JPS6242692B2 - - Google Patents

Info

Publication number
JPS6242692B2
JPS6242692B2 JP54115223A JP11522379A JPS6242692B2 JP S6242692 B2 JPS6242692 B2 JP S6242692B2 JP 54115223 A JP54115223 A JP 54115223A JP 11522379 A JP11522379 A JP 11522379A JP S6242692 B2 JPS6242692 B2 JP S6242692B2
Authority
JP
Japan
Prior art keywords
cans
filled
inert gas
thickness
seamless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54115223A
Other languages
Japanese (ja)
Other versions
JPS5639134A (en
Inventor
Yoichi Kitamura
Katsuhiro Imazu
Masao Ishinabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP11522379A priority Critical patent/JPS5639134A/en
Publication of JPS5639134A publication Critical patent/JPS5639134A/en
Publication of JPS6242692B2 publication Critical patent/JPS6242692B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vacuum Packaging (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、新規な特性を有する絞りしごき罐を
用いた不活性ガス充填飲料罐詰の製造法に関し、
より詳細には、内容物の品質保証性に優れ、更に
包装コストも低減された不活性ガス充填罐詰の製
造法に関する。 金属素材の絞りしごき加工により形成されたシ
ームレス罐は、炭酸飲料等の自生圧力を有する内
容物を収容する内圧罐として専ら使用されてお
り、その耐内圧強度は7Kg/cm2以上であることが
要求されている。 一方、果汁等の非炭酸系飲料のフレーバーを低
下させることなく保存する方法として、密封容器
に充填前の果汁に窒素ガス等の不活性ガスを通気
し、該ガスを飽和に溶存させ、容器に充填密封す
る方法が提案されている(例えば特公昭48−
19947号公報)。 絞りしごき加工による公知のシームレス罐を、
上述した不活性ガス充填飲料罐詰の製造に用いる
場合には、未だ多くの問題を生じることを、本発
明者等は見出した。即ち、果汁等の殺菌を必要と
する飲料罐詰においては、内容物を充填し、密封
した罐詰を一定期間保存した後、打検に賦するこ
とが義務ずけられている。ここで打検とは、密封
不良及び内容品の変敗によつて生ずる罐内圧の異
状を罐底等を叩いたとき生じる音で検出する試験
をいう。公知のシームレス罐はもともと耐内圧と
して設計されたものであり、しかも罐詰中には大
気圧よりも高い圧力の不活性ガスが封入されてい
ることもあつて、打検による密封不良の判定が著
しく困難であるという問題に槽遇するのである。
更に、公知の絞りしごき罐は高圧の内容物を収容
するという目的には満足し得るものであるとして
も、金属素材の使用量を低減させ、これにより包
装コストを低減させるという目的には未だ不満足
のものであつた。 本発明者等は、底壁部及び胴壁部の厚みが特定
の範囲内にあり且つ耐内圧強度が特定の範囲内に
ある絞りしごき加工によるシームレス罐を、不活
性ガス充填飲料罐詰の製造に用いると、打検適性
が著しく向上し、その結果内容品の品質保証が確
実に向上すると共に、金属素材の使用量の節約に
より包装コストも低減させることを見出した。 即ち、本発明の目的は、打検適性を有し、その
結果として内容品の品質保証性に優れた不活性ガ
ス充填飲料罐詰の製造法を提供するにある。 本発明の他の目的は、金属素材の使用量が節約
され、その結果包装コストが低減された不活性ガ
ス充填飲料罐詰の製造法を提供するにある。 本発明の更に他の目的は、新規な特性を有する
絞りしごき罐を用いた不活性ガス充填飲料罐詰の
製造法を提供するにある。 本発明の更に他の目的は、内容品のフレーバー
保持性及び内容品の保存性にも優れた不活性ガス
充填飲料罐詰の製造法を提供するにある。 本発明によれば、金属素材の絞りしごき加工に
より形成され、胴壁部の厚み(Dd)が0.10乃至
0.14mm、底壁部の厚み(Db)と胴壁部の厚み
(Dd)との比(Db/Dd)が1.5乃至2.2の範囲にあ
り且つ耐内圧強度が3Kg/cm2以上で7Kg/cm2未満
のシームレス罐に、非炭酸系飲料と共に窒素を主
体とする不活性ガスを充填し、罐蓋を巻締し、得
られる不活性ガス充填罐詰を打検に付して、密封
不良罐を検出することを特徴とする不活性ガス充
填罐詰の製造法が提供される。 本発明に用いるシームレス罐の概略断面構造を
示す第1図において、シームレス罐(罐胴部材)
1は、底壁部2と該底壁部2に連なる筒状の胴壁
部3とから成つている。この罐胴部材2の胴壁部
3の周囲及び該胴壁部3と底壁部2との接続部4
には、実質上継ぎ目が存在しない。この罐胴壁部
材3は金属素材の絞り及びしごき加工(drawing
and ironing)によつて形成され、比較的肉薄で
あり、一方底壁部2は実質上しごき加工を受けて
いない金属素材から成り、比較的肉厚である。胴
壁部3の上縁部分には、フランジ5が設けられて
おり、後述する内容飲料及び窒素ガスを充填し、
密封した後、このフランジ5の上に被蓋される罐
蓋部材6の周縁部とフランジ5との間に、第2図
に示す如く、密封部(巻締部)7が形成される。
この罐胴部材1の内面及び罐蓋部材6の内面に
は、所望により、内容物と金属素材とが直接接触
するのを防止するため、耐食性の保護樹脂被膜8
が施される。底壁部2に、球面状の滑らかな突起
(ドーム)9を内方向きに設けることができ、こ
れにより底壁部2が内容物の圧力により外方に突
出するのを防止して、罐体のすわりを良くするこ
とができる。また、罐胴部材1の胴壁部3の上縁
部にネツク10を設け、罐胴フランジ5と罐蓋部
材周縁部との巻締部7が罐胴部材の胴壁部周面よ
りも外方に突出するのを防止して、罐体或いは罐
詰を箱詰めするときの収容容積を減少させること
ができる。 罐体を構成する金属素材としては、任意の金属
素材、例えば、鋼板;ブリキ、亜鉛メツキ鋼板、
クロム処理鋼板等の各種メツキ、電解処理又は化
学処理鋼板;或いはアルミニウム板等の軽金属
板;又はこれらの複合材が使用される。好適な金
属素材は、ブリキ及びアルミニウムである。 本発明の重要な特徴は、胴壁部3の厚み
(Dd)が0.10乃至0.14mm、特に0.10乃至0.11mm、
底壁部2の厚み(Db)と胴壁部3の厚み(Dd)
との比(Db/Dd)が1.5乃至2.2、特に1.5乃至2.0
の範囲にあり且つ耐内圧強度が3Kg/cm2以上で7
Kg/cm2未満、特に4.0乃至6.0Kg/cm2の範囲にある
シームレス罐を使用することにある。 従来使用されているシームレス罐を、不活性ガ
ス充填罐詰の製造に使用するときには、打検適性
に欠け、内容物の品質保証が困難になることは既
に前述した。これに対して、本発明によれば、前
述したDb/Ddの比が2.2以下、特に2.0以下の範
囲で、更に耐内圧強度が7Kg/cm2未満、特に4.0
Kg/cm2以下のシームレス罐を選択し、この用途に
使用すると、不活性ガス充填飲料罐詰の打検適性
が顕著に向上し、打検により密封不良罐の検出を
100%或いはこれに近い確率で行うことが可能と
なるのである。 本明細書において打検とは、特開昭53−119087
号公報に記載された原理の装置で測定される試験
を意味し、この装置によれば、測定すべき試料罐
詰の底部に電磁パルスで打撃を与え、罐底部に固
有振動を生ぜしめ、その音をマイクロホンで電気
信号に変換し、この電気信号を自己相関法又は高
速フーリエ変換で固有振動数として求めることに
より測定を行なう。この打検試験において、一般
に罐詰の密封不良があると固有振動数が高周波側
へ移行する。本発明で使用するシームレス罐は、
従来公知のシームレス罐に比して密封の程度、即
ち内圧の変動に対する固有振動数の依存性が著し
く大であり、その結果打検により密封不良罐の検
出精度が著しく向上するものである。尚、シーム
レス罐の形態によつては密封不良により固有振動
数が低周波側に移行する場合もあるが、これら何
れの場合においても本発明による罐詰は、正常罐
と密封不良罐とで固有振動数の差異が顕著であり
密封不良罐の検出が容易である。一般に罐詰等の
打検では、打検する部分に平坦部が広くあり、又
打検時には罐胴は変形しないほど打検適性はよ
い。 従つて、本発明のように内圧がかかつていると
罐胴は内圧により変形を起しにくく、又打検する
部分、すなわちドーム部9は内圧により、通常は
罐外方向に変形を起し、ドーム上部には平坦部が
形成されることになり打検適性は向上する。この
打検装置は東洋製罐(株)からエレクトロデテクター
の商品名で市販されている。 第3図は、打検試験において、正常罐及び密封
不良罐の固有振動数の差(△ν)と、罐底耐圧強
度(Pr)との関係を示す線図である。この第3
図においては、底壁部の厚み(Db)と側壁部の
厚み(Dd)との比(Db/Dd)を、1.6、2.2及び
2.5の値としたときの3つの曲線が示されてい
る。尚、第3図における罐底耐圧強度Prは罐底
の形状、即ちドーム形状を変化させることによ
り、所定の耐圧強度が得られるように調節されて
いる。 しかして、第3図の結果は次の事実を示してい
る。即ち、前述したDb/Ddの比が本発明の範囲
内、即ち2.2以下、特に2.0以下であるシームレス
罐においては、罐底耐圧強度が3Kg/cm2以上7Kg
未満の範囲で、正常罐と密封不良罐との固有振動
数の差△νが大であり、従つて正常罐と密封不良
罐との打検による判定が容易にしかも正確に行い
得るのに対して、Db/Ddの比が2.5程度の従来の
シームレス罐においては、罐底耐圧強度Prが3
Kg/cm2以上の範囲では、上述した固有振動数の差
△νが100Hz以下の極めて小さい範囲にあり、正
常罐と密封不良罐とを打検によつて正確に判定す
ることは著しく困難となる。 また、前述したDb/Ddの比が1.5以上であ
り、耐内圧強度が3Kg/cm2以上であることは内容
品の保存性に関して重要な意味を有する。シーム
レス罐に充填される果汁等の飲料は、罐への充填
に先立つて加熱殺菌処理を受けるが、その保存性
を高めるためには充填後の罐詰をパストライザー
等による後殺菌処理に賦することが重要となつて
くる。本発明に使用するシームレス罐は、上述し
た特性を有することにより、この後殺菌処理が可
能となり内容品の保存性を一層向上させることが
可能となる。 本発明の他の顕著な特徴は、胴壁部の厚み(D
d)及び底壁部の厚み(Db)を前述した範囲に設
定することにより、不活性ガス充填飲料罐詰の用
途には充分な耐圧強度が保障されるとともに使用
金属素材の量を従来のシームレス罐に比して20乃
至5重量%節約することが可能となり、これによ
り包装コストがかなり低減させることが可能とな
ることである。 本発明に使用するシームレス罐は、胴壁部の厚
みDd及び底壁部の厚みDbが前述した範囲となる
様にした点を除けばそれ自体公知の絞り、しごき
成形法によつて容易に製造できる。罐の耐内圧強
度は、底壁部の厚み及び底壁部の形状に依存す
る。 斯くして本発明で規定した耐内圧強度のシーム
レス罐は、前述した胴壁部の厚みの範囲から一定
の厚みのものを選択することにより、及び/又は
内方に突出したドームの高さを従来のシームレス
罐のそれよりも低くすることによつて得られる。
好適なドームの高さは、3乃至10mmの範囲でああ
り、ドームの高さを低くすることにより内容積を
増大させ得るという付加的な利点を有するもので
ある。 非炭酸系飲料及び不活性ガスの充填及び巻き締
めによる密封はそれ自体公知の手段で行い得る。 非炭酸系飲料としては、各種果汁、蔬菜汁、合
成乃至は半合成果汁、各種スープ、各種ネクタ
ー、コーヒー、紅茶、乳酸飲料、シチユー等を挙
げることができる。これらの飲料は、熱間で殺菌
処理され、低温に冷却されて不活性ガスで飽和処
理された後、罐に充填され、この際所望により巻
き締め時に不活性ガスを追加して吹き込み充填す
ることもできる。罐詰内の不活性ガス圧は、標準
状態で換算して1.05乃至2.0Kg/cm2(ゲージ)の
範囲にあることが内容品のフレーバー保持及び保
存性の点で望ましい。 本発明において、不活性ガスとして窒素を主体
とする不活性ガスを用いることも重要である。即
ち、窒素ガスを主体とする不活性ガスを充填する
場合には、炭酸飲料のように炭酸ガスを充填する
場合に比して、温度変化に対する圧力変化が著し
く小さいという利点がある。即ち、炭酸ガスの飲
料への溶解度は低温ではかなり大であり、高温に
なると少なくなるため、炭酸飲料罐では温度が上
がるに従つて罐内圧は著しく大きくなる。これに
対して窒素ガスの場合には、飲料への溶解量がも
ともと少ないため、温度が上昇しても圧力の増加
は比較的小さい。このため、本発明においては罐
底部の厚み(Db)を小さいレベルにすることが
可能となるのである。 内容物を充填し、罐蓋との巻き締めを行つた罐
詰は、パストライザー、キヤンウオーマー等によ
る後殺菌処理に賦し、製品とする。尚、シームレ
ス罐の耐内圧強度とは圧力ゲージを具備した測定
器で罐内部に圧力を加え罐底のドーム部が罐外方
へ飛び出すような変形バツクリングを起すときの
強度をいう。 本発明を次の例で説明する。 実施例 1 素板厚0.16mmのプライト錫鍍金網板を約130mm
の径の円板に打抜き、常法に従い絞りポンチと絞
りダイスとの間で内径が約53mmのコツプ状に成形
する。 次いでしごきポンチと、しごきダイスとの組合
せでしごき加工した。この罐胴の諸寸法及び物性
値は次の通りである。 底壁部厚み(Db) 0.16mm 胴壁部厚み(Dd) 0.10mm Db/Dd 1.6 罐胴内径 53mm 罐胴高さ 135mm 罐胴容積 300ml 罐胴重量 25.0g 耐圧強度 3.1Kg/cm2 この罐胴の内外面脱脂洗浄後、塗料を施した。 しかる後、果汁飲料を93〜95℃で殺菌し、これ
を5℃以下に冷却後、次いで窒素ガスを封入罐胴
に充填し、罐蓋を二重巻締し罐詰とした後、最終
の殺菌工程で加温殺菌した。 この窒素ガス充填法よる罐詰を1週間及び6ケ
月間の実罐貯蔵試験に賦した後、開封し、内容物
を10名のパネルに試験させ、フレーバーを評価さ
せた。更に、開封後の罐内面も観察した。その結
果、本発明の罐体は6ケ月貯蔵後においてもフレ
ーバーの実質上の低下がなく、また罐体内面にも
腐蝕等の異常は認められなかつた。 更に、本発明の優れた効果を明らかにするため
に、下記の変更以外は、上記実施例1と同様にし
て、本発明以外の対照罐体を調製した。 (1) 対照罐体A 底壁部厚さを0.32mmとした以外は実施例1と
同様の罐体。 (2) 対照罐体B 従来法に従う熱間充填をし、雰囲気を水蒸気
で置換した後、二重巻締した以外実施例1と同
様の罐体。 上記2種の対照罐体及び実施例1の罐体につい
て、罐体重量とフレーバー試験の結果を比較し
た。
The present invention relates to a method for manufacturing beverage cans filled with inert gas using a squeeze iron can having novel characteristics.
More specifically, the present invention relates to a method for producing inert gas-filled cans that have excellent quality assurance of contents and also reduce packaging costs. Seamless cans formed by drawing and ironing metal materials are used exclusively as internal pressure cans to accommodate contents with self-generating pressure, such as carbonated drinks, and their internal pressure resistance strength must be 7 kg/cm 2 or more. requested. On the other hand, as a method for preserving non-carbonated beverages such as fruit juice without reducing their flavor, an inert gas such as nitrogen gas is aerated through the fruit juice before it is filled into a sealed container to dissolve the gas to saturation. A method of filling and sealing has been proposed (for example,
Publication No. 19947). A well-known seamless can made by drawing and ironing process,
The inventors of the present invention have discovered that many problems still arise when the method is used to manufacture the above-mentioned inert gas-filled beverage cans. That is, in the case of canned beverages such as fruit juice that require sterilization, it is mandatory to fill the contents, store the sealed cans for a certain period of time, and then give them for inspection. Here, the term "percussion inspection" refers to a test that detects abnormalities in the internal pressure of the can due to poor sealing or deterioration of the contents by using the sound produced when tapping the bottom of the can. The well-known seamless cans were originally designed to withstand internal pressure, and since the cans are filled with inert gas at a pressure higher than atmospheric pressure, poor sealing cannot be determined by percussion inspection. We are faced with a problem that is extremely difficult.
Furthermore, although known squeeze ironing cans may be satisfactory for the purpose of accommodating high-pressure contents, they are still unsatisfactory for the purpose of reducing the amount of metal material used, thereby reducing packaging costs. It was from. The present inventors have developed a seamless can by drawing and ironing, in which the thickness of the bottom wall and the body wall are within a specific range, and the internal pressure resistance is within a specific range, for manufacturing beverage cans filled with inert gas. It has been found that when used in the field, the suitability for hammer inspection is significantly improved, and as a result, the quality assurance of the contents is reliably improved, and packaging costs are also reduced by saving on the amount of metal material used. That is, an object of the present invention is to provide a method for producing an inert gas-filled beverage can that is suitable for punch inspection and, as a result, has excellent quality assurance of the contents. Another object of the present invention is to provide a method for producing an inert gas-filled beverage can that saves the amount of metal material used and, as a result, reduces packaging costs. Still another object of the present invention is to provide a method for manufacturing beverage cans filled with inert gas using a squeeze iron can having novel characteristics. Still another object of the present invention is to provide a method for producing an inert gas-filled beverage can that is excellent in flavor retention and preservation of the contents. According to the present invention, it is formed by drawing and ironing a metal material, and the thickness (Dd) of the body wall is 0.10 to 0.10.
0.14mm, the ratio of the bottom wall thickness (Db) to the body wall thickness (Dd) (Db/Dd) is in the range of 1.5 to 2.2, and the internal pressure resistance is 3Kg/cm 2 or more and 7Kg/cm Seamless cans with a capacity of less than 2 are filled with non-carbonated beverages and an inert gas mainly composed of nitrogen, the can lids are sealed, and the resulting inert gas-filled cans are inspected to identify poorly sealed cans. Provided is a method for producing an inert gas filled canner characterized by detecting. In FIG. 1 showing a schematic cross-sectional structure of a seamless can used in the present invention, a seamless can (can body member)
1 consists of a bottom wall part 2 and a cylindrical body wall part 3 continuous to the bottom wall part 2. The periphery of the body wall portion 3 of this can body member 2 and the connection portion 4 between the body wall portion 3 and the bottom wall portion 2
There are virtually no seams. This can body wall member 3 is made by drawing and ironing a metal material.
The bottom wall 2 is made of substantially unironated metal material and is relatively thick. A flange 5 is provided on the upper edge portion of the body wall portion 3, and is filled with a content beverage and nitrogen gas, which will be described later.
After sealing, a sealing portion (sealing portion) 7 is formed between the flange 5 and the peripheral edge of the can lid member 6 that covers the flange 5, as shown in FIG.
If desired, a corrosion-resistant protective resin coating 8 is provided on the inner surface of the can body member 1 and the inner surface of the can lid member 6 to prevent direct contact between the contents and the metal material.
will be applied. A smooth spherical protrusion (dome) 9 can be provided on the bottom wall 2 facing inward, thereby preventing the bottom wall 2 from protruding outward due to the pressure of the contents. You can improve your sitting posture. Further, a neck 10 is provided at the upper edge of the body wall 3 of the can body member 1, so that the tightening portion 7 between the can body flange 5 and the peripheral edge of the can lid member is located outside the circumferential surface of the body wall of the can body member. By preventing the container from protruding in the opposite direction, it is possible to reduce the storage volume when packaging the case or canned product. The metal material constituting the housing may be any metal material, such as steel plate; tin plate, galvanized steel plate,
Various plated, electrolytically treated or chemically treated steel plates such as chromium-treated steel plates; light metal plates such as aluminum plates; or composite materials thereof are used. Preferred metal materials are tinplate and aluminum. An important feature of the present invention is that the thickness (Dd) of the trunk wall portion 3 is 0.10 to 0.14 mm, particularly 0.10 to 0.11 mm;
Thickness of bottom wall 2 (Db) and thickness of trunk wall 3 (Dd)
(Db/Dd) is 1.5 to 2.2, especially 1.5 to 2.0
7 if it is within the range and the internal pressure resistance is 3Kg/cm2 or more
The aim is to use seamless cans with a weight of less than Kg/cm 2 , especially in the range of 4.0 to 6.0 Kg/cm 2 . As already mentioned above, when conventionally used seamless cans are used to manufacture inert gas-filled cans, they lack suitability for hammer inspection, making it difficult to guarantee the quality of the contents. On the other hand, according to the present invention, the above-mentioned Db/Dd ratio is 2.2 or less, particularly 2.0 or less, and the internal pressure resistance is less than 7Kg/ cm2 , especially 4.0.
Selecting a seamless can with a weight of less than Kg/cm 2 and using it for this purpose will significantly improve the perforation suitability of beverage cans filled with inert gas, making it possible to detect poorly sealed cans through percussion.
It is possible to do this with a probability of 100% or close to this. In this specification, the term ``discussion'' refers to Japanese Patent Application Laid-Open No. 53-119087.
This refers to a test performed using a device based on the principle described in the publication. According to this device, an electromagnetic pulse is applied to the bottom of the canned sample to be measured, causing a natural vibration in the bottom of the can, and Measurement is performed by converting sound into an electrical signal using a microphone, and determining the natural frequency of this electrical signal using the autocorrelation method or fast Fourier transform. In this percussion test, if the can is poorly sealed, the natural frequency will generally shift to a higher frequency side. The seamless can used in the present invention is
Compared to conventionally known seamless cans, the degree of sealing, that is, the dependence of the natural frequency on fluctuations in internal pressure is significantly greater, and as a result, the accuracy of detecting poorly sealed cans by inspection is significantly improved. Note that depending on the form of the seamless can, the natural frequency may shift to a lower frequency side due to poor sealing. The difference in vibration frequency is significant, making it easy to detect poorly sealed cans. In general, when performing a hammer test for can filling, etc., the area to be hammered has a wide flat area, and the can body is not deformed during the hammer test, the better the suitability for the hammer test. Therefore, when internal pressure is applied as in the present invention, the can body is difficult to deform due to the internal pressure, and the part to be hammered, that is, the dome portion 9, usually deforms in the direction outside the can due to the internal pressure. A flat portion is formed in the upper part of the dome, improving suitability for hitting. This percussion detection device is commercially available from Toyo Seikan Co., Ltd. under the trade name Electro Detector. FIG. 3 is a diagram showing the relationship between the difference in natural frequencies (Δν) between a normal can and a poorly sealed can and the can bottom pressure resistance (Pr) in a percussion test. This third
In the figure, the ratio (Db/Dd) of the bottom wall thickness (Db) to the side wall thickness (Dd) is 1.6, 2.2 and
Three curves are shown for a value of 2.5. The can bottom pressure strength Pr in FIG. 3 is adjusted by changing the shape of the can bottom, that is, the dome shape, so that a predetermined pressure strength can be obtained. However, the results shown in Figure 3 show the following fact. That is, in a seamless can where the ratio of Db/Dd mentioned above is within the range of the present invention, that is, 2.2 or less, particularly 2.0 or less, the can bottom pressure resistance is 3 kg/cm 2 or more and 7 kg.
In the range less than Therefore, in a conventional seamless can with a Db/Dd ratio of about 2.5, the can bottom pressure strength Pr is 3.
In the range of Kg/cm 2 or more, the above-mentioned difference in natural frequencies △ν is in the extremely small range of 100 Hz or less, and it is extremely difficult to accurately determine the difference between a normal can and a poorly sealed can by percussion. Become. Further, the above-mentioned ratio of D b /D d is 1.5 or more and the internal pressure strength is 3 Kg/cm 2 or more, which has an important meaning regarding the shelf life of the contents. Beverages such as fruit juices that are filled into seamless cans undergo heat sterilization before being filled into the cans, but in order to increase their shelf life, the cans are subjected to post-sterilization treatment using a pasteurizer, etc. after filling. It becomes important. Since the seamless can used in the present invention has the above-mentioned characteristics, it becomes possible to perform a subsequent sterilization treatment, thereby further improving the shelf life of the contents. Another notable feature of the present invention is the thickness of the trunk wall (D
d ) and the thickness of the bottom wall (D b ) within the above-mentioned ranges, sufficient pressure resistance is ensured for inert gas-filled beverage canning applications, and the amount of metal material used can be reduced compared to conventional Compared to seamless cans, it is possible to save 20 to 5% by weight, which makes it possible to considerably reduce packaging costs. The seamless can used in the present invention can be easily formed by drawing and ironing methods that are known per se, except that the thickness D d of the body wall and the thickness D b of the bottom wall are within the above-mentioned ranges. can be manufactured. The internal pressure resistance of the can depends on the thickness and shape of the bottom wall. Thus, the seamless can with the internal pressure resistance specified in the present invention can be obtained by selecting a certain thickness from the above-mentioned range of body wall thicknesses and/or by adjusting the height of the inwardly protruding dome. This can be achieved by making it lower than that of conventional seamless cans.
Suitable dome heights are in the range 3 to 10 mm, with the added benefit of increasing internal volume by reducing the dome height. Filling with the non-carbonated beverage and inert gas and sealing by rolling may be performed by means known per se. Examples of non-carbonated beverages include various fruit juices, vegetable juices, synthetic or half-combined fruit juices, various soups, various nectars, coffee, black tea, lactic acid drinks, stews, and the like. These beverages are sterilized in hot water, cooled to low temperatures, and saturated with inert gas before being filled into cans. At this time, if desired, inert gas may be added and blown into the cans when the cans are rolled up. You can also do it. The inert gas pressure inside the canner is preferably in the range of 1.05 to 2.0 Kg/cm 2 (gauge) in terms of flavor retention and preservability of the contents under standard conditions. In the present invention, it is also important to use an inert gas mainly composed of nitrogen. That is, when filling with an inert gas mainly composed of nitrogen gas, there is an advantage that pressure changes with respect to temperature changes are significantly smaller than when filling with carbon dioxide gas such as carbonated drinks. That is, the solubility of carbon dioxide gas in beverages is quite high at low temperatures and decreases at high temperatures, so the internal pressure of carbonated beverage cans increases significantly as the temperature rises. On the other hand, in the case of nitrogen gas, the amount dissolved in the beverage is originally small, so even if the temperature rises, the increase in pressure is relatively small. Therefore, in the present invention, it is possible to reduce the thickness (D b ) of the bottom of the can. The cans filled with contents and sealed with can lids are subjected to post-sterilization treatment using pasteurizers, can warmers, etc., and are made into products. The internal pressure strength of a seamless can refers to the strength when pressure is applied to the inside of the can using a measuring instrument equipped with a pressure gauge to cause deformation buckling in which the dome of the bottom of the can protrudes to the outside of the can. The invention is illustrated by the following example. Example 1 Approximately 130 mm of prite tin plated wire mesh board with a base thickness of 0.16 mm
Punch it out into a disc with a diameter of , and form it into a round shape with an inner diameter of about 53 mm between a drawing punch and a drawing die according to the usual method. Next, it was ironed using a combination of ironing punch and ironing die. The dimensions and physical properties of this can body are as follows. Bottom wall thickness (D b ) 0.16mm Body wall thickness (D d ) 0.10mm D b /D d 1.6 Can body inner diameter 53 mm Can body height 135 mm Can body volume 300 ml Can body weight 25.0 g Compressive strength 3.1 Kg/cm 2 After degreasing and cleaning the inside and outside surfaces of this can body, paint was applied. After that, the fruit juice drink is sterilized at 93 to 95℃, cooled to below 5℃, then nitrogen gas is filled into the sealed can body, the can lid is double-sealed, and the final product is sealed. It was sterilized by heating during the sterilization process. After the cans packed using the nitrogen gas filling method were subjected to actual can storage tests for one week and six months, the cans were opened and a panel of 10 people tested the contents and evaluated the flavor. Furthermore, the inner surface of the can was also observed after opening. As a result, the flavor of the case of the present invention did not substantially deteriorate even after being stored for 6 months, and no abnormality such as corrosion was observed on the inner surface of the case. Furthermore, in order to clarify the excellent effects of the present invention, a control case other than the present invention was prepared in the same manner as in Example 1 above, except for the following changes. (1) Control case A A case similar to Example 1 except that the bottom wall thickness was 0.32 mm. (2) Control case B A case similar to Example 1 except that it was hot-filled according to the conventional method, the atmosphere was replaced with water vapor, and then double-sealed. The can weight and flavor test results were compared for the two types of control cans and the can of Example 1.

【表】 上記結果より本発明で規定した範囲に選択する
ことにより、罐体重量が大幅に軽減でき、内容物
適性に良好な罐詰の製造方法が得られることを示
している。 実施例 2 素板厚0.24mmの圧延アルミニウムを径150mmの
円板に打抜き、常法に従い、絞りポンチと絞りダ
イスの間で内径が約72.2mmのコツプに成形する。 次いで、このコツプ状成形物を再工程に賦した
後、再絞りによるコツプ状成形物(内径約65.4
mm)を実施例1と同様にしごき加工に施した。 この罐胴の諸寸法及び物性値は次の通りであ
る。 底壁部厚み(Db) 0.24mm 胴壁部厚み(Dd) 0.14mm Db/Dd 1.71 罐胴内径 65.4mm 罐胴高さ 122mm 罐胴容積 410ml 罐胴重量 12.3g 耐圧強度 3.0Kg/cm2 この罐胴を実施例1と同様に内面塗布を施し、
果汁飲料を窒素充填法により充填し罐詰にした。 この結果、実施例1と同様に内容物の保存性に
優れていることが確認された。 実施例 3 実施例1に従つて調製した罐詰(Db/Dd=
1.6)とDb/Dd=2.2及びDb/Dd=2.5の罐詰に
ついて、自動打検機により密封性について比較試
験を行なつた。 ここで自動打検機とは電磁パルスで打撃を与
え、固有振動数を生じせしめ、その音をマイクロ
ホンを介して受けとり、その電気信号をフーリエ
変換器で固有振動数として測定するものである。 その結果、実施例1とDb/Dd=2.5の罐体とで
は打検性、すなわち密封性能検査の分解能が大幅
に異なることが確認された。第3図はその測定結
果を示す。 ここでΡrは罐底耐圧強度を、△νは正常品と
密封不良罐との固有振動数の差を示す。
[Table] The above results show that by selecting within the range specified in the present invention, the weight of the can can be significantly reduced and a method for producing a can with good content suitability can be obtained. Example 2 A rolled aluminum plate with a thickness of 0.24 mm is punched into a disc with a diameter of 150 mm, and according to a conventional method, it is formed into a circular plate with an inner diameter of about 72.2 mm between a drawing punch and a drawing die. Next, this pot-shaped molded product is subjected to a reprocessing process, and then re-drawn to form a pot-shaped molded product (inner diameter approximately 65.4
mm) was ironed in the same manner as in Example 1. The dimensions and physical properties of this can body are as follows. Bottom wall thickness (D b ) 0.24mm Body wall thickness (D d ) 0.14mm D b /D d 1.71 Can body inner diameter 65.4 mm Can body height 122 mm Can body volume 410ml Can body weight 12.3g Pressure strength 3.0Kg/ cm 2 This can body was coated on the inside as in Example 1,
The fruit juice beverage was filled and canned using the nitrogen filling method. As a result, as in Example 1, it was confirmed that the contents had excellent preservability. Example 3 Canned food prepared according to Example 1 (Db/Dd=
1.6), and Db/Dd=2.2 and Db/Dd=2.5, a comparative test was conducted on the sealing performance using an automatic punching machine. Here, the automatic percussion machine is one that strikes an object with an electromagnetic pulse to generate a natural frequency, receives the sound through a microphone, and measures the electric signal as the natural frequency using a Fourier transformer. As a result, it was confirmed that the hammer testability, that is, the resolution of the sealing performance test, was significantly different between Example 1 and the case with Db/Dd=2.5. FIG. 3 shows the measurement results. Here, Ρr represents the pressure resistance of the can bottom, and Δν represents the difference in natural frequency between a normal product and a poorly sealed can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に用いるシームレス罐の概略
問であり、第2図は、罐胴と罐蓋との巻き締め部
を示す概略断面図であり、第3図は、打検試験に
おいて罐の耐圧強度と正常罐及び密封不良罐の固
定振動数の差との関係を示す線図である。 引照数字1は罐胴部材、2は罐底部、3は側壁
部、4は側壁部と罐底部との接続部、5はフラン
ジ、6は罐蓋部、7は密封部、8は保護樹脂被
膜、9はドーム、10はネツクをそれぞれ示す。
Fig. 1 is a schematic diagram of a seamless can used in the present invention, Fig. 2 is a schematic cross-sectional view showing the tightening portion between the can body and the can lid, and Fig. 3 is a schematic diagram of the seamless can used in the percussion test. FIG. 2 is a diagram showing the relationship between the pressure resistance and the difference in fixed frequency between a normal can and a poorly sealed can. Reference number 1 is the can body member, 2 is the bottom of the can, 3 is the side wall, 4 is the connection between the side wall and the bottom of the can, 5 is the flange, 6 is the can lid, 7 is the sealing part, and 8 is the protective resin coating. , 9 indicates a dome, and 10 indicates a neck, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 金属素材の絞りしごき加工により形成され、
胴壁部の厚み(Dd)が0.10乃至0.14mm、底壁部の
厚み(Db)と胴壁部の厚み(Dd)との比(Db/
Dd)が1.5乃至2.2の範囲にあり且つ耐内圧強度が
3Kg/cm2以上で7Kg/cm2未満のシームレス罐に、
非炭酸系飲料と共に窒素を主体とする不活性ガス
を充填し、罐蓋を巻締し、得られる不活性ガス充
填罐詰を打検に付して、密封不良罐を検出するこ
とを特徴とする不活性ガス充填罐詰の製造法。
1 Formed by drawing and ironing a metal material,
The thickness of the trunk wall (Dd) is 0.10 to 0.14 mm, and the ratio of the thickness of the bottom wall (Db) to the thickness of the trunk wall (Dd) (Db/
Dd) is in the range of 1.5 to 2.2 and the internal pressure resistance is 3 kg/cm 2 or more and less than 7 kg/cm 2 ,
The feature is that an inert gas mainly composed of nitrogen is filled with a non-carbonated beverage, the can lid is sealed, and the resulting inert gas-filled can is inspected to detect a poorly sealed can. A manufacturing method for inert gas filled canning.
JP11522379A 1979-09-10 1979-09-10 Manufacture of canned food filled with inert gas Granted JPS5639134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11522379A JPS5639134A (en) 1979-09-10 1979-09-10 Manufacture of canned food filled with inert gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11522379A JPS5639134A (en) 1979-09-10 1979-09-10 Manufacture of canned food filled with inert gas

Publications (2)

Publication Number Publication Date
JPS5639134A JPS5639134A (en) 1981-04-14
JPS6242692B2 true JPS6242692B2 (en) 1987-09-09

Family

ID=14657400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11522379A Granted JPS5639134A (en) 1979-09-10 1979-09-10 Manufacture of canned food filled with inert gas

Country Status (1)

Country Link
JP (1) JPS5639134A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5672675A (en) * 1979-11-15 1981-06-16 Suntory Ltd Production of canned noncarbonated beverage sealed with nitrogen gas
KR100423587B1 (en) 1996-03-26 2004-08-25 폭카 코포레이션 Method for producing high-quality drinks filled in containers and high-quality drinks produced by the method
JP4770084B2 (en) * 2001-08-03 2011-09-07 東洋製罐株式会社 Sealed can

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49133174A (en) * 1973-04-19 1974-12-20
JPS52589A (en) * 1975-06-21 1977-01-05 Toyo Seikan Kaisha Ltd Seamless can and method of producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49133174A (en) * 1973-04-19 1974-12-20
JPS52589A (en) * 1975-06-21 1977-01-05 Toyo Seikan Kaisha Ltd Seamless can and method of producing same

Also Published As

Publication number Publication date
JPS5639134A (en) 1981-04-14

Similar Documents

Publication Publication Date Title
US2894844A (en) Canning process and product
US2971671A (en) Container
US3525455A (en) Sheet metal container
AU2070500A (en) Assembly comprising a container and a ready-to-drink beverage
US9950831B2 (en) Can end and related method
JPH11193016A (en) Low positive pressure canned goods and can body thereof having internal pressure inspection bearability
JP5085411B2 (en) Retort compatible small capacity screw can
JPS6242692B2 (en)
US3281008A (en) Cans and method for canning
JPS6312582B2 (en)
JPH0227967A (en) Canned beverage
US20040241789A1 (en) Selectively deformable container end closure
Page et al. 5 Metal cans
JP4180309B2 (en) Container with excellent punching suitability
Page et al. Metal packaging
EP0005025A2 (en) Lightweight metal container
JP4112689B2 (en) Seamless can for positive pressure
Dhuey Investigation of corrosion in canned tomatoes processed by retorting
JPS6135059B2 (en)
JPS604882Y2 (en) DI can for negative pressure canning
JP4770084B2 (en) Sealed can
KR810002141B1 (en) Anti-buckling seamless container
GB2089248A (en) Draw-ironed can formed of surface-treated steel plate and process for preparation thereof
JPS6114998Y2 (en)
Kamm Progress in materials for can stock and future trends