JP4770084B2 - Sealed can - Google Patents

Sealed can Download PDF

Info

Publication number
JP4770084B2
JP4770084B2 JP2001237003A JP2001237003A JP4770084B2 JP 4770084 B2 JP4770084 B2 JP 4770084B2 JP 2001237003 A JP2001237003 A JP 2001237003A JP 2001237003 A JP2001237003 A JP 2001237003A JP 4770084 B2 JP4770084 B2 JP 4770084B2
Authority
JP
Japan
Prior art keywords
sealed
bottom panel
frequency
panel portion
internal pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001237003A
Other languages
Japanese (ja)
Other versions
JP2003040235A (en
Inventor
淳一 高田
健 竹之内
秀夫 倉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2001237003A priority Critical patent/JP4770084B2/en
Publication of JP2003040235A publication Critical patent/JP2003040235A/en
Application granted granted Critical
Publication of JP4770084B2 publication Critical patent/JP4770084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、密封容器の内圧を打検法で検査するときに、内容物や容器胴部の影響によってうなりを生じないようにした密封容器に関する。
【0002】
【従来の技術】
従来、密封容器、特に腐敗が起きやすい飲食物を充填してある缶詰等の缶内圧を非破壊的に検査する方法として打検法が広く採用されている。打検法は、缶の蓋(2ピース缶では缶底部)に電磁的衝撃を与えたときに発生する打検音をマイクロフォンで電気信号に変換し、それにより缶内圧の良否を判定する検査法である。
【0003】
たとえば、ミルク入り飲料等の低酸性飲料の缶詰の場合、常温まで冷えると陰圧缶詰となるが、腐敗・発酵すると缶内でガスを発生して圧力が上がってしまい低陽圧缶詰となる。また、陰圧缶詰の密封が不完全な場合には、缶内に外気が侵入して圧力が上がってしまう。
そこで、缶の一部に衝撃を加え、その缶の反響振動を解析することによって缶内圧力を検知し、内容物の腐敗あるいは缶の密封の良否を判定し、不良な缶詰を排除している。圧力と振動との関係は、缶内圧力と外気圧力の差が大きいほど缶壁が張り、缶の固有振動が高くなって高音を発する。すなわち、缶の材質、大きさ、厚みそして2ピース缶か3ピース缶かといった缶の形態が同じであれば、その反響振動は主として缶の内圧に依存することになる。
【0004】
打検法においては、エキサイタコイルによって衝撃が加えられたときに生じる反響振動音を、マイクによって検出する。検出された振動音の周波数分布においてピーク値を示すものが缶の固有振動であり、この値が適性缶内圧力に対応する周波数帯域に入っているか否かで缶詰の良否を判定し、不良な缶詰を検査後の工程でリジェクタ等により排除する。
陰圧缶詰は、真空度がほぼ27〜80kPaの範囲にあり、圧力のばらつきが少なく、かつ、内圧変動に対する固有振動数の変化が大きいので、打検による検知分解能が高く、打検によって密封不良や内容物の腐敗の検出が正確にできる利点がある。しかしながら、陰圧缶詰の場合、陰圧に耐える剛性の高い缶体を必要とし、陽圧缶よりも側壁が厚くなり、3ピース缶の場合は、製造コストが高くなるという問題点を有している。
【0005】
一方、上記した3ピース缶の問題点を解決するため、その缶体を絞り−しごき加工、絞り−ストレッチ加工−しごき加工等によって側壁を薄肉化するとともに底と側壁を一体成形してなる2ピース缶が採用されている。さらに、上記2ピース缶の製造コストを低減するために、密封時に液体窒素等の不活性(液化・ミスト化・固化)ガスを充填することによって、液体窒素等の気化膨張により缶内の低陽圧化を行い、缶内圧力で剛性を付与して2ピース缶の側壁をさらに薄くすることが提案されている。
【0006】
この低陽圧化した缶詰は、缶内が陽圧であるため外圧に対して窪みにくく、缶体の板厚を薄くすることができるが、2ピース缶の底部分は胴部分と連続した形態となっていること、及び側壁がさらに薄肉化されていることに起因して、打検による内圧検査適性に欠けていた。
すなわち、3ピース缶の場合は、底蓋を胴部分の端部に巻き締める形態であるので、その巻き締め部の存在により、太鼓の振動のような固有振動を主とする比較的単純な振動となる。これに対し、2ピース缶の場合は、胴部と底部が連続しているため、振動における端部となる箇所が明確でなく、その結果、打検音が複数の振動モード成分を含んだ、いわゆる“うなり(飛び)”を生じる複雑な振動となる。
【0007】
また、振動体である底部分の材質は、錫メッキ鋼板、ティンフリースチール、アルミニウム等の薄板であるため、それ自体の振動というよりは、缶胴、ヘッドスペースの共振や内容物の影響を強く受けてしまい、特に衝撃から時を経るに従い振動は缶内圧以外の要素が重畳されて、一層複雑な“うなり”を含む打検音となる。そして、これらの現象は、特に、密封時に液体窒素等の不活性(液化・ミスト化・固化)ガスを充填して低陽圧化した2ピース缶に顕著に現れる。
【0008】
ところで、現在の打検法においては、高速フーリエ変換(FFT)法を用いてスペクトル解析を実行し、最大値を示す周波数を缶内圧力に対応するものとして特定し、それが判定基準の範囲内にあるかどうかで缶詰の良否判定を行っている。しかし、このFFT法を2ピース缶の打検に適用すると、得られる周波数スペクトルは分解精度が低く、グラフで表すと鈍った波形となってしまい、満足できるものとなっていない。それは、この方法による周波数分解能が観測時間に依存することに起因している。すなわち、2ピース缶の打検において周波数分解能を高めようとして観測時間を長くとると、打検反響振動が、時間とともにノイズが重畳し複雑に変化してしまうため検出信号そのもののS/N比が低くなってしまうからである。そのため、2ピース缶の缶詰については、高精度な検査結果を期待することができないという問題があった。
【0009】
本発明者らは、上記事情にかんがみ鋭意研究を重ねた結果、線形予測係数法を用いて周波数スペクトルを得ることにより、密封容器、特に、2ピース缶からなる缶詰の検査に好適な打検方法と打検装置を発明し、先に特許出願した。
本発明者らは、さらに研究を重ねた結果、密封容器、特に2ピース缶の缶体自体に加工を施すことにより、打検時に発生する打検音の周波数を、いわゆる“うなり”の生じない周波数帯域とすれば、2ピース缶からなる缶詰の検査を、打検法により高精度に行うことができることを見出し、本発明を完成するに至った。
【0010】
したがって、本発明は、打検音の周波数が“うなり”を生じない周波数帯域となるように、密封容器底部の初期形状(缶内圧が0のときの形状)を曲面形状とした密封容器の提供を目的とする。
なお、特開2000−128165に、缶底を簡単に打検することができ、缶内圧の検査を容易に行うことができる形状の缶が開示されているが、この缶は、環状凸部の内側に環状凹部を形成するとともに、この環状凹部の内方に環状突起を形成することにより、内圧除荷時に元の状態に戻り易く、内圧除荷時に張力が小さくなるようにして、固有振動数を小さくしたものであり、缶底の初期形状を曲面形状とすることについては、一切開示がない。
【0011】
【発明が解決しようとする課題】
本発明は、上記の事情にかんがみてなされたもので、打検時の缶内圧−周波数特性における周波数曲線の立上り点(立上り周波数)及び/又は傾きを変えることによって、打検音の周波数が“うなり”を生じる周波数帯域を回避するようにしたことを特徴とするものである。
図1は、本発明の原理を説明する図であり、曲線1は、底面パネル部が平坦な場合の打検周波数特性を示し、缶内圧が80kPa付近で“うなり”を生じている状態を示している。
【0012】
図1において、曲線2〜4は、本発明の密封缶の打検周波数特性を示しており、曲線2の場合は、打検周波数特性の立上り点を高くして“うなり”を生じる周波数を回避した状態を示し、曲線3の場合は、打検周波数特性の傾きを緩くして“うなり”を生じる周波数を回避した状態を示し、曲線4の場合は、打検周波数特性の立上り点を高くするとともに傾きを緩くして“うなり”を生じる周波数帯域を回避した状態を示している。
なお、図1の曲線1〜4の打検周波数特性を有する密封缶は、底部の形状のみが異なるだけで他の条件(たとえば、材質,直径等)は同じである。
【0013】
【課題を解決するための手段】
曲線2〜4のような打検周波数特性を有するようにするため、本発明の密封缶は、次のような構成としてある。
すなわち、請求項1に記載の発明は、底部の外周に形成した円周状の接地部の内側に底面パネル部を有する密封缶において、前記底面パネル部の形状を、缶内圧50kPaと0のときの打検周波数の差が100〜2000Hzとなるような曲面形状とした構成としてある。
【0014】
また、請求項2に記載の発明は、底部の外周に形成した円周状の接地部の内側に底面パネル部を有する密封缶において、
底面パネル部が平面形状の密封缶の、
缶内圧が0のときの打検周波数をf0
缶内圧が50kPaのときの打検周波数をf50
50−f0=fdとし、
底面パネル部が曲面形状の密封缶の
缶内圧が0のときの打検周波数をfRとし、
さらに、fR−f0=△fとしたときに、
△fがfdの0.15〜1.5倍の範囲となるような曲面形状とした構成としてある。
【0015】
密封缶を、上記のような構成とすると、“うなり”を生じない打検周波数特性を有する密封缶を得ることができる。
【0016】
上記密封缶において、好ましくは、前記底面パネル部が、缶内外の圧力が高い方から低い方へ膨出するようにしてある。
底面パネル部を、缶内外の圧力が低い方から高い方へ膨出するようにした缶においては、缶内圧を0から陽圧または陰圧にしていくと、打検周波数はいったん下降してから上昇する特性を示し、正確な打検結果を得ることができない。しかし、本発明のようにすれば、上記のような問題はなく、正確な打検を行うことが可能となる。
【0017】
底面パネル部の曲面形状としては、一定の曲率半径からなる球面形状とすることができる。この場合、上記密封缶の直径を40〜160mmとし、底面パネル部の曲率半径を200〜2000mmとすることが好ましい。
このようにすると、“うなり”を生じない打検周波数特性を有する密封缶を得ることができる。
なお、曲面形状としては、底面パネル部の中央の曲率半径を大きくし、端部の曲率半径を小さくしたような、非球面形状とすることもできる。この場合においても、球面形状のものと同様の効果を得ることができる。
【0018】
上記密封缶は、前記曲面形状をなす底面パネル部の任意箇所に、一又は複数の凸部及び/又は凹部を形成することが好ましい。
ここで、上記凸部及び/又は凹部は、点状又は筋状に形成することが好ましく、また、その前記点状の凸部及び/又は凹部を、前記底面パネル部の中央及び/又は同一円周上に等間隔に形成し、あるいは前記筋状の凸部及び/又は凹部を、前記底面パネル部に放射状に形成することができる。さらに、前記点状及び筋状の凸部及び/又は凹部を、前記底面パネル部に任意の図形を表すように形成することもできる。
【0019】
このようにすると、底面パネル部の曲げ剛性を大きくすることができるとともに、打検周波数特性の立上り点及び周波数特性の傾きを調整することができる。
【0020】
本発明は、2ピース缶および3ピース缶のいずれにも適用することができるが、底部と胴部の間に巻締め部を有しない2ピース缶(シームレス缶)に適用すると効果的である。
【0021】
さらに、上記密封缶は、底面パネル部にビード部を形成することが好ましい。
このようにビード部を形成すると、底部の耐圧強度が大きくなるので、缶内圧が一時的に変化しても(例えば、レトルト処理中に缶内圧が高くなっても)底部が変形することがなく、正確な打検を可能とする。
【0022】
【発明の実施の形態】
以下、本発明の実施形態にかかる密封缶について、図面を参照しつつ説明する。
【0023】
〔第一実施形態〕
図2は、本発明の第一実施形態を示す底部断面図である。
図2に示す第一実施形態の密封缶1は、底部の外周に形成した円周上の接地部2の内側に、缶の外側に膨出した曲面形状の底面パネル部3を形成した構成となっている。この曲面形状の曲率は、缶内圧が0のときに、次のような曲率となるようにする。
すなわち、図3に示すように、缶内圧が0のときの打検周波数fと、缶内圧を50kPaとしたときの打検周波数fとの差が100〜2000Hzとなるような曲率とする。ここで、f−f<100Hzとなると、打検周波数特性の傾きが緩くなりすぎて、圧力に対する分解能が低下してしまう。一方、f−f>2000Hzとなると、打検周波数が高くなり過ぎて測定が難しく実用的でなくなる。
【0024】
また、底面パネル部3の曲面形状の曲率は、次のように設定した範囲内となるようにしてもよい。
すなわち、底面パネル部3の形状が平面であって、
缶内圧が0のときの打検周波数をf0
缶内圧が50kPaのときの打検周波数をf50
50−f0=fdとし、
また、底面パネル部3の形状が曲率半径Rであって、
缶内圧が0のときの打検周波数をfRとし、
さらに、fR−f0=△fとしたときに、
△fがfdの0.15倍から1.5倍の範囲
(△f=k・fd 0.15<k<1.5)
となるようにすることもできる。
【0025】
ここで、倍率kが、k<0.15となると底面パネル部3の曲率半径が大き過ぎて、底面パネル部が平面形状のものと同様の周波数帯域で“うなり”を生じてしまう。一方、k>1.5となると打検周波数が高くなり過ぎ測定が難しく実用的でなくなる。
【0026】
密封缶1における底面パネル部3の曲面形状の曲率は、上記のようにして決定するが、より具体的には、缶の直径が40〜160mmのときに、200〜2000mmとすることが好ましい。この範囲内とすると、打検音の周波数が高過ぎることがなく測定が容易であるとともに、周波数帯域も“うなり”を生じにくい範囲となる。
【0027】
ここで、底面パネル部3の曲面形状は、缶の内外において圧力の高い方から低い方へ膨出させることが好ましい。したがって、陽圧缶のときには内側から外側に向かって膨出するように形成し、陰圧缶の場合には缶の外側から内側に向かって膨出するように形成することが好ましい。
底面パネル部3の曲面形状を、缶の内外において圧力の低いほうから高い方へ膨出させた曲面形状とすると、缶内外の圧力を変化させたときに、打検周波数は、一度低くなってから再度高くなるため、打検結果の正確性に欠けることになる。
【0028】
本発明は、密封缶であれば、2ピース缶(シームレス缶),3ピース缶のいずれにも適用できるが、打検周波数に“うなり”を生じやすい2ピース缶に適用すると効果的である。
また、密封缶の材質は、金属缶であれば、アルミニウムあるいはスチールなどを用いた種々材質の缶に適用することができる。材質によって打検周波数が異なり、“うなり”を生じる周波数及び缶内圧も異なるが、本発明によれば、材質に応じて底面パネル部3の曲率半径を変えることにより及び後述する凸凹部を形成することにより、打検周波数を“うなり”の生じない周波数帯域のものとすることができる。
【0029】
また、2ピース缶の場合、図4に示すように、接地部2と底面パネル部3の間にビード部4を形成してもよい。ビード部4を形成すると、底部の耐圧強度が大きくなるので、缶内圧が一時的に変化しても(例えば、レトルト処理中に缶内圧が高くなっても)底部が変形することがなく、正確な打検を可能とする。
【0030】
〔第二実施形態〕
図5〜図7は、曲面形状をした底面パネル部に凹部を形成した第二実施形態の各態様を示す斜視図を示している。
図5は、曲面形状をした底面パネル部3の中央に一つの点状凹部5を形成した形態を示しており、図6は、曲面形状をした底面パネル部3の中央に凹部5を形成するとともに、その周辺には四つの点状の凹部5aが等間隔に形成した形態を示している。
【0031】
図7は、曲面形状をした底面パネル部3に、中心から120度の間隔で筋状の凹部6を放射状に形成した形態を示している。
また、図8は、曲面形状をした底面パネル部3に点状の凹部5aと筋状の凹部6を交互に形成したもので、図7に示す筋状凹部6の間にそれぞれ、点状凹部5aを形成した形態を示している。
【0032】
なお、上記した各形態にあっては、凹部の代わりに凸部を形成してもよく、また、凹部と凸部を混在させて形成してもよい。また、凹部及び凸部の形状は点状又は筋状の以外の形状とすることもでき、さらに、これら凹部及び凸部の大きさや配置は任意のものとすることができる。
【0033】
このように、曲面形状をした底面パネル部3に凹部及び/又は凸部を形成すると、密封缶1の底部の剛性を大きくすることができるとともに、凹部及び/又は凸部の数,大きさ,位置などを変えて形成することによって、打検周波数の立上げ点や周波数の変化具合(周波数特性の傾き)を変えることができる。
したがって、缶の種類ごとに“うなり”を生じない打検周波数を有する密封缶の製造が容易となる。
【0034】
〔実施例〕
(実施例1)
缶直径が52mmであって、底面パネル部が平面形状の密封缶、並びに、底面パネル部の曲率半径が200mm及び2000mmの密封缶について、それぞれ打検を行ったところ、図9に示すような結果となった。
解析結果から缶直径52mmにおいて、平面形状の密封缶は、缶内圧0のときの周波数f0が1400Hzで、缶内圧50kPaのときの周波数f50が2600Hzで、その周波数差fd(=f50−f0)は1200Hzであった。また、缶直径52mmにおける曲面形状の密封缶は、曲率半径が200mmの場合、缶内圧が50kPaと0のときの打検周波数はそれぞれ3600Hzと3200Hzで、その周波数の差は400Hzであり、曲率半径が2000mmの場合、缶内圧が50kPaと0のときの打検周波数はそれぞれ2650Hzと1600Hzで、その周波数の差は1050Hzであった。
すなわち、曲率半径が200mm及び2000mmのいずれの場合も、缶内圧が50kPaと0のときの打検周波数の差は100〜2000Hzの範囲内であり、△f(fR−f0)も、曲率半径が200mmの場合は1800Hz、曲率半径が2000mm場合は200Hzであって△f=k・fdのkは、それぞれ1.5〜0.17であり、0.15〜1.5の範囲内であった。
【0035】
なお、底面パネル部の曲率半径を2000mmとした場合、打検周波数は1600〜3150Hz(缶内圧0〜100kPa)に変化し、1800Hz(缶内圧10kPa)付近で“うなり”が生じた(図9の曲線3)。
しかし、実際の打検においては、缶内圧を0〜100kPaの範囲で変化させることはなく、通常は缶内圧20〜80kPaの範囲、広くても15〜90kPaの範囲内で行う。したがって、実際の打検時においては、底面パネル部の曲率半径が2000mmの缶であっても“うなり”を生じる周波数帯をさけた状態で検査を行うことが可能である。
【0036】
(実施例2)
缶直径が40mmで、底面パネル部が平面形状の密封缶の打検を行ったところ打検周波数が1900〜3100Hz(缶内圧0〜100kPa)に変化し、2900Hz付近で“うなり”が生じた(図10の曲線1)。
底面パネル部の曲率半径を200mmとした以外は、前記密封缶と同じ条件の密封缶の打検を行ったところ打検周波数は2900〜3700Hz(缶内圧0〜100kPa)に変化した。“うなり”は生じなかった(図10の曲線2)。
【0037】
(実施例3)
缶直径が52mmで、底面パネル部が平面形状の密封缶の打検を行ったところ打検周波数が1400〜3100Hz(缶内圧0〜100kPa)に変化し、1800Hz付近で“うなり”が生じた(図11の曲線1)。
底面パネル部の曲率半径を400mmとした以外は、前記密封缶と同じ条件の密封缶の打検を行ったところ打検周波数は2200〜3400Hz(缶内圧0〜100kPa)に変化した。“うなり”は生じなかった(図11の曲線2)。
【0038】
(実施例4)
底面パネル部の曲率半径を300mmとするとともに、点状の凹部を底部の中心に一つ及び円周上の6カ所に形成した以外は、前記実施例3の密封缶と同じ条件の密封缶の打検を行ったところ打検周波数は1900〜3200Hz(缶内圧0〜100kPa)に変化した。“うなり”は生じなかった(図11の曲線3)。
【0039】
(実施例5)
底面パネル部の曲率半径を300mmとするとともに、筋状の凹部を底部の中心から放射状に6カ所形成した以外は、前記実施例3の密封缶と同じ条件の密封缶の打検を行ったところ打検周波数は2000〜3100Hz(缶内圧0〜100kPa)に変化した。“うなり”は生じなかった(図11の曲線4)。
【0040】
【発明の効果】
以上のような構成からなる本願発明によれば、打検時に発生する打検音の周波数を、いわゆる“うなり”の生じない周波数帯域とすることができるので、2ピース缶などの密封缶における缶詰の検査を、打検法により高精度に行うことが可能となる。
【図面の簡単な説明】
【図1】図1は、本発明の原理を説明するための図である。
【図2】図2は、本発明の第一実施形態を示す底部断面図である。
【図3】底面パネル部の曲率半径を規定するための説明図である。
【図4】図4は、本発明のビード部を形成した実施形態の底部断面図である。
【図5】図5は、点状凹部を中心に形成した本発明の第二実施形態の底部斜視図である。
【図6】図6は、点状凹部を中心と同一円周上に形成した本発明の第二実施形態の底部斜視図である。
【図7】図7は、筋状凹部を放射状に形成した本発明の第二実施形態の底部斜視図である。
【図8】図8は、放射状の筋状凹部と点状の凹部を交互に形成した本発明の第二実施形態の底部斜視図である。
【図9】図9は、第1実施例における打検周波数特性を示す図である。
【図10】図10は、第2実施例における打検周波数特性を示す図である。
【図11】図11は、第3〜5実施例における打検周波数特性を示す図である。
【符号の説明】
1 密封缶
2 接地部
3 底面パネル部
4 ビード部
5,5a 点状凹部
6 筋状凹部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sealed container in which a beat is not generated by the influence of contents or a container body when the internal pressure of the sealed container is inspected by a percussion method.
[0002]
[Prior art]
Conventionally, the percussion method has been widely adopted as a method for nondestructively inspecting the internal pressure of a sealed container, particularly canned food or the like filled with foods and beverages that are susceptible to corruption. The percussion method is a test method that converts the percussion sound generated when electromagnetic shock is applied to the lid of the can (can bottom of a two-piece can) into an electrical signal using a microphone, thereby judging whether the internal pressure of the can is good or bad. It is.
[0003]
For example, in the case of canned low-acid beverages such as milk-containing beverages, negative pressure canned products are cooled to room temperature, but when rotted and fermented, gas is generated in the cans and the pressure rises, resulting in low positive pressure canned products. In addition, when the negative pressure can is sealed imperfectly, outside air enters the can and the pressure rises.
Therefore, impact is applied to a portion of the can, and the internal pressure of the can is detected by analyzing the echo vibration of the can to determine whether the contents are corrupt or the seal of the can is good, thereby eliminating defective cans. . Regarding the relationship between pressure and vibration, the larger the difference between the pressure inside the can and the outside air pressure, the more the can wall is stretched, and the natural vibration of the can becomes higher, resulting in a high sound. That is, if the material of the can, the size, the thickness, and the shape of the can, such as a two-piece can or a three-piece can, are the same, the echo vibration depends mainly on the internal pressure of the can.
[0004]
In the percussion detection method, a reverberation vibration sound generated when an impact is applied by an exciter coil is detected by a microphone. It is the natural vibration of the can that shows the peak value in the frequency distribution of the detected vibration sound. The quality of the can is judged by checking whether this value is in the frequency band corresponding to the appropriate pressure inside the can. Canned products are removed by a rejector etc. in the post-inspection process.
Negative pressure cans have a degree of vacuum in the range of 27 to 80 kPa, have little pressure variation, and have a large change in natural frequency due to fluctuations in internal pressure. There is an advantage in that it is possible to accurately detect corruption of contents. However, in the case of negative pressure canning, a rigid can body that can withstand negative pressure is required, and the side walls are thicker than positive pressure cans, and in the case of a three-piece can, the manufacturing cost is high. Yes.
[0005]
On the other hand, in order to solve the problems of the three-piece can described above, the can body is thinned by squeezing-scoring, drawing-stretching-scoring, etc., and the bottom and side walls are integrally formed. Cans are used. Furthermore, in order to reduce the manufacturing cost of the above two-piece can, an inert (liquefied / misted / solidified) gas such as liquid nitrogen is filled at the time of sealing so It has been proposed to make the side wall of the two-piece can thinner by compressing and imparting rigidity with the pressure inside the can.
[0006]
This can with low positive pressure has a positive pressure inside the can, so it is difficult to dent against the external pressure, and the thickness of the can body can be reduced, but the bottom part of the two-piece can is continuous with the body part. Because of this, and because the side walls are further thinned, the internal pressure inspection suitability by punching was lacking.
That is, in the case of a three-piece can, since the bottom lid is wound around the end of the body portion, the presence of the tightened portion causes a relatively simple vibration mainly composed of natural vibration such as drum vibration. It becomes. On the other hand, in the case of a two-piece can, since the trunk and the bottom are continuous, the location that becomes the end in vibration is not clear, and as a result, the percussion sound includes a plurality of vibration mode components. This is a complex vibration that causes a so-called “beat”.
[0007]
In addition, the material of the bottom part, which is a vibrating body, is a thin plate of tinned steel plate, tin-free steel, aluminum, etc., so it strongly affects the resonance of the can body and head space and the influence of the contents rather than the vibration itself. In particular, as the time passes from the impact, the vibration becomes a percussion sound including more complicated “beat” because elements other than the internal pressure of the can are superimposed. These phenomena are particularly prominent in a two-piece can filled with an inert (liquefied / misted / solidified) gas such as liquid nitrogen at the time of sealing to reduce the positive pressure.
[0008]
By the way, in the current percussion method, spectrum analysis is performed using the Fast Fourier Transform (FFT) method, and the frequency indicating the maximum value is specified as corresponding to the pressure in the can, and it is within the range of the determination standard. The quality of canned foods is judged based on whether or not However, when this FFT method is applied to a two-piece can inspection, the obtained frequency spectrum has low resolution accuracy and becomes a dull waveform when expressed in a graph, which is not satisfactory. This is because the frequency resolution by this method depends on the observation time. In other words, if the observation time is increased in order to increase the frequency resolution in the two-piece can percussion, the percussion reverberation will be complicated by noise superimposed on the time, so that the S / N ratio of the detection signal itself is increased. It will be lower. For this reason, there is a problem that a highly accurate inspection result cannot be expected for canned two-piece cans.
[0009]
As a result of intensive research in view of the above circumstances, the present inventors have obtained a frequency spectrum using the linear prediction coefficient method, and are therefore suitable for inspection of sealed containers, particularly cans consisting of two-piece cans. Invented the percussion device and filed a patent application earlier.
As a result of further research, the present inventors have processed the sealed container, particularly the two-piece can body itself, so that the frequency of the percussion sound generated during percussion does not cause a so-called “beat”. If the frequency band is set, it has been found that canned inspections consisting of two-piece cans can be performed with high accuracy by the percussion method, and the present invention has been completed.
[0010]
Therefore, the present invention provides a sealed container in which the initial shape of the bottom of the sealed container (the shape when the internal pressure of the can is 0) is curved so that the frequency of the percussion sound is in a frequency band that does not cause “beat”. With the goal.
JP-A-2000-128165 discloses a can having a shape in which the bottom of the can can be easily hit and the internal pressure of the can can be easily inspected. By forming an annular recess on the inner side and forming an annular protrusion inside the annular recess, it is easy to return to the original state when the internal pressure is unloaded, and the tension is reduced when the internal pressure is unloaded. There is no disclosure about the initial shape of the can bottom being a curved surface shape.
[0011]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and by changing the rising point (rising frequency) and / or the slope of the frequency curve in the can internal pressure-frequency characteristics at the time of percussion, the frequency of the percussion sound is “ This is characterized by avoiding a frequency band in which a “beat” occurs.
FIG. 1 is a diagram for explaining the principle of the present invention, and curve 1 shows a percussion frequency characteristic when the bottom panel is flat, and shows a state in which a “beat” occurs when the internal pressure of the can is around 80 kPa. ing.
[0012]
In FIG. 1, curves 2 to 4 show the percussion frequency characteristics of the sealed can of the present invention. In the case of curve 2, the rising frequency of the percussion frequency characteristics is increased to avoid the frequency that causes “beat”. In the case of curve 3, the inclination of the tap frequency characteristic is relaxed to avoid the frequency that causes “beat”, and in the case of curve 4, the rising point of the tap frequency characteristic is increased. In addition, the state is shown in which the inclination is relaxed to avoid the frequency band in which the “beat” occurs.
The sealed can having the punching frequency characteristics of curves 1 to 4 in FIG. 1 has the same other conditions (for example, material, diameter, etc.) except only the shape of the bottom.
[0013]
[Means for Solving the Problems]
The sealed can of the present invention has the following configuration in order to have the inspection frequency characteristics as shown by the curves 2 to 4.
That is, according to the first aspect of the present invention, in the sealed can having the bottom panel portion inside the circumferential grounding portion formed on the outer periphery of the bottom portion, the shape of the bottom panel portion is 0 when the internal pressure of the can is 50 kPa. It is set as the structure made into the curved surface shape so that the difference of the punching frequency of 100-2000Hz.
[0014]
The invention according to claim 2 is a sealed can having a bottom panel portion inside a circumferential grounding portion formed on the outer periphery of the bottom portion,
The bottom panel part is a flat shaped sealed can,
The inspection frequency when the internal pressure of the can is 0 is f 0 ,
The inspection frequency when the internal pressure of the can is 50 kPa is f 50 ,
f 50 −f 0 = f d ,
Bottom panel portion cans internal pressure of the sealed cans having a curved surface and the droplet detection frequency when 0 and f R,
Furthermore, when f R −f 0 = Δf,
The curved surface shape is set such that Δf is in the range of 0.15 to 1.5 times f d .
[0015]
When the sealed can is configured as described above, it is possible to obtain a sealed can having an inspection frequency characteristic that does not cause “beat”.
[0016]
In the sealed can, preferably, the bottom panel portion swells from a higher pressure inside or outside the can to a lower pressure.
In the can where the inside and outside pressure of the bottom panel bulges from the low side to the high side, when the internal pressure of the can is changed from 0 to positive pressure or negative pressure, the percussion frequency once decreases. It shows a rising characteristic and cannot obtain accurate percussion results. However, according to the present invention, there is no problem as described above, and an accurate percussion can be performed.
[0017]
The curved shape of the bottom panel portion can be a spherical shape having a certain radius of curvature. In this case, it is preferable that the diameter of the sealed can is 40 to 160 mm and the curvature radius of the bottom panel portion is 200 to 2000 mm.
In this way, it is possible to obtain a sealed can having a percussion frequency characteristic that does not cause “beat”.
The curved surface shape may be an aspherical shape in which the radius of curvature at the center of the bottom panel portion is increased and the radius of curvature of the end portion is decreased. Even in this case, the same effect as that of the spherical shape can be obtained.
[0018]
In the sealed can, it is preferable to form one or a plurality of convex portions and / or concave portions at an arbitrary position of the bottom surface panel portion having the curved shape.
Here, the convex portion and / or the concave portion are preferably formed in a dot shape or a streak shape, and the dotted convex portion and / or the concave portion is formed in the center of the bottom panel portion and / or the same circle. It can be formed at equal intervals on the circumference, or the streak-like convex portions and / or concave portions can be formed radially on the bottom panel portion. Further, the dot-like and streak-like convex portions and / or concave portions can be formed on the bottom panel portion so as to represent an arbitrary figure.
[0019]
If it does in this way, while being able to enlarge the bending rigidity of a bottom face panel part, the rising point of the inspection frequency characteristic and the inclination of a frequency characteristic can be adjusted.
[0020]
The present invention can be applied to both a two-piece can and a three-piece can. However, the present invention is effective when applied to a two-piece can (seamless can) that does not have a winding portion between a bottom portion and a trunk portion.
[0021]
Further, the sealed can preferably has a bead portion formed on the bottom panel portion.
When the bead portion is formed in this way, the pressure resistance strength of the bottom portion increases, so that even if the can internal pressure temporarily changes (for example, even if the can internal pressure increases during the retort process), the bottom portion does not deform. , Enabling accurate percussion.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a sealed can according to an embodiment of the present invention will be described with reference to the drawings.
[0023]
[First embodiment]
FIG. 2 is a bottom sectional view showing the first embodiment of the present invention.
The sealed can 1 of the first embodiment shown in FIG. 2 has a configuration in which a curved bottom panel portion 3 bulging outside the can is formed on the inner side of the ground contact portion 2 formed on the outer periphery of the bottom portion. It has become. The curvature of the curved surface shape is as follows when the internal pressure of the can is 0.
That is, as shown in FIG. 3, a striking test frequency f R when the can internal pressure 0, and such curvature difference between the hit test frequency f S when the cans pressure and 50kPa is 100~2000Hz . Here, when f S −f R <100 Hz, the inclination of the percussion frequency characteristic becomes too loose, and the resolution with respect to pressure is lowered. On the other hand, when f S −f R > 2000 Hz, the percussion frequency becomes too high, making measurement difficult and impractical.
[0024]
Moreover, you may make it the curvature of the curved surface shape of the bottom face panel part 3 become in the range set as follows.
That is, the shape of the bottom panel portion 3 is a plane,
The inspection frequency when the internal pressure of the can is 0 is f 0 ,
The inspection frequency when the internal pressure of the can is 50 kPa is f 50 ,
f 50 −f 0 = f d ,
In addition, the shape of the bottom panel 3 is a radius of curvature R,
Let f R be the percussion frequency when the internal pressure of the can is 0,
Furthermore, when f R −f 0 = Δf,
Δf is in the range of 0.15 to 1.5 times f d (Δf = k · f d 0.15 <k <1.5)
It can also be made to be.
[0025]
Here, when the magnification k is k <0.15, the radius of curvature of the bottom panel portion 3 is too large, and “bottom” occurs in the same frequency band as the bottom panel portion having a planar shape. On the other hand, if k> 1.5, the inspection frequency becomes too high, making measurement difficult and impractical.
[0026]
The curvature of the curved surface shape of the bottom panel portion 3 in the sealed can 1 is determined as described above. More specifically, when the diameter of the can is 40 to 160 mm, the curvature is preferably 200 to 2000 mm. Within this range, the frequency of the percussion sound is not too high and measurement is easy, and the frequency band is also in a range in which “beat” is unlikely to occur.
[0027]
Here, it is preferable that the curved surface shape of the bottom panel portion 3 bulges from the higher pressure side to the lower side inside and outside the can. Therefore, it is preferable that the positive pressure can be formed so as to bulge from the inside toward the outside, and the negative pressure can be formed so as to bulge from the outside to the inside.
If the curved surface shape of the bottom panel portion 3 is a curved surface shape bulging from the lower pressure to the higher pressure inside and outside the can, the percussion frequency once decreases when the pressure inside and outside the can is changed. Since it becomes higher again, the accuracy of the percussion test results is lacking.
[0028]
The present invention can be applied to both a two-piece can (seamless can) and a three-piece can as long as it is a sealed can. However, the present invention is effective when applied to a two-piece can that tends to “beat” in the inspection frequency.
Moreover, if the material of the sealing can is a metal can, it can be applied to cans of various materials using aluminum or steel. Depending on the material, the punching frequency differs, and the frequency at which the “beat” occurs and the internal pressure of the can also differ. However, according to the present invention, by changing the radius of curvature of the bottom panel 3 according to the material, a convex concave portion described later is formed. Thus, it is possible to set the percussion frequency to a frequency band in which no “beat” occurs.
[0029]
In the case of a two-piece can, a bead portion 4 may be formed between the grounding portion 2 and the bottom panel portion 3 as shown in FIG. When the bead portion 4 is formed, the pressure resistance strength of the bottom portion increases, so even if the can internal pressure temporarily changes (for example, even if the can internal pressure increases during the retort process), the bottom portion does not deform and is accurate. It enables a simple checkup.
[0030]
[Second Embodiment]
5-7 has shown the perspective view which shows each aspect of 2nd embodiment which formed the recessed part in the bottom face panel part made into the curved surface shape.
FIG. 5 shows a form in which one point-like recess 5 is formed in the center of the curved bottom panel portion 3, and FIG. 6 shows that the recess 5 is formed in the center of the curved bottom panel portion 3. In addition, there is shown a form in which four dot-like recesses 5a are formed at equal intervals around the periphery.
[0031]
FIG. 7 shows a form in which streak-like concave portions 6 are radially formed on the curved bottom surface panel portion 3 at intervals of 120 degrees from the center.
Further, FIG. 8 shows the bottom panel portion 3 having a curved shape in which the dot-like recesses 5a and the stripe-like recesses 6 are alternately formed, and each of the dot-like recesses is provided between the stripe-like recesses 6 shown in FIG. The form which formed 5a is shown.
[0032]
In each form described above, a convex portion may be formed instead of the concave portion, or the concave portion and the convex portion may be mixed and formed. Moreover, the shape of a recessed part and a convex part can also be made into shapes other than a dot shape or a streak shape, Furthermore, the magnitude | size and arrangement | positioning of these recessed parts and a convex part can be made arbitrary.
[0033]
As described above, when the concave and / or convex portions are formed on the bottom surface panel portion 3 having a curved shape, the rigidity of the bottom portion of the sealing can 1 can be increased, and the number and size of the concave and / or convex portions can be increased. By changing the position and the like, it is possible to change the start point of the percussion frequency and the degree of frequency change (inclination of frequency characteristics).
Therefore, it becomes easy to manufacture a sealed can having a percussion frequency that does not cause “beat” for each type of can.
[0034]
〔Example〕
Example 1
When the can diameter was 52 mm and the bottom panel portion was a planar can, and the sealed cans were 200 mm and 2000 mm in radius of curvature of the bottom panel portion, the results shown in FIG. 9 were obtained. It became.
From the analysis results, the planar sealed can with a can diameter of 52 mm has a frequency f 0 of 1400 Hz when the internal pressure of the can is 0 and a frequency f 50 of 2600 Hz when the internal pressure of the can is 50 kPa, and the frequency difference f d (= f 50). -f 0) was 1200Hz. In addition, a curved sealed can with a diameter of 52 mm has a radius of curvature of 3600 Hz and 3200 Hz when the internal pressure of the can is 50 kPa and 0 when the radius of curvature is 200 mm, and the difference between the frequencies is 400 Hz. When the inner pressure is 2000 mm, the inspection frequencies when the internal pressure of the can is 50 kPa and 0 are 2650 Hz and 1600 Hz, respectively, and the difference between the frequencies is 1050 Hz.
That is, regardless of whether the radius of curvature is 200 mm or 2000 mm, the difference in the inspection frequency when the internal pressure of the can is 50 kPa and 0 is in the range of 100 to 2000 Hz, and Δf (f R −f 0 ) is also the curvature. When the radius is 200 mm, it is 1800 Hz, and when the radius of curvature is 2000 mm, it is 200 Hz, and k of Δf = k · f d is 1.5 to 0.17, and is within the range of 0.15 to 1.5. Met.
[0035]
When the curvature radius of the bottom panel is 2000 mm, the percussion frequency is changed to 1600 to 3150 Hz (can internal pressure 0 to 100 kPa), and a “beat” occurs near 1800 Hz (can internal pressure 10 kPa) (FIG. 9). Curve 3).
However, in the actual percussion, the internal pressure of the can is not changed in the range of 0 to 100 kPa, and it is usually performed in the range of the internal pressure of the can of 20 to 80 kPa, at most within the range of 15 to 90 kPa. Therefore, at the time of actual percussion inspection, even a can having a radius of curvature of the bottom panel portion of 2000 mm can be inspected in a state where a frequency band causing “beat” is avoided.
[0036]
(Example 2)
When a can with a diameter of 40 mm and a bottom panel with a flat bottom panel was punched, the punching frequency changed to 1900-3100 Hz (can internal pressure of 0-100 kPa), and a “beat” occurred near 2900 Hz ( Curve 1 in FIG.
Except for setting the radius of curvature of the bottom panel portion to 200 mm, when a sealed can under the same conditions as the sealed can was punched, the punching frequency changed to 2900-3700 Hz (can internal pressure 0-100 kPa). No “beat” occurred (curve 2 in FIG. 10).
[0037]
(Example 3)
When a can with a can diameter of 52 mm and a bottom panel portion having a flat shape was punched, the punching frequency changed to 1400 to 3100 Hz (can internal pressure of 0 to 100 kPa), and a “beat” occurred around 1800 Hz ( Curve 1) in FIG.
Except for setting the radius of curvature of the bottom panel portion to 400 mm, when a sealed can under the same conditions as the sealed can was punched, the punching frequency changed to 2200 to 3400 Hz (can internal pressure 0 to 100 kPa). No “beat” occurred (curve 2 in FIG. 11).
[0038]
Example 4
A sealed can of the same condition as the sealed can of Example 3 except that the radius of curvature of the bottom panel is 300 mm, and one point-like recess is formed at the center of the bottom and at six locations on the circumference. When the punching was performed, the punching frequency changed to 1900-3200 Hz (can internal pressure 0-100 kPa). No “beat” occurred (curve 3 in FIG. 11).
[0039]
(Example 5)
When the radius of curvature of the bottom panel portion is set to 300 mm, and a sealed can under the same conditions as the sealed can of Example 3 is performed except that six streaky concave portions are formed radially from the center of the bottom, The punching frequency changed to 2000 to 3100 Hz (can internal pressure 0 to 100 kPa). No “beat” occurred (curve 4 in FIG. 11).
[0040]
【The invention's effect】
According to the present invention having the above-described configuration, the frequency of the percussion sound generated during percussion can be set to a frequency band in which a so-called “beat” does not occur. This inspection can be performed with high accuracy by the percussion method.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the principle of the present invention.
FIG. 2 is a bottom cross-sectional view showing a first embodiment of the present invention.
FIG. 3 is an explanatory diagram for defining a radius of curvature of a bottom panel portion.
FIG. 4 is a bottom cross-sectional view of an embodiment in which a bead portion of the present invention is formed.
FIG. 5 is a bottom perspective view of a second embodiment of the present invention formed around a point-like recess.
FIG. 6 is a bottom perspective view of a second embodiment of the present invention in which a dot-like recess is formed on the same circumference as the center.
FIG. 7 is a bottom perspective view of a second embodiment of the present invention in which streak-like recesses are formed radially.
FIG. 8 is a bottom perspective view of a second embodiment of the present invention in which radial streak-like recesses and dot-like recesses are alternately formed.
FIG. 9 is a diagram showing the tapping frequency characteristics in the first example.
FIG. 10 is a diagram showing a tapping frequency characteristic in the second embodiment.
FIG. 11 is a diagram showing the tapping frequency characteristics in Examples 3 to 5;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sealing can 2 Grounding part 3 Bottom panel part 4 Bead part 5, 5a Dot-shaped recessed part 6 Streaky recessed part

Claims (9)

缶の直径が40〜160mmで、底面パネル部の曲率半径が200〜2000mmであり、底部の外周に形成した円周状の接地部の内側に底面パネル部を有するシームレスの密封缶において、
底面パネル部が平面形状の密封缶の、
缶内圧が0のときの打検周波数をf0
缶内圧が50kPaのときの打検周波数をf50
50−f0=fdとし、
底面パネル部が曲面形状の密封缶の
缶内圧が0のときの打検周波数をfRとし、
さらに、fR−f0=△fとしたときに、
△fがfdの0.15〜1.5倍の範囲となるような曲面形状としたことを特徴とする密封缶。
In a seamless sealed can having a diameter of the can of 40 to 160 mm, a radius of curvature of the bottom panel portion of 200 to 2000 mm, and having a bottom panel portion inside a circumferential grounding portion formed on the outer periphery of the bottom portion,
The bottom panel part is a flat shaped sealed can,
The inspection frequency when the internal pressure of the can is 0 is f 0 ,
The inspection frequency when the internal pressure of the can is 50 kPa is f 50 ,
f 50 −f 0 = f d ,
When the inner pressure of the sealed can whose bottom panel is curved is 0, the punching frequency is f R ,
Furthermore, when f R −f 0 = Δf,
A sealed can having a curved shape such that Δf is in a range of 0.15 to 1.5 times f d .
前記曲面形状をなす前記底面パネル部が、缶内外の圧力の高い方から低い方へ膨出することを特徴とした請求項1記載の密封缶。The sealed can according to claim 1 , wherein the bottom panel portion having the curved surface bulges from a higher pressure inside or outside the can to a lower pressure. 前記底面パネル部の曲面形状が、球面形状であることを特徴とした請求項1又は2記載の密封缶。The sealed can according to claim 1, wherein the curved shape of the bottom panel portion is a spherical shape. 前記曲面形状をなす底面パネル部の任意箇所に、一又は複数の凸部及び/又は凹部を形成したことを特徴とする請求項1〜3のいずれかに記載の密封缶。The sealed can according to any one of claims 1 to 3 , wherein one or a plurality of convex portions and / or concave portions are formed at an arbitrary position of the bottom surface panel portion having the curved shape. 前記凸部及び/又は凹部を、点状又は筋状に形成したことを特徴とする請求項4記載の密封缶。The sealed can according to claim 4, wherein the convex portion and / or the concave portion are formed in a dot shape or a streak shape. 前記点状の凸部及び/又は凹部を、前記底面パネル部の中央及び/又は同一円周上に等間隔に形成したことを特徴とする請求項4記載の密封缶。The sealed can according to claim 4, wherein the dot-like convex portions and / or concave portions are formed at equal intervals on the center and / or the same circumference of the bottom panel portion. 前記筋状の凸部及び/又は凹部を、前記底面パネル部に放射状に形成したことを特徴とする請求項5記載の密封缶。The sealed can according to claim 5, wherein the line-like convex portions and / or concave portions are formed radially on the bottom panel portion. 前記点状及び筋状の凸部及び/又は凹部を、前記底面パネル部に任意の図形を表すように形成したことを特徴とする請求項5記載の密封缶。6. The sealed can according to claim 5, wherein the dot-like and streak-like convex portions and / or concave portions are formed on the bottom panel portion so as to represent an arbitrary figure. 前記底面パネル部にビード部を形成したことを特徴とする請求項1〜8のいずれかに記載の密封缶。The sealed can according to claim 1 , wherein a bead portion is formed on the bottom panel portion.
JP2001237003A 2001-08-03 2001-08-03 Sealed can Expired - Fee Related JP4770084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001237003A JP4770084B2 (en) 2001-08-03 2001-08-03 Sealed can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001237003A JP4770084B2 (en) 2001-08-03 2001-08-03 Sealed can

Publications (2)

Publication Number Publication Date
JP2003040235A JP2003040235A (en) 2003-02-13
JP4770084B2 true JP4770084B2 (en) 2011-09-07

Family

ID=19068161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001237003A Expired - Fee Related JP4770084B2 (en) 2001-08-03 2001-08-03 Sealed can

Country Status (1)

Country Link
JP (1) JP4770084B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5051333B2 (en) * 2005-08-05 2012-10-17 東洋製罐株式会社 Method and apparatus for peeling off contents adhered to inner surface of sealed container
FR2954296B3 (en) * 2009-12-23 2011-12-23 Impress Group Bv METAL CONSERVATION BOX FOR A FOOD PRODUCT
JP6338317B2 (en) * 2012-10-04 2018-06-06 大和製罐株式会社 Method for producing containerized bakery products

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1593855A (en) * 1976-11-16 1981-07-22 Metal Box Co Ltd Containers
JPS5639134A (en) * 1979-09-10 1981-04-14 Toyo Seikan Kaisha Ltd Manufacture of canned food filled with inert gas
JPS5648954A (en) * 1979-09-18 1981-05-02 Toyo Seikan Kaisha Ltd Vessel having aptitude to impact test
JPS6114998Y2 (en) * 1979-10-30 1986-05-10
JPS56131152A (en) * 1980-03-18 1981-10-14 Toyo Seikan Kaisha Ltd Striking inspecting can cover and sealed can
JP3396947B2 (en) * 1994-03-07 2003-04-14 東洋製罐株式会社 Method for producing deformed seamless cans
JPH11193016A (en) * 1997-12-26 1999-07-21 Toyo Seikan Kaisha Ltd Low positive pressure canned goods and can body thereof having internal pressure inspection bearability
JP3409692B2 (en) * 1998-04-17 2003-05-26 東洋製罐株式会社 Can punching inspection system
JP2000203552A (en) * 1998-10-28 2000-07-25 Mitsubishi Materials Corp Can
JP2000128165A (en) * 1998-10-28 2000-05-09 Mitsubishi Materials Corp Can
JP3546733B2 (en) * 1998-12-25 2004-07-28 三菱マテリアル株式会社 Can manufacturing method and manufacturing apparatus
JP2003128060A (en) * 2001-10-29 2003-05-08 Toyo Seikan Kaisha Ltd Transformed seamless can and its manufacturing method

Also Published As

Publication number Publication date
JP2003040235A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
JP4770084B2 (en) Sealed can
EP1103470A1 (en) Metal can having a pressure control device
US5033287A (en) Method for inspecting a sealing property of a plastic container
US7786363B1 (en) Annular drum hoop for a drum
JP2001272385A (en) Hammering test method using liner prediction coefficient method and hammering test device
EP0693010B1 (en) A method of controlling the closing of a can or container, as well as a closing machine for carrying out the method
JP3409692B2 (en) Can punching inspection system
JP2004017977A (en) Container excellent in impact test aptitude
JPS6114998Y2 (en)
JP2019184415A (en) Ultrasonic wave flaw detection method and device
JP6701891B2 (en) Percussion device and percussion method
JP2002148133A (en) Method and device for inspecting internal pressure in sealed container
JP4492311B2 (en) Percussion apparatus and percussion method
JP2016090365A (en) Hammer impact test device and hammer impact test method
JP2000016418A (en) Seamless can for positive pressure
US7559222B2 (en) Method for testing can ends
JPS6135059B2 (en)
JPS5938139B2 (en) Sealed metal lid
JP2005172759A (en) Internal pressure inspection method for can
JP2005170470A (en) Can
JP3314693B2 (en) Method and apparatus for determining the quality of filled cans
JP2539918Y2 (en) Can end wall
JPS6242692B2 (en)
JPH05332870A (en) Testing method for flat-bottom type vacuum thermally insulated container
JPS5833053Y2 (en) Bottom structure of a metal can body with a drawn and ironed bottom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4770084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees