JP2005170470A - Can - Google Patents

Can Download PDF

Info

Publication number
JP2005170470A
JP2005170470A JP2003414781A JP2003414781A JP2005170470A JP 2005170470 A JP2005170470 A JP 2005170470A JP 2003414781 A JP2003414781 A JP 2003414781A JP 2003414781 A JP2003414781 A JP 2003414781A JP 2005170470 A JP2005170470 A JP 2005170470A
Authority
JP
Japan
Prior art keywords
internal pressure
diameter
axis direction
grounding
peripheral wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003414781A
Other languages
Japanese (ja)
Inventor
Atsushi Okubo
淳 大久保
Minoru Iwase
実 岩瀬
Hideki Miyazaki
英樹 宮崎
Akira Kan
晶 韓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003414781A priority Critical patent/JP2005170470A/en
Publication of JP2005170470A publication Critical patent/JP2005170470A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To examine the inner pressure of a sealed can containing a content highly precisely. <P>SOLUTION: An annular projection 13 which projects outward in the can axial direction is formed on the outer edge of the bottom 11 of the can 10. The annular projection 13 has a ground contact part 14 on the end thereof, and an inner peripheral wall 15 which is continuous with the ground contact part 14 radially on the inside thereof and rises in the can axial direction. A sloped wall 19 is formed continuously on the upper end in the can axial direction of the inner peripheral wall 15 to extend inward in the radial direction and upward in the can axial direction via a first recessed curving surface 18. On the sloped wall 19, a flat panel part 21 is formed continuously to extend radially inward via a second recessed curving surface 20. The diameter ψA of the panel part 21 is 0.47 to 0.82 times of the diameter ψB of a ground contact surface 50a. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内容物が充填、密封された缶を、該缶の底部側の内部に空間が形成されるように逆立ち姿勢とさせた状態で、該缶の底部のうち平滑面とされた径方向中央部を電磁誘導作用によって強制励振させることにより、缶内圧を検査する際に好適な缶に関するものである。   In the present invention, the diameter of the can which is filled and sealed is the smooth surface of the bottom of the can in a state where the can is turned upside down so that a space is formed inside the bottom of the can. The present invention relates to a can suitable for inspecting the can internal pressure by forcibly exciting the central portion in the direction by electromagnetic induction.

従来から、ミルク入りコーヒー等の低酸性飲料は、アルミニウム製の陽圧缶(液体窒素充填)あるいはスチール製の負圧缶に充填、密封され、レトルト殺菌をした後に、ケースに梱包されてパレットに積み込まれる。そして、ケース詰めされた缶は、7日程度放置した後、ケース毎にいわゆる打検による缶内圧検査を行い、漏れがないか確認が行われている。これは、万一、缶に微細なピンホールがある場合、スローリークするため充填直後に缶内圧を測定しても、缶内圧が充填前とさほど変わらず、リークの有無が分らないという問題があるからである。なお、内容物が低酸性飲料の場合は、一般に、缶に内容物を充填した後、窒素ガスを充填し、内容物の酸化防止を図っている。   Traditionally, low-acid beverages such as coffee with milk are filled in aluminum positive pressure cans (filled with liquid nitrogen) or steel negative pressure cans, sealed, retort sterilized, then packed in cases and placed on pallets. Loaded. The cans packed in the case are allowed to stand for about 7 days, and then a can internal pressure inspection is performed for each case by so-called percussion to check for leaks. This is because if there is a fine pinhole in the can, it will cause a slow leak, so even if the internal pressure of the can is measured immediately after filling, the internal pressure of the can will not change much before filling, and there will be no problem with the presence or absence of leakage. Because there is. In addition, when the content is a low-acid beverage, in general, after filling the can with the content, nitrogen gas is filled to prevent oxidation of the content.

ところで、前記打検により缶内圧を検査する手段としては、内容物が充填、密封された缶を、この缶の底部側の内部に空間が形成されるように逆立ち姿勢とさせた状態で、この缶の底部のうち平滑面とされた径方向中央部を電磁誘導作用によって強制励振させ、この際の缶からの反響音を捉えて算出されたピーク周波数と、予め設定された缶内圧値とピーク周波数との相関とに基づいて缶の内圧を検査する方法が知られている(例えば下記特許文献1参照)。   By the way, as a means for inspecting the can internal pressure by the above-mentioned percussion, the can filled with the contents and sealed in a state where the can is turned upside down so that a space is formed inside the bottom of the can. Of the bottom of the can, the central portion in the radial direction, which is a smooth surface, is forcibly excited by electromagnetic induction, and the peak frequency calculated by capturing the reverberation from the can at this time, the preset can internal pressure value and the peak A method for inspecting the internal pressure of the can based on the correlation with the frequency is known (for example, see Patent Document 1 below).

ここで、前記缶としては、筒状体の一方の開口部に、プルタブ等を有する缶蓋を巻締めるとともに、他方の開口部に全面が略平坦面とされた底蓋を巻締めた構成の3ピース缶や、金属板に絞り,しごき加工を施して形成された有底筒状体の開口部に前記缶蓋を巻締めた構成の2ピース缶や、筒状体の一方の開口部にネックイン加工等を施して口金部を形成し、この口金部にキャップを螺着するとともに、他方の開口部に前記底蓋を巻締めた構成の3ピース構造のキャップ付ボトル缶や、前記有底筒状体の開口部にネックイン加工等を施して口金部を形成し、この口金部にキャップを螺着した構成の2ピース構造のキャップ付ボトル缶が、主として供給されている。   Here, the can has a configuration in which a can lid having a pull tab or the like is wound around one opening portion of a cylindrical body, and a bottom lid whose entire surface is a substantially flat surface is wound around the other opening portion. A three-piece can, a two-piece can with a structure in which the can lid is wound around an opening of a bottomed cylindrical body formed by drawing and ironing a metal plate, and one opening of the cylindrical body A bottle part with a cap having a three-piece structure in which a neck part is formed to form a base part, a cap is screwed onto the base part, and the bottom lid is wound around the other opening part, A two-piece bottle with a cap having a structure in which a neck portion is formed on the opening of the bottom cylindrical body to form a base portion and a cap is screwed to the base portion is mainly supplied.

これらの缶のうち、2ピース缶および2ピース構造のキャップ付ボトル缶の缶底部は一般に、缶胴の内部側へ凹む平滑面とされたドーム部と、このドーム部の周縁に缶軸方向外方へ突出する環状凸部とを備える概略構成とされ、この環状凸部は、先端の接地部と、この接地部の径方向内側に連なり、缶軸方向に立上がる内周壁とを備え、この内周壁は缶胴の内側へ凹む凹曲面部を介して前記ドーム部に連なる構成とされている。   Among these cans, the bottom of the two-piece can and the bottle can with a two-piece structure is generally a smooth dome that is recessed toward the inside of the can body, and the outer periphery of the dome is located outside the can axis. The ring-shaped convex part includes a grounding part at the tip, and an inner peripheral wall standing in the radial direction of the grounding part and rising in the can axis direction. The inner peripheral wall is configured to be continuous with the dome portion via a concave curved surface portion that is recessed toward the inside of the can body.

この種の缶の内圧を検査するに際しても、従来から、前記逆立ち姿勢とした状態で、ドーム部を強制励振させることによる前記打検がなされるのが一般的であった。
しかしながら、この種の缶においては、前記ドーム部の形状のために、缶内圧が上昇しても、径方向内方に向う圧縮力が主に発生し、缶胴の外側へ膨出変形し難い。したがって、缶の内圧が変化しても前記強制励振による反響音が変化し難く、高精度な内圧検査が困難であるという問題があった。特に、微小な内圧変化を検査することが困難であり、内圧について良缶を不良缶と判断したり、逆に不良缶を良缶と判断したりする場合があった。
Conventionally, when inspecting the internal pressure of this type of can, the hitting test is generally performed by forcibly exciting the dome portion in the inverted posture.
However, in this type of can, due to the shape of the dome portion, even if the internal pressure of the can increases, a compressive force mainly inward in the radial direction is generated, and it is difficult to bulge and deform outside the can body. . Therefore, there is a problem that even if the internal pressure of the can changes, the reverberation sound due to the forced excitation hardly changes, and it is difficult to perform a high-precision internal pressure inspection. In particular, it is difficult to inspect minute changes in internal pressure, and in some cases, a good can is judged as a defective can, and conversely, a defective can is judged as a good can.

このような問題を解決するための構成として、下記特許文献2に開示されているような、前記内周壁の缶軸方向上端に、缶胴の内側に凹む環状凹部が連設され、この環状凹部の径方向内側に、缶胴の外側に凸とされたコーナー部を介して連続する平坦な中央パネル部が連設された缶が知られている。この構成により、平坦な中央パネル部は、缶の内圧の変化に対応して、比較的リニアに膨出変形するとともに、引張状態も変化するので、高精度な内圧検査を実現することが可能になるものである。
特開昭49−34376号公報 特開2000−16418号公報
As a configuration for solving such a problem, as disclosed in Patent Document 2 below, an annular recess recessed inside the can body is continuously provided at the upper end of the inner peripheral wall in the can axis direction. There is known a can in which a flat central panel portion that is continuous through a corner portion that is convex to the outside of the can body is continuously provided on the radially inner side of the can body. With this configuration, the flat central panel bulges and deforms relatively linearly in response to changes in the internal pressure of the can, and the tensile state also changes, enabling highly accurate internal pressure inspection to be realized. It will be.
JP 49-34376 JP 2000-16418 A

しかしながら、前記従来の缶では、平坦な中央パネル部の外縁に、缶胴の外側に凸とされたコーナー部が連設されているので、耐圧強度および落下強度が低下するという問題があった。   However, the conventional can has a problem in that the pressure strength and the drop strength are lowered because the corner portion, which is convex to the outside of the can body, is connected to the outer edge of the flat central panel portion.

すなわち、一般に、耐圧強度とは、中央パネル部が缶胴の外側へ所定量膨出変形する際の缶内圧値で評価し、また、落下強度とは、缶内圧を所定値まで上昇させるとともに、環状凸部の接地部を下方に向けた状態で、所定高さ位置から自然落下させたときに、この缶が受ける衝撃力によって、ドーム部が膨出する変形量で評価する。
したがって、内圧の上昇および衝撃力の発生により缶底部に作用する力の方向が、前記コーナー部の突出方向と一致することになるので、前記従来の、凹曲面部(前記缶底部に作用する力の方向と反対方向に凸となる)を有する構成の缶と比べて、前記力に抗する耐力が低下する、すなわち耐圧強度および落下強度が低下することになる。
That is, in general, the pressure strength is evaluated by a can internal pressure value when the central panel portion is swelled and deformed by a predetermined amount to the outside of the can body, and the drop strength is to increase the can internal pressure to a predetermined value, Evaluation is based on the amount of deformation by which the dome bulges due to the impact force that the can receives when the ring is naturally dropped from a predetermined height position with the grounding portion of the annular convex portion facing downward.
Therefore, since the direction of the force acting on the can bottom due to the increase in internal pressure and the generation of impact force coincides with the protruding direction of the corner portion, the conventional concave curved surface portion (the force acting on the can bottom) In comparison with a can having a structure having a convexity in the direction opposite to the above direction, the proof strength against the force is reduced, that is, the pressure strength and the drop strength are reduced.

本発明は前記状況に鑑みてなされたもので、内容物が充填され密封された缶の内圧検査を高精度に行うことができるとともに、このような構成においても耐圧強度および落下強度の低下発生を抑制できる缶を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can accurately check the internal pressure of a can filled and sealed with contents, and even in such a configuration, the occurrence of a decrease in pressure resistance and drop strength is generated. It aims at providing the can which can be controlled.

前記課題を解決して、このような目的を達成するために、本発明は以下の手段を提案している。
請求項1に係る発明は、缶底部の外縁部に缶軸方向外方に突出する環状凸部が形成され、該環状凸部は先端の接地部と、該接地部の径方向内側に連なり、缶軸方向に立上がる内周壁とを備える構成の缶であって、前記内周壁の缶軸方向上端に、第1の凹曲面部を介して径方向内方かつ缶軸方向上方へ延びる傾斜壁が連設され、該傾斜壁に、第2の凹曲面部を介して径方向内方へ延びる平坦なパネル部が連設され、該パネル部の直径は、前記接地部の先端同士を周方向に連続して順次結んだときに得られる円形状の直径の0.47倍以上0.82倍以下とされていることを特徴とする。
In order to solve the above-described problems and achieve such an object, the present invention proposes the following means.
In the invention according to claim 1, an annular convex portion that protrudes outward in the axial direction of the can is formed at the outer edge portion of the can bottom, and the annular convex portion is connected to the grounding portion at the tip and the radially inner side of the grounding portion, A can having an inner peripheral wall that rises in the can axis direction, and an inclined wall that extends radially inward and upward in the can axis direction via a first concave curved surface at the upper end of the inner peripheral wall in the can axis direction And a flat panel portion extending inward in the radial direction via the second concave curved surface portion is connected to the inclined wall, and the diameter of the panel portion is the circumferential direction between the tips of the grounding portions. It is characterized by being 0.47 times or more and 0.82 times or less of the diameter of the circular shape obtained when they are successively connected to each other.

この缶では、内容物を充填,密封した缶の内圧を検査するに際して、平坦面とされたパネル部を電磁誘導作用によって強制励振させることが可能になり、高精度な内圧検査を実現することができる。
すなわち、パネル部は平坦とされているので、缶内圧の変化に対して、比較的リニアに変形するとともに、引張状態も変化することになる。
In this can, when inspecting the internal pressure of the can filled and sealed with the contents, it is possible to forcibly excite the flat panel by electromagnetic induction, and to achieve highly accurate internal pressure inspection. it can.
That is, since the panel portion is flat, the tensile state changes as well as a relatively linear deformation with respect to the change in the can internal pressure.

特に、前記パネル部の直径を前記範囲に設定しているので、微小な内圧変化に対しても的確に変形し、また、引張状態も変化することになり、高精度な内圧検査を実現することができるとともに、このような構成においても、耐圧強度および落下強度の低下発生を抑制することが可能になる。
すなわち、パネル部の直径を前記範囲を超えた大きさに設定すると、内圧の上昇に対する変形量が過多となるとともに、引張状態が変化し難くなることによって、パネル部を前記強制励振させたときの反響音から内圧値を算出することが困難になるとともに、場合によっては、適正な内圧値であっても、パネル部が塑性変形する場合が生じ、高精度な内圧検査を実現することができないからである。逆に、パネル部の直径を前記範囲より小さい大きさに設定すると、微小な内圧変化に対して的確に変形することや、引張状態が変化し難く、高精度な内圧検査を実現することができないからである。
In particular, since the diameter of the panel portion is set within the above range, it can be accurately deformed even with a small change in internal pressure, and the tensile state will also change, realizing a highly accurate internal pressure inspection. In addition, even in such a configuration, it is possible to suppress the occurrence of a decrease in pressure resistance and drop strength.
That is, when the diameter of the panel part is set to a size exceeding the above range, the amount of deformation with respect to the increase in internal pressure becomes excessive, and the tensile state becomes difficult to change, so that when the panel part is forcedly excited, It is difficult to calculate the internal pressure value from the reverberation sound, and in some cases, even if the internal pressure value is appropriate, the panel part may be plastically deformed, and a high-precision internal pressure test cannot be realized. It is. Conversely, if the diameter of the panel part is set to a size smaller than the above range, it will not be deformed accurately with respect to minute changes in internal pressure, and the tensile state will not change easily, and high-precision internal pressure inspection cannot be realized. Because.

また、内周壁と傾斜壁とを連結する第1の凹曲面部、および傾斜壁とパネル部とを連結する第2の凹曲面部はともに、缶胴の内側に凹んだ形状となっているので、缶内圧の上昇によって、これらの缶底部の各部が缶胴の外方へ膨出変形しようとしたときの変形方向と反対向きに凸となっており、前記膨出変形に対して抗する構成となっている。
以上により、高精度な内圧測定を実現することが可能になるとともに、このような構成においても、耐圧強度および落下強度の低下発生を確実に抑制することができる。
Moreover, since both the 1st concave curved surface part which connects an internal peripheral wall and an inclination wall, and the 2nd concave curved surface part which connects an inclination wall and a panel part are the shapes dented inside the can body. In addition, by increasing the internal pressure of the can, each portion of the bottom portion of the can is convex in the direction opposite to the deformation direction when it is about to bulge and deform outward of the can body, and is configured to resist the bulge deformation It has become.
As described above, highly accurate internal pressure measurement can be realized, and even in such a configuration, it is possible to reliably suppress the occurrence of a decrease in pressure resistance and drop strength.

請求項2に係る発明は、請求項1記載の缶において、前記接地部の缶内方の曲率半径は0.5mm以上2.5mm以下とされ、前記第1の凹曲面部の缶外方の曲率半径は1.0mm以上8.0mm以下とされていることを特徴とする。   According to a second aspect of the present invention, in the can according to the first aspect, a radius of curvature inside the can of the grounding portion is 0.5 mm or more and 2.5 mm or less, and the outer side of the can of the first concave curved surface portion is set. The curvature radius is 1.0 mm or more and 8.0 mm or less.

この発明に係る缶によれば、内容物が充填,密封された缶の内圧検査を高精度に行うことができるとともに、このような構成においても耐圧強度および落下強度の低下発生を抑制することができる。   According to the can according to the present invention, the internal pressure inspection of the can filled and sealed with the contents can be performed with high accuracy, and even in such a configuration, it is possible to suppress the occurrence of a decrease in pressure strength and drop strength. it can.

以下、本発明に係る缶の好適な実施の形態を図面を参照して詳細に説明する。
図1および図2に示す缶10は、缶胴12と、この缶胴12の缶軸方向下端部に連設された缶底部11とを備える概略構成とされている。
なお、缶10は、アルミニウム、アルミニウム合金,またはスチールにより形成され、特にアルミニウム合金の場合は3000系の板材(板厚0.25mm以上0.46mm以下、0.2%耐力240MPa以上320MPa以下)に基づいて形成される。この缶10は、円板状の前記板材に、絞り,しごき加工を施して有底筒状体を形成し、この際に、図1に示すような、缶胴12および缶底部11が形成される。そして、缶胴12の缶軸方向上部に施される加工の種類によって、次の2つの構成の缶が形成されることになる。
Hereinafter, preferred embodiments of a can according to the present invention will be described in detail with reference to the drawings.
A can 10 shown in FIGS. 1 and 2 has a schematic configuration including a can body 12 and a can bottom portion 11 connected to the lower end of the can body 12 in the can axis direction.
The can 10 is made of aluminum, an aluminum alloy, or steel. In particular, in the case of an aluminum alloy, the can 10 is made of a 3000 series plate (plate thickness 0.25 mm to 0.46 mm, 0.2% proof stress 240 MPa to 320 MPa). Formed on the basis. The can 10 is formed by subjecting the disk-shaped plate material to drawing and ironing to form a bottomed cylindrical body. At this time, a can body 12 and a can bottom portion 11 as shown in FIG. 1 are formed. The And the can of the following 2 structure will be formed with the kind of process given to the can axial direction upper part of the can body 12. FIG.

まず1つ目は、缶胴12の上端部に連設され、缶軸方向上方に向うに従い漸次縮径した肩部と、この肩部の缶軸方向上端部と連設され、缶軸方向上方に延在した口金部とを有し、かつこの口金部に、雄ねじ部が形成されるとともに、上端部が径方向外方へ折り返されたカール部が形成されたボトル缶に、内容物が充填され、前記口金部にキャップが螺着された構成のキャップ付ボトル缶がある。
次に2つ目は、缶胴12の上端部にネックイン加工やフランジ加工等が施された後に、内容物が充填され、この開口端部としてのフランジ部に缶蓋が巻締められた構成の2ピース缶がある。
The first one is connected to the upper end of the can body 12 and is gradually connected to the upper end of the shoulder in the can axis direction. And a bottle can having a male thread portion formed on the base portion and a curl portion whose upper end portion is folded outward in the radial direction. In addition, there is a bottle can with a cap having a configuration in which a cap is screwed onto the base portion.
Next, the second is a configuration in which the top end portion of the can body 12 is subjected to neck-in processing, flange processing, or the like, and then the contents are filled, and the can lid is wound around the flange portion as the opening end portion. There are two-piece cans.

缶底部11の外縁部には、缶軸方向外方に突出する環状凸部13が形成され、この環状凸部13は、先端の接地部14と、この接地部14の径方向内側に連なり、缶軸方向に立上がる内周壁15と、接地部14の径方向外側に連なり、缶軸方向外方かつ径方向外方へ連なる外周壁16とを備えている。
そして、この外周壁16は径方向外方へ凸とされた凸曲面部17を介して缶胴12の缶軸方向下端と連設された構成となっている。
On the outer edge portion of the can bottom portion 11, an annular convex portion 13 protruding outward in the axial direction of the can is formed. The annular convex portion 13 is connected to the grounding portion 14 at the tip and the radially inner side of the grounding portion 14, An inner peripheral wall 15 that rises in the can axis direction and an outer peripheral wall 16 that continues to the outside in the radial direction of the ground contact portion 14 and that extends outward in the can axis direction and outward in the radial direction are provided.
The outer peripheral wall 16 is connected to the lower end of the can body 12 in the can axis direction via a convex curved surface portion 17 that is convex outward in the radial direction.

また、内周壁15の缶軸方向上端に、第1の凹曲面部18を介して径方向内方かつ缶軸方向上方へ延びる平坦な傾斜壁19が連設され、この傾斜壁19に、第2の凹曲面部20を介して径方向内方へ延びる平坦なパネル部21が連設されている。
以上のように形成された缶底部11における肉厚は、0.25mm以上0.46mm以下とされている。
なお、缶底部11の環状凸部13の内部は空間とされており、この空間は、図1に示すように、胴部12の内部に形成された空間と連通した状態となっている。
Further, a flat inclined wall 19 extending inward in the radial direction and upward in the can axis direction via the first concave curved surface portion 18 is connected to the upper end of the inner peripheral wall 15 in the can axis direction. A flat panel portion 21 extending inward in the radial direction is continuously provided via two concave curved surface portions 20.
The thickness of the can bottom 11 formed as described above is set to 0.25 mm or more and 0.46 mm or less.
In addition, the inside of the cyclic | annular convex part 13 of the can bottom part 11 is made into the space, and this space is in the state connected with the space formed in the inside of the trunk | drum 12, as shown in FIG.

ここで、パネル部21の直径φAは、接地部14の先端同士を周方向に連続して順次結んだときに得られる円形状の直径φBの0.47倍以上0.82倍以下に設定されている。
ここで、パネル部21の直径φAとは、パネル部21の径方向外方端のうち缶軸を挟んで対向する位置同士の距離をいい、接地部14の先端とは、接地部14を缶軸方向下方に向けた状態で、この缶10を平坦面50上に載置したときに、接地部14の外表面のうち平坦面50と当接する部分のことをいう。すなわち、平坦面50表面のうち、接地部14の先端が当接する部分(以下、この部分を単に「接地面50a」という)における直径がφBとなる。
なお、図1および図2に示す缶底部11においては、パネル部21の直径φAは25mm、接地面50aの直径φBは50.9mmとされ、φAはφBの0.49倍となっている。
Here, the diameter φA of the panel portion 21 is set to 0.47 times or more and 0.82 times or less of the circular diameter φB obtained when the tips of the grounding portions 14 are successively connected in the circumferential direction. ing.
Here, the diameter φA of the panel portion 21 refers to the distance between opposing positions across the can axis among the radially outer ends of the panel portion 21, and the tip of the grounding portion 14 refers to the grounding portion 14. When the can 10 is placed on the flat surface 50 in a state of being directed downward in the axial direction, it refers to a portion of the outer surface of the grounding portion 14 that contacts the flat surface 50. That is, the diameter of the surface of the flat surface 50 where the tip of the ground contact portion 14 abuts (hereinafter, this portion is simply referred to as “ground contact surface 50a”) is φB.
1 and 2, the panel portion 21 has a diameter φA of 25 mm, the ground surface 50a has a diameter φB of 50.9 mm, and φA is 0.49 times φB.

以上のように構成された缶底部11の各部の寸法について説明する。
接地部14の缶内方の曲率半径r1は、0.5mm以上2.5mm以下に設定されている。曲率半径r1が0.5mmより小さい場合、この接地部14を成形加工する際に、この部分に亀裂が生じる等の製造上の不具合が発生する虞があり、また、2.5mmより大きいと、缶底部11に必要十分な耐圧強度および落下強度を具備させることができないからである。
また、第1の凹曲面部18の缶外方の曲率半径r2は、1.0mm以上8.0mm以下に設定されている。曲率半径r2がこの範囲内にない場合、缶底部11に必要十分な耐圧強度および落下強度を具備させることができないからである。
さらに、接地面50aとパネル部21の外表面との距離Cは、6.0mm以上10.0mm以下に設定されている。この距離Cが6.0mmより小さい場合、缶底部11に必要十分な耐圧強度および落下強度を具備させることができず、10.0mmより大きいと、このパネル部21を成形加工する際に、この部分が裂ける虞があり、製造上の不具合が生ずる虞があるからである。
なお、外周壁16の外表面と、平坦面50の表面とがなす角度θ1は、30°以上60°以下に、好ましくは38°以上50°以下に設定され、また、内周壁15の外表面と、缶軸とのなす角度θ2は、0°以上6°以下に設定されている。
The dimension of each part of the can bottom part 11 comprised as mentioned above is demonstrated.
The radius of curvature r1 inside the can of the ground contact portion 14 is set to 0.5 mm or more and 2.5 mm or less. When the radius of curvature r1 is smaller than 0.5 mm, there is a risk of manufacturing problems such as cracking in this portion when the grounding portion 14 is molded. This is because the can bottom 11 cannot be provided with necessary and sufficient pressure resistance and drop strength.
Moreover, the curvature radius r2 of the outer side of the first concave curved surface portion 18 is set to 1.0 mm or more and 8.0 mm or less. This is because if the radius of curvature r2 is not within this range, the can bottom 11 cannot be provided with necessary and sufficient pressure resistance and drop strength.
Furthermore, the distance C between the grounding surface 50a and the outer surface of the panel portion 21 is set to 6.0 mm or more and 10.0 mm or less. When the distance C is smaller than 6.0 mm, the can bottom 11 cannot be provided with necessary and sufficient pressure resistance and drop strength. When the distance C is larger than 10.0 mm, This is because there is a possibility that the portion may be torn and a manufacturing defect may occur.
The angle θ1 formed by the outer surface of the outer peripheral wall 16 and the surface of the flat surface 50 is set to 30 ° to 60 °, preferably 38 ° to 50 °, and the outer surface of the inner peripheral wall 15. And the angle θ2 formed with the can shaft is set to 0 ° or more and 6 ° or less.

以上のように構成された缶10は、内容物が充填された後に、開口部に缶蓋が巻締められたり、あるいはキャップが螺着されることにより、密封状態とされ、その後、レトルト殺菌を施した後に、ケースに梱包されてパレットに積み込まれ、7日程度放置される。その後、ケース内の缶10の全てを、この缶10の底部11側の内部に空間が形成されるように逆立ち姿勢とさせた状態で、このケースの外側から、加振器により電磁誘導作用によって、パネル部21を強制励振させる。そして、この際の缶10からの反響音をマイクロフォンにより捉え、ピーク周波数を算出する。その後、このピーク周波数と、予め設定された缶内圧値とピーク周波数との相関とに基づいて缶の内圧を検査する。   The can 10 configured as described above is sealed after the contents are filled, and a can lid is wound around the opening or a cap is screwed, and then the retort sterilization is performed. After application, they are packed in a case, loaded on a pallet, and left for about 7 days. Thereafter, all of the cans 10 in the case are turned upside down so that a space is formed in the bottom 11 side of the can 10, and from the outside of the case by an electromagnetic induction action by a vibrator. The panel unit 21 is forcibly excited. And the reverberation sound from the can 10 in this case is caught with a microphone, and a peak frequency is calculated. Thereafter, the internal pressure of the can is inspected based on the peak frequency and the correlation between the preset internal pressure value of the can and the peak frequency.

ここで、以上のように構成された缶10について、打検適正および耐圧強度についての評価試験を行った。結果を図3に示す。
この試験に供する缶10として、前述した構成のうち、φA/φBを0.47倍以上0.82倍以下の範囲内で、パネル部21の直径φAを異ならせて7種類の缶10を形成した(実施例1から7)。また、比較例として、φA/φBが前記範囲内とならないように、パネル部21の直径φAを異ならせて3種類の缶を形成した(比較例1から3)。なお、これらの実施例および比較例の缶は、前記実施形態で示した各寸法のうち、パネル部直径φAのみを異ならせ、この他の寸法は全て同一にしている。
Here, about the can 10 comprised as mentioned above, the evaluation test about a punching appropriateness and a pressure strength was done. The results are shown in FIG.
As cans 10 used for this test, seven types of cans 10 are formed by varying the diameter φA of the panel portion 21 within the range of φA / φB from 0.47 times to 0.82 times among the above-described configurations. (Examples 1 to 7). Further, as a comparative example, three types of cans were formed by changing the diameter φA of the panel portion 21 so that φA / φB would not be within the above range (Comparative Examples 1 to 3). Note that the cans of these examples and comparative examples differ only in the panel diameter φA among the dimensions shown in the embodiment, and all other dimensions are the same.

そして、形成された缶に内容物を充填,密封した後に、これらにレトルト処理を施す。次に、この缶の胴部に孔を穿設し、缶内圧を大気圧と同等にした後に、この孔にエア供給針を嵌入する。その後、この缶を底部が缶軸方向上方へ向くように逆立ち姿勢とした状態で、パネル部21を電磁誘導作用によって、強制励振させ、この際の反響音を捉えてピーク周波数を算出する。次に、前記エア供給針からエアを供給し、缶内圧を0.1MPaだけ上昇させたときに、再度前記ピーク周波数を算出し、内圧上昇前後のピーク周波数の変化量を算出する。このピーク周波数の変化量が大きい程、微小な内圧変化をも検出することが可能になるといえる。
また、前記エア供給針により缶内圧を徐々に上昇させた後に、パネル部21が缶軸方向下方に所定量膨出変形したときの内圧値、すなわち耐圧強度を測定した。
Then, after filling and sealing the contents in the formed can, these are subjected to retort processing. Next, a hole is formed in the body of the can, and after the internal pressure of the can is made equal to the atmospheric pressure, an air supply needle is inserted into the hole. Thereafter, in a state where the can is turned upside down so that the bottom portion is directed upward in the can axis direction, the panel portion 21 is forcibly excited by electromagnetic induction action, and the peak frequency is calculated by capturing the echo sound. Next, when air is supplied from the air supply needle and the can internal pressure is increased by 0.1 MPa, the peak frequency is calculated again, and the amount of change in the peak frequency before and after the internal pressure increase is calculated. It can be said that the smaller the change amount of the peak frequency, the smaller the change in internal pressure can be detected.
Further, after gradually increasing the internal pressure of the can with the air supply needle, the internal pressure value when the panel portion 21 bulges and deforms a predetermined amount downward in the axial direction of the can, that is, the pressure resistance, was measured.

図3から、φA/φBが0.47倍以上0.82倍以下の場合は、缶内圧が0.1MPa変化したときに、ピーク周波数が350Hz以上変化することが確認でき、良好な打検適正を具備させることができることが確認できた。また、このような構成においても、耐圧強度は通常の使用に耐え得る必要十分な0.70MPa以上となっており、強度の低下を抑制できることが確認できた。
なお、図3には図示していないが、前記エア供給針により缶内圧を所定量だけ上昇させた後に、この缶を、接地部の先端が缶軸方向下方に向いた状態で、所定の高さ位置から缶軸方向に自然落下させたときの膨出量を測定し、落下強度を検査した。
結果、φA/φBが前記範囲内にある場合は、平坦なパネル部21を有さない従来の構成の缶と略同一、あるいは若干小さい落下強度を有していることが確認できた。また、φA/φBが前記範囲より大きい場合は、落下強度が大きく低下していることが確認できた。
From FIG. 3, when φA / φB is 0.47 times or more and 0.82 times or less, it can be confirmed that when the internal pressure of the can changes by 0.1 MPa, the peak frequency changes by 350 Hz or more. It has been confirmed that can be provided. Moreover, even in such a configuration, the pressure strength is 0.70 MPa or more which is necessary and sufficient to withstand normal use, and it was confirmed that the strength reduction can be suppressed.
Although not shown in FIG. 3, after the can internal pressure is increased by a predetermined amount by the air supply needle, the can is moved to a predetermined height with the tip of the grounding portion facing downward in the can axis direction. The amount of bulging when naturally dropped from the position in the direction of the can axis was measured, and the drop strength was examined.
As a result, when φA / φB was within the above range, it was confirmed that the drop strength was substantially the same as or slightly smaller than that of the conventional can having no flat panel portion 21. Moreover, when φA / φB was larger than the above range, it was confirmed that the drop strength was greatly reduced.

以上説明したように、本実施形態による缶によれば、内容物を充填して密封した缶の内圧を検査するに際して、平坦面とされたパネル部21を電磁誘導作用によって強制励振させることが可能になり、高精度な内圧検査を実現することができる。すなわち、パネル部21は平坦とされているので、缶内圧の変化に対して、比較的リニアに変形するとともに、引張状態も変化することになる。   As described above, according to the can according to the present embodiment, when inspecting the internal pressure of the sealed can filled with the contents, the flat panel portion 21 can be forcibly excited by electromagnetic induction. Thus, a highly accurate internal pressure inspection can be realized. That is, since the panel part 21 is made flat, it is deformed relatively linearly with respect to the change in the can internal pressure, and the tensile state also changes.

特に、パネル部21の直径を前記範囲に設定しているので、微小な内圧変化に対しても的確に変形し、また、引張状態も変化することになり、高精度な内圧検査を実現することができるとともに、このような構成においても、耐圧強度および落下強度の低下発生を抑制することが可能になる。
すなわち、パネル部21の直径φAを前記範囲を超えた大きさに設定すると、内圧の上昇に対する変形量が過多となるとともに、引張状態が変化し難くなることによって、パネル部21を前記強制励振させたときの反響音からピーク周波数を算出することが困難になるとともに、場合によっては、適正な内圧値であっても、パネル部21が塑性変形する場合が生じ、高精度な内圧検査を実現することができないからである。逆に、パネル部21の直径φAを前記範囲より小さい大きさに設定すると、微小な内圧変化に対して的確に変形することや、引張状態が変化せず、高精度な内圧検査を実現することができないからである。
In particular, since the diameter of the panel portion 21 is set within the above range, it can be accurately deformed even with a small change in internal pressure, and the tensile state can also be changed, thereby realizing a highly accurate internal pressure test. In addition, even in such a configuration, it is possible to suppress the occurrence of a decrease in pressure resistance and drop strength.
That is, when the diameter φA of the panel portion 21 is set to a size exceeding the above range, the deformation amount with respect to the increase in internal pressure becomes excessive, and the tensile state becomes difficult to change, so that the panel portion 21 is forcedly excited. It is difficult to calculate the peak frequency from the reverberation sound at the time, and in some cases, the panel portion 21 may be plastically deformed even with an appropriate internal pressure value, thereby realizing a highly accurate internal pressure inspection. Because you can't. On the contrary, if the diameter φA of the panel portion 21 is set to be smaller than the above range, it can be accurately deformed with respect to a minute change in internal pressure, and a high-precision internal pressure inspection can be realized without changing the tensile state. It is because it is not possible.

また、内周壁15と傾斜壁19とを連結する第1の凹曲面部18、および傾斜壁19とパネル部21とを連結する第2の凹曲面部20はともに、缶胴12の内側に凹んだ形状となっているので、缶内圧の上昇によって、これらの缶底部11の各部が缶胴の外方へ膨出変形しようとするときの変形方向と反対向きに凸となっており、前記膨出変形に対して抗する構成となっている。
以上により、缶の高精度な内圧測定を実現することが可能になるとともに、このような構成においても、耐圧強度および落下強度の低下発生を確実に抑制することが可能になる。
The first concave curved surface portion 18 that connects the inner peripheral wall 15 and the inclined wall 19 and the second concave curved surface portion 20 that connects the inclined wall 19 and the panel portion 21 are both recessed inside the can body 12. Since the inner pressure of the can increases, each portion of the bottom portion 11 of the can protrudes in the direction opposite to the deformation direction when the outer portion of the can body is bulged and deformed. It has a structure that resists deformation.
As described above, highly accurate internal pressure measurement of the can can be realized, and even in such a configuration, it is possible to reliably suppress the occurrence of a decrease in pressure resistance and drop strength.

なお、本発明の技術的範囲は前記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、図1において、傾斜壁19を径方向内方かつ缶軸方向上方へ延びる平坦壁とした構成を示したが、缶胴12の内側へ凹む凹曲面壁としてもよい。
また、前記実施形態では、電磁誘導作用によって缶10を強制励振させ、この際の缶10からの反響音を捉えて算出されたピーク周波数と、予め設定された缶内圧値とピーク周波数との相関とに基づいて缶の内圧を検査する方法を示したが、これに限らず、缶10を強制励振させることによって得られた反響音に基づいて缶内圧を検査する方法であれば本発明を適用することは可能である。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in FIG. 1, the inclined wall 19 is configured as a flat wall extending radially inward and upward in the can axis direction, but may be a concave curved wall recessed inward of the can body 12.
Further, in the above embodiment, the can 10 is forcibly excited by electromagnetic induction action, and the correlation between the peak frequency calculated by capturing the echo sound from the can 10 and the preset can internal pressure value and the peak frequency is obtained. Although the method of inspecting the internal pressure of the can based on the above has been shown, the present invention is not limited thereto, and the present invention can be applied to any method that inspects the internal pressure of the can based on the reverberation sound obtained by forcibly exciting the can 10. It is possible to do.

内容物が充填,密封された缶の内圧検査を高精度に行うことができるとともに、このような構成においても耐圧強度,および落下強度の低下発生を抑制できる。   The internal pressure inspection of the can filled and sealed with the contents can be performed with high accuracy, and even in such a configuration, it is possible to suppress the occurrence of a decrease in pressure strength and drop strength.

本発明に係る缶の一実施形態として示した拡大断面側面図である。It is the expanded sectional side view shown as one Embodiment of the can which concerns on this invention. 図1に示す缶の概略構成図である。It is a schematic block diagram of the can shown in FIG. パネル部の直径を異ならせて複数の缶を形成し、これらの缶についての打検適正および耐圧強度を評価した結果を示す図である。It is a figure which shows the result of having formed several cans by varying the diameter of a panel part, and evaluating the punching appropriateness and pressure-resistant strength about these cans.

符号の説明Explanation of symbols

10 缶
11 缶底部
13 環状凸部
14 接地部
15 内周壁
18 第1の凹曲面部
19 傾斜壁
20 第2の凹曲面部
21 パネル部
φA パネル部の直径
φB 接地面の直径(円形状の直径)
DESCRIPTION OF SYMBOLS 10 Can 11 Can bottom part 13 Annular convex part 14 Grounding part 15 Inner peripheral wall 18 1st concave curved surface part 19 Inclined wall 20 2nd concave curved surface part 21 Panel part φA Diameter of panel part φB Diameter of ground surface (circular diameter) )

Claims (2)

缶底部の外縁部に缶軸方向外方に突出する環状凸部が形成され、
該環状凸部は先端の接地部と、該接地部の径方向内側に連なり、缶軸方向に立上がる内周壁とを備える構成の缶であって、
前記内周壁の缶軸方向上端に、第1の凹曲面部を介して径方向内方かつ缶軸方向上方へ延びる傾斜壁が連設され、
該傾斜壁に、第2の凹曲面部を介して径方向内方へ延びる平坦なパネル部が連設され、
該パネル部の直径は、前記接地部の先端同士を周方向に連続して順次結んだときに得られる円形状の直径の0.47倍以上0.82倍以下とされていることを特徴とする缶。
An annular convex portion protruding outward in the can axis direction is formed on the outer edge of the can bottom,
The annular convex portion is a can having a structure including a grounding portion at a tip and an inner peripheral wall that is continuous with a radially inner side of the grounding portion and rises in a can axis direction,
An inclined wall extending radially inward and upward in the can axis direction through the first concave curved surface portion is continuously provided at the upper end in the can axis direction of the inner peripheral wall,
A flat panel portion extending inward in the radial direction via the second concave curved surface portion is connected to the inclined wall,
The diameter of the panel portion is 0.47 times or more and 0.82 times or less of the circular diameter obtained when the tips of the grounding portions are successively connected in the circumferential direction. Cans.
請求項1記載の缶において、
前記接地部の缶内方の曲率半径は0.5mm以上2.5mm以下とされ、
前記第1の凹曲面部の缶外方の曲率半径は1.0mm以上8.0mm以下とされていることを特徴とする缶。
The can according to claim 1,
The radius of curvature inside the can of the grounding portion is 0.5 mm or more and 2.5 mm or less,
The can characterized in that the radius of curvature of the outer side of the first concave curved surface portion is 1.0 mm or more and 8.0 mm or less.
JP2003414781A 2003-12-12 2003-12-12 Can Withdrawn JP2005170470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003414781A JP2005170470A (en) 2003-12-12 2003-12-12 Can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003414781A JP2005170470A (en) 2003-12-12 2003-12-12 Can

Publications (1)

Publication Number Publication Date
JP2005170470A true JP2005170470A (en) 2005-06-30

Family

ID=34734483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414781A Withdrawn JP2005170470A (en) 2003-12-12 2003-12-12 Can

Country Status (1)

Country Link
JP (1) JP2005170470A (en)

Similar Documents

Publication Publication Date Title
KR20070109978A (en) Can end
US10961009B2 (en) Threaded metal container
AU2017252313A1 (en) Beverage can having a grommet
EP3326926A1 (en) Drawn and ironed aerosol can
JP5085411B2 (en) Retort compatible small capacity screw can
JP5090290B2 (en) Bottle can
JP2003128060A (en) Transformed seamless can and its manufacturing method
JP2005170470A (en) Can
WO1999033709A1 (en) Canned goods of low positive pressure having inner pressure checking adaptability, and can body of the same
JPH04339751A (en) Cup-like container
US7552612B2 (en) Systems for making can ends
TWI811379B (en) Can lid
US7398894B2 (en) Container bottom, method of manufacture, and method of testing
JP2004017977A (en) Container excellent in impact test aptitude
JP4342988B2 (en) Bottle can body manufacturing apparatus and bottle can body manufacturing method
JP2005172759A (en) Internal pressure inspection method for can
CN113039420A (en) Leak detection
JP4770084B2 (en) Sealed can
CN108248979A (en) Bottle & Can, Bottle & Can with cover and its manufacturing method
JP4112689B2 (en) Seamless can for positive pressure
JP2021031181A (en) Can body
US7673491B2 (en) Method for testing can ends
WO2006124530A1 (en) Container bottom
JP2007269363A (en) Cap, bottle can with cap, and manufacturing method of cap
JP5271347B2 (en) Double winding structure of can and double winding device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060519

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060613

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306