JP4770060B2 - Method for fabricating nitride-based semiconductor optical device - Google Patents

Method for fabricating nitride-based semiconductor optical device Download PDF

Info

Publication number
JP4770060B2
JP4770060B2 JP2001162460A JP2001162460A JP4770060B2 JP 4770060 B2 JP4770060 B2 JP 4770060B2 JP 2001162460 A JP2001162460 A JP 2001162460A JP 2001162460 A JP2001162460 A JP 2001162460A JP 4770060 B2 JP4770060 B2 JP 4770060B2
Authority
JP
Japan
Prior art keywords
layer
nitride
gan
based semiconductor
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001162460A
Other languages
Japanese (ja)
Other versions
JP2002359438A (en
Inventor
好司 玉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001162460A priority Critical patent/JP4770060B2/en
Publication of JP2002359438A publication Critical patent/JP2002359438A/en
Application granted granted Critical
Publication of JP4770060B2 publication Critical patent/JP4770060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、窒化物系半導体光素子の作製方法に関し、更に詳細には、窒化物系III −V族化合物半導体層の成長に際し、In組成が高く、結晶性の良好なIn含有層を有する窒化物系半導体光素子の作製方法に関するものである。
【0002】
【従来の技術】
光記録の分野では、光ディスクなどの光記録媒体の記録密度を向上させるために、短波長域の光を発光する半導体レーザ素子の実用化が求められている。そこで、窒化物系III −V族化合物半導体、特にGaN、AlGaN混晶あるいはGaInN混晶などの窒化ガリウム(GaN)系III −V族化合物半導体を利用したGaN系半導体レーザ素子の研究が盛んに行われている。
GaN系化合物半導体は、その禁制帯幅が1.9eVから6.2eVにわたる直接遷移半導体であって、可視光領域から紫外光領域の波長で発光する半導体発光素子を実現できる材料として、特に緑色から青色、更には紫外線の領域にわたる短波長域で発光する半導体レーザ素子や発光ダイオード(LED)などを実現できる材料として注目されている化合物半導体である。
【0003】
また、窒化物系III −V族化合物半導体は、飽和電子速度および破壊電界が大きいことから、電界効果トランジスタ(FET)などの電子素子を構成する材料としても注目されている。特に、GaN系化合物半導体は、FETなどの電子走行素子の材料としても望ましく、例えば、GaNの飽和電子速度は約2.5×107 cm/sであって、Si、GaAs及びSiCに比べて大きく、しかも破壊電界は約5×106 V/cmとダイアモンドに次ぐ大きさを持っている。
GaN系化合物半導体は、このような優れた特性を有するので、高周波、高温、大電力用の電子走行素子の材料として有望視されている。
【0004】
ここで、図2を参照して、GaN系半導体レーザ素子の構成を説明する。図2はGaN系半導体レーザ素子の構成を示す断面図である。GaN系半導体レーザ素子とは、GaN系化合物半導体層の積層構造からなる共振器を備えた半導体レーザ素子であり、GaN系化合物半導体層とは、III 族元素として少なくともGaを有し、V族元素として少なくとも窒素(N)を有する化合物半導体層である。
GaN系半導体レーザ素子10は、図2に示すように、c面のサファイア基板上12上に、GaNバッファ層14、n型GaNコンタクト層16、n型AlGaNクラッド層18、n型GaN光導波層20、活性層22、p型GaN光導波層24、p型AlGaNクラッド層26、及びp型GaNコンタクト層28の積層構造を備えている。
活性層22は、Ga1-xInxN井戸層(例えば、x=0.09)/Ga1-yInyN障壁層(例えば、y=0.02)からなる量子井戸構造の活性層である。
【0005】
p型GaNコンタクト層28及びp型AlGaNクラッド層26の上層部は、エッチングされ、ストライプ幅が例えば2.5μm程度のストライプリッジとして形成されている。
また、n型GaNコンタクト層16の上層部、n型AlGaNクラッド層18、n型GaN光導波層20、活性層22、p型GaN光導波層24、及びp型AlGaNクラッド層26の残り層は、エッチングされ、ストライプリッジの延在方向と平行な方向でストライプ幅より広い幅で延在するメサ構造として形成されている。
【0006】
各GaN系III −V族化合物半導体層の厚さの例を挙げると、GaNバッファ層14の膜厚は50nm、n型GaNコンタクト層16の膜厚は3μm、n型AlGaNクラッド層18の膜厚は0.5μm、n型GaN光導波層20の膜厚は0.1μm、p型GaN光導波層24の膜厚は0.1μm、p型AlGaNクラッド層26の膜厚は0.5μm、及び、p型GaNコンタクト層28の膜厚は0.5μmである。
【0007】
積層構造上には、p側電極及びn側電極の形成領域を除いて、SiO2 絶縁膜30が成膜されている。
SiO2 絶縁膜30に設けた窓を介してp型GaNコンタクト層28上には、例えばNi/Au膜からなるp側電極32がオーミックコンタクト電極として形成されている。また、SiO2 絶縁膜30の窓を介してメサ構造脇のn型GaNコンタクト層16上には、例えばTi/Al膜からなるn側電極34がオーミックコンタクト電極として形成されている。
【0008】
上述のGaN系化合物半導体等の窒化物系III −V族化合物半導体を用いた、半導体レーザ素子或いは発光ダイオード等の窒化物系半導体発光素子は、一般に、MOCVD(Metal-organic Chemical Vapor Deposition;有機金属化学気相成長)法等の気相成長法を用いて窒化物系III −V族化合物半導体層を基板の上に成長させることにより作製される。
【0009】
MOCVD法によって、GaN層あるいはAlGaN混晶層などインジウムを含まない層(以下、In非含有層と言う)を成長させるときには、成長温度を1000℃程度以上とするのが、窒素原材料の分解の理由から最適である。
一方、MOCVD法によって、GaInN混晶などインジウムを含む層(以下、In含有層と言う)を成長させるときには、温度が高すぎると、インジウムが脱離してしまうので、通常、In含有層の成長温度は、In非含有層の成長温度より低く、例えば700℃〜800℃程度である。
また、MOCVD法による成長に際し、高温ではキャリアガスとして水素ガスを用いるが、低温では窒素ガスを使用している。従って、In非含有層を成長させ、次いでIn非含有層上にIn含有層を成長させる際には、キャリアガスを水素ガスから窒素ガスに切り換え、次いで再びIn非含有層を成長させる際には、窒素ガスから水素ガスに切り換えることが必要になる。
【0010】
【発明が解決しようとする課題】
しかし、従来の窒化物系半導体発光素子の作製方法には以下のような問題があった。
第1には、In非含有層の成長工程からIn含有層の成長工程に、或いはIn含有層の成長工程からIn非含有層の成長工程に移行する際、成長条件が異なるために、成長工程が不連続になり、そのために、工程間の移行に際して、当該境界層に転位などの結晶欠陥が発生することが多い。
つまり、In含有層の成長条件は、キャリアガスが窒素ガスであって、成長温度がIn非含有層の成長温度より低い700℃以上800℃未満の温度範囲である。一方、In非含有層の成長条件は、キャリアガスが水素ガスであって、成長温度が1000℃以上である。このために、成長工程が不連続になる。
【0011】
第2には、Inの脱離を抑制するために、700℃以上800℃未満の温度でIn含有層を成長させているものの、In含有層のIn組成を大きくすることが難しいことである。700℃以上800℃未満の温度で、In含有層、例えばGaInN層を成長させても、In組成比は、精々10数%までであって、10数%以上のIn組成比のGaInN層を成長させることは難しい。
従って、In組成の増大と共にGaInN層のバンドギャップエネルギーが小さくなることを利用して、半導体発光素子の活性層等の発光波長に直接に関係している構造層に使用されているGaInN層のIn組成比を増加させて、バンドギャップエネルギーが小さくし、発光波長を長波長化しようとしても、限界があることになる。つまり、長波長化しようとすると、閾値電流や閾値電圧などの素子動作特性が、著しく悪化したり、あるいは発光しなくなる。
【0012】
また、窒化物系III −V族化合物半導体の成長では、構成元素である窒素原子は、アンモニア又は窒素分子の分解により供給されるので、窒化物系III −V族化合物半導体の成長温度は、1000℃以上の高温が望ましく、700℃〜800℃程度の低温成長では、窒素原子の空位が生じる可能性がある。
また、窒化物系III −V族化合物半導体を低温成長させる際、上述の窒素原子空位を抑制するためには、原材料であるアンモニアや窒素分子の分解効率が小さいので、より多くの原材料を供給することが必要になり、経済的でない。従って、この点からも、窒化物系III −V族化合物半導体の成長温度は、従来の700℃〜800℃程度の温度より高いほうが望ましい。
【0013】
そこで、本発明の目的は、インジウムの脱離を抑制しつつ従来より高い成長温度でIn含有層を成長させる工程を有する、窒化物系半導体発光素子の作製方法を提供することである。
【0014】
【課題を解決するための手段】
本発明者は、In含有層の成長温度を700℃以上800℃未満の温度に限定している理由は、従来からIn原料として使用している有機金属の低温分解性にあることに注目した。
つまり、In含有層のIn原料として、従来、使用されている、TMIn(トリメチルインジウム;(CH33In、分子量=160)やTEIn(トリエチルインジウム;(C253In、分子量=202)は、いずれも、400℃前後で、熱により、CやHを含む有機分子と、Inへの分解が開始し、600℃前後で完全に分解する。更に高温になると、Inの脱離が生じて、Inが吸着して成長層に入らないため、In含有層の成長温度を高めることが難しい。
【0015】
換言すれば、従来から使用されている、TMIn、TEIn等のIn材料を用いてMOCVD成長を行ったとき、成長温度700℃〜800℃では、In含有層からのInの原子脱離反応と、Inが吸着してIn含有層として成長する反応が、同時並行的に進行するものの、Inの吸着反応がやや優勢であるためにIn含有層が成長する。
しかし、本来の窒化物系III −V族化合物半導体の成長として最適な1000℃程度以上では、In原子の基板吸着反応に比べて、In原子脱離反応が遙に優勢になるために、所望の組成までInを含んだIn含有層を形成させることができない。
【0016】
そこで、本発明者は、分子量が大きい、分解し難いIn化合物をIn原料として用いて、800℃以上の成長温度で所望のIn組成のIn含有層を成長させることを着想し、実験を重ねて本発明を発明するに到った。
【0017】
上記目的を達成するために、上述の知見に基づいて、本発明に係る窒化物系半導体光素子の作製方法は、窒化物系III −V族化合物半導体層からなる積層構造を備え、積層構造を構成する窒化物系III −V族化合物半導体層の少なくとも1層がインジウム(In)を含有するIn含有層である、窒化物系半導体光素子の作製方法であって、
MOCVD法によりIn含有層をエピタキシャル成長させる際、分子量が202を越えるIn含有有機化合物を原料としてIn含有層を成長させることを特徴としている。
【0018】
本発明方法で、窒化物系半導体光素子とは、窒化物系III −V族化合物半導体、詳しくはAla b Gac Ind N(a+b+c+d=1、0≦a、b、c、d≦1)の積層構造を有する半導体光素子であって、例えば窒化物系半導体レーザ素子、窒化物系発光ダイオード、窒化物系光変調器等を言う。
また、In含有層とは、3B族元素として少なくともインジウム(In)と5B族元素として少なくとも窒素(N)とを含む窒化物系III −V族化合物半導体層を言う。
【0019】
本発明方法では、In含有有機化合物として、従来から使用されているTMIn(トリメチルインジウム;(CH33In)やTEIn(トリエチルインジウム;(C253 In)より分子量の大きな、つまり分子量が202を越える熱分解性の悪い材料を使用する。
熱分解性の悪い材料を使用して、従来と同じ成長温度、更には従来より高い成長温度でIn含有層を成長させることにより、In組成比の大きなIn含有層を成長させることができる。
【0020】
本発明方法の好適な実施態様では、800℃以上1000℃以下の成長温度でIn含有層を成長させる。
これにより、水素ガスをキャリアガスとして使用することができ、窒化物系III −V族化合物半導体の成長工程で、In非含有層の成長工程からIn含有層の成長工程に、或いはIn含有層の成長工程からIn非含有層の成長工程に移行する際、同じキャリアガスを継続して使用できるので、成長工程の不連続性が解消する。
また、成長温度を800℃以上1000℃以下にすることにより、窒素原子の空位発生を抑制することができる。
【0021】
例えば、原料としてTBIn(ターシャルブチルインジウム、分子量286)を使用する。
【0022】
本発明方法では、In含有層の成長温度をより高くすることにより、窒化物系III −V族化合物半導体層の成長途中で成長温度の調整範囲を軽減し、キャリアガスの変更を不要にし、In含有層の結晶性を向上させ、In組成比を増加させて窒化物系半導体発光素子の動作特性を向上させることができる。
【0023】
【発明の実施の形態】
以下に、実施形態例を挙げ、添付図面を参照して、本発明の実施の形態を具体的かつ詳細に説明する。尚、以下の実施形態例で示す成膜方法、化合物半導体層の組成及び膜厚、リッジ幅、プロセス条件等は、本発明の理解を容易にするための一つの例示であって、本発明はこの例示に限定されるものではない。
実施形態例1
本実施形態例は、本発明に係る窒化物系半導体発光素子の作製方法を前述のGaN系半導体レーザ素子10の作製に適用した実施形態の一例である。
先ず、従来の方法と同様にして、MOCVD法により、成長温度1000℃で水素雰囲気中で、図1(a)に示すように、c面のサファイア基板上12上に、GaNバッファ層14、n型GaNコンタクト層16、n型AlGaNクラッド層18、及びn型GaN光導波層20を順次エピタキシャル成長させる。
【0024】
次いで、本実施形態例方法では、n型GaN光導波層20の成長に続いて連続的に、MOCVD法により成長温度800℃で窒素雰囲気中で、In含有有機化合物としてTBIn(ターシャルブチルインジウム、分子量286)を使用し、図1(b)に示すように、光導波層20上に、活性層22を構成するGa1-xInxN井戸層(例えば、x=0.22)及びGa1-yInyN障壁層(例えば、y=0.02)をエピタキシャル成長させ、量子井戸構造を形成する。
【0025】
続いて、従来の方法と同様にして、MOCVD法により、成長温度1000℃で水素雰囲気中で、図1(c)に示すように、活性層22上に、p型GaN光導波層24、p型AlGaNクラッド層26、及びp型GaNコンタクト層28を順次エピタキシャル成長させる。
【0026】
以下、従来と同様にして、ストライプリッジ、メサ構造、及び電極を形成することにより、図2に示す構成を備え、460nmで発光するに相当するバンドギャップエネルギーを持ったGaInN混晶からなる活性層22を備えたGaN系半導体レーザ素子10を作製することができる。
【0027】
本実施形態例方法では、活性層22を構成するGaInN層の成長温度を従来と同等の800℃にしていて、GaInN層の結晶性を向上させ、Inの脱離を抑制することにより、In組成比の大きなGaInN層を発光層とする、発光波長460nmのGaN系半導体レーザ素子10を実現して動作特性を向上させることができる。
【0028】
実施形態例2
本実施形態例は、本発明に係る窒化物系半導体発光素子の作製方法を前述のGaN系半導体レーザ素子10の作製に適用した実施形態の別の例である。
本実施形態例方法は、活性層22を構成するGa1-xInxN井戸層(例えば、x=0.09)及びGa1-yInyN障壁層(例えば、y=0.02)の成長温度が異なることを除いて、実施形態例1の方法と同じである。
先ず、実施形態例1と同様にして、c面のサファイア基板上12上に、GaNバッファ層14、n型GaNコンタクト層16、n型AlGaNクラッド層18、及びn型GaN光導波層20を順次エピタキシャル成長させる。
【0029】
本実施形態例方法では、n型GaN光導波層20の成長に続いて連続的に、MOCVD法により成長温度900℃で水素雰囲気中で、In含有有機化合物としてTBIn(ターシャルブチルインジウム、分子量286)を使用し、図1(b)に示すように、活性層22を構成するGa1-xInxN井戸層(例えば、x=0.09)及びGa1-yInyN障壁層(例えば、y=0.02)をエピタキシャル成長させ、量子井戸構造を形成する。
以下、実施形態例1と同様にして、GaN系半導体レーザ素子10を作製する。
【0030】
本実施形態例方法では、活性層22を構成するGaInN層の成長温度を従来より高い900℃にすることにより、GaN系化合物半導体層の成長途中で、キャリアガスの変更を不要にし、発光層であるGaInN層の結晶性を向上させ、GaN系半導体レーザ素子10の動作特性を向上させることができる。
本実施形態例方法は、発光波長が従来と同じ405nm程度であるものの、水素雰囲気中で連続的に成膜し、不連続成長による影響を小さくすることができる。
【0031】
以上、本発明方法は、上述の実施形態例1及び2に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
また、実施形態例1及び2では、基板12としてサファイア基板を用いているが、必要に応じて、サファイア基板の代わりに、GaN基板、SiC基板、ZnO基板、スピネル基板などを用いてもよい。GaN基板やSiC基板などの導電性の基板を用いる場合には、基板裏面に電極を形成することができる。
【0032】
【発明の効果】
本発明方法によれば、MOCVD法によりIn含有層をエピタキシャル成長させる際、分子量が202を越えるIn含有有機化合物を原料として成長温度800℃以上でIn含有層を成長させることにより、従来と同じ成長温度で、In組成比の高いIn含有層、例えばGaInN層を有する窒化物系半導体光素子を容易に作製することができる。
また、本発明方法によれば、In含有層(発光層)の成長温度を従来より高くすることにより、結晶性を向上させることができる。
また、本発明によると、成長温度の調整範囲が軽減され、またキャリアガスの変更が不要になるので、従来のような成長条件の不連続性に起因する結晶欠陥の発生を抑制することができる。
以上の効果を総合させることにより、閾値電流、閾値電圧、寿命などの動作特性が向上し、従来より長波長、例えば460nmの波長のレーザ光を発光する窒化物系半導体光素子を実現することができる。
【図面の簡単な説明】
【図1】図1(a)から(c)は、それぞれ、実施形態例方法1に従ってGaN系半導体レーザ素子を作製する際の工程毎の断面図である。
【図2】GaN系半導体レーザ素子の構成を示す断面図である。
【符号の説明】
10……GaN系半導体レーザ素子、12……サファイア基板、14……GaNバッファ層、16……n型GaNコンタクト層、18……n型AlGaNクラッド層、20……n型GaN光導波層、22……Ga1-xInxN井戸層(例えば、x=0.22)/Ga1-yInyN障壁層(例えば、y=0.02)からなる活性層、24……p型GaN光導波層、26……p型AlGaNクラッド層、28……p型GaNコンタクト層、30……SiO2 絶縁膜、32……p側電極、34……n側電極。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a nitride-based semiconductor optical device, and more particularly, a nitride-containing compound containing an In-containing layer having a high In composition and good crystallinity when growing a nitride-based III-V compound semiconductor layer. The present invention relates to a method for manufacturing a physical semiconductor optical device.
[0002]
[Prior art]
In the field of optical recording, in order to improve the recording density of an optical recording medium such as an optical disk, there is a demand for practical use of a semiconductor laser element that emits light in a short wavelength region. Therefore, research on GaN-based semiconductor laser devices using nitride-based III-V compound semiconductors, especially GaN, AlGaN mixed crystals or GaInN mixed crystals such as gallium nitride (GaN) -based III-V compound semiconductors has been actively conducted. It has been broken.
GaN-based compound semiconductors are direct transition semiconductors whose forbidden bandwidth ranges from 1.9 eV to 6.2 eV, and are particularly useful as materials capable of realizing semiconductor light emitting devices that emit light at wavelengths from the visible light region to the ultraviolet light region. It is a compound semiconductor that is attracting attention as a material that can realize semiconductor laser elements and light-emitting diodes (LEDs) that emit light in a short wavelength range over the blue and ultraviolet range.
[0003]
Nitride III-V group compound semiconductors are also attracting attention as materials constituting electronic devices such as field effect transistors (FETs) because of their high saturation electron velocity and high breakdown electric field. In particular, a GaN-based compound semiconductor is desirable as a material for an electron transit device such as an FET. For example, the saturation electron velocity of GaN is about 2.5 × 10 7 cm / s, which is higher than that of Si, GaAs, and SiC. The breakdown electric field is about 5 × 10 6 V / cm, which is the second largest after diamond.
Since GaN-based compound semiconductors have such excellent characteristics, they are considered promising as materials for electron transit devices for high frequency, high temperature, and high power.
[0004]
Here, the configuration of the GaN-based semiconductor laser device will be described with reference to FIG. FIG. 2 is a cross-sectional view showing the configuration of the GaN-based semiconductor laser device. A GaN-based semiconductor laser device is a semiconductor laser device including a resonator having a laminated structure of GaN-based compound semiconductor layers. The GaN-based compound semiconductor layer has at least Ga as a group III element, and a group V element. A compound semiconductor layer containing at least nitrogen (N).
As shown in FIG. 2, the GaN-based semiconductor laser device 10 includes a GaN buffer layer 14, an n-type GaN contact layer 16, an n-type AlGaN cladding layer 18, an n-type GaN optical waveguide layer on a c-plane sapphire substrate 12. 20, a laminated structure of an active layer 22, a p-type GaN optical waveguide layer 24, a p-type AlGaN cladding layer 26, and a p-type GaN contact layer 28.
The active layer 22 is an active layer having a quantum well structure including a Ga 1-x In x N well layer (for example, x = 0.09) / Ga 1-y In y N barrier layer (for example, y = 0.02). It is.
[0005]
The upper layers of the p-type GaN contact layer 28 and the p-type AlGaN cladding layer 26 are etched to form a stripe ridge having a stripe width of about 2.5 μm, for example.
The upper layer of the n-type GaN contact layer 16, the n-type AlGaN cladding layer 18, the n-type GaN optical waveguide layer 20, the active layer 22, the p-type GaN optical waveguide layer 24, and the remaining layers of the p-type AlGaN cladding layer 26 are Etched and formed as a mesa structure extending in a direction wider than the stripe width in a direction parallel to the extending direction of the stripe ridge.
[0006]
Taking an example of the thickness of each GaN-based III-V group compound semiconductor layer, the GaN buffer layer 14 has a thickness of 50 nm, the n-type GaN contact layer 16 has a thickness of 3 μm, and the n-type AlGaN cladding layer 18 has a thickness. Is 0.5 μm, the thickness of the n-type GaN optical waveguide layer 20 is 0.1 μm, the thickness of the p-type GaN optical waveguide layer 24 is 0.1 μm, the thickness of the p-type AlGaN cladding layer 26 is 0.5 μm, and The film thickness of the p-type GaN contact layer 28 is 0.5 μm.
[0007]
On the laminated structure, a SiO 2 insulating film 30 is formed except for the formation region of the p-side electrode and the n-side electrode.
A p-side electrode 32 made of, for example, a Ni / Au film is formed as an ohmic contact electrode on the p-type GaN contact layer 28 through a window provided in the SiO 2 insulating film 30. An n-side electrode 34 made of, for example, a Ti / Al film is formed as an ohmic contact electrode on the n-type GaN contact layer 16 beside the mesa structure through the window of the SiO 2 insulating film 30.
[0008]
A nitride semiconductor light emitting device such as a semiconductor laser device or a light emitting diode using a nitride III-V compound semiconductor such as a GaN compound semiconductor is generally an MOCVD (Metal-organic Chemical Vapor Deposition). It is produced by growing a nitride III-V compound semiconductor layer on a substrate using a vapor deposition method such as a chemical vapor deposition method.
[0009]
When growing a layer that does not contain indium (hereinafter referred to as an In-free layer) such as a GaN layer or an AlGaN mixed crystal layer by MOCVD, the growth temperature is set to about 1000 ° C. or more. Is the best.
On the other hand, when a layer containing indium such as GaInN mixed crystal (hereinafter referred to as an In-containing layer) is grown by MOCVD, indium is detached if the temperature is too high. Is lower than the growth temperature of the In-free layer, for example, about 700 ° C. to 800 ° C.
Further, in the growth by the MOCVD method, hydrogen gas is used as a carrier gas at a high temperature, but nitrogen gas is used at a low temperature. Therefore, when growing the In-free layer and then growing the In-containing layer on the In-free layer, the carrier gas is switched from hydrogen gas to nitrogen gas, and then when the In-free layer is grown again. It is necessary to switch from nitrogen gas to hydrogen gas.
[0010]
[Problems to be solved by the invention]
However, the conventional method for fabricating a nitride semiconductor light emitting device has the following problems.
First, because the growth conditions are different when shifting from the growth process of the In-free layer to the growth process of the In-containing layer or from the growth process of the In-containing layer to the growth process of the In-free layer. For this reason, crystal defects such as dislocations often occur in the boundary layer during transition between processes.
That is, the growth condition of the In-containing layer is a temperature range of 700 ° C. or higher and lower than 800 ° C., where the carrier gas is nitrogen gas and the growth temperature is lower than the growth temperature of the In-free layer. On the other hand, the growth conditions for the In-free layer are that the carrier gas is hydrogen gas and the growth temperature is 1000 ° C. or higher. For this reason, the growth process becomes discontinuous.
[0011]
Second, in order to suppress the desorption of In, the In-containing layer is grown at a temperature of 700 ° C. or higher and lower than 800 ° C., but it is difficult to increase the In composition of the In-containing layer. Even if an In-containing layer, for example, a GaInN layer is grown at a temperature of 700 ° C. or higher and lower than 800 ° C., the In composition ratio is at most 10% or less, and a GaInN layer having an In composition ratio of 10% or more is grown. It is difficult to let
Therefore, by utilizing the fact that the band gap energy of the GaInN layer decreases as the In composition increases, the In of the GaInN layer used in the structural layer directly related to the emission wavelength, such as the active layer of the semiconductor light emitting device. Even if the composition ratio is increased to reduce the band gap energy and to increase the emission wavelength, there is a limit. That is, when the wavelength is to be increased, the element operating characteristics such as the threshold current and the threshold voltage are significantly deteriorated or the light is not emitted.
[0012]
In the growth of a nitride III-V compound semiconductor, since nitrogen atoms as constituent elements are supplied by decomposition of ammonia or nitrogen molecules, the growth temperature of the nitride III-V compound semiconductor is 1000. A high temperature of at least ° C. is desirable, and vacancy of nitrogen atoms may occur in the low temperature growth of about 700 ° C. to 800 ° C.
Further, when the nitride-based III-V compound semiconductor is grown at a low temperature, in order to suppress the above-described nitrogen atom vacancies, the decomposition efficiency of ammonia and nitrogen molecules as raw materials is low, so more raw materials are supplied. Is necessary and not economical. Therefore, also from this point, the growth temperature of the nitride III-V compound semiconductor is desirably higher than the conventional temperature of about 700 ° C. to 800 ° C.
[0013]
Accordingly, an object of the present invention is to provide a method for manufacturing a nitride-based semiconductor light-emitting element, which includes a step of growing an In-containing layer at a higher growth temperature than in the past while suppressing indium detachment.
[0014]
[Means for Solving the Problems]
The present inventor has noted that the reason why the growth temperature of the In-containing layer is limited to a temperature of 700 ° C. or higher and lower than 800 ° C. is the low-temperature decomposability of the organic metal conventionally used as the In raw material.
In other words, TMIn (trimethylindium; (CH 3 ) 3 In, molecular weight = 160) and TEIn (triethylindium; (C 2 H 5 ) 3 In, molecular weight = which are conventionally used as the In raw material for the In-containing layer In 202), the decomposition into organic molecules containing C and H and In is initiated by heat at around 400 ° C. and completely decomposes at around 600 ° C. At higher temperatures, In is desorbed and In is adsorbed and does not enter the growth layer, so it is difficult to increase the growth temperature of the In-containing layer.
[0015]
In other words, when MOCVD growth is performed using a conventionally used In material such as TMIn and TEIn, the atomic desorption reaction of In from the In-containing layer is performed at a growth temperature of 700 ° C. to 800 ° C. Although the reaction in which In is adsorbed and grows as an In-containing layer proceeds concurrently, the In-containing layer grows because the In adsorption reaction is somewhat dominant.
However, at about 1000 ° C. or more, which is optimal for the growth of the original nitride III-V compound semiconductor, the In atom desorption reaction is much more dominant than the In atom substrate adsorption reaction. An In-containing layer containing In cannot be formed up to the composition.
[0016]
Accordingly, the present inventor has conceived that an In-containing layer having a desired In composition is grown at a growth temperature of 800 ° C. or higher using an In compound having a large molecular weight and hardly decomposed as an In raw material, and repeated experiments. The present invention has been invented.
[0017]
In order to achieve the above object, based on the above-described knowledge, a method for producing a nitride-based semiconductor optical device according to the present invention includes a multilayer structure composed of nitride-based III-V compound semiconductor layers, A method for producing a nitride-based semiconductor optical device, wherein at least one of the constituting nitride-based III-V compound semiconductor layers is an In-containing layer containing indium (In),
When the In-containing layer is epitaxially grown by MOCVD, the In-containing layer is grown using an In-containing organic compound having a molecular weight exceeding 202 as a raw material.
[0018]
In the present invention method, and a nitride-based semiconductor optical device, the nitride-based III -V compound semiconductor, specifically Al a B b Ga c In d N (a + b + c + d = 1,0 ≦ a, b, c, d ≦ The semiconductor optical device having the laminated structure of 1) refers to, for example, a nitride semiconductor laser device, a nitride light emitting diode, a nitride optical modulator, and the like.
The In-containing layer is a nitride-based III-V compound semiconductor layer containing at least indium (In) as a 3B group element and at least nitrogen (N) as a 5B group element.
[0019]
In the method of the present invention, the In-containing organic compound has a molecular weight larger than that of TMIn (trimethylindium; (CH 3 ) 3 In) or TEIn (triethylindium; (C 2 H 5 ) 3 In) conventionally used. A material having a molecular weight exceeding 202 and poor thermal decomposability is used.
An In-containing layer having a large In composition ratio can be grown by growing an In-containing layer at a growth temperature that is the same as that of the prior art and a growth temperature that is higher than that of the prior art by using a material having poor thermal decomposability.
[0020]
In a preferred embodiment of the method of the present invention, the In-containing layer is grown at a growth temperature of 800 ° C. or higher and 1000 ° C. or lower.
Thereby, hydrogen gas can be used as a carrier gas, and in the growth process of the nitride-based III-V compound semiconductor, from the growth process of the In-free layer to the growth process of the In-containing layer, or of the In-containing layer When shifting from the growth process to the growth process of the In-free layer, the same carrier gas can be used continuously, so the discontinuity of the growth process is eliminated.
Further, by setting the growth temperature to 800 ° C. or higher and 1000 ° C. or lower, generation of vacancies in nitrogen atoms can be suppressed.
[0021]
For example, TBIn (tertiary butyl indium, molecular weight 286) is used as a raw material.
[0022]
In the method of the present invention, by increasing the growth temperature of the In-containing layer, the adjustment range of the growth temperature is reduced during the growth of the nitride-based III-V compound semiconductor layer, making it unnecessary to change the carrier gas. The crystallinity of the containing layer can be improved, and the In composition ratio can be increased to improve the operating characteristics of the nitride-based semiconductor light-emitting element.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described specifically and in detail with reference to the accompanying drawings. It should be noted that the film formation method, the composition and thickness of the compound semiconductor layer, the ridge width, the process conditions, and the like shown in the following embodiment examples are merely examples for facilitating the understanding of the present invention. It is not limited to this illustration.
Embodiment 1
The present embodiment is an example of an embodiment in which the method for manufacturing a nitride-based semiconductor light-emitting device according to the present invention is applied to the manufacturing of the GaN-based semiconductor laser device 10 described above.
First, as in the conventional method, a GaN buffer layer 14, n is formed on a c-plane sapphire substrate 12 as shown in FIG. 1A by MOCVD in a hydrogen atmosphere at a growth temperature of 1000 ° C. The n-type GaN contact layer 16, the n-type AlGaN cladding layer 18, and the n-type GaN optical waveguide layer 20 are sequentially epitaxially grown.
[0024]
Next, in the method of this embodiment, following the growth of the n-type GaN optical waveguide layer 20, TBIn (tertiary butyl indium, as an In-containing organic compound) is grown in a nitrogen atmosphere at a growth temperature of 800 ° C. by MOCVD. As shown in FIG. 1B, a Ga 1-x In x N well layer (for example, x = 0.22) constituting the active layer 22 and Ga are used on the optical waveguide layer 20 as shown in FIG. A 1-y In y N barrier layer (eg, y = 0.02) is epitaxially grown to form a quantum well structure.
[0025]
Subsequently, in the same manner as in the conventional method, the MOCVD method is used to form a p-type GaN optical waveguide layer 24, p on the active layer 22 as shown in FIG. A type AlGaN cladding layer 26 and a p-type GaN contact layer 28 are epitaxially grown sequentially.
[0026]
Hereinafter, an active layer made of a GaInN mixed crystal having the structure shown in FIG. 2 and having a band gap energy equivalent to light emission at 460 nm by forming a stripe ridge, a mesa structure, and an electrode in the same manner as in the past. The GaN-based semiconductor laser device 10 having 22 can be manufactured.
[0027]
In the method of the present embodiment, the growth temperature of the GaInN layer constituting the active layer 22 is set to 800 ° C., which is the same as the conventional method, the crystallinity of the GaInN layer is improved, and the desorption of In is suppressed. The GaN-based semiconductor laser device 10 having an emission wavelength of 460 nm using the GaInN layer having a large ratio as the light emitting layer can be realized to improve the operation characteristics.
[0028]
Embodiment 2
The present embodiment is another example of the embodiment in which the method for producing a nitride semiconductor light emitting device according to the present invention is applied to the production of the GaN semiconductor laser device 10 described above.
In this embodiment method, the Ga 1-x In x N well layer (for example, x = 0.09) and the Ga 1-y In y N barrier layer (for example, y = 0.02) constituting the active layer 22 are used. The method is the same as that of the first embodiment except that the growth temperature is different.
First, as in the first embodiment, a GaN buffer layer 14, an n-type GaN contact layer 16, an n-type AlGaN cladding layer 18, and an n-type GaN optical waveguide layer 20 are sequentially formed on a c-plane sapphire substrate 12. Epitaxially grow.
[0029]
In this example embodiment method, following the growth of the n-type GaN optical waveguide layer 20, TBIn (tertiary butyl indium, molecular weight 286) is used as an In-containing organic compound in a hydrogen atmosphere at a growth temperature of 900 ° C. by MOCVD. 1), as shown in FIG. 1B, a Ga 1-x In x N well layer (for example, x = 0.09) and a Ga 1-y In y N barrier layer (for example, constituting the active layer 22) For example, y = 0.02) is epitaxially grown to form a quantum well structure.
Thereafter, the GaN-based semiconductor laser device 10 is manufactured in the same manner as in the first embodiment.
[0030]
In the method of this embodiment, the growth temperature of the GaInN layer constituting the active layer 22 is set to 900 ° C., which is higher than the conventional temperature, so that no change of the carrier gas is required during the growth of the GaN-based compound semiconductor layer. The crystallinity of a certain GaInN layer can be improved, and the operating characteristics of the GaN-based semiconductor laser device 10 can be improved.
In this embodiment method, although the emission wavelength is about 405 nm, which is the same as the conventional one, the film can be continuously formed in a hydrogen atmosphere, and the influence of discontinuous growth can be reduced.
[0031]
As described above, the method of the present invention is not limited to the first and second embodiments, and various modifications based on the technical idea of the present invention are possible.
In the first and second embodiments, a sapphire substrate is used as the substrate 12, but a GaN substrate, SiC substrate, ZnO substrate, spinel substrate, or the like may be used instead of the sapphire substrate as necessary. When a conductive substrate such as a GaN substrate or a SiC substrate is used, an electrode can be formed on the back surface of the substrate.
[0032]
【The invention's effect】
According to the method of the present invention, when an In-containing layer is epitaxially grown by the MOCVD method, an In-containing layer is grown at a growth temperature of 800 ° C. or more using an In-containing organic compound having a molecular weight of over 202 as a raw material. Thus, a nitride-based semiconductor optical device having an In-containing layer having a high In composition ratio, such as a GaInN layer, can be easily manufactured.
Further, according to the method of the present invention, the crystallinity can be improved by increasing the growth temperature of the In-containing layer (light emitting layer) as compared with the conventional one.
In addition, according to the present invention, the adjustment range of the growth temperature is reduced, and the carrier gas does not need to be changed, so that the generation of crystal defects due to the discontinuity of the growth conditions as in the conventional case can be suppressed. .
By combining the above effects, operating characteristics such as threshold current, threshold voltage, and lifetime are improved, and a nitride-based semiconductor optical device that emits laser light having a longer wavelength, for example, 460 nm, can be realized. it can.
[Brief description of the drawings]
FIGS. 1A to 1C are cross-sectional views for each process in fabricating a GaN-based semiconductor laser device according to Embodiment Method 1. FIG.
FIG. 2 is a cross-sectional view showing a configuration of a GaN-based semiconductor laser element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... GaN-type semiconductor laser element, 12 ... Sapphire substrate, 14 ... GaN buffer layer, 16 ... n-type GaN contact layer, 18 ... n-type AlGaN clad layer, 20 ... n-type GaN optical waveguide layer, 22 …… Ga 1-x In x N well layer (for example, x = 0.22) / Ga 1-y In y N barrier layer (for example, y = 0.02) active layer, 24 …… p-type GaN optical waveguide layer, 26... P-type AlGaN cladding layer, 28... P-type GaN contact layer, 30... SiO 2 insulating film, 32.

Claims (4)

窒化物系III −V族化合物半導体層からなる積層構造を備え、積層構造を構成する窒化物系III −V族化合物半導体層の少なくとも1層がインジウム(In)を含有するIn含有層である、窒化物系半導体光素子を作製する場合に、
分子量が202を越えるIn含有有機化合物を原料とし、水素をキャリアガスとして使用して800℃以上1000℃以下の成長温度でMOCVD法によりIn含有層をエピタキシャル成長させる窒化物系半導体光素子の作製方法。
A layered structure composed of a nitride-based III-V group compound semiconductor layer, and at least one of the nitride-based group III-V group compound semiconductor layers constituting the layered structure is an In-containing layer containing indium (In); When fabricating a nitride-based semiconductor optical device ,
A method for producing a nitride-based semiconductor optical device, in which an In-containing layer is epitaxially grown by MOCVD using an In-containing organic compound having a molecular weight exceeding 202 as a raw material and hydrogen as a carrier gas at a growth temperature of 800 ° C. or higher and 1000 ° C. or lower.
前記In含有層は単結晶層である請求項1に記載の窒化物系半導体光素子の作製方法。The method for producing a nitride-based semiconductor optical device according to claim 1, wherein the In-containing layer is a single crystal layer. 前記In含有層はGaInN層である請求項1または2に記載の窒化物系半導体光素子の作製方法。The method for producing a nitride-based semiconductor optical device according to claim 1, wherein the In-containing layer is a GaInN layer. 前記In含有有機化合物としてTBIn(ターシャルブチルインジウム)を使用する請求項1から3のうちのいずれか1項に記載の窒化物系半導体光素子の作製方法。4. The method for producing a nitride-based semiconductor optical device according to claim 1, wherein TBIn (tertiary butyl indium) is used as the In-containing organic compound. 5.
JP2001162460A 2001-05-30 2001-05-30 Method for fabricating nitride-based semiconductor optical device Expired - Fee Related JP4770060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001162460A JP4770060B2 (en) 2001-05-30 2001-05-30 Method for fabricating nitride-based semiconductor optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001162460A JP4770060B2 (en) 2001-05-30 2001-05-30 Method for fabricating nitride-based semiconductor optical device

Publications (2)

Publication Number Publication Date
JP2002359438A JP2002359438A (en) 2002-12-13
JP4770060B2 true JP4770060B2 (en) 2011-09-07

Family

ID=19005576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001162460A Expired - Fee Related JP4770060B2 (en) 2001-05-30 2001-05-30 Method for fabricating nitride-based semiconductor optical device

Country Status (1)

Country Link
JP (1) JP4770060B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101034055B1 (en) * 2003-07-18 2011-05-12 엘지이노텍 주식회사 Light emitting diode and method for manufacturing light emitting diode
WO2021102696A1 (en) * 2019-11-26 2021-06-03 天津三安光电有限公司 Infrared light-emitting diode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3794144B2 (en) * 1997-12-26 2006-07-05 富士ゼロックス株式会社 Optical semiconductor device and manufacturing method thereof
JP3551101B2 (en) * 1999-03-29 2004-08-04 日亜化学工業株式会社 Nitride semiconductor device

Also Published As

Publication number Publication date
JP2002359438A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
JP4189386B2 (en) Method for growing nitride semiconductor crystal layer and method for producing nitride semiconductor light emitting device
JP3924303B2 (en) Nitride semiconductor device and manufacturing method thereof
JP4939844B2 (en) ZnO-based semiconductor device
JP4631884B2 (en) Sphalerite-type nitride semiconductor free-standing substrate, method for manufacturing zinc-blende nitride semiconductor free-standing substrate, and light-emitting device using zinc-blende nitride semiconductor free-standing substrate
WO2002054549A1 (en) Semiconductor luminous element and method for manufacture thereof, and semiconductor device and method for manufacture thereof
JP2004047764A (en) Method for manufacturing nitride semiconductor, semiconductor wafer and semiconductor device
JPH11243253A (en) Growth of nitride-based iii-v compound semiconductor, manufacture of semiconductor device, substrate for growth of nitride-based iii-v compound semiconductor, manufacture of the substrate for growth of nitride-based iii-v compound semiconductor
JP3410863B2 (en) Compound semiconductor device and compound semiconductor light emitting device
JP2008091470A (en) Method for forming film of group iii nitride compound semiconductor laminated structure
WO2007046465A1 (en) Nitride semiconductor device and method for manufacturing same
JP4037554B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
US6362016B1 (en) Semiconductor light emitting device
JP2007073873A (en) Semiconductor element
JPH10145006A (en) Compound semiconductor device
JP4786481B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2004095724A (en) Semiconductor light-emitting device
Akasaki et al. Present and future of group III nitride semiconductors
JP4770060B2 (en) Method for fabricating nitride-based semiconductor optical device
JP2002289914A (en) Nitride semiconductor element
JP3615386B2 (en) Semiconductor device and manufacturing method thereof
JP2007019526A (en) Process for fabricating nitride semiconductor element
JP2006135001A (en) Semiconductor element and its manufacturing method
JPH10178201A (en) Manufacture of semiconductor light-emitting element
JP2007019526A5 (en)
JP2003218468A (en) Semiconductor laser element and manufacturing method therefor

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040316

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040604

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041224

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees