溶導体を溶断させ、該溶融導体によって上記スイッチを短絡させる短絡回路と、
     電流が流れることにより発熱する第2の発熱体と、上記第2の発熱体と接続されるとともに一端が第2の回路と接続され、他端が上記主たる回路と接続された開放側可溶導体とを備え、上記第2の発熱体の発熱した熱により上記開放側可溶導体を溶断させる開放回路とを有し、
     上記第1の発熱体の一端には、切替信号を受けて上記第1の発熱体に上記主たる回路から電流を通電させる第1のスイッチ素子が接続され、
     上記第2の発熱体の一端には、切替信号を受けて上記第2の発熱体に上記主たる回路から電流を通電させる第2のスイッチ素子が接続され、
     上記第2のスイッチ素子が動作することにより、上記開放回路の上記第2の発熱体が通電、発熱して上記開放側可溶導体が溶断し、上記主たる回路と上記第2の回路とが遮断され、
     上記第1のスイッチ素子が動作することにより、上記短絡回路の上記第1の発熱体が通電、発熱して上記短絡側可溶導体が溶融し、上記スイッチが短絡されて、上記主たる回路と上記第1の回路とが通電される切替回路。
    A first heat generating body that generates heat when a current flows, a short circuit side soluble conductor whose one end is connected to the first heat generating body and the other end is connected to the main circuit, and one end is the short circuit side soluble conductor And a switch connected to the main circuit and the other end connected to the first circuit, and the short circuit side soluble conductor is fused and cut by the heat generated by the first heating element, A short circuit which shorts the switch by a molten conductor;
    An open-side soluble conductor connected to a second heating element that generates heat when a current flows and to the second heating element, and having one end connected to the second circuit and the other end connected to the main circuit And an open circuit for melting the open-side soluble conductor by the heat generated by the second heating element,
    A first switch element is connected to one end of the first heat generating body for receiving a switching signal and causing a current to flow from the main circuit to the first heat generating body,
    At one end of the second heat generating body, a second switch element is connected, which receives a switching signal and causes a current to flow from the main circuit to the second heat generating body,
    When the second switch element operates, the second heat generating element of the open circuit is energized and generates heat to melt the open-side soluble conductor, and the main circuit and the second circuit are disconnected. And
    When the first switch element operates, the first heating element of the short circuit is energized and generates heat to melt the short circuit side soluble conductor, thereby shorting the switch, the main circuit and the main circuit Switching circuit through which the first circuit is energized.
  7.  上記主たる回路は、バッテリスタックを有する電源系回路であり、
     上記第1の回路は、上記バッテリスタックの電気を放電させる放電回路であり、
     上記第2の回路は、上記バッテリスタックの充放電電流回路であり、
     上記第2のスイッチを動作させ上記開放回路によって上記電源系回路と上記充放電電流回路を遮断して上記バッテリスタックへの充電を停止し、次いで上記第1のスイッチ素子を動作させ上記短絡回路によって上記電源系回路と上記放電回路を短絡して上記バッテリスタック内に蓄積した電気エネルギーを放電させる請求項6記載の切替回路。
    The main circuit is a power supply circuit having a battery stack,
    The first circuit is a discharge circuit that discharges the electricity of the battery stack,
    The second circuit is a charge / discharge current circuit of the battery stack,
    The second switch is operated to interrupt the power supply circuit and the charge / discharge current circuit by the open circuit to stop the charging of the battery stack, and then the first switch element is operated to cause the short circuit. The switching circuit according to claim 6, wherein the power supply circuit and the discharge circuit are short-circuited to discharge the electrical energy stored in the battery stack.
  8.  上記短絡回路の上記スイッチの他端に、上記バッテリスタック内に蓄積した電気エネルギーバッテリセルの上限放電電流以下で放電させるための保護抵抗が設けられている請求項7記載の切替回路。 8. The switching circuit according to claim 7, wherein the other end of said switch of said short circuit is provided with a protective resistor for discharging at a level not exceeding the upper limit discharge current of the electric energy battery cell stored in said battery stack.
  9.  上記放電回路には、上記短絡回路の上記スイッチの他端との間に、上記バッテリスタック内に蓄積した電気エネルギーをバッテリセルの上限放電電流以下で放電させるための保護抵抗が設けられている請求項7記載の切替回路。 The discharge circuit is provided, between the other end of the switch of the short circuit, with a protective resistance for discharging the electrical energy stored in the battery stack at a maximum discharge current of the battery cell or less. Item 7. The switching circuit according to Item 7.
  10.  上記第1のスイッチ素子を動作させ上記短絡回路によって上記第1の回路を短絡し、次いで、上記第2のスイッチ素子を動作させ上記開放回路によって上記第2の回路を遮断する請求項6記載の切替回路。 7. The device according to claim 6, wherein the first switch element is operated to short the first circuit by the short circuit, and then the second switch element is operated to disconnect the second circuit by the open circuit. Switching circuit.
  11.  上記第2のスイッチ素子を動作させ上記開放回路によって上記第2の回路を遮断し、次いで、上記第1のスイッチ素子を動作させ上記短絡回路によって上記第1の回路を短絡する請求項6記載の切替回路。 7. The apparatus according to claim 6, wherein the second switch element is operated to cut off the second circuit by the open circuit, and then the first switch element is operated to short the first circuit by the short circuit. Switching circuit.
  12.  上記開放側可溶導体は、一端が上記主たる回路と接続され他端が上記第2の発熱体と接続された第1の開放側可溶導体と、一端が上記第2の回路と接続され他端が上記第2の発熱体と接続された第2の開放側可溶導体とを有する請求項6~11のいずれか1項に記載の切替回路。 The open side soluble conductor is connected to the first open side soluble conductor whose one end is connected to the main circuit and whose other end is connected to the second heat generating body, and one end is connected to the second circuit and the other The switching circuit according to any one of claims 6 to 11, further comprising a second open-side soluble conductor whose end is connected to the second heating element.
  13.  電流が流れることにより発熱する第1の発熱体と、一端が上記第1の発熱体と接続され、他端が第1の回路と接続された短絡側可溶導体と、一端が上記短絡側可溶導体と接続されるとともに上記第1の回路と接続され、他端が主たる回路と接続されたスイッチとを備え、上記第1の発熱体の発熱した熱により上記短絡側可溶導体を溶断させ、該溶融導体によって上記スイッチを短絡させる短絡部と、
     電流が流れることにより発熱する第2の発熱体と、上記第2の発熱体と接続されるとともに一端が上記スイッチの他端及び上記主たる回路と接続され、他端が第2の回路と接続された開放側可溶導体とを備え、上記第2の発熱体の発熱した熱により上記開放側可溶導体を溶断させる開放部とを有し、
     上記第1の発熱体は、切替信号を受けて上記第1の発熱体に上記主たる回路から電流を通電させる第1のスイッチ素子と接続され、
     上記第2の発熱体は、切替信号を受けて上記第2の発熱体に上記主たる回路から電流を通電させる第2のスイッチ素子と接続され、
     上記第2のスイッチ素子が動作することにより、上記開放部の上記第2の発熱体が通電、発熱して上記開放側可溶導体が溶断し、上記主たる回路と上記第2の回路とが遮断され、
     上記第1のスイッチ素子が動作することにより、上記短絡部の上記第1の発熱体が通電、発熱して上記短絡側可溶導体が溶融し、上記スイッチが短絡されて、上記主たる回路と上記第1の回路とが通電される切替回路。
    A first heating element that generates heat when current flows, a short-circuited soluble conductor whose one end is connected to the first heating element and whose other end is connected to the first circuit, and one end is the short-circuit side A switch connected to the molten conductor and connected to the first circuit, and having the other end connected to the main circuit, and the short circuit side soluble conductor is fused and cut off by the heat generated by the first heating element A shorting portion shorting the switch by the molten conductor;
    A second heating element that generates heat when a current flows, and the second heating element are connected and one end is connected to the other end of the switch and the main circuit, and the other end is connected to the second circuit And an open portion for melting and cutting the open side soluble conductor by the heat generated by the second heat generating body,
    The first heat generating body is connected to a first switch element which receives a switching signal and causes a current to flow from the main circuit to the first heat generating body,
    The second heat generating body is connected to a second switch element which receives a switching signal and causes a current to flow from the main circuit to the second heat generating body.
    When the second switch element operates, the second heating element in the open portion is energized and generates heat, and the open-side soluble conductor is fused and the main circuit and the second circuit are disconnected. And
    When the first switch element operates, the first heating element of the short circuit part is energized and generates heat to melt the short circuit side soluble conductor, thereby shorting the switch, the main circuit and the main circuit Switching circuit through which the first circuit is energized.
  14.  上記主たる回路は、バッテリスタックを有する電源系回路であり、
     上記第1の回路は、上記バッテリスタックの電気を放電させる放電回路であり、
     上記第2の回路は、上記バッテリスタックの充放電電流回路であり、
     上記第2のスイッチを動作させ上記開放部によって上記電源系回路と上記充放電電流回路とを遮断して上記バッテリスタックへの充電を停止し、次いで上記第1のスイッチ素子を動作させ上記短絡部によって上記電源系回路と上記放電回路を短絡して上記バッテリスタック内に蓄積した電気エネルギーを放電させる請求項13記載の切替回路。
    The main circuit is a power supply circuit having a battery stack,
    The first circuit is a discharge circuit that discharges the electricity of the battery stack,
    The second circuit is a charge / discharge current circuit of the battery stack,
    The second switch is operated to interrupt the power supply circuit and the charge / discharge current circuit by the open portion to stop the charging of the battery stack, and then the first switch element is operated to short the portion The switching circuit according to claim 13, wherein the power supply system circuit and the discharge circuit are short-circuited to discharge the electrical energy stored in the battery stack.
  15.  上記短絡部の上記スイッチの他端に、上記バッテリスタック内に蓄積した電気エネルギーをバッテリセルの上限放電電流以下で放電させるための保護抵抗が設けられている請求項14記載の切替回路。 15. The switching circuit according to claim 14, wherein a protection resistor is provided at the other end of the switch in the short circuit portion to discharge the electrical energy stored in the battery stack at a maximum discharge current of the battery cell or less.
  16.  上記放電回路には、上記短絡部の上記スイッチの他端との間に、上記バッテリスタック内に蓄積した電気エネルギーをバッテリセルの上限放電電流以下で放電させるための保護抵抗が設けられている請求項14記載の切替回路。 The discharge circuit is provided, between the other end of the switch in the short circuit portion, with a protective resistance for discharging the electrical energy stored in the battery stack at a maximum discharge current of the battery cell or less. The switching circuit according to Item 14.
  17.  上記第1のスイッチ素子を動作させ上記短絡部によって上記第1の回路を短絡し、次いで、上記第2のスイッチ素子を動作させ上記開放部によって上記第2の回路を遮断する請求項13記載の切替回路。 14. The method according to claim 13, wherein the first switch element is operated to short the first circuit by the short circuit portion, and then the second switch element is operated to interrupt the second circuit by the open portion. Switching circuit.
  18.  上記第2のスイッチ素子を動作させ上記開放部によって上記第2の回路を遮断し、次いで、上記第1のスイッチ素子を動作させ上記短絡部によって上記第1の回路を短絡する請求項13記載の切替回路。 14. The method according to claim 13, wherein the second switch element is operated to cut off the second circuit by the open section, and then the first switch element is operated to short the first circuit by the short circuit section. Switching circuit.
  19.  上記開放側可溶導体は、一端が上記第2の回路と接続され他端が上記第2の発熱体と接続された第1の開放側可溶導体と、一端が上記主たる回路と接続され他端が上記第2の発熱体と接続された第2の開放側可溶導体とを有する請求項13~18のいずれか1項に記載の切替回路。 The open side soluble conductor is connected to the first open side soluble conductor whose one end is connected to the second circuit and the other end is connected to the second heating element, and one end is connected to the main circuit and the other The switching circuit according to any one of claims 13 to 18, further comprising a second open-side soluble conductor whose end is connected to the second heating element.
  20.  上記第1の回路が、発光回路、発音回路又は電子信号発生を伴う回路である請求項1,6,13のいずれか1項に記載の切替回路。 The switching circuit according to any one of claims 1, 6, and 13, wherein the first circuit is a light emitting circuit, a sound generating circuit, or a circuit with electronic signal generation.
PCT/JP2014/004503 2013-09-11 2014-09-02 Switching circuit WO2015037210A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480049871.0A CN105531895B (en) 2013-09-11 2014-09-02 Switching circuit
KR1020167006387A KR102180652B1 (en) 2013-09-11 2014-09-02 Switching circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013188804A JP6196856B2 (en) 2013-09-11 2013-09-11 Switching circuit
JP2013-188804 2013-09-11

Publications (1)

Publication Number Publication Date
WO2015037210A1 true WO2015037210A1 (en) 2015-03-19

Family

ID=52665342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004503 WO2015037210A1 (en) 2013-09-11 2014-09-02 Switching circuit

Country Status (5)

Country Link
JP (1) JP6196856B2 (en)
KR (1) KR102180652B1 (en)
CN (1) CN105531895B (en)
TW (1) TWI653654B (en)
WO (1) WO2015037210A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106208186B (en) * 2015-05-26 2019-08-30 陈葆萱 Secondary battery pack and protection element therefor
TW201740417A (en) * 2017-07-07 2017-11-16 Pao-Hsuan Chen Switching device including an insulative housing, a plurality of terminal electrodes, a first overcurrent protection device, and a first heat generating component
CN107578739A (en) * 2017-09-26 2018-01-12 惠科股份有限公司 Protection circuit and display device
CN110828254B (en) * 2018-08-07 2022-11-25 聚鼎科技股份有限公司 Protective element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001309551A (en) * 2000-04-25 2001-11-02 Uchihashi Estec Co Ltd Battery protector
JP2007128818A (en) * 2005-11-07 2007-05-24 Nec Tokin Corp Battery pack
WO2014123139A1 (en) * 2013-02-05 2014-08-14 デクセリアルズ株式会社 Short-circuit element and circuit using same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066251A (en) * 1996-08-13 1998-03-06 Sony Corp Protective device for secondary battery
JP2004185960A (en) 2002-12-03 2004-07-02 Kamaya Denki Kk Circuit protection element and its manufacturing method
JP2004311350A (en) * 2003-04-10 2004-11-04 Alps Electric Co Ltd Battery apparatus and portable apparatus
KR20060050897A (en) * 2004-09-02 2006-05-19 후루카와 덴키 고교 가부시키가이샤 Protective parts, protective device, battery pack and portable electronic equipment
JP5072796B2 (en) 2008-05-23 2012-11-14 ソニーケミカル&インフォメーションデバイス株式会社 Protection element and secondary battery device
JP5656466B2 (en) 2010-06-15 2015-01-21 デクセリアルズ株式会社 Protective element and method of manufacturing protective element
CN102377237B (en) * 2011-12-03 2014-01-01 南京普天大唐信息电子有限公司 Solar energy and mains supply complementary controller
CN103166170B (en) * 2011-12-19 2015-11-11 统达能源股份有限公司 Short circuit arrangement for detecting and method for detecting thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001309551A (en) * 2000-04-25 2001-11-02 Uchihashi Estec Co Ltd Battery protector
JP2007128818A (en) * 2005-11-07 2007-05-24 Nec Tokin Corp Battery pack
WO2014123139A1 (en) * 2013-02-05 2014-08-14 デクセリアルズ株式会社 Short-circuit element and circuit using same

Also Published As

Publication number Publication date
TWI653654B (en) 2019-03-11
JP2015056960A (en) 2015-03-23
CN105531895A (en) 2016-04-27
KR20160055148A (en) 2016-05-17
TW201517107A (en) 2015-05-01
CN105531895B (en) 2018-05-29
JP6196856B2 (en) 2017-09-13
KR102180652B1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
US9130383B2 (en) Charging/discharging control device, battery pack, electrical equipment, and charging/discharging control method
KR100485752B1 (en) Secondary Battery Protection Device
JP5025160B2 (en) Secondary battery device
US6337559B1 (en) Battery pack with leakage detection and current interrupting means
JP5209122B2 (en) Apparatus and method for protecting battery pack by sensing destruction of sense resistor
KR101213480B1 (en) Battery protecting circuit and controlling method of the same
KR102382961B1 (en) Battery pack, battery system, and discharging method
EP2894759B1 (en) Secondary Battery Protection With Permanent Disable
US20150103448A1 (en) Battery Management System, Motor Vehicle and Battery Module
TWI585801B (en) Protective components and battery pack
TW201419350A (en) Protective element and battery pack
WO2015037210A1 (en) Switching circuit
JP6292802B2 (en) Battery circuit, protection circuit
CN105706324B (en) It protects circuit and protects the control method of circuit
JP3471720B2 (en) Secondary battery protection device and battery pack
JP2012182890A (en) Protective device for secondary battery, secondary battery device, and secondary battery
KR102137698B1 (en) Protection circuit device for battery
JP2023013699A (en) protection circuit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480049871.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844034

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20167006387

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844034

Country of ref document: EP

Kind code of ref document: A1