JP4765727B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4765727B2
JP4765727B2 JP2006099384A JP2006099384A JP4765727B2 JP 4765727 B2 JP4765727 B2 JP 4765727B2 JP 2006099384 A JP2006099384 A JP 2006099384A JP 2006099384 A JP2006099384 A JP 2006099384A JP 4765727 B2 JP4765727 B2 JP 4765727B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
water
refrigeration apparatus
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006099384A
Other languages
Japanese (ja)
Other versions
JP2007271213A (en
Inventor
真一 坂本
恭彦 岡
昌弘 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2006099384A priority Critical patent/JP4765727B2/en
Publication of JP2007271213A publication Critical patent/JP2007271213A/en
Application granted granted Critical
Publication of JP4765727B2 publication Critical patent/JP4765727B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、主にヒートポンプ式給湯装置の加熱手段として使われる冷凍装置に関する。   The present invention relates to a refrigeration apparatus mainly used as a heating means of a heat pump type hot water supply apparatus.

従来、ヒートポンプ式給湯装置の冷凍装置としては、圧縮式冷凍回路で構成されるものが広く利用されている。これらの冷凍装置は、除霜のためのデフロスト運転を行うときに、圧縮機の吐出側管路から空気熱交換器の入口側にバイパス回路を設けて、圧縮機から吐出されたホットガスを空気熱交換器に流して除霜するタイプと、バイパス回路を設けずに膨張弁の開度を通常運転時より大きくし、圧縮機から吐出されたホットガスを正サイクルで空気熱交換器に流して除霜するタイプとがあり、後者のタイプは、サイクル構成が簡単で低コストである。(例えば、特許文献1参照)。
特開2001−82802号公報
2. Description of the Related Art Conventionally, as a refrigeration apparatus for a heat pump type hot water supply apparatus, one composed of a compression refrigeration circuit is widely used. These refrigeration apparatuses are provided with a bypass circuit from the discharge side pipe line of the compressor to the inlet side of the air heat exchanger when performing defrost operation for defrosting, and the hot gas discharged from the compressor is supplied to the air. The type that defrosts by flowing in the heat exchanger, and the opening of the expansion valve is made larger than in normal operation without providing a bypass circuit, and hot gas discharged from the compressor is flowed to the air heat exchanger in the positive cycle. There is a defrosting type, and the latter type has a simple cycle configuration and low cost. (For example, refer to Patent Document 1).
JP 2001-82802 A

しかしながら、ホットガスを正サイクルで空気熱交換器に流して除霜するタイプのものは、膨張弁の開度を通常運転時より大きくしたことにより、水熱交換器を流通するホットガスの流速が速まり、除霜時の騒音が高い傾向にある。   However, the type of defrosting by flowing hot gas through the air heat exchanger in the positive cycle increases the flow rate of the hot gas flowing through the water heat exchanger because the opening of the expansion valve is larger than that during normal operation. There is a tendency to increase the noise during defrosting.

本発明の課題は、ホットガスを正サイクルで空気熱交換器に流して除霜するタイプで、除霜時の騒音を抑制する冷凍装置を提供することにある。   The subject of this invention is providing the freezing apparatus which suppresses the noise at the time of a defrost by the type which flows a hot gas to an air heat exchanger by a positive cycle, and defrosts.

第1発明に係る冷凍装置は、CO2を冷媒とし、水熱交換器を備えている。水熱交換器では、冷媒ガスが流通する冷媒管と水が流通する水管との間で熱交換が行われる。また、冷媒管は、複数の冷媒細管に分岐されている。   The refrigeration apparatus according to the first aspect of the invention uses CO2 as a refrigerant and includes a water heat exchanger. In the water heat exchanger, heat exchange is performed between a refrigerant pipe through which refrigerant gas flows and a water pipe through which water flows. The refrigerant tube is branched into a plurality of refrigerant thin tubes.

第1発明に係る冷凍装置は、圧縮機、膨張弁、空気熱交換器、水熱交換器、及び制御部を備えている。水熱交換器では、冷媒ガスが流通する冷媒管と水が流通する水管との間で熱交換が行われる。制御部は、膨張弁の開度を制御する。また、圧縮機、冷媒管、膨張弁及び空気熱交換器が、冷媒配管によって環状に接続されて、CO2を冷媒とする圧縮式冷凍回路を形成している。冷媒管は、複数の冷媒細管に分岐されている。制御部は、所定条件成立時、圧縮機から吐出されたホットガスを正サイクルで空気熱交換器に流すデフロスト運転を行う。デフロスト運転時、複数の冷媒細管を流れる冷媒の最大速度は、4m/s以下である。 The refrigeration apparatus according to the first invention includes a compressor, an expansion valve, an air heat exchanger, a water heat exchanger, and a control unit. In the water heat exchanger, heat exchange is performed between a refrigerant pipe through which refrigerant gas flows and a water pipe through which water flows. The control unit controls the opening degree of the expansion valve. In addition, the compressor, the refrigerant pipe, the expansion valve, and the air heat exchanger are connected in an annular shape by a refrigerant pipe to form a compression refrigeration circuit using CO2 as a refrigerant. The refrigerant tube is branched into a plurality of refrigerant thin tubes. When the predetermined condition is satisfied, the control unit performs a defrost operation in which the hot gas discharged from the compressor is caused to flow to the air heat exchanger in a positive cycle. During the defrost operation, the maximum speed of the refrigerant flowing through the plurality of refrigerant thin tubes is 4 m / s or less.

この冷凍装置では、冷媒細管を通過する冷媒の流速は、冷媒の流通音が抑制される4m/s以下であるので、水熱交換器内をホットガスが通過する際の流通音の増大が抑制される。  In this refrigeration apparatus, the flow rate of the refrigerant passing through the refrigerant thin tube is 4 m / s or less at which the refrigerant flow noise is suppressed, so that an increase in the flow noise when hot gas passes through the water heat exchanger is suppressed. Is done.

発明に係る冷凍装置は、第1発明に係る冷凍装置であって複数の冷媒細管の冷媒通路断面積の総和が、冷媒配管の冷媒通路断面積よりも大きい。 A refrigeration apparatus according to a second aspect of the present invention is the refrigeration apparatus according to the first aspect of the present invention, wherein the sum of the refrigerant passage cross-sectional areas of the plurality of refrigerant thin tubes is larger than the refrigerant passage cross-sectional area of the refrigerant pipe.

この冷凍装置では、水熱交換器内で冷媒の流速が低下する。このため、水熱交換器を流れる冷媒の流通音が低減される。   In this refrigeration apparatus, the flow rate of the refrigerant decreases in the water heat exchanger. For this reason, the distribution | circulation sound of the refrigerant | coolant which flows through a water heat exchanger is reduced.

発明に係る冷凍装置は、第1発明に係る冷凍装置であって制御部デフロスト運転時に膨張弁を全開にして冷媒を流通させる。 A refrigeration apparatus according to a third aspect of the present invention is the refrigeration apparatus according to the first aspect of the present invention , wherein the control unit fully opens the expansion valve during the defrost operation and causes the refrigerant to flow.

ここでは、膨張弁の全開によって、冷媒細管を流れる冷媒の流速が通常運転時より速くなり、水熱交換器での熱交換はほとんどない。このため、高温冷媒が素早く空気熱交換器へ回り、デフロスト性能が向上する。その上、冷媒が複数の冷媒細管で分流されているので、冷媒の流通音は、従来よりも低い。   Here, when the expansion valve is fully opened, the flow rate of the refrigerant flowing through the refrigerant thin tube becomes faster than that during normal operation, and there is almost no heat exchange in the water heat exchanger. For this reason, a high-temperature refrigerant | coolant goes to an air heat exchanger quickly, and defrost performance improves. In addition, since the refrigerant is divided by the plurality of refrigerant thin tubes, the circulation sound of the refrigerant is lower than before.

発明に係る冷凍装置は、第1発明に係る冷凍装置であって、空気熱交換器に空気を当て熱交換を促進するファンと、ファンを収納するファン室とをさらに備えている。ファン室に、水熱交換器が配置される。 A refrigeration apparatus according to a fourth aspect of the present invention is the refrigeration apparatus according to the first aspect of the present invention, further comprising a fan that applies air to the air heat exchanger to promote heat exchange and a fan chamber that houses the fan. A water heat exchanger is disposed in the fan chamber.

ここでは、冷媒細管内を流通する冷媒の騒音がファン室のファン回転音で消される。このため、冷媒の不快な流通音が解消される。   Here, the noise of the refrigerant flowing through the refrigerant thin tube is eliminated by the fan rotation sound in the fan chamber. For this reason, the unpleasant circulation sound of a refrigerant is canceled.

発明に係る冷凍装置は、第1発明に係る冷凍装置であって、冷媒細管が、水管の外周に密着するように巻き付けられている。 A refrigeration apparatus according to a fifth aspect of the present invention is the refrigeration apparatus according to the first aspect of the present invention, wherein the refrigerant thin tube is wound so as to be in close contact with the outer periphery of the water tube.

ここでは、冷媒細管と水管との熱交換が促進されるので、水熱交換器での加熱能力が向上する。   Here, since heat exchange between the refrigerant thin tube and the water tube is promoted, the heating capacity in the water heat exchanger is improved.

第1発明または第2発明に係る冷凍装置では、水熱交換器内で冷媒の流速が低下する。このため、水熱交換器を流れる冷媒の流通音が低減される。 In the refrigeration apparatus according to the first invention or the second invention , the flow rate of the refrigerant decreases in the water heat exchanger. For this reason, the distribution | circulation sound of the refrigerant | coolant which flows through a water heat exchanger is reduced.

発明に係る冷凍装置では、高温冷媒が素早く空気熱交換器へ回り、デフロスト性能が向上する。その上、冷媒は複数の冷媒細管で分流されているので、冷媒の流通音は、従来よりも低い。 In the refrigeration apparatus according to the third invention, the high-temperature refrigerant quickly turns to the air heat exchanger, and the defrost performance is improved. In addition, since the refrigerant is divided by a plurality of refrigerant thin tubes, the circulation sound of the refrigerant is lower than before.

発明に係る冷凍装置では、冷媒細管内を流通する冷媒の騒音がファン室のファン回転音で消される。このため、冷媒の不快な流通音が解消される。 In the refrigeration apparatus according to the fourth aspect of the invention, the noise of the refrigerant flowing through the refrigerant thin tube is eliminated by the fan rotation sound in the fan chamber. For this reason, the unpleasant circulation sound of a refrigerant is canceled.

発明に係る冷凍装置は、冷媒細管が、水管の外周に密着するように巻き付けられているので、冷媒細管と水管との熱交換が促進され、水熱交換器での加熱能力が向上する。 In the refrigeration apparatus according to the fifth aspect of the invention, since the refrigerant thin tube is wound so as to be in close contact with the outer periphery of the water tube, heat exchange between the refrigerant thin tube and the water tube is promoted, and the heating capacity in the water heat exchanger is improved. .

<ヒートポンプ式給湯装置の構成>
本発明の一実施形態に係る冷凍装置を含むヒートポンプ式給湯装置のシステムを図1に示す。ヒートポンプ式給湯装置1は、冷凍装置2と貯湯装置3とによって構成されている。冷凍装置2は、圧縮機21、水熱交換器22内の冷媒管22a、減圧手段としての膨張弁23、及び空気熱交換器24が、冷媒配管25によって環状に接続される圧縮式の冷凍回路20を有する。
<Configuration of heat pump hot water supply device>
A system of a heat pump hot water supply apparatus including a refrigeration apparatus according to an embodiment of the present invention is shown in FIG. The heat pump type hot water supply apparatus 1 includes a refrigeration apparatus 2 and a hot water storage apparatus 3. The refrigeration apparatus 2 includes a compressor 21, a refrigerant pipe 22 a in the water heat exchanger 22, an expansion valve 23 as a decompression unit, and an air heat exchanger 24 that are annularly connected by a refrigerant pipe 25. 20

さらに、冷凍回路20には、水熱交換器22から出る高圧高温の冷媒と、空気熱交換器24から出る低圧低温の冷媒との間で熱交換を行うため、ガス熱交換器26が配置されている。具体的には、水熱交換器22と膨張弁23とを連結する冷媒通路と、空気熱交換器と圧縮機21とを連結する冷媒通路との間で熱交換が行われる。   Further, the refrigeration circuit 20 is provided with a gas heat exchanger 26 for heat exchange between the high-pressure and high-temperature refrigerant coming out of the water heat exchanger 22 and the low-pressure and low-temperature refrigerant coming out of the air heat exchanger 24. ing. Specifically, heat exchange is performed between the refrigerant passage connecting the water heat exchanger 22 and the expansion valve 23 and the refrigerant passage connecting the air heat exchanger and the compressor 21.

貯湯装置3は、貯湯タンク31、水熱交換器22内の水管22b及び水循環ポンプ32が、水配管35によって環状に接続された水循環回路30を有する。   The hot water storage device 3 includes a water circulation circuit 30 in which a hot water storage tank 31, a water pipe 22 b in the water heat exchanger 22, and a water circulation pump 32 are annularly connected by a water pipe 35.

冷凍装置2には、設置場所の外気温を検出する外気温センサ8、圧縮機21の吐出管温度を検出する吐出管温度センサ9、及び空気熱交換器24の温度を検出する温度センサ10が設けられており、これらのセンサの検出信号は、マイコン6(制御部)に入力される。   The refrigeration apparatus 2 includes an outside air temperature sensor 8 that detects the outside air temperature at the installation location, a discharge pipe temperature sensor 9 that detects the discharge pipe temperature of the compressor 21, and a temperature sensor 10 that detects the temperature of the air heat exchanger 24. The detection signals of these sensors are input to the microcomputer 6 (control unit).

水熱交換器22で加熱された水の温度が85℃となるように、水循環ポンプ32によって水の循環量が制御される。マイコン6は、85℃の水を得るために必要な冷媒温度を確保するために、膨張弁23の開度を制御する。   The water circulation amount is controlled by the water circulation pump 32 so that the temperature of the water heated by the water heat exchanger 22 becomes 85 ° C. The microcomputer 6 controls the opening degree of the expansion valve 23 in order to ensure the refrigerant temperature necessary for obtaining 85 ° C. water.

<冷凍装置の構造>
図2は、冷凍装置2の内部構造を示す断面図である。図2において、断熱壁2cの右側区画が機械室2aであり、断熱壁2cの左側区画がファン室2bである。機械室2aには、圧縮機21、膨張弁23が配置されている。
<Structure of refrigeration equipment>
FIG. 2 is a cross-sectional view showing the internal structure of the refrigeration apparatus 2. In FIG. 2, the right compartment of the heat insulation wall 2c is the machine room 2a, and the left compartment of the heat insulation wall 2c is the fan room 2b. A compressor 21 and an expansion valve 23 are arranged in the machine room 2a.

ファン室2bには、図2正面視において、前方にファン27が配置されている。ファン27の後方には、ファン27を駆動するモータが、モータ支持台28に固定された状態で配置されている。ファン室2bの下方には、断熱壁2dを隔てて水熱交換器22が配置されている。水熱交換器22内にて、冷媒管22a(図1参照)を流れる冷媒と、水管22b(図1参照)を流れる水との間で熱交換が行われる。   In the fan chamber 2b, a fan 27 is disposed in front of the fan chamber 2b in a front view in FIG. A motor that drives the fan 27 is disposed behind the fan 27 in a state of being fixed to the motor support base 28. A water heat exchanger 22 is disposed below the fan chamber 2b with a heat insulating wall 2d interposed therebetween. In the water heat exchanger 22, heat exchange is performed between the refrigerant flowing through the refrigerant pipe 22a (see FIG. 1) and the water flowing through the water pipe 22b (see FIG. 1).

また、図2において、空気熱交換器24は、ファン室2bの左側壁と背面壁に沿って配置されており、空気熱交換器24の右端は機械室2aの中央まで延出している。制御ボックス4は、機械室2aの上部とファン室2bの上部を跨ぐように配置されている。制御ボックス4には、マイコン6(図4参照)、インバータ7(図4参照)を搭載した制御装置5が内蔵されている。   In FIG. 2, the air heat exchanger 24 is disposed along the left side wall and the back wall of the fan chamber 2b, and the right end of the air heat exchanger 24 extends to the center of the machine chamber 2a. The control box 4 is disposed so as to straddle the upper part of the machine room 2a and the upper part of the fan room 2b. The control box 4 incorporates a control device 5 equipped with a microcomputer 6 (see FIG. 4) and an inverter 7 (see FIG. 4).

<水熱交換器の構造>
図3は、水熱交換器22の配管図である。冷媒管22aは、3本の冷媒細管221〜223から成り、お互いに接触しないように、水管22bの外周に螺旋状に巻き付けられている。冷媒細管221〜223の内径(3mm)は、冷媒配管25の内径より小さいが、3本の冷媒細管221〜223の冷媒通路断面積の総和は、冷媒配管25の冷媒通路断面積よりも大きい。水管22bは、外周に冷媒細管221〜223が巻きつけられた状態で、ヘアピン状に屈曲されて配置されている。冷媒配管25にから水熱交換器22に流入した冷媒は、冷媒細管221〜223によってほぼ3等分されて流通する。このため、熱交換量が増加する。また、水管22bに3本の冷媒細管221〜223を巻き付けたものは、1本或いは2本だけを巻き付けたものに比べて流速が遅く、冷媒の流通音が低減される。さらに、水熱交換器22は、ファン室2bの下方に配置されているので、通常運転時に冷媒細管221〜223を流れる冷媒の流通音は、ファン27の回転音に消されてほとんど問題にならない。
<Structure of water heat exchanger>
FIG. 3 is a piping diagram of the water heat exchanger 22. The refrigerant tube 22a is composed of three refrigerant thin tubes 221 to 223, and is spirally wound around the outer periphery of the water tube 22b so as not to contact each other. The inner diameter (3 mm) of the refrigerant thin tubes 221 to 223 is smaller than the inner diameter of the refrigerant pipe 25, but the sum of the refrigerant passage cross-sectional areas of the three refrigerant thin tubes 221 to 223 is larger than the refrigerant passage cross-sectional area of the refrigerant pipe 25. The water pipe 22b is arranged in a hairpin shape with the refrigerant thin tubes 221 to 223 wound around the outer periphery. The refrigerant that has flowed into the water heat exchanger 22 from the refrigerant pipe 25 is divided into approximately three equal parts by the refrigerant thin tubes 221 to 223 and circulates. For this reason, the amount of heat exchange increases. Moreover, the thing which wound three refrigerant | coolant thin tubes 221-223 around the water pipe 22b has a slower flow velocity compared with what wound only one or two, and the circulation sound of a refrigerant | coolant is reduced. Furthermore, since the water heat exchanger 22 is disposed below the fan chamber 2 b, the circulation sound of the refrigerant flowing through the refrigerant thin tubes 221 to 223 during normal operation is eliminated by the rotation sound of the fan 27, so that there is almost no problem. .

<冷凍装置の運転制御>
図4は、冷凍装置2の制御ブロック図である。マイコン6は、外気温センサ8、空気熱交換器24の温度センサ10からの検出信号に基づき、目標吐出管温度設定部62で目標吐出管温度を設定する。そして、マイコン6は、吐出管温度センサ9で検出される吐出管温度が目標吐出管温度に近づくように、膨張弁開度制御部63を介して膨張弁23の開度を制御する。なお、目標吐出管温度の設定に必要なデータは、目標吐出管温度設定部62内に予め記憶されている。
<Operation control of refrigeration equipment>
FIG. 4 is a control block diagram of the refrigeration apparatus 2. The microcomputer 6 sets the target discharge pipe temperature at the target discharge pipe temperature setting unit 62 based on detection signals from the outside air temperature sensor 8 and the temperature sensor 10 of the air heat exchanger 24. The microcomputer 6 controls the opening of the expansion valve 23 via the expansion valve opening controller 63 so that the discharge pipe temperature detected by the discharge pipe temperature sensor 9 approaches the target discharge pipe temperature. Data necessary for setting the target discharge pipe temperature is stored in the target discharge pipe temperature setting unit 62 in advance.

さらに、マイコン6は、冷凍装置2の炊上能力に及ぼす外気温の影響を考慮して、さらに給湯負荷が一日の時間帯によって変化することを考慮して、インバータ制御部64を介して圧縮機21の運転周波数を制御している。例えば、外気温が低く、給湯負荷が大きい時間帯では、湯切れを防止するため、効率を無視して圧縮機21の運転周波数を高める。一方、外気温が高く、給湯負荷が小さい時間帯では、圧縮機21の運転周波数を高効率点に設定する。   Further, the microcomputer 6 compresses via the inverter control unit 64 in consideration of the influence of the outside air temperature on the cooking capacity of the refrigeration apparatus 2 and further considering that the hot water supply load changes according to the time zone of the day. The operating frequency of the machine 21 is controlled. For example, in a time zone in which the outside air temperature is low and the hot water supply load is large, the operating frequency of the compressor 21 is increased by ignoring the efficiency in order to prevent hot water shortage. On the other hand, in the time zone when the outside air temperature is high and the hot water supply load is small, the operating frequency of the compressor 21 is set to a high efficiency point.

給湯負荷が大きいとき、マイコン6は、圧縮機21を保護する目的で、吐出管温度が120℃を超えないように圧縮機21の運転制御を行う。実際に、吐出管温度が120℃のとき、圧縮機21の内部温度は、140℃〜145℃に到達しており、内部温度がさらに上昇して150℃を超えると、圧縮機21内部のマグネットの磁力が低下、オイルの劣化が発生し故障に至る。したがって、本実施形態では、吐出管温度の上限を120℃と設定している。   When the hot water supply load is large, the microcomputer 6 controls the operation of the compressor 21 so that the discharge pipe temperature does not exceed 120 ° C. for the purpose of protecting the compressor 21. Actually, when the discharge pipe temperature is 120 ° C., the internal temperature of the compressor 21 reaches 140 ° C. to 145 ° C. When the internal temperature further rises and exceeds 150 ° C., the magnet inside the compressor 21 The magnetic force of the oil drops and oil deterioration occurs, leading to failure. Therefore, in this embodiment, the upper limit of the discharge pipe temperature is set to 120 ° C.

但し、外気温t1が−20℃以下のときは、圧縮機21が過負荷になり易いので、さらなる安全措置として吐出管温度センサ9の検出値の補正量を大きくとり、実際の吐出管温度が120℃に達する前に吐出管温度センサ9の検出値を120℃にする必要がある。そこで、外気温t1が−20℃以下のときの補正量が実験的に求められ、マイコン6の温度補正部61の第2補正手段61bに記憶されている。   However, when the outside air temperature t1 is −20 ° C. or less, the compressor 21 is likely to be overloaded. Therefore, as a further safety measure, the correction value of the detection value of the discharge pipe temperature sensor 9 is increased, and the actual discharge pipe temperature is reduced. Before reaching 120 ° C., the detection value of the discharge pipe temperature sensor 9 needs to be 120 ° C. Therefore, the correction amount when the outside air temperature t1 is −20 ° C. or less is obtained experimentally and stored in the second correction means 61b of the temperature correction unit 61 of the microcomputer 6.

なお、外気温t1>−20℃の温度範囲では、第1補正手段61aによって、補正されている。   In the temperature range of the outside air temperature t1> −20 ° C., the correction is made by the first correcting means 61a.

<デフロスト運転制御>
通常に運転されているときに、空気熱交換器24の出口温度が−5℃まで低下すると、除霜運転に入る。本実施形態の除霜運転は、圧縮機21から吐出されたホットガスを正サイクルで空気熱交換器24に流して除霜するタイプのものであり、除霜運転時は、水循環ポンプ32の運転を停止し、膨張弁23の開度を通常運転時よりも大きくする。ここでは、デフロスト運転時の膨張弁23の開度は全開とする。これによって、圧縮機21から吐出されるホットガスが水熱交換器22で放出する熱量は少なくなり、膨張弁23での減圧による温度低下も小さくなる。したがって、圧縮機21から吐出されたホットガスが、大きく温度低下することなく空気熱交換器24へ到達し、空気熱交換器の除霜を行う。
<Defrost operation control>
When the outlet temperature of the air heat exchanger 24 decreases to −5 ° C. during normal operation, the defrosting operation is started. The defrosting operation of the present embodiment is of a type in which the hot gas discharged from the compressor 21 is defrosted by flowing it through the air heat exchanger 24 in a positive cycle. During the defrosting operation, the water circulation pump 32 is operated. And the opening degree of the expansion valve 23 is made larger than that during normal operation. Here, the opening degree of the expansion valve 23 during the defrost operation is fully opened. Accordingly, the amount of heat released from the hot gas discharged from the compressor 21 by the water heat exchanger 22 is reduced, and the temperature drop due to the decompression at the expansion valve 23 is also reduced. Therefore, the hot gas discharged from the compressor 21 reaches the air heat exchanger 24 without greatly lowering the temperature, and defrosts the air heat exchanger.

通常運転では、圧縮機21から吐出されたホットガスの密度は小さく、水熱交換器22内で放熱すると、徐々に密度が大きくなり流速が遅くなる。一方、デフロスト運転では、水熱交換器22内でほとんど放熱しないため、密度は小さく流速が早い。このため、水熱交換器22内をホットガスが通過する際の流通音が増大する傾向にあった。しかし、本実施形態では、水熱交換器22内の冷媒管22aが冷媒細管221,222,223の3分岐され、1本の冷媒細管内を通過する冷媒の流速が遅くなることによって、冷媒の流通音を抑制している。なお、本実施形態では、冷媒細管を通過する冷媒の流速は、3分岐の場合は約2m/sであり、2分岐の場合は約3m/sであり、いずれも4m/s以下である。   In normal operation, the density of the hot gas discharged from the compressor 21 is small, and when the heat is radiated in the water heat exchanger 22, the density gradually increases and the flow rate becomes slow. On the other hand, in the defrost operation, since the heat is hardly dissipated in the water heat exchanger 22, the density is small and the flow rate is fast. For this reason, there was a tendency for the flow noise when hot gas passes through the water heat exchanger 22 to increase. However, in the present embodiment, the refrigerant pipe 22a in the water heat exchanger 22 is divided into three branches of the refrigerant thin pipes 221, 222, and 223, and the flow rate of the refrigerant passing through the single refrigerant thin pipe is slowed down. The distribution sound is suppressed. In the present embodiment, the flow rate of the refrigerant passing through the refrigerant thin tube is about 2 m / s in the case of three branches, and about 3 m / s in the case of two branches, both of which are 4 m / s or less.

<特徴>
(1)
この冷凍装置2は、CO2を冷媒とする圧縮式冷凍回路20で構成されており、水熱交換器22を備えている。圧縮式冷凍回路20では、圧縮機21、水熱交換器22の冷媒管22a、膨張弁23及び空気熱交換器24が、冷媒配管25によって環状に接続されている。水熱交換器22では、冷媒ガスが流通する冷媒管22aと水が流通する水管22bとの間で熱交換が行われる。冷媒管22aは、複数の冷媒細管221〜223に分岐されているので、冷媒が3本の冷媒細管に分流される。複数の冷媒細管221〜223の冷媒通路断面積の総和は、冷媒配管の冷媒通路断面積よりも大きい。このため、水熱交換器22内で冷媒の流速が低下し(具体的には、4m/s以下)、水熱交換器22を流れる冷媒の流通音が低減される。
<Features>
(1)
The refrigeration apparatus 2 includes a compression refrigeration circuit 20 using CO2 as a refrigerant, and includes a water heat exchanger 22. In the compression refrigeration circuit 20, the compressor 21, the refrigerant pipe 22 a of the water heat exchanger 22, the expansion valve 23, and the air heat exchanger 24 are annularly connected by a refrigerant pipe 25. In the water heat exchanger 22, heat exchange is performed between the refrigerant pipe 22a through which the refrigerant gas flows and the water pipe 22b through which water flows. Since the refrigerant pipe 22a is branched into a plurality of refrigerant thin tubes 221 to 223, the refrigerant is divided into three refrigerant thin tubes. The sum total of the refrigerant passage sectional areas of the plurality of refrigerant thin tubes 221 to 223 is larger than the refrigerant passage sectional area of the refrigerant pipe. For this reason, the flow rate of the refrigerant in the water heat exchanger 22 decreases (specifically, 4 m / s or less), and the circulation sound of the refrigerant flowing through the water heat exchanger 22 is reduced.

(2)
この冷凍装置2は、膨張弁23の開度を制御する制御部6をさらに備えている。制御部6は、デフロスト運転時に膨張弁23を全開にして冷媒を流通させる。膨張弁23の全開によって、冷媒細管221〜223を流れる冷媒の流速が通常運転時より速くなり、水熱交換器での熱交換はほとんどない。このため、高温冷媒が素早く空気熱交換器24へ回り、デフロスト性能が向上する。その上、冷媒は3本の冷媒細管で分流されているので、冷媒の流通音は従来よりも低い。
(2)
The refrigeration apparatus 2 further includes a control unit 6 that controls the opening degree of the expansion valve 23. The control unit 6 causes the refrigerant to flow by fully opening the expansion valve 23 during the defrost operation. By fully opening the expansion valve 23, the flow rate of the refrigerant flowing through the refrigerant thin tubes 221 to 223 becomes faster than that during normal operation, and there is almost no heat exchange in the water heat exchanger. For this reason, the high-temperature refrigerant quickly moves to the air heat exchanger 24, and the defrost performance is improved. In addition, since the refrigerant is divided by the three refrigerant tubes, the circulation sound of the refrigerant is lower than before.

(3)
この冷凍装置2は、ファン室2bをさらに備えている。ファン室2bは、空気熱交換器24に空気を当て熱交換を促進するファン27を収納する。ファン室2bには、水熱交換器22が配置されている。このため、冷媒細管221〜223内を通過する冷媒の通過音がファン27の音で消される。
(3)
The refrigeration apparatus 2 further includes a fan chamber 2b. The fan chamber 2b houses a fan 27 that applies air to the air heat exchanger 24 to promote heat exchange. A water heat exchanger 22 is disposed in the fan chamber 2b. For this reason, the passage sound of the refrigerant passing through the refrigerant thin tubes 221 to 223 is eliminated by the sound of the fan 27.

(4)
この冷凍装置2では、冷媒細管221〜223が、水管22bの外周に密着するように巻き付けられているので、冷媒細管221〜223と水管22bとの熱交換が促進され、加熱能力が向上する。
(4)
In the refrigeration apparatus 2, since the refrigerant thin tubes 221 to 223 are wound so as to be in close contact with the outer periphery of the water tube 22b, heat exchange between the refrigerant thin tubes 221 to 223 and the water tube 22b is promoted, and the heating capacity is improved.

以上のように本発明によれば、通常運転時、デフロスト運転時の冷媒の流通音が低減されるので、ヒートポンプ式給湯装置の冷凍装置に有用である。   As described above, according to the present invention, the refrigerant flow noise during normal operation and defrost operation is reduced, which is useful for a refrigeration apparatus of a heat pump hot water supply apparatus.

本発明の一実施形態に係る冷凍装置を含むヒートポンプ式給湯装置のシステム。The system of the heat pump type hot water supply apparatus containing the freezing apparatus which concerns on one Embodiment of this invention. 同冷凍装置の内部構造を示す断面図。Sectional drawing which shows the internal structure of the freezing apparatus. 同冷凍装置の水熱交換器の内部配管図Internal piping diagram of the water heat exchanger of the refrigeration system 同冷凍装置の制御装置のブロック図。The block diagram of the control apparatus of the freezing apparatus.

1 ヒートポンプ式給湯装置
2 冷凍装置
2a ファン室
6 マイコン(制御部)
20 圧縮式冷凍回路
21 圧縮機
22 水熱交換器
22a 冷媒管
22b 水管
23 膨張弁
24 空気熱交換器
25 冷媒配管
27 ファン
35 水配管
221 冷媒細管
222 冷媒細管
223 冷媒細管
DESCRIPTION OF SYMBOLS 1 Heat pump type hot water supply apparatus 2 Refrigeration apparatus 2a Fan chamber 6 Microcomputer (control part)
20 Compression Refrigeration Circuit 21 Compressor 22 Water Heat Exchanger 22a Refrigerant Tube 22b Water Tube 23 Expansion Valve 24 Air Heat Exchanger 25 Refrigerant Pipe 27 Fan 35 Water Pipe 221 Refrigerant Narrow Tube 222 Refrigerant Narrow Tube 223 Refrigerant Narrow Tube

Claims (5)

圧縮機(21)、膨張弁(23)、空気熱交換器(24)、冷媒ガスが流通する冷媒管(22a)と水が流通する水管(22b)との間で熱交換が行われる水熱交換器(22)、及び前記膨張弁(23)の開度を制御する制御部(6)を備え、前記圧縮機(21)、前記冷媒管(22a)、前記膨張弁(23)及び前記空気熱交換器(24)が、冷媒配管(25)によって環状に接続されて、CO2を冷媒とする圧縮式冷凍回路(20)を形成する冷凍装置であって、
前記冷媒管(22a)は、複数の冷媒細管(221〜223)に分岐されており、
前記制御部(6)は、所定条件成立時、前記圧縮機(21)から吐出されたホットガスを正サイクルで前記空気熱交換器(24)に流すデフロスト運転を行い、
前記デフロスト運転時、前記複数の冷媒細管(221〜223)を流れる冷媒の最大速度は、4m/s以下である、
冷凍装置(2)。
Hydrothermal heat exchange between the compressor (21), the expansion valve (23), the air heat exchanger (24), the refrigerant pipe (22a) through which the refrigerant gas flows and the water pipe (22b) through which water flows. A controller (6) for controlling the opening degree of the exchanger (22) and the expansion valve (23) , the compressor (21), the refrigerant pipe (22a), the expansion valve (23) and the air; A heat exchanger (24) is annularly connected by a refrigerant pipe (25) to form a compression refrigeration circuit (20) using CO2 as a refrigerant ,
The refrigerant pipe (22a) is branched into a plurality of refrigerant thin tubes (221 to 223),
The control unit (6) performs a defrost operation for flowing hot gas discharged from the compressor (21) to the air heat exchanger (24) in a positive cycle when a predetermined condition is established,
During the defrost operation, the maximum speed of the refrigerant flowing through the plurality of refrigerant thin tubes (221 to 223) is 4 m / s or less.
Refrigeration equipment (2).
前記複数の冷媒細管(221〜223)の冷媒通路断面積の総和が、前記冷媒配管(25)の冷媒通路断面積よりも大きい、
請求項1に記載の冷凍装置(2)。
A sum of refrigerant passage cross-sectional areas of the plurality of refrigerant thin tubes (221 to 223) is larger than a refrigerant passage cross-sectional area of the refrigerant pipe (25);
The refrigeration apparatus (2) according to claim 1.
前記制御部(6)は、前記デフロスト運転時に前記膨張弁(23)を全開にして前記冷媒を流通させる、
請求項1に記載の冷凍装置(2)。
The controller (6) circulates the refrigerant by fully opening the expansion valve (23) during the defrost operation.
The refrigeration apparatus (2) according to claim 1.
前記空気熱交換器(24)に空気を当てて熱交換を促進するファン(27)と、前記ファン(27)を収納するファン室(2b)とをさらに備え、
前記ファン室(2b)に、前記水熱交換器(22)が配置されている、
請求項1に記載の冷凍装置(2)。
A fan (27) that applies air to the air heat exchanger (24) to promote heat exchange; and a fan chamber (2b) that houses the fan (27),
The water heat exchanger (22) is disposed in the fan chamber (2b).
The refrigeration apparatus (2) according to claim 1.
前記冷媒細管(221〜223)が、前記水管(22b)の外周に密着するように巻き付けられている、
請求項1に記載の冷凍装置(2)。
The refrigerant thin tubes (221 to 223) are wound so as to be in close contact with the outer periphery of the water tube (22b).
The refrigeration apparatus (2) according to claim 1.
JP2006099384A 2006-03-31 2006-03-31 Refrigeration equipment Expired - Fee Related JP4765727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006099384A JP4765727B2 (en) 2006-03-31 2006-03-31 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006099384A JP4765727B2 (en) 2006-03-31 2006-03-31 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2007271213A JP2007271213A (en) 2007-10-18
JP4765727B2 true JP4765727B2 (en) 2011-09-07

Family

ID=38674200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099384A Expired - Fee Related JP4765727B2 (en) 2006-03-31 2006-03-31 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4765727B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102678A (en) * 2009-11-11 2011-05-26 Daikin Industries Ltd Heat pump device
JP5625966B2 (en) * 2011-02-03 2014-11-19 三菱電機株式会社 Heat pump water heater outdoor unit
JP5961816B2 (en) * 2012-02-22 2016-08-02 パナソニックIpマネジメント株式会社 Heat pump heat source machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228370A (en) * 2001-01-30 2002-08-14 Daikin Ind Ltd Heat exchanger
JP4254532B2 (en) * 2003-12-26 2009-04-15 ダイキン工業株式会社 Heat pump type water heater
JP4651338B2 (en) * 2004-09-17 2011-03-16 三菱電機株式会社 Hot water supply outdoor unit and hot water supply air conditioner

Also Published As

Publication number Publication date
JP2007271213A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
CN1769811B (en) Heat-pump type hot water supply system
JP5423083B2 (en) Air conditioner
JP4622990B2 (en) Air conditioner
JP5370474B2 (en) Air conditioner
JP4826643B2 (en) Air conditioner
JP5816422B2 (en) Waste heat utilization system of refrigeration equipment
JP2013119954A (en) Heat pump hot water heater
JP2008116156A (en) Air conditioner
JP2005147609A (en) Heat pump water heater
WO2020174530A1 (en) Refrigerant control system and cooling system
JP2005147610A (en) Heat pump water heater
JP4765727B2 (en) Refrigeration equipment
JP5067505B2 (en) Air conditioner
JP5515568B2 (en) Heat pump cycle equipment
JP2009092258A (en) Refrigerating cycle device
JP5705070B2 (en) Cooling system
JP2007255866A (en) Air conditioner
JP2011257098A (en) Heat pump cycle device
JP2007010214A (en) Heat pump type water heater
JP2015098986A (en) Heat pump cycle device
JP2010223456A (en) Air conditioner
JP5020114B2 (en) Air conditioner
JP4857866B2 (en) Refrigeration equipment
JP5516332B2 (en) Heat pump type hot water heater
JP2009168254A (en) Heat pump device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R151 Written notification of patent or utility model registration

Ref document number: 4765727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees