JP4762104B2 - Austenitic steel - Google Patents

Austenitic steel Download PDF

Info

Publication number
JP4762104B2
JP4762104B2 JP2006277166A JP2006277166A JP4762104B2 JP 4762104 B2 JP4762104 B2 JP 4762104B2 JP 2006277166 A JP2006277166 A JP 2006277166A JP 2006277166 A JP2006277166 A JP 2006277166A JP 4762104 B2 JP4762104 B2 JP 4762104B2
Authority
JP
Japan
Prior art keywords
content
less
corrosion cracking
stress corrosion
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006277166A
Other languages
Japanese (ja)
Other versions
JP2008095138A (en
Inventor
太一朗 溝口
和加大 原田
宏紀 冨村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2006277166A priority Critical patent/JP4762104B2/en
Publication of JP2008095138A publication Critical patent/JP2008095138A/en
Application granted granted Critical
Publication of JP4762104B2 publication Critical patent/JP4762104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自動車の燃料タンクや給油管等の自動車床下部材が使用される環境に適したオーステナイト系ステンレス鋼に関する。   The present invention relates to an austenitic stainless steel suitable for an environment in which an automobile underfloor member such as a fuel tank or a fuel supply pipe of an automobile is used.

近年、自動車の燃料タンクや給油管に代表される自動車給油系部材にオーステナイト系ステンレス鋼を適用しようとする動きがある。これは、自動車の排ガス規制対応に伴う保証期間の長期化のため、従来材であるターンめっき鋼板やSn−Znめっき鋼板などでは耐久性が不足する場合が生じ、材料の見直しが必要になったことが大きな要因として挙げられる。自動車部材は樹脂化されることも少なくないが、燃料タンクや給油管ではガソリンの透過の問題があり、樹脂化は困難である。そこで、耐食性を有し、ガソリン透過のない材料としてオーステナイト系ステンレス鋼が有望視されている。   In recent years, there has been a movement to apply austenitic stainless steel to automobile oil supply system members represented by automobile fuel tanks and oil supply pipes. This is because the warranty period associated with compliance with exhaust gas regulations of automobiles has been extended, and the conventional turn-plated steel sheets and Sn-Zn-plated steel sheets may have insufficient durability, and the materials need to be reviewed. This is a major factor. Although automobile members are often made of resin, there is a problem of gasoline permeation in fuel tanks and oil supply pipes, making it difficult to make resin. Therefore, austenitic stainless steel is promising as a material having corrosion resistance and no gasoline permeation.

燃料タンクや給油管は複雑形状に加工されて製造されることが多く、加工性の観点からフェライト系鋼種よりオーステナイト系鋼種の方が有利である。しかし、ステンレス鋼はわずかなCl-イオン存在下であっても比較的高温の環境では孔食を起こしやすく、特にオーステナイト系ステンレス鋼は加工や溶接による残留応力が存在すると応力腐食割れを起こしやすいという欠点を有する。 Fuel tanks and oil supply pipes are often manufactured by being processed into complex shapes, and austenitic steel types are more advantageous than ferritic steel types from the viewpoint of workability. However, stainless steel is slight Cl - prone to pitting at a relatively high temperature environment even in the presence ions, that particularly prone to austenitic stainless steels to stress corrosion cracking the residual stress due to machining and welding is present Has drawbacks.

海岸近くを走行する自動車では海塩粒子が付着しやすく、また自動車の床下に設置されることの多い給油系部材では冬期に道路凍結防止剤などの塩化物が付着しやすい。このような場合、塩化物が付着した状態で湿潤と乾燥を繰り返す環境(以下「塩乾湿繰返し環境」という)に曝されることになる。また、排ガス部材からの熱や路面からの輻射熱により、50℃以上の高温になることもある。しかも給油系部材を車体に取り付けるために、ボルトやワッシャ、あるいはゴム等の緩衝材などとの間に何らかの隙間構造ができることが避けられない。これらの環境はステンレス鋼にとって過酷な環境であり、オーステナイト系ステンレス鋼を自動車給油系部材に使用するには、塩乾湿繰返し環境における耐孔食性および耐応力腐食割れ性を同時に改善した鋼種を適用することが望まれる。   Sea salt particles are likely to adhere to automobiles traveling near the coast, and chlorides such as road anti-freezing agents are likely to adhere to the fuel supply members often installed under the floor of automobiles in winter. In such a case, it will be exposed to the environment which repeats moistening and drying (hereinafter referred to as “salt-wet-and-moisture repetitive environment”) with chloride attached. Moreover, it may become high temperature of 50 degreeC or more with the heat from an exhaust gas member, or the radiant heat from a road surface. Moreover, in order to attach the oil supply system member to the vehicle body, it is inevitable that some gap structure is formed between the bolt, the washer, or a cushioning material such as rubber. These environments are harsh for stainless steel, and in order to use austenitic stainless steel as a vehicle oil system component, steel grades with improved pitting corrosion resistance and stress corrosion cracking resistance at the same time in salty and dry repeated environments are applied. It is desirable.

これまで、オーステナイト系ステンレス鋼の耐応力腐食割れ性に関しては「水環境」すなわち水中に浸漬された環境について多くの研究が行われており、例えば特許文献1、2にはSiおよびCuを複合添加すること、特許文献3にはCuを添加することにより温水中の耐応力腐食割れ性を顕著に改善したオーステナイト系ステンレス鋼が開示されている。
一方、特許文献4には耐孔食性、耐応力腐食割れ性を改善した自動車の給油管および燃料タンク用のCu含有オーステナイト系ステンレス鋼が記載されている。
So far, regarding the stress corrosion cracking resistance of austenitic stainless steel, many studies have been conducted on the “water environment”, that is, the environment immersed in water. For example, Patent Documents 1 and 2 add Si and Cu in combination. In addition, Patent Document 3 discloses an austenitic stainless steel in which the stress corrosion cracking resistance in hot water is remarkably improved by adding Cu.
On the other hand, Patent Document 4 describes a Cu-containing austenitic stainless steel for automobile oil supply pipes and fuel tanks having improved pitting corrosion resistance and stress corrosion cracking resistance.

特開平1−159351号公報JP-A-1-159351 特開平2−190451号公報Japanese Patent Laid-Open No. 2-190451 特開昭64−62443号公報JP-A 64-62443 特開2004−277767号公報JP 2004-277767 A

特許文献1〜3のような耐応力腐食割れ性を向上させたオーステナイト系ステンレス鋼を用いることで、自動車の床下で使用される部材(以下「自動車床下部材」という)においても良好な耐食性を有することが期待された。しかし発明者らの検討によれば、これらの鋼は自動車床下部材としては必ずしも安定して優れた耐食性を示さないことがわかった。特許文献1〜3に開示されているオーステナイト系ステンレス鋼は温水環境で優れた耐食性を示すものの、塩乾湿繰返し環境では温水環境と異なる腐食メカニズムが働くことで腐食が進行するためであると考えられる。   By using austenitic stainless steel with improved resistance to stress corrosion cracking as described in Patent Documents 1 to 3, it has good corrosion resistance even in members used under the floor of automobiles (hereinafter referred to as “automotive under-floor members”). It was expected. However, according to the study by the inventors, it has been found that these steels do not necessarily exhibit stable and excellent corrosion resistance as automobile under-floor members. Although the austenitic stainless steel disclosed in Patent Documents 1 to 3 shows excellent corrosion resistance in a warm water environment, it is considered that corrosion progresses due to the action of a different corrosion mechanism from the warm water environment in a salt dry and wet environment. .

特許文献4のオーステナイト系ステンレス鋼は自動車給油系部材を対象として開発されたものであるため、厳しい塩乾湿繰返し環境において優れた耐食性を発揮することが期待された。しかし、自動車給油系部材の耐久性に対する要求は従来にも増して厳しくなっている。種々の検討をした結果、特許文献4の鋼では、特に隙間部における耐孔食性の面で昨今の厳しい要求に十分対応できない場合があることが明らかになった。   Since the austenitic stainless steel of Patent Document 4 was developed for automobile oil supply system members, it was expected to exhibit excellent corrosion resistance in severe salty and dry repeated environments. However, the demand for durability of automobile oil supply system members has become stricter than ever. As a result of various studies, it has been clarified that the steel of Patent Document 4 may not be able to sufficiently meet the recent severe requirements particularly in terms of pitting corrosion resistance in the gaps.

このように、オーステナイト系ステンレス鋼材において、自動車給油系部材に要求される耐久性を安定して発揮させる方法は依然として見出されていない状況である。本発明はこのような状況に鑑み、塩乾湿繰返し環境において優れた耐孔食性、耐応力腐食割れ性を安定して発揮し、特に燃料タンク、給油管といった給油系部材や、二次電池ケース部材などの「自動車床下部材」に適したステンレス鋼材を開発し提供しようというものである。   Thus, in the austenitic stainless steel material, a method for stably exhibiting the durability required for an automobile oil supply system member has not yet been found. In view of such a situation, the present invention stably exhibits excellent pitting corrosion resistance and stress corrosion cracking resistance in a salty and wet repeated environment, and in particular, a fuel supply system member such as a fuel tank and a fuel supply pipe, and a secondary battery case member. It is intended to develop and provide a stainless steel material suitable for “automotive under-floor members”.

上記目的は、質量%で、C:0.05%以下、Si:1.0%未満、Mn:0.4〜1.8%、P:0.045%以下、S:0.005%以下、Ni:8.5〜12.0%、Cr:17.5〜19.5%、N:0.05%以下であり、必要に応じてAl:0.3%以下、B:0.005%以下を含有するとともに、CuおよびMoを必須成分として含有し、残部Feおよび不可避的不純物からなる鋼において、CuおよびMoの含有量を、Cu:0.5〜1.5%未満、Mo:0.5〜1.2%とし、かつ1.5≦Cu+Mo≦2.5を満たす範囲に調整したことを特徴とする塩乾湿繰り返し環境での耐久性に優れたオーステナイト系ステンレス鋼によって達成される。 The purpose is mass%, C: 0.05% or less, Si: less than 1.0%, Mn: 0.4 to 1.8%, P: 0.045% or less, S: 0.005% or less Ni: 8.5 to 12.0%, Cr: 17.5 to 19.5%, N: 0.05% or less, Al: 0.3% or less as required, B: 0.005 In steel containing Cu and Mo as essential components and the balance Fe and unavoidable impurities, the content of Cu and Mo is Cu: less than 0.5 to 1.5% , M o : Achieved by an austenitic stainless steel excellent in durability in salty and dry repeated environments characterized by being adjusted to a range satisfying 1.5 ≦ Cu + Mo ≦ 2.5 with 0.5 to 1.2% Is done.

こで、上記の式中のCuおよびMoの箇所にはそれぞれ質量%で表されたCuおよびMoの含有量が代入される。Si含有量については、0.5±0.25%の範囲に調整されているものが好適な対象となる。 In here, the content of Cu and Cu in place of, expressed in each mass% Mo and Mo in the formula above is substituted. About Si content, what is adjusted to the range of 0.5 +/- 0.25% becomes a suitable object.

本発明によれば、自動車の床下で使用される部材において優れた耐久性を発揮するオーステナイト系ステンレス鋼が提供される。これはオーステナイト系であるため、燃料タンクをはじめとする複雑形状の自動車部材への加工が容易である。また従来の各種めっき鋼板に比べて基本的な耐食性が高く、自動車部材の長期保証のニーズにも合致する。樹脂材料の欠点であるガソリン透過の問題もない。さらに本発明のオーステナイト系ステンレス鋼は給油系部材などの自動車床下部材全般の他、あらゆる塩乾湿繰返し環境下で使用される部材に適用可能である。   ADVANTAGE OF THE INVENTION According to this invention, the austenitic stainless steel which exhibits the outstanding durability in the member used under the floor of a motor vehicle is provided. Since this is an austenite type, it can be easily processed into a complex-shaped automobile member such as a fuel tank. In addition, it has higher basic corrosion resistance than various types of conventional plated steel sheets, and meets the needs for long-term guarantee of automobile parts. There is no problem of gasoline permeation, which is a drawback of resin materials. Furthermore, the austenitic stainless steel of the present invention can be applied to any member used in all salt-wet-and-humidity repeated environments in addition to general automotive under-floor members such as an oil supply member.

温水環境におけるオーステナイト系ステンレス鋼の耐応力腐食割れ性を向上させるにはCuの添加あるいはCuとSiの複合添加が有効であることが知られている(特許文献1〜3)。しかし、発明者らの詳細な検討の結果、応力腐食割れ性に及ぼす合金成分の影響は、温水環境と塩乾湿繰返し環境とで異なることがわかってきた。そのデータの一例を示すと以下のとおりである。   It is known that the addition of Cu or the combined addition of Cu and Si is effective for improving the stress corrosion cracking resistance of austenitic stainless steel in a warm water environment (Patent Documents 1 to 3). However, as a result of detailed studies by the inventors, it has been found that the influence of the alloy component on the stress corrosion cracking property is different between a hot water environment and a salty and dry repeated environment. An example of the data is as follows.

すなわち、表1に示す鋼を溶製し、熱間圧延にて板厚3.0mmとし、1150℃×30分の焼鈍、酸洗、冷間圧延、1050℃×均熱1分の焼鈍を経て板厚1.0mmの素材鋼板を得た。各素材鋼板から30mm×30mmの大片と15mm×15mmの小片を切り出し、表面を#600湿式研磨で仕上げた後、大片の中央に小片を重ねて配置し、直径5mmの電極を用いてスポット溶接によりナゲットが形成される条件で大片と小片を接合した。この接合体は、溶接部近傍に密着状態に近い隙間構造が形成されており、また溶接ナゲット近傍に残留応力が生じている。したがって、この接合体は隙間部での耐孔食性と耐応力腐食割れ性の評価に利用できる。この接合体を本明細書では「溶接隙間試験片」と呼んでいる。   That is, the steel shown in Table 1 was melted, and the sheet thickness was 3.0 mm by hot rolling, followed by annealing at 1150 ° C. × 30 minutes, pickling, cold rolling, 1050 ° C. × annealing for 1 minute soaking. A material steel plate having a thickness of 1.0 mm was obtained. After cutting out 30 mm x 30 mm large pieces and 15 mm x 15 mm small pieces from each material steel plate and finishing the surface by # 600 wet polishing, the small pieces are placed in the center of the large pieces and spot welding is performed using an electrode with a diameter of 5 mm. Large pieces and small pieces were joined under the condition that a nugget was formed. In this joined body, a gap structure close to a close contact state is formed in the vicinity of the welded portion, and residual stress is generated in the vicinity of the weld nugget. Therefore, this joined body can be used for evaluation of pitting corrosion resistance and stress corrosion cracking resistance in the gap. This joined body is referred to as a “weld gap test piece” in the present specification.

Figure 0004762104
Figure 0004762104

このようにして作製した溶接隙間試験片を塩乾湿複合サイクル試験(CCT)に供した。試験片は小片側が上になるように概ね水平に置いた。CCTは、「85%R.H.、50℃×15h保持→30%R.H.、50℃×3h保持による強制乾燥→50%R.H.、20℃×3h保持→5%NaCl塩水噴霧0.5h、50%R.H.、20℃×2.5h保持」を1サイクルとし、これを200サイクルまで行い、50サイクル後、100サイクル後、および200サイクル後の試験片(各n=3で実施)について以下の調査を行った。   The weld gap test piece produced in this manner was subjected to a salt-wet combined cycle test (CCT). The test piece was placed almost horizontally with the small piece side up. CCT is “85% RH, 50 ° C. × 15 h hold → 30% RH, forced drying by holding 50 ° C. × 3 h → 50% RH, 20 ° C. × 3 h hold → 5% NaCl salt water. Spraying 0.5 h, 50% RH, 20 ° C. × 2.5 h holding ”is one cycle, and this is performed up to 200 cycles. After 50 cycles, 100 cycles, and 200 cycles, each test piece (each n The following investigation was conducted.

試験片の大片と小片を機械的な外力を加えて分離し、大片および小片のナゲット部近傍の断面を光学顕微鏡で観察し、応力腐食割れによって生じたクラックについて表面からの深さを測定した。n=3全ての大片と小片における最も深い応力腐食割れクラックの深さ(これを「最大応力腐食割れ(SCC)深さ」という)をもって、その鋼種の耐応力腐食割れ性を評価した。その結果を図1に示す。   The large piece and the small piece of the test piece were separated by applying a mechanical external force, the cross section in the vicinity of the nugget portion of the large piece and the small piece was observed with an optical microscope, and the depth from the surface of the crack caused by the stress corrosion cracking was measured. n = 3 With the depth of the deepest stress corrosion cracking crack in all large pieces and small pieces (this is called “maximum stress corrosion cracking (SCC) depth”), the stress corrosion cracking resistance of the steel type was evaluated. The result is shown in FIG.

図1からわかるように、塩乾湿繰返し環境での耐応力腐食割れ性を向上させるには、CuおよびMoの添加が有効である。特にCuとMoを複合添加した場合、長期間の試験であっても最大応力腐食割れ深さは成長せず、良好な耐応力腐食割れ性を示すことが明らかになった。   As can be seen from FIG. 1, the addition of Cu and Mo is effective for improving the stress corrosion cracking resistance in a salty and dry repeated environment. In particular, when Cu and Mo were added in combination, the maximum stress corrosion cracking depth did not grow even in a long-term test, and it was revealed that the stress corrosion cracking resistance was good.

また、19Cr−11Ni−0.5Si−0.8Mn−0.8Mo鋼について上記と同様の塩乾湿複合サイクル試験(CCT)を行った場合の、Cu含有量と耐孔食性の関係を調べた結果を図2に例示する。これは、200サイクル終了後の大片と小片の表面に生じた孔食の深さを焦点深度式光学顕微鏡により測定し、n=3全ての大片と小片における最も深い孔食深さ(これを「最大孔食深さ」という)をプロットしたものである。   Moreover, the result of investigating the relationship between the Cu content and the pitting corrosion resistance when the 19Cr-11Ni-0.5Si-0.8Mn-0.8Mo steel was subjected to the same salt dry-wet combined cycle test (CCT) as described above. Is illustrated in FIG. This is because the depth of pitting corrosion occurring on the surface of the large piece and small piece after the end of 200 cycles was measured with a depth-of-focus optical microscope, and n = 3, the deepest pitting depth in all large pieces and small pieces (this is expressed as “ The maximum pitting corrosion depth ”is plotted.

図2からわかるように、Cu含有量が1.5質量%以上になると耐孔食性が低下し始める傾向が認められた。この傾向は水環境では認められず、塩乾湿繰返し環境に特有の現象である。Cuを含有するステンレス鋼が腐食することでCu2+が生成するが、水環境ではこのCu2+が多量の水で希釈されるのに対して、塩乾湿繰返し環境では高濃度に濃縮されたCu2+が酸化剤として作用し、腐食が促進されたものと推測される。このことが特許文献1〜3に開示されているステンレス鋼が安定した塩乾湿繰り返し環境で良好な耐食性を示さなかった一因と考えられる。図2の鋼はMo含有量を0.8%レベルに揃えてあるが、本発明で規定するMo含有量(後述)の範囲において、Cu含有量が1.5質量%未満の範囲で良好な耐孔食性が得られるという傾向は維持される。 As can be seen from FIG. 2, when the Cu content was 1.5% by mass or more, the tendency of the pitting corrosion resistance to start decreasing was recognized. This tendency is not recognized in the water environment, and is a phenomenon peculiar to the salt dry and wet repeated environment. Although Cu 2+ is produced by corrosion of stainless steel containing Cu, this Cu 2+ is diluted with a large amount of water in an aqueous environment, whereas it is concentrated to a high concentration in a salt dry and wet environment. It is presumed that Cu 2+ acted as an oxidizing agent and accelerated corrosion. This is considered to be one reason why the stainless steels disclosed in Patent Documents 1 to 3 did not show good corrosion resistance in a stable salty and wet repeated environment. The steel of FIG. 2 has the Mo content at the 0.8% level, but in the range of the Mo content (described later) defined in the present invention, the Cu content is good in the range of less than 1.5% by mass. The tendency to obtain pitting corrosion resistance is maintained.

また、19Cr−11Ni−0.5Si−0.8Mn−1Cuについて上記と同様の塩乾湿複合サイクル試験(CCT)を行った場合の、Mo含有量と耐応力腐食割れ性の関係を調べた結果を図3に例示する。これは、200サイクル終了後の大片と小片について、図1の場合と同様の方法で最大応力腐食割れ深さを求めた結果をプロットしたものである。   Moreover, the result of investigating the relationship between the Mo content and the stress corrosion cracking resistance when 19Cr-11Ni-0.5Si-0.8Mn-1Cu was subjected to the same salt-wet combined cycle test (CCT) as described above. This is illustrated in FIG. This plots the result of having calculated | required the maximum stress corrosion cracking depth by the method similar to the case of FIG. 1 about the large piece and small piece after completion | finish of 200 cycles.

図3からわかるように、Mo含有量が0.5質量%以上になると、突然に耐応力腐食割れ性改善される現象が観測された。この現象も水環境では認められなかったものであり、塩乾湿繰り返し環境に特有の現象である。すなわち、Mo含有量は0.5質量%以上を確保することが重要であり、また、高価なMoを過剰に含有させる必要がないこともわかる。図3の鋼はCu含有量を1.0%レベルに揃えてあるが、本発明で規定するCu含有量(後述)の範囲において、Mo含有量が0.5質量%以上の範囲で良好な耐応力腐食割れ性が得られるという傾向は維持される。   As can be seen from FIG. 3, when the Mo content was 0.5% by mass or more, a phenomenon in which the stress corrosion cracking resistance was suddenly improved was observed. This phenomenon was also not observed in the water environment, and is a phenomenon peculiar to the salt dry and wet repeated environment. That is, it is important to ensure that the Mo content is 0.5% by mass or more, and it is not necessary to contain expensive Mo excessively. The steel of FIG. 3 has a Cu content of 1.0% level, but in the range of the Cu content (described later) defined in the present invention, the Mo content is good in the range of 0.5% by mass or more. The tendency to obtain stress corrosion cracking resistance is maintained.

本発明は、このような新たな知見に基づいて完成したものである。以下、本発明を特定するための事項について説明する。   The present invention has been completed based on such new findings. Hereinafter, matters for specifying the present invention will be described.

Cは、オーステナイト安定度を高める元素であり、耐応力腐食割れ性や耐孔食性にはあまり大きな影響は与えない。しかし溶接部等での粒界腐食感受性を高めるため、C含有量は低い方が好ましい。本発明ではC含有量を0.05質量%以下に規制する。   C is an element that enhances the austenite stability, and does not significantly affect the stress corrosion cracking resistance and pitting corrosion resistance. However, in order to increase the intergranular corrosion susceptibility at the welded portion, it is preferable that the C content is low. In the present invention, the C content is restricted to 0.05 mass% or less.

Siは、温水環境においては応力腐食割れ発生の限界温度を上昇させる重要な元素であるが、塩乾湿繰返し環境においては顕著な効果を示さないことがわかった。Si含有量が増大すると、オーステナイトバランスを保つためにNi含有量を増加させるなどの不経済な処置が必要になる。また多量のSi含有は固溶強化による鋼の硬質化を招くので好ましくない。ただし、脱酸剤としてある程度のSi含有量は必要である。以上のことからSi含有量は1.0質量%未満の範囲に規制される。例えば、0.5±0.25質量%の範囲、好ましくは0.5±0.2質量%の範囲にSi含有量を調整することができる。Si含有量を0.5質量%未満に規制しても本発明の効果は得られる。   It has been found that Si is an important element that raises the limit temperature of the occurrence of stress corrosion cracking in a hot water environment, but does not show a significant effect in a salty and wet repeated environment. Increasing the Si content necessitates uneconomical measures such as increasing the Ni content in order to maintain the austenite balance. Further, a large amount of Si is not preferable because it causes hardening of the steel by solid solution strengthening. However, a certain amount of Si is necessary as a deoxidizer. From the above, the Si content is restricted to a range of less than 1.0% by mass. For example, the Si content can be adjusted in the range of 0.5 ± 0.25 mass%, preferably in the range of 0.5 ± 0.2 mass%. Even if the Si content is regulated to less than 0.5% by mass, the effect of the present invention can be obtained.

Mnは、オーステナイト相の安定化に寄与し、Niの代替に用いることもできる。しかしMnは腐食の起点となりやすい硫化物を形成し、耐食性を低下させるので、その含有量は0.4〜1.8質量%とする。   Mn contributes to the stabilization of the austenite phase and can also be used in place of Ni. However, since Mn forms a sulfide that tends to be a starting point of corrosion and lowers the corrosion resistance, its content is set to 0.4 to 1.8% by mass.

Pは、耐応力腐食割れ性を低下させる元素であるため、0.045質量%以下に制限される。   P is an element that reduces the stress corrosion cracking resistance, so is limited to 0.045% by mass or less.

Sは、鋼中のMnと硫化物を形成することで腐食の起点となり、耐食性を低下させるため、0.005質量%以下に制限される。   S forms a starting point of corrosion by forming sulfide with Mn in the steel and lowers the corrosion resistance. Therefore, S is limited to 0.005% by mass or less.

Niは、オーステナイト相を保持するための主要な元素である。しかし多量の含有はコスト増を招くので、本発明ではNi含有量を8.5〜12.0質量%に規定する。   Ni is a main element for maintaining the austenite phase. However, since a large amount causes an increase in cost, in the present invention, the Ni content is regulated to 8.5 to 12.0% by mass.

Crは、耐食性を付与する上で必要不可欠の元素である。自動車給油系部材等の自動車床下部材の用途ではCr含有量を17.5質量%以上にすることが望ましい。Cr含有量の増加に伴って耐食性は向上する傾向を示すが、多量にCrを含有させるとオーステナイト組織を保持するために必要なNi等を増加させる必要があり、さらに製造性や熱間加工性を損なう要因となる。したがって本発明ではCr含有量を17.5〜19.5質量%に規定する。   Cr is an indispensable element for imparting corrosion resistance. It is desirable that the Cr content is 17.5% by mass or more in the use of automobile under floor members such as automobile oil supply system members. Corrosion resistance tends to improve as the Cr content increases, but if a large amount of Cr is contained, it is necessary to increase Ni and the like necessary for maintaining the austenite structure, and further, productivity and hot workability It becomes a factor that damages. Therefore, in the present invention, the Cr content is specified to be 17.5 to 19.5 mass%.

Cuは、本発明において重要な元素であり、耐応力腐食割れ性を向上させる元素である。そのためには0.5質量%以上のCu含有量が必要である。ただし、塩乾湿繰り返し環境においては、過剰のCu含有は図2に見られるように、耐孔食性を損なう要因となる。したがってCu含有量は1.5質量%未満の範囲に規制される。   Cu is an important element in the present invention, and is an element that improves stress corrosion cracking resistance. For this purpose, a Cu content of 0.5% by mass or more is necessary. However, in a salty and wet repeated environment, excessive Cu content is a factor that impairs pitting corrosion resistance, as seen in FIG. Therefore, the Cu content is restricted to a range of less than 1.5% by mass.

Nは、耐孔食性の向上には有効であるが、耐応力腐食割れ性を低下させる要因となるので、本発明ではN含有量を0.05質量%以下に規制する。   N is effective for improving the pitting corrosion resistance, but is a factor for reducing the stress corrosion cracking resistance. Therefore, in the present invention, the N content is regulated to 0.05 mass% or less.

Moは、本発明において重要な元素であり、耐応力腐食割れ性、耐孔食性の両者を向上させる元素である。特に塩乾湿繰り返し環境での耐応力腐食割れ性を付与するためには図3に示されるように0.5質量%以上のMo含有量を確保する必要がある。ただし、Mo含有量をあまり高めても、塩乾湿繰り返し環境ではMo増量に見合った耐食性向上効果はそれほど期待できない。過剰のMo含有はコスト増を招くので、Mo含有量は1.2質量%以下の範囲とする。   Mo is an important element in the present invention, and is an element that improves both stress corrosion cracking resistance and pitting corrosion resistance. In particular, in order to impart stress corrosion cracking resistance in a salt dry and wet repeated environment, it is necessary to secure a Mo content of 0.5% by mass or more as shown in FIG. However, even if the Mo content is increased too much, the corrosion resistance improvement effect commensurate with the Mo increase cannot be expected so much in a salt dry and wet environment. Since excessive Mo content causes an increase in cost, the Mo content is set to a range of 1.2 mass% or less.

耐食性に及ぼす上記Cuとの相乗効果を考慮すると、CuおよびMoの含有量が、1.5≦Cu+Mo≦2.5を満たす範囲に調整されているとバランスがよい。   Considering the synergistic effect with Cu on the corrosion resistance, the balance is good when the contents of Cu and Mo are adjusted to a range satisfying 1.5 ≦ Cu + Mo ≦ 2.5.

Alは、耐応力腐食割れ性を向上させる作用を有し、特に応力腐食割れ発生の限界温度を上昇させることから、本発明において必要に応じて含有させることができる。しかし、Alの含有量が増加すると熱間加工性や加工性が劣化するので、Alを含有させる場合は0.3質量%以下の範囲とすることが望ましい。   Al has an action of improving the resistance to stress corrosion cracking, and particularly raises the limit temperature for the occurrence of stress corrosion cracking. Therefore, Al can be contained as necessary in the present invention. However, since the hot workability and workability deteriorate when the Al content increases, it is desirable that the Al content be in the range of 0.3% by mass or less.

Bは、製造上、熱間加工性を向上させるのに有効であることから、必要に応じて添加することができる。しかし、過剰のB添加は鋼中のCrと硼化物を形成することにより耐食性を低下させる可能性がある。このため、Bを添加する場合は0.005質量%以下の範囲で行う。   B is effective in improving hot workability in production, and can be added as necessary. However, excessive B addition may reduce corrosion resistance by forming borides with Cr in the steel. For this reason, when adding B, it carries out in the range of 0.005 mass% or less.

このように成分調整されたオーステナイト系ステンレス鋼は、一般的なステンレス鋼の溶製方法にしたがって溶製することができる。得られた鋳片(例えば連鋳スラブ)は、熱間圧延、焼鈍・酸洗、冷間圧延、焼鈍・酸洗の工程により冷延焼鈍板とされ、燃料タンクをはじめとする種々の自動車部材、あるいはその他の部材への成形加工に供される。   The austenitic stainless steel whose components are adjusted in this way can be melted in accordance with a general method for melting stainless steel. The obtained slab (for example, continuous cast slab) is made into a cold-rolled annealed plate by the processes of hot rolling, annealing / pickling, cold rolling, annealing / pickling, and various automobile members including fuel tanks. Or, it is used for molding to other members.

表2に示す鋼を溶製し、熱間圧延にて板厚3.0mmとし、1150℃×30の焼鈍、酸洗、冷間圧延、1050℃×均熱1分の焼鈍を経て板厚1.0mmの素材鋼板を得た。各素材鋼板から30mm×30mmの大片と15mm×15mmの小片を切り出し、表面を#600湿式研磨で仕上げた後、大片の中央に小片を重ねて配置し、直径5mmの電極を用いてスポット溶接によりナゲットが形成される条件で大片と小片を接合した。この接合体は、溶接部近傍に密着状態に近い隙間構造が形成されており、また溶接ナゲット近傍に残留応力が生じている。前述のようにこれを「溶接隙間試験片」と呼ぶ。   The steel shown in Table 2 was melted and hot rolled to a plate thickness of 3.0 mm. After annealing at 1150 ° C. × 30, pickling, cold rolling, 1050 ° C. and annealing for 1 minute, the plate thickness was 1 A steel plate of 0.0 mm was obtained. After cutting out 30 mm x 30 mm large pieces and 15 mm x 15 mm small pieces from each material steel plate and finishing the surface by # 600 wet polishing, the small pieces are placed in the center of the large pieces and spot welding is performed using an electrode with a diameter of 5 mm. Large pieces and small pieces were joined under the condition that a nugget was formed. In this joined body, a gap structure close to a close contact state is formed in the vicinity of the welded portion, and residual stress is generated in the vicinity of the weld nugget. As described above, this is called a “weld gap test piece”.

Figure 0004762104
Figure 0004762104

この溶接隙間試験片を、塩乾湿複合サイクル試験(CCT)に供した。試験片は小片側が上になるように概ね水平に置いた。CCTは前述と同じ条件、すなわち「85%R.H.、50℃×15h保持→30%R.H.、50℃×3h保持による強制乾燥→50%R.H.、20℃×3h保持→5%NaCl塩水噴霧0.5h、50%R.H.、20℃×2.5h保持」を1サイクルとし、これを200サイクルまで行った。200サイクル後の試験片(各n=3で実施)について以下の調査を行った。   The weld gap test piece was subjected to a salt dry / wet combined cycle test (CCT). The test piece was placed almost horizontally with the small piece side up. CCT is the same as described above, that is, “85% RH, 50 ° C. × 15 h hold → 30% RH, forced drying by holding 50 ° C. × 3 h → 50% RH, 20 ° C. × 3 h hold “5% NaCl salt spray 0.5 h, 50% RH, 20 ° C. × 2.5 h hold” was defined as one cycle, and this was repeated up to 200 cycles. The following investigation was conducted on the test pieces after 200 cycles (implemented at each n = 3).

試験片の大片と小片を機械的な外力を加えて分離し、大片および小片のナゲット部近傍の断面を光学顕微鏡で観察し、応力腐食割れによって生じたクラックについて表面からの深さを測定した。n=3全ての大片と小片における最も深い応力腐食割れクラックの深さ(これを「最大応力腐食割れ(SCC)深さ」という)をもって、その鋼種の耐応力腐食割れ性を評価した。200サイクル終了後の最大応力腐食割れ深さが0.2mm以下の鋼種は、初期段階の応力腐食割れが生じても、その割れの進行がくい止められており、これ以上の進展は生じないと考えられるので、合格(○評価)とした。最大応力腐食割れ深さが0.2mmを超える鋼種は、応力腐食割れが進展する過程にあるものと考えられるので、板厚を貫通したものと同様、不合格(×評価)とした。結果を表3に示す。   The large piece and the small piece of the test piece were separated by applying a mechanical external force, the cross section in the vicinity of the nugget portion of the large piece and the small piece was observed with an optical microscope, and the depth from the surface of the crack caused by the stress corrosion cracking was measured. n = 3 With the depth of the deepest stress corrosion cracking crack in all large pieces and small pieces (this is called “maximum stress corrosion cracking (SCC) depth”), the stress corrosion cracking resistance of the steel type was evaluated. For steel grades with a maximum stress corrosion cracking depth of 0.2 mm or less after the end of 200 cycles, even if an initial stage of stress corrosion cracking occurs, the progress of the crack is prevented and no further progress is expected. Therefore, it was set as a pass (○ evaluation). Steel types with a maximum stress corrosion cracking depth of more than 0.2 mm are considered to be in a process in which stress corrosion cracking progresses, so they were rejected (x evaluation) as well as those having penetrated the plate thickness. The results are shown in Table 3.

また、大片と小片の表面に生じた孔食の深さを光学顕微鏡による焦点深度法により測定した。この場合もn=3全ての大片と小片における最も深い孔食深さ(これを「最大孔食深さ」という)をもって、その鋼種の耐孔食性を評価した。200サイクル終了後の最大侵食深さが0.2mm以下の鋼種は再不動態化により腐食の進行がくい止められていると判断されるので、合格(○評価)とし、0.2mmを超える鋼種は不合格(×評価)とした。結果を表3に示す。   Moreover, the depth of the pitting corrosion produced on the surface of the large piece and the small piece was measured by a focal depth method using an optical microscope. Also in this case, the pitting corrosion resistance of the steel type was evaluated with the deepest pitting corrosion depth (this is called “maximum pitting corrosion depth”) in all the large pieces and small pieces of n = 3. Since the steel type with a maximum erosion depth of 0.2 mm or less after the end of 200 cycles is judged to have been inhibited from proceeding by repassivation, the steel type exceeding 0.2 mm was rejected. It was set as a pass (x evaluation). The results are shown in Table 3.

Figure 0004762104
Figure 0004762104

表3からわかるように、各成分の含有量が適正な本発明例のものは、いずれも塩乾湿繰り返し環境において、安定して優れた耐応力腐食割れ性および耐孔食性を呈した。これに対し、Cu含有量が規定より少ないNo.31、32は耐応力腐食割れ性に劣り、Mo含有量が規定より少ないNo.33〜36は耐孔食性、あるいはさらに耐応力腐食割れ性に劣った。   As can be seen from Table 3, all of the examples of the present invention in which the content of each component was appropriate exhibited stable and excellent stress corrosion cracking resistance and pitting corrosion resistance in a salt dry and wet repeated environment. On the other hand, Nos. 31 and 32 with a Cu content less than specified are inferior in stress corrosion cracking resistance, and Nos. 33 to 36 with a Mo content less than specified in pitting corrosion resistance or further stress corrosion cracking resistance. inferior.

表1のオーステナイト系ステンレス鋼について、塩乾湿複合サイクル試験(CCT)のサイクル数と最大応力腐食割れ深さの関係を例示したグラフ。The graph which illustrated the relationship between the cycle number of a salt dry-wet combined cycle test (CCT), and the maximum stress corrosion cracking depth about the austenitic stainless steel of Table 1. 19Cr−11Ni−0.5Si−0.8Mn−0.8Mo鋼について、Cu含有量と塩乾湿複合サイクル試験(CCT)試験後の最大孔食深さの関係を例示したグラフ。The graph which illustrated the relationship between the Cu content and the maximum pitting corrosion depth after a salt dry-wet combined cycle test (CCT) test about 19Cr-11Ni-0.5Si-0.8Mn-0.8Mo steel. 19Cr−11Ni−0.5Si−0.8Mn−1Cu鋼について、Mo含有量と塩乾湿複合サイクル試験(CCT)試験後の最大応力腐食割れ深さの関係を例示したグラフ。The graph which illustrated the relationship between the Mo content and the maximum stress corrosion cracking depth after a salt dry-wet combined cycle test (CCT) test about 19Cr-11Ni-0.5Si-0.8Mn-1Cu steel.

Claims (5)

質量%で、C:0.05%以下、Si:1.0%未満、Mn:0.4〜1.8%、P:0.045%以下、S:0.005%以下、Ni:8.5〜12.0%、Cr:17.5〜19.5%、N:0.05%以下であるとともに、CuおよびMoを必須成分として含有し、残部Feおよび不可避的不純物からなる鋼において、CuおよびMoの含有量を、Cu:0.5〜1.5%未満、Mo:0.5〜1.2%とし、かつ1.5≦Cu+Mo≦2.5を満たす範囲に調整したことを特徴とする塩乾湿繰り返し環境での耐久性に優れたオーステナイト系ステンレス鋼。 In mass%, C: 0.05% or less, Si: less than 1.0%, Mn: 0.4 to 1.8%, P: 0.045% or less, S: 0.005% or less, Ni: 8 In a steel comprising 1.5 to 12.0%, Cr: 17.5 to 19.5%, N: 0.05% or less, and containing Cu and Mo as essential components, the balance being Fe and inevitable impurities , the content of Cu and Mo, Cu: less than 0.5 to 1.5% M o: and 0.5 to 1.2%, and was adjusted to a range satisfying 1.5 ≦ Cu + Mo ≦ 2.5 An austenitic stainless steel with excellent durability in repeated salt and wet environments さらにAl:0.3%以下を含有する請求項1に記載のオーステナイト系ステンレス鋼。   The austenitic stainless steel according to claim 1, further comprising Al: 0.3% or less. さらにB:0.005%以下を含有する請求項1または2に記載のオーステナイト系ステンレス鋼。   The austenitic stainless steel according to claim 1 or 2, further comprising B: 0.005% or less. Si含有量が、0.5±0.25%の範囲に調整されている請求項1〜のいずれかに記載のオーステナイト系ステンレス鋼。 The austenitic stainless steel according to any one of claims 1 to 3 , wherein the Si content is adjusted to a range of 0.5 ± 0.25%. 自動車床下部材に使用される請求項1〜のいずれかに記載のオーステナイト系ステンレス鋼。 The austenitic stainless steel according to any one of claims 1 to 4 , which is used for an automobile underfloor member.
JP2006277166A 2006-10-11 2006-10-11 Austenitic steel Active JP4762104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006277166A JP4762104B2 (en) 2006-10-11 2006-10-11 Austenitic steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006277166A JP4762104B2 (en) 2006-10-11 2006-10-11 Austenitic steel

Publications (2)

Publication Number Publication Date
JP2008095138A JP2008095138A (en) 2008-04-24
JP4762104B2 true JP4762104B2 (en) 2011-08-31

Family

ID=39378302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006277166A Active JP4762104B2 (en) 2006-10-11 2006-10-11 Austenitic steel

Country Status (1)

Country Link
JP (1) JP4762104B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9905369B2 (en) 2012-05-22 2018-02-27 Gs Yuasa International Ltd. Energy storage device
CN114867878B (en) * 2020-05-28 2024-03-08 日铁不锈钢株式会社 Austenitic stainless steel material and corrosion-resistant member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060972A (en) * 2000-08-22 2002-02-28 Nisshin Steel Co Ltd Stainless steel sheet for automobile fuel tank
JP4802710B2 (en) * 2002-08-20 2011-10-26 大同特殊鋼株式会社 METAL MEMBER FOR FUEL CELL, ITS MANUFACTURING METHOD, AND FUEL CELL
JP2006124807A (en) * 2004-11-01 2006-05-18 Nisshin Steel Co Ltd Automobile fuel tank or oil feed pipe
JP4578280B2 (en) * 2005-03-08 2010-11-10 日新製鋼株式会社 Austenitic stainless steel for automotive refueling components

Also Published As

Publication number Publication date
JP2008095138A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP5320034B2 (en) Mo-type ferritic stainless steel for automotive exhaust system parts with excellent corrosion resistance after heating
EP2548988B1 (en) Ferrite-based stainless steel for use in components of automobile exhaust system
US7943085B2 (en) Ferritic stainless steel for automobile exhaust gas passage components and welded steel pipe
KR100526919B1 (en) Corrosion-resistant fuel tank and fuel-filler tube for motor vehicle
KR101339484B1 (en) High-strength stainless steel pipe
JP5252959B2 (en) Automobile exhaust heat recovery device
CN104870674A (en) Ferritic stainless steel for automotive exhaust system, which have excellent corrosion resistance against condensate, moldability, and high-temperature oxidation resistance, and method for manufacturing same
JP5796409B2 (en) Corrosion resistant steel for ship ballast tank
JP6260755B1 (en) Steel for ship ballast tank and ship
JP4578280B2 (en) Austenitic stainless steel for automotive refueling components
JP4762104B2 (en) Austenitic steel
JP5018257B2 (en) Ferritic stainless steel sheet excellent in abrasiveness and corrosion resistance and method for producing the same
JP3251672B2 (en) Ferritic stainless steel for exhaust gas flow path member and manufacturing method
JP5999196B2 (en) Steel material excellent in alcohol pitting resistance and alcohol SCC resistance
JP4444924B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP4836505B2 (en) Austenitic stainless steel material for automobile refueling system and manufacturing method
KR101673218B1 (en) Ferritic stainless steel
KR20130074220A (en) Aluminum plated stainless steel having excellent corrosion resistance and manufacturing method using the same
JP3713833B2 (en) Ferritic stainless steel for engine exhaust members with excellent heat resistance, workability, and weld corrosion resistance
KR101632512B1 (en) Ferritic stainless steel having an excellent anticorrosive property against condensate water and a manufacturing method thereof
KR20210062721A (en) Ferritic stainless steel
JP7465955B2 (en) Low Cr ferritic stainless steel sheet with improved pipe expansion workability and its manufacturing method
JPH11229034A (en) Working method for ferritic stainless steel pipe
JP2689208B2 (en) Steel for internal combustion engine exhaust systems with excellent wet corrosion resistance and workability
JP2010126780A (en) Combustion exhaust gas passage component material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4762104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250