JP5018257B2 - Ferritic stainless steel sheet excellent in abrasiveness and corrosion resistance and method for producing the same - Google Patents

Ferritic stainless steel sheet excellent in abrasiveness and corrosion resistance and method for producing the same Download PDF

Info

Publication number
JP5018257B2
JP5018257B2 JP2007153617A JP2007153617A JP5018257B2 JP 5018257 B2 JP5018257 B2 JP 5018257B2 JP 2007153617 A JP2007153617 A JP 2007153617A JP 2007153617 A JP2007153617 A JP 2007153617A JP 5018257 B2 JP5018257 B2 JP 5018257B2
Authority
JP
Japan
Prior art keywords
mass
less
oxide film
corrosion resistance
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007153617A
Other languages
Japanese (ja)
Other versions
JP2008303445A (en
Inventor
國夫 福田
知洋 石井
義正 船川
工 宇城
雅之 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007153617A priority Critical patent/JP5018257B2/en
Publication of JP2008303445A publication Critical patent/JP2008303445A/en
Application granted granted Critical
Publication of JP5018257B2 publication Critical patent/JP5018257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、フェライト系ステンレス鋼板に関し、特に、研磨後、腐食環境下で使用される部品の素材に用いて好適な、研磨性および耐食性に優れるフェライト系ステンレス鋼板およびその製造方法に関するものである。   The present invention relates to a ferritic stainless steel sheet, and more particularly to a ferritic stainless steel sheet excellent in abrasiveness and corrosion resistance, which is suitable for use as a material for parts used in a corrosive environment after polishing, and a method for producing the same.

ステンレス鋼板は、塗装などの防錆処理を施さずに使用されることが多いため、優れた耐食性が必要とされる。特に、無垢のままで、外装材や室内のシンクなどの厨房機器等に使用される場合には、耐食性の他、特有の金属光沢を基調とした意匠性も要求されることが多い。また、このような用途部品に錆が発生した場合には、グラインダー等で錆を削り落とすかもしくは酸で錆びを除去するのが普通である。この場合、処理後の部品表面は、金属光沢を失って、美観が著しく損なわれてしまう。   Since stainless steel plates are often used without being subjected to rust prevention treatment such as painting, excellent corrosion resistance is required. In particular, when used in kitchen equipment such as exterior materials and indoor sinks, etc., it is often required to have design characteristics based on a specific metallic luster in addition to corrosion resistance. In addition, when rust is generated in such application parts, it is common to scrape the rust off with a grinder or remove the rust with an acid. In this case, the surface of the part after processing loses metallic luster, and the aesthetics are significantly impaired.

フェライト系ステンレス鋼として一般に広く使用されているものに、SUS430(18%Cr)がある。このSUS430は、耐発錆性が低く、酸やハロゲン等が多く存在する腐食環境下や飛来塩分等が多い大気環境下で使用するには、十分な耐食性を備えているとは言い難い。そこで、耐発錆性を向上させたものとして、SUS430にMoを添加したSUS436(18%Cr−1〜1.5%Mo)がある。この鋼は、酸やハロゲン等が多く存在する環境下や飛来塩分等の多い大気環境下でも、発錆を抑制することができるものである。   One commonly used ferritic stainless steel is SUS430 (18% Cr). This SUS430 has low rust resistance, and it is difficult to say that it has sufficient corrosion resistance for use in a corrosive environment where a large amount of acid, halogen, etc. are present, or in an air environment where there is a large amount of incoming salt. Then, as what improved rust resistance, there exists SUS436 (18% Cr-1-1.5% Mo) which added Mo to SUS430. This steel can suppress rusting even in an environment where there are a lot of acids, halogens, etc. or in an atmospheric environment where there is a lot of incoming salt.

ところで、ステンレス鋼板は、冷間圧延後、機械的特性を確保するために焼鈍を施すのが普通である。この焼鈍は、アンモニア分解ガスや水素ガス等のいわゆるBA雰囲気と呼ばれる還元性雰囲気中で行われる場合と、コークス炉ガスを燃焼させたガス雰囲気のような酸化性雰囲気中で行われる場合とがある。前者の焼鈍では、酸化皮膜が生成せず、焼鈍後も鋼板表面は光沢があり、研磨性も良好であるが、BA雰囲気とするため、製造コストが高くなる。一方、後者の焼鈍では、焼鈍後の鋼板表面には酸化皮膜が生成しており、特に、Moを添加したSUS436鋼等は、Moに起因した緻密な酸化皮膜が形成されているため、これを除去するための工程を必要とするのが一般的である。   By the way, a stainless steel plate is usually annealed after cold rolling to ensure mechanical properties. This annealing may be performed in a reducing atmosphere called a so-called BA atmosphere such as ammonia decomposition gas or hydrogen gas, or in an oxidizing atmosphere such as a gas atmosphere in which coke oven gas is burned. . In the former annealing, an oxide film is not formed, and the surface of the steel sheet is glossy and has good polishing properties even after annealing, but the manufacturing cost increases because of the BA atmosphere. On the other hand, in the latter annealing, an oxide film is formed on the surface of the steel sheet after annealing, and in particular, SUS436 steel to which Mo is added has a dense oxide film due to Mo. It is common to require a process for removal.

上記Mo起因の撤密な酸化皮膜は、酸化皮膜除去のために通常行われているNaSO等の溶液中での中性塩電解処理では除去しきれず、その後、さらにハロゲンを含む酸溶液中で下地の母材をも溶解させて除去する必要がある。そのため、この鋼板の表面は、金属光沢を有するものとはならない。したがって、この鋼板の表面に金属光沢を付与するためには、重度の表面研磨を行う必要があり、いわゆる、「研磨性が劣る」という難点がある。 The above-mentioned dense oxide film caused by Mo cannot be completely removed by neutral salt electrolysis in a solution such as Na 2 SO 4 which is usually performed to remove the oxide film, and then further contains an acid solution containing halogen. It is necessary to dissolve and remove the base material. Therefore, the surface of this steel plate does not have a metallic luster. Therefore, in order to give a metallic luster to the surface of the steel sheet, it is necessary to perform a heavy surface polishing, which is a so-called “poor polishing ability”.

また、Mo添加鋼は、一度発錆すると緻密な錆が形成されるため、一旦形成された錆をグラインダーや酸などによって除去するためには、下地を大幅に研削もしくは溶解しなければならない。よって、Mo添加鋼では、発錆起点の原因となりやすい表面欠陥、傷などをできるだけ除去する必要があり、長期間使用する場合には、簡易なメンテナンスで光沢性を確保するには問題があった。   Further, since Mo-added steel rusts once and dense rust is formed, in order to remove the once formed rust with a grinder or acid, the ground must be greatly ground or melted. Therefore, in Mo-added steel, it is necessary to remove surface defects and scratches that are likely to cause rusting as much as possible, and when used for a long period of time, there was a problem in securing gloss with simple maintenance. .

一方、Moを含有しない耐発錆性に優れるステンレス鋼も提案されている。例えば、特許文献1には、Cr:9〜30%、Cu:0.1〜0.6%、Ti:5×C〜15×C%、Sb:0.02〜0.2%の成分組成を有する耐孔食性加工用ステンレス鋼が開示されている。しかし、この鋼は、孔食発生の主たる因子であるMnSの有害作用を、Ti,CuおよびSbの複合添加によって抑制することで耐孔食性を向上させているが、Sb添加により、錆中にSbの酸化物が形成されて耐酸性が低下するという問題を抱えるものである。   On the other hand, stainless steel that does not contain Mo and has excellent rust resistance has also been proposed. For example, Patent Document 1 discloses a component composition of Cr: 9 to 30%, Cu: 0.1 to 0.6%, Ti: 5 × C to 15 × C%, and Sb: 0.02 to 0.2%. Stainless steel for pitting corrosion resistance processing is disclosed. However, this steel improves the pitting corrosion resistance by suppressing the harmful effect of MnS, which is a main factor of pitting corrosion generation, by adding Ti, Cu and Sb in combination. There is a problem that the acid resistance is lowered due to the formation of an oxide of Sb.

また、特許文献2には、Cr:11〜23wt%、V:0.05〜2.0wt%、Cu:0.5〜2.0wt%を含有し、さらにTi、Nb、ZrおよびTaのうちの少なくとも1種を0.01〜1.0wt%の範囲で含む成分組成を有する耐食性に優れたフェライト系ステンレス鋼が開示されている。しかし、この鋼は、VとCuの複合添加によって耐食性の改善を図っているが、Vの添加は、熱間加工性の低下を招くため、熱間圧延時に表面欠陥が発生し易く、また、その表面欠陥は最後まで残存するため、研磨性を阻害するという問題を有するものである。   Patent Document 2 contains Cr: 11 to 23 wt%, V: 0.05 to 2.0 wt%, Cu: 0.5 to 2.0 wt%, and among Ti, Nb, Zr and Ta Ferritic stainless steels having a component composition containing at least one of the above in a range of 0.01 to 1.0 wt% and excellent in corrosion resistance are disclosed. However, in this steel, the corrosion resistance is improved by the combined addition of V and Cu, but the addition of V causes a decrease in hot workability, so that surface defects are likely to occur during hot rolling, Since the surface defect remains to the end, it has a problem of impairing the polishability.

また、特許文献3には、Cr:5〜60wt%、Ti:4×(C+N)〜0.5wt%、Nb:0.003〜0.020wt%を含有し、さらに、Cuを0.15〜3.0wt%の範囲で含有し得る成分組成を有する成形加工性と耐候性に優れるクロム鋼板が開示されている。この鋼板は、Nbの添加により深絞り成形性を向上し、Cuの添加により耐候性を向上したものである。しかし、この鋼板は、Nbの添加によって微細な析出物が形成されるため、強度が高くなって伸びが低下し、加工性が劣化するという問題点を有するものである。
特公昭50−6167号公報 特公昭64−4576号公報 特許第3420371号公報
Patent Document 3 contains Cr: 5 to 60 wt%, Ti: 4 × (C + N) to 0.5 wt%, Nb: 0.003 to 0.020 wt%, and further Cu to 0.15 to A chromium steel sheet having a component composition that can be contained in a range of 3.0 wt% and excellent in formability and weather resistance is disclosed. In this steel sheet, the deep drawability is improved by adding Nb, and the weather resistance is improved by adding Cu. However, this steel sheet has a problem that since fine precipitates are formed by the addition of Nb, the strength increases, the elongation decreases, and the workability deteriorates.
Japanese Patent Publication No. 50-6167 Japanese Patent Publication No. 64-4576 Japanese Patent No. 3420371

上記のように、Mo添加の有無にかかわらず、研磨性と耐食性とを兼ね備えたフェライト系ステンレス鋼板は、現在のところ存在していないのが実状である。   As described above, there is no actual ferritic stainless steel sheet that has both polishing properties and corrosion resistance regardless of whether or not Mo is added.

そこで、本発明の目的は、研磨性と耐食性が共に優れるフェライト系ステンレス鋼板とその製造方法を提案することにある。   Accordingly, an object of the present invention is to propose a ferritic stainless steel sheet excellent in both abrasiveness and corrosion resistance and a method for producing the same.

発明者らは、従来技術が抱える上記問題点を解決し、研磨性に優れるとともに、耐食性にも優れるフェライト系ステンレス鋼板を開発するべく、焼鈍時に形成される酸化皮膜の構造と研磨性および耐食性との関係について鋭意検討を重ねた。その結果、Mo添加鋼では、Mo含有量によって焼鈍時に生成する酸化皮膜の緻密さが異なり、Mo含有量がある一定値を超えると、焼鈍時に生成する酸化皮膜が密になり、中性塩電解+酸洗という脱スケール工程では表面が均一に溶解しなくなり、残存した酸化皮膜と母材部との際が錆の起点となり易いことを知見した。また、Mo含有量がある一定値を超えると、酸化皮膜中のCr量が増加して、地鉄界面にある粒界のCr濃度が低下する結果、ハロゲンを含む酸による粒界侵食孔が大きくなり、研磨性を大きく阻害することを知見した。したがって、研磨性を確保するためには、ハロゲンを含む酸中での粒界侵食孔の発生を極力抑える、つまり溶解量を極力抑えることが必要となる。   The inventors have solved the above-mentioned problems of the prior art and developed a ferritic stainless steel sheet that is excellent in abrasiveness and excellent in corrosion resistance, and the structure of the oxide film formed during annealing, as well as abrasiveness and corrosion resistance. We studied earnestly about the relationship. As a result, in Mo-added steel, the density of the oxide film generated during annealing differs depending on the Mo content, and when the Mo content exceeds a certain value, the oxide film generated during annealing becomes dense, and neutral salt electrolysis In the descaling process called + pickling, the surface was not dissolved uniformly, and it was found that the remaining oxide film and the base material part are likely to be the starting point of rust. In addition, when the Mo content exceeds a certain value, the Cr content in the oxide film increases and the Cr concentration at the grain boundaries at the iron-iron interface decreases, resulting in large grain boundary erosion holes due to halogen-containing acids. As a result, it was found that the polishing ability is greatly inhibited. Therefore, in order to ensure polishing properties, it is necessary to suppress the generation of grain boundary erosion holes in an acid containing halogen as much as possible, that is, to suppress the dissolution amount as much as possible.

しかし、溶解量を抑えると、表面に薄い酸化皮膜が残存する部分が発生する。そこで、さらに検討を重ねた結果、Mo添加鋼であっても、鋼中のCr含有量をある値以上に増加すると共に、CuおよびNiを適量添加し、さらに、焼鈍後の酸処理で、鋼板表面にSiO含有量の多い酸化皮膜を一定量以上残存させた場合には、その酸化皮膜部分(即ち、テンパーカラー発生部分)は、ハロゲンを含む酸の中でも優れた耐食性を示すとともに、研磨性にも優れることを知見した。さらに、上記鋼板の不純物元素を低減するとともに、安定化元素であるTiを添加することにより、溶接性や溶接部の加工性、耐食性にも優れるフェライト系ステンレス鋼板が得られることを見出し、本発明を完成するに至った。 However, if the amount of dissolution is suppressed, a portion where a thin oxide film remains on the surface is generated. Therefore, as a result of further examination, even in the case of Mo-added steel, the Cr content in the steel is increased to a certain value or more, and an appropriate amount of Cu and Ni is added. When a certain amount or more of an oxide film having a high SiO 2 content is left on the surface, the oxide film part (that is, the temper color generating part) exhibits excellent corrosion resistance among acids containing halogen and is also abrasive. It was also found to be excellent. Furthermore, the present invention has found that a ferritic stainless steel sheet having excellent weldability, workability of welded parts, and corrosion resistance can be obtained by reducing impurity elements of the steel sheet and adding Ti as a stabilizing element. It came to complete.

すなわち、本発明は、C:0.030mass%以下、Si:0.20〜1.0mass%、Mn:0.3mass%以下、P:0.04mass%以下、S:0.02mass%以下、Cr:20.0〜25.0mass%、Mo:0.01〜0.15mass%、Ti:0.10〜0.5mass%、N:0.025mass%未満、Ni:0.05mass%超え0.5mass%以下、Cu:0.2〜1.0mass%を含有し、残部がFeおよび不可避的不純物からなり、鋼板表層に残存する酸化皮膜の膜厚が30〜100nmであるフェライト系ステンレス鋼板である。   That is, the present invention includes C: 0.030 mass% or less, Si: 0.20 to 1.0 mass%, Mn: 0.3 mass% or less, P: 0.04 mass% or less, S: 0.02 mass% or less, Cr : 20.0 to 25.0 mass%, Mo: 0.01 to 0.15 mass%, Ti: 0.10 to 0.5 mass%, N: less than 0.025 mass%, Ni: more than 0.05 mass%, 0.5 mass % Or less, Cu: 0.2 to 1.0 mass%, the remainder is made of Fe and inevitable impurities, and the thickness of the oxide film remaining on the steel sheet surface layer is a ferritic stainless steel sheet having a thickness of 30 to 100 nm.

また、本発明は、C:0.030mass%以下、Si:0.20〜1.0mass%、Mn:0.3mass%以下、P:0.04mass%以下、S:0.02mass%以下、Cr:20.0〜25.0mass%、Mo:0.01〜0.15mass%、Ti:0.10〜0.5mass%、N:0.025mass%未満、Ni:0.05mass%超え0.5mass%以下、Cu:0.2〜1.0mass%を含有し、残部がFeおよび不可避的不純物からなる冷延板を最終焼鈍して酸化皮膜を生成してから、硝弗酸溶液に浸漬して膜厚が30〜100nmの酸化皮膜を残存させることを特徴とするフェライト系ステンレス鋼板の製造方法を提案する。   Further, the present invention includes C: 0.030 mass% or less, Si: 0.20 to 1.0 mass%, Mn: 0.3 mass% or less, P: 0.04 mass% or less, S: 0.02 mass% or less, Cr : 20.0 to 25.0 mass%, Mo: 0.01 to 0.15 mass%, Ti: 0.10 to 0.5 mass%, N: less than 0.025 mass%, Ni: more than 0.05 mass%, 0.5 mass %, Cu: 0.2 to 1.0 mass%, and the rest of the cold-rolled sheet consisting of Fe and inevitable impurities is finally annealed to form an oxide film, and then immersed in a nitric hydrofluoric acid solution. A method for producing a ferritic stainless steel sheet is proposed in which an oxide film having a film thickness of 30 to 100 nm is left.

本発明によれば、研磨性と耐食性を兼備したフェライト系ステンレス鋼板を得ることができる。また、本発明によれば、溶接性、溶接部加工性、溶接部耐食性にも優れるフェライト系ステンレス鋼板を得ることができる。   According to the present invention, it is possible to obtain a ferritic stainless steel sheet having both abrasiveness and corrosion resistance. Moreover, according to this invention, the ferritic stainless steel plate which is excellent also in weldability, weld part workability, and weld part corrosion resistance can be obtained.

本発明に係るフェライト系ステンレス鋼板の成分組成について説明する。
C:0.030mass%以下
Cは、Crと炭化物を形成し、有効Cr量を減少させて、錆を誘発する原因となるため、含有量は少ないほど好ましく、本発明では、0.030mass%以下とする。好ましくは、0.020mass%以下である。なお、Cの過度の低減は、製鋼時の脱炭時間が長くなり、製造コストの上昇を招くため、下限は、0.005mass%程度とするのが好ましい。
The component composition of the ferritic stainless steel sheet according to the present invention will be described.
C: 0.030 mass% or less C forms carbides with Cr, reduces the effective Cr amount, and causes rust, so the smaller the content, the better. In the present invention, 0.030 mass% or less And Preferably, it is 0.020 mass% or less. In addition, since the excessive reduction of C lengthens the decarburization time at the time of steelmaking, and raises manufacturing cost, it is preferable that a minimum shall be about 0.005 mass%.

N:0.025mass%未満
Nは、鋼中に固溶すると、耐食性を向上させる効果がある。しかし、Nは、Crと窒化物を形成するので、過剰な添加は、有効Cr量を減少させ、発錆の原因ともなる。そのため、Nは、少ないほど好ましく、本発明では、0.025mass%未満とする。
なお、粒界でのCr炭窒化物の生成を抑えるためには、C+N≦0.025mass%であることが好ましい。
N: Less than 0.025 mass% N has an effect of improving corrosion resistance when dissolved in steel. However, since N forms nitrides with Cr, excessive addition reduces the amount of effective Cr and also causes rusting. Therefore, N is preferably as small as possible. In the present invention, it is less than 0.025 mass%.
In addition, in order to suppress the production | generation of Cr carbonitride at a grain boundary, it is preferable that it is C + N <= 0.025mass%.

Si:0.20〜1.0mass%
Siは、脱酸剤として添加する元素である。また、発明者らの知見によれば、鋼中にSiを0.20mass%以上含有させると、熱処理時に地鉄の最表層にSiOの酸化皮膜を生成する。特に、表層の粒界にSiOの酸化物が濃化し、酸による粒界侵食を抑制する効果があることが明らかとなった。ハロゲンを含む酸やpHが低い溶液中では、上記効果は大きく、粒界が深く掘られて研磨性が低下するのを防止することができる。なお、SiOの酸化皮膜は、連続的なものである必要はなく、適度に表面に残存していることによっても耐食性を向上する効果がある。上記効果は、Si含有量が0.20mass%以上で発現するが、1.0mass%を超えると、酸化皮膜形成時に、Siが酸化皮膜と地鉄との界面に濃化し過ぎ、特に、表層の粒界部にSiの酸化物が過度に生成し過ぎて、却って研磨性の低下を招く。よって、本発明では、Si添加量は、0.20〜1.0mass%の範囲とする。好ましくは、0.3〜0.6mass%の範囲である。
Si: 0.20 to 1.0 mass%
Si is an element added as a deoxidizer. Further, according to the knowledge of the inventors, when Si is contained in the steel in an amount of 0.20 mass% or more, an oxide film of SiO 2 is formed on the outermost surface layer of the base iron during heat treatment. In particular, it has been clarified that the SiO 2 oxide is concentrated at the grain boundary of the surface layer, and has the effect of suppressing the grain boundary erosion caused by the acid. In an acid containing halogen or a solution having a low pH, the above effect is great, and it is possible to prevent the grain boundary from being dug deeply and reducing the polishing property. Incidentally, the oxide film of SiO 2 does not have to be continuous, the effect of moderately also improve the corrosion resistance by remaining on the surface. The above effect is manifested when the Si content is 0.20 mass% or more. However, when the Si content exceeds 1.0 mass%, Si is excessively concentrated at the interface between the oxide film and the ground iron when the oxide film is formed. An excessive amount of Si oxide is generated at the grain boundary part, and on the contrary, the abrasiveness is lowered. Therefore, in this invention, Si addition amount shall be the range of 0.20-1.0 mass%. Preferably, it is the range of 0.3-0.6 mass%.

Mn:0.3mass%以下
Mnは、脱酸元素として添加される。しかし、Mnの過剰な添加は、固溶強化作用によって加工性を損なうので、添加量は低いほうが望ましい。また、Mnは、0.3mass%を超えて添加すると、熱処理時に生成する酸化皮膜中の外層に存在するスピネル酸化物にMnが濃化し、テンパーカラー状の酸化皮膜が残存したときの耐食性を劣化させる。よって、本発明では、Mn含有量は0.3mass%以下とする。好ましくは、0.2mass%以下である。
Mn: 0.3 mass% or less Mn is added as a deoxidizing element. However, since excessive addition of Mn impairs workability by the solid solution strengthening action, it is desirable that the addition amount be low. Also, if Mn is added in an amount exceeding 0.3 mass%, the Mn concentrates in the spinel oxide present in the outer layer of the oxide film produced during heat treatment, and the corrosion resistance when the temper color oxide film remains is deteriorated. Let Therefore, in the present invention, the Mn content is set to 0.3 mass% or less. Preferably, it is 0.2 mass% or less.

P:0.04mass%以下
Pは、耐食性および熱間加工性を劣化させる元素であるので、含有量は低いほど望ましく、本発明では、0.04mass%以下とする。
P: 0.04 mass% or less P is an element that degrades corrosion resistance and hot workability, so the lower the content, the more desirable. In the present invention, P is 0.04 mass% or less.

S:0.02mass%以下
Sは、Mnと結合してMnSを形成し、初期発錆の起点となる。また、結晶粒界に偏析して、粒界脆化を起こす有害元素でもあるので、含有量は低い方が望ましい。特に、0.02mass%を超えると、その悪影響が顕著になるので、Sは0.02mass%以下とする。好ましくは、0.015mass%以下である。
S: 0.02 mass% or less S combines with Mn to form MnS, which is the starting point for initial rusting. Further, it is a harmful element that segregates at the grain boundaries and causes grain boundary embrittlement. In particular, if it exceeds 0.02 mass%, the adverse effect becomes significant, so S is made 0.02 mass% or less. Preferably, it is 0.015 mass% or less.

Cr:20.0〜25.0mass%
Crは、酸化皮膜(テンパーカラー)が表面についた状態でも耐食性を確保するため、また、Cu、Niと協同して耐発錆性を向上するために必要な元素である。Crの含有量が20.0mass%未満では、表面にテンパーカラーが生成すると、テンパーカラー(スケール)と地鉄との界面におけるCr濃度が低下し、この部分が局部的に露出した場合には、非常に短時間で発錆するが、Crが20.0mass%以上であれば、本発明程度の酸化皮膜が存在しても、地鉄のCr濃度はそれほど低下しないため、耐食性の低下を防止できる。さらに、鋼中のCrが20.0mass%以上であれば、後述するCu皮膜の存在によって、不動態皮膜が安定化し、特に良い耐発錆性を示す。
Cr: 20.0-25.0 mass%
Cr is an element necessary for ensuring corrosion resistance even when an oxide film (temper color) is attached to the surface, and for improving rust resistance in cooperation with Cu and Ni. When the Cr content is less than 20.0 mass%, when a temper color is generated on the surface, the Cr concentration at the interface between the temper color (scale) and the ground iron decreases, and when this part is locally exposed, Although it rusts in a very short time, if the Cr content is 20.0 mass% or more, even if an oxide film of the present invention is present, the Cr concentration of the base iron does not decrease so much, so that the corrosion resistance can be prevented from decreasing. . Furthermore, if Cr in the steel is 20.0 mass% or more, the passive film is stabilized by the presence of the Cu film described later, and exhibits particularly good rust resistance.

一方、Crの含有量が25.0mass%を超えると、酸化皮膜中のCr濃度が上がり、前述した粒界でのSi酸化物の生成が抑制されて、ハロゲンを含む酸やpHの低い溶液中での選択的な粒界腐食を防止することができず、本発明程度の酸化皮膜を残存させても、粒界侵食が起きるため、研磨性が低下する。また、Crが25.0mass%を超えると、鋼板の伸びが低下し、加工性が低下する。よって、Crの含有量は20.0〜25.0mass%とする。好ましいくは20.5〜23.5mass%の範囲である。   On the other hand, if the Cr content exceeds 25.0 mass%, the Cr concentration in the oxide film increases, and the formation of the Si oxide at the grain boundary is suppressed, so that the acid containing halogen or the solution having a low pH is contained. The selective intergranular corrosion cannot be prevented, and even if the oxide film of the present invention is left, the intergranular erosion occurs, so that the abrasiveness is lowered. Moreover, when Cr exceeds 25.0 mass%, the elongation of a steel plate will fall and workability will fall. Therefore, the content of Cr is set to 20.0 to 25.0 mass%. The preferred range is 20.5 to 23.5 mass%.

Cu:0.2〜1.0mass%
Cuは、Crと協同して耐発錆性を向上させる成分である。特に、ステンレス鋼の地鉄が溶解した際、その表面に皮膜を形成して、アノード反応による地鉄の溶解を低減し、局部的な溶解を妨げる効果がある。この効果は、0.2mass%以上のCu添加で得られ、特に、Crを20.0mass%以上含有させた鋼の、ハロゲンを含む低pH溶液中での効果が大きい。このメカニズムは明らかではないが、ハロゲンを含む低pH溶液中で溶け出したCuが地鉄に再付着し、耐溶解性を高めるものと推定している。また、Cuは、研磨後の耐発錆性の向上にも有効であり、特に耐隙間腐食性の向上に有用な成分であり、やはりこの効果は、0.2mass%以上で発現する。しかし、Cuを1.0mass%超え添加すると、研磨後におけるCuの溶解が促進され、却って耐隙間腐食性が低下する。よって、Cuの添加量は0.2〜1.0mass%とする。好ましくは0.3〜0.7mass%の範囲である。
Cu: 0.2-1.0 mass%
Cu is a component that improves rust resistance in cooperation with Cr. In particular, when the stainless steel base metal is melted, a film is formed on the surface thereof to reduce the dissolution of the base metal due to the anodic reaction and to prevent local dissolution. This effect is obtained by addition of 0.2 mass% or more of Cu. Particularly, the effect of a steel containing 20.0 mass% or more of Cr in a low pH solution containing halogen is large. Although this mechanism is not clear, it is presumed that Cu dissolved in a low-pH solution containing halogen is reattached to the base iron to improve dissolution resistance. Cu is also effective in improving rust resistance after polishing, and is a particularly useful component for improving crevice corrosion resistance. This effect is also manifested at 0.2 mass% or more. However, when Cu is added in excess of 1.0 mass%, dissolution of Cu after polishing is promoted, and the crevice corrosion resistance is reduced. Therefore, the addition amount of Cu is set to 0.2 to 1.0 mass%. Preferably it is the range of 0.3-0.7 mass%.

Ni:0.05mass%超え0.5mass%以下
Niは、Cuと同様の効果があり、ステンレス鋼の表面に皮膜を形成し、アノード反応による地鉄の溶解を低減し、局部的な溶解を妨げる効果がある。この効果は、0.05mass%超えの添加で得られ、特に、Crを20.0mass%以上含有させた鋼では、ハロゲンを含む低pH溶液中で大きい。一方、Niを0.5mass%超え添加すると、研磨後のNiの溶解が促進され、逆に耐隙間腐食性が低下する。よって、Niの含有量は0.05mass%超え0.5mass%以下とする。好ましくは0.15〜0.3mass%の範囲である。
Ni: 0.05 mass% to 0.5 mass% or less Ni has the same effect as Cu, forms a film on the surface of stainless steel, reduces the dissolution of the base iron by the anode reaction, and prevents local dissolution effective. This effect can be obtained by addition exceeding 0.05 mass%, and particularly in a steel containing 20.0 mass% or more of Cr, it is large in a low pH solution containing halogen. On the other hand, when Ni is added in excess of 0.5 mass%, dissolution of Ni after polishing is promoted, and conversely, crevice corrosion resistance decreases. Therefore, the Ni content is more than 0.05 mass% and 0.5 mass% or less. Preferably it is the range of 0.15-0.3 mass%.

Mo:0.01〜0.15mass%
Moは、耐発錆性の向上に極めて有効な元素である。ステンレス鋼中のMoは、大気環境での暴露期間が長くなるにつれて、不動態皮膜を強固にするので、研磨後の耐食性を考慮した場合、積極的に添加したほうが好ましい。しかし、発明者らは、Mo添加鋼の熱処理時に形成される酸化皮膜を詳細に検討した結果、Mo含有量が一定量以上になると、上記酸化皮膜はCrリッチなCr主体の皮膜となり、Siなど、耐食性の向上に有効に作用する元素の粒界での酸化を抑制してしまうことがわかった。
Mo: 0.01-0.15 mass%
Mo is an element that is extremely effective in improving rust resistance. Mo in stainless steel strengthens the passive film as the exposure period in the atmospheric environment becomes longer, so it is preferable to add it positively in consideration of the corrosion resistance after polishing. However, the inventors have studied in detail the oxide film formed during the heat treatment of the Mo-added steel. As a result, when the Mo content exceeds a certain level, the oxide film becomes a Cr-rich Cr 2 O 3- based film. It has been found that oxidation at the grain boundaries of elements such as Si and Si that effectively act on the corrosion resistance is suppressed.

そのメカニズムは、必ずしも明らかではないが、Moが鋼中に多く存在すると、常温での不動態皮膜が厚く、安定で、Crリッチなものとなるため、酸化の初期に他の元素の外方への拡散が抑えられ、Cr濃度の高い皮膜が生成する。その結果、粒界付近にCr濃度の低い箇所が増えて、粒界侵食を助長し、研磨性を低下させるためと考えられる。よって、本発明のように、酸化皮膜を若干残存させて、研磨性を確保するためには、Moの含有量をある程度、制限したほうが好ましいことが明らかとなった。   The mechanism is not always clear, but if a large amount of Mo is present in the steel, the passive film at room temperature becomes thick, stable, and Cr-rich. Diffusion is suppressed, and a film having a high Cr concentration is generated. As a result, it is considered that the places where the Cr concentration is low increase in the vicinity of the grain boundary, promote grain boundary erosion, and reduce the polishing property. Therefore, it has been clarified that it is preferable to limit the Mo content to some extent in order to retain some of the oxide film and ensure the polishability as in the present invention.

発明者らは、Cr:20.0〜25.0mass%、Si:0.20〜1.0mass%、Cu:0.2〜1.0mass%、Ni:0.05mass%超え0.5mass%以下を含有する鋼を用いて酸化皮膜の形態とMo含有量との関係を調査した。その結果、Moが0.15mass%を超えると、Si酸化物の生成抑制効果が大きくなり、研磨性が劣化する。一方、研磨後の耐食性、特に隙間部での耐食性に及ぼすMo含有量の影響について調査したところ、Mo含有量が0.01mass%未満では、上述したCu,Ni,Cr等の効果だけでは、十分な耐食性を確保できない例があった。よって、本発明では、鋼中のMo含有量を0.01〜0.15mass%の範囲とする。好ましくは、Moの含有量は0.015〜0.05mass%である。   The inventors have Cr: 20.0 to 25.0 mass%, Si: 0.20 to 1.0 mass%, Cu: 0.2 to 1.0 mass%, Ni: more than 0.05 mass%, and 0.5 mass% or less. The relationship between the form of the oxide film and the Mo content was investigated using steel containing. As a result, when Mo exceeds 0.15 mass%, the effect of suppressing the formation of Si oxide is increased, and the polishing property is deteriorated. On the other hand, when the influence of the Mo content on the corrosion resistance after polishing, particularly the corrosion resistance in the gap portion was investigated, if the Mo content is less than 0.01 mass%, the effects of Cu, Ni, Cr, etc. described above are sufficient. There was an example that could not secure a good corrosion resistance. Therefore, in this invention, Mo content in steel is made into the range of 0.01-0.15 mass%. Preferably, the Mo content is 0.015 to 0.05 mass%.

Ti:0.10〜0.5mass%
Tiは、Sを固定して、MnSを起点とする錆の発生を防ぐとともに、C、Nを固定して、Cr炭窒化物形成による鋭敏化を防止する効果がある。Tiの添加量が0.1mass%未満では、耐食性を劣化させる元素の固定に十分ではなく、一方、0.5mass%を超えて添加すると、熱延板における靭性低下や、TiNのクラスター状介在物による表面疵の発生を招き、研磨性を著しく阻害する。よって、Tiは0.10〜0.5mass%の範囲とする。好ましくは0.15〜0.35mass%の範囲である。
Ti: 0.10 to 0.5 mass%
Ti has the effect of fixing S and preventing the generation of rust starting from MnS, and fixing C and N and preventing sensitization due to Cr carbonitride formation. If the addition amount of Ti is less than 0.1 mass%, it is not sufficient for fixing elements that deteriorate the corrosion resistance. On the other hand, if it exceeds 0.5 mass%, the toughness of the hot-rolled sheet decreases, and TiN cluster inclusions. It causes the generation of surface flaws and significantly impairs the polishing properties. Therefore, Ti is set to a range of 0.10 to 0.5 mass%. Preferably it is the range of 0.15-0.35 mass%.

次に、本発明の鋼板において最も重要な、鋼板表層の酸化皮膜について説明する。
本発明の鋼板は、上述した成分組成を満たすだけでは、優れた耐食性と研磨性とを両立することできず、鋼板の表層に、耐食性を劣化させない程度の酸化皮膜を選択的に残存させることによって初めて、研磨性と耐食性を確保することができる。つまり、本発明では、耐食性を確保する観点からは、通常嫌われている焼鈍時の酸化皮膜を敢えて鋼板表面に残存させることによって、地鉄の溶解、特に、粒界における侵食を最小限に抑制し、研磨性を向上すると共に、加工後、研磨して使用する際の十分な耐食性を確保している。
Next, the most important oxide film on the steel sheet surface layer in the steel sheet of the present invention will be described.
The steel sheet of the present invention cannot achieve both excellent corrosion resistance and abrasiveness only by satisfying the above-described component composition, and by selectively leaving an oxide film on the surface layer of the steel sheet that does not deteriorate the corrosion resistance. For the first time, polishing and corrosion resistance can be ensured. In other words, in the present invention, from the viewpoint of ensuring corrosion resistance, the oxidation film, which is normally hated, is intentionally left on the surface of the steel sheet, thereby suppressing the dissolution of the base iron, particularly the erosion at the grain boundaries. In addition, the polishing property is improved, and sufficient corrosion resistance is secured when used after polishing.

発明者らは、Cr:20.0〜25.0mass%、Si:0.20〜1.0mass%、Cu:0.2〜1.0mass%、Ni:0.05mass%超え0.5mass%以下、Mo:0.005〜0.15mass%を含有する冷延鋼板を、800〜1050℃で10〜600秒の最終焼鈍を施して鋼板表層に酸化皮膜を生成させてから、その酸化皮膜を硝弗酸溶液中で異なるレベルに溶解して酸化皮膜を鋼板表層に残存させ、その残存する酸化皮膜が有する耐食性、研磨性および研磨後の耐食性について調査を行った。その結果、表層に残存させる酸化皮膜としては、Si濃度が高く、膜厚が30〜100nmである場合に、非常によい研磨性が得られることを新規に見出した。   The inventors have Cr: 20.0 to 25.0 mass%, Si: 0.20 to 1.0 mass%, Cu: 0.2 to 1.0 mass%, Ni: more than 0.05 mass%, and 0.5 mass% or less. , Mo: A cold-rolled steel sheet containing 0.005 to 0.15 mass% is subjected to final annealing at 800 to 1050 ° C. for 10 to 600 seconds to form an oxide film on the steel sheet surface. The oxide film was left on the surface of the steel sheet by dissolving at different levels in a hydrofluoric acid solution, and the corrosion resistance, polishability and post-polishing corrosion resistance of the remaining oxide film were investigated. As a result, it has been newly found that as the oxide film remaining on the surface layer, a very good polishing property can be obtained when the Si concentration is high and the film thickness is 30 to 100 nm.

しかし、本発明に適合する成分組成を有する鋼では、酸化皮膜の残存膜厚が、平均で100nmを超えると、酸化皮膜の外層に存在するMn、Feを多く含むスピネル酸化物が錆の起点となり、極短時間で発錆してしまう。また、酸化皮膜が100nmを超えると、その酸化皮膜自体を除去するために、研磨性が劣化する。逆に、酸化皮膜の膜厚が平均30nm以下になるまで表層を溶解してしまうと、表層の粒界の一部が深く掘られて、表面外観が白っぽくなり、金属光沢が失われて、研磨性が劣化する。よって、本発明では、鋼板表面に残存させる酸化皮膜の厚みを30〜100nmの範囲とする。好ましくは、40〜80nmの範囲である。   However, in the steel having the component composition suitable for the present invention, when the remaining film thickness of the oxide film exceeds 100 nm on average, the spinel oxide containing a large amount of Mn and Fe existing in the outer layer of the oxide film becomes the starting point of rust. Rusts in a very short time. On the other hand, if the oxide film exceeds 100 nm, the polishing property deteriorates in order to remove the oxide film itself. Conversely, if the surface layer is dissolved until the average thickness of the oxide film is 30 nm or less, part of the grain boundary of the surface layer is deeply dug, the surface appearance becomes whitish, the metallic luster is lost, and polishing Deteriorates. Therefore, in the present invention, the thickness of the oxide film remaining on the steel sheet surface is set in the range of 30 to 100 nm. Preferably, it is the range of 40-80 nm.

次に、本発明に係るステンレス鋼板の製造方法について説明する。
上述した適正な成分組成を有する鋼を公知の方法で溶製し、連続鋳造等公知の方法で鋼スラブとし、該スラブを1100〜1200℃に再加熱後、仕上圧延終了温度を700〜900℃とする熱間圧延を行い、熱延コイルとする。次いで、この熱延コイルを800〜1100℃の温度で焼鈍し、酸洗し、冷間圧延して板厚3.0mm以下の冷延板とする。これを、コークス炉燃焼ガス雰囲気下で、例えば、1000℃×60秒程度の焼鈍を施して150μmの厚さの酸化皮膜を生成させ、その後、硝弗酸溶液(硝酸50g/l、弗酸30g/l、60℃)への20秒前後の浸漬処理を施す。この際、浸漬時間を調整し、鋼板表層に、膜厚が30〜100nmの酸化皮膜を残存させる。なお、上記酸濃度および浸漬時間は例示であり、鋼中Cr濃度等の変化に応じて、30〜100nmの酸化皮膜が残存させるよう、適宜調整すればよい。なお、硝弗酸溶液浸漬の前工程で、通常、行われている中性塩電解処理を施すことに何ら問題はない。
Next, the manufacturing method of the stainless steel plate which concerns on this invention is demonstrated.
The steel having the proper composition described above is melted by a known method, and is made into a steel slab by a known method such as continuous casting. The slab is reheated to 1100 to 1200 ° C, and the finish rolling finish temperature is 700 to 900 ° C. The hot rolling is performed to obtain a hot rolled coil. Subsequently, this hot-rolled coil is annealed at a temperature of 800 to 1100 ° C., pickled, and cold-rolled to obtain a cold-rolled plate having a thickness of 3.0 mm or less. This is annealed in a coke oven combustion gas atmosphere, for example, at 1000 ° C. for about 60 seconds to form an oxide film having a thickness of 150 μm, and then a nitric hydrofluoric acid solution (nitric acid 50 g / l, hydrofluoric acid 30 g). / L, 60 ° C.) for about 20 seconds. At this time, the immersion time is adjusted to leave an oxide film having a thickness of 30 to 100 nm on the steel sheet surface layer. The acid concentration and the immersion time are examples, and may be appropriately adjusted so that an oxide film of 30 to 100 nm remains depending on changes in the Cr concentration in the steel and the like. It should be noted that there is no problem in performing the neutral salt electrolysis treatment that is normally performed in the pre-process of the nitric hydrofluoric acid solution immersion.

最後に、本発明では、上記硝弗酸溶液に浸漬して酸化皮膜の膜厚を所定の範囲に制御した後、硝酸溶液中で正電解、負電解を少なくとも各1回以上行うのが好ましい。硝酸溶液中での電解では、その溶解性の違いから、外層のMn、Feを多く含むスピネル酸化物のみを除去することが容易であり、硝酸中での正電解、負電解をかけることにより、酸化物中のSi濃度を上げ、酸化皮膜の耐食性を向上させることができるからである。   Finally, in the present invention, it is preferable to carry out positive electrolysis and negative electrolysis at least once each in a nitric acid solution after being immersed in the nitric hydrofluoric acid solution to control the film thickness of the oxide film within a predetermined range. In electrolysis in nitric acid solution, it is easy to remove only the spinel oxide containing a large amount of Mn and Fe in the outer layer due to the difference in solubility. By applying positive electrolysis and negative electrolysis in nitric acid, This is because the Si concentration in the oxide can be increased and the corrosion resistance of the oxide film can be improved.

表1に示す成分組成を有する鋼記号A〜Vのフェライト系ステンレス鋼を真空溶解炉で溶製し、鋳造して30kgの鋼塊を得、この鋼塊を1200℃に加熱し、1200〜900℃の温度域で熱間圧延を行い、板厚が3mmの熱延板とした。次いで、これらの熱延板を1000℃で熱延板焼鈍したのち冷間圧延と焼鈍を繰り返して、板厚が1.0mmの冷延板とした。このようにして得た冷延板を1000℃×60秒で焼鈍を行い、一部の鋼種については、中性塩溶液中(NaSO:200g/l、80℃)で電流値(+30C/dm、−30C/dm)の電解処理を施した。次いで、硝弗酸溶液(硝酸:50g/l、弗酸20g/l、温度55℃)に浸漬し、浸漬時間を変えることにより、表2に示すように、鋼板表層の酸化皮膜の厚みを調整した。その後、100g/l、45℃の硝酸溶液中で、+30C/dm、−30C/dmの電解処理を各2回施し、評価試験用ステンレス冷延鋼板とした。ただし、一部の冷延板については、上記電解処理は行わなかった。なお参考として、SUS436相当の鋼板(鋼記号:U、V)についても、同様にして評価試験用ステンレス冷延鋼板を作製した。 Ferritic stainless steels of steel symbols A to V having the composition shown in Table 1 are melted in a vacuum melting furnace and cast to obtain a 30 kg steel ingot, which is heated to 1200 ° C. and 1200 to 900 Hot rolling was performed in a temperature range of ° C. to obtain a hot-rolled sheet having a thickness of 3 mm. Subsequently, these hot-rolled sheets were subjected to hot-rolled sheet annealing at 1000 ° C., and then cold rolling and annealing were repeated to obtain cold-rolled sheets having a sheet thickness of 1.0 mm. The cold-rolled sheet thus obtained was annealed at 1000 ° C. for 60 seconds, and for some steel types, the current value (+30 C) in a neutral salt solution (Na 2 SO 4 : 200 g / l, 80 ° C.). / Dm 2 , −30 C / dm 2 ). Next, the thickness of the oxide film on the steel sheet surface layer is adjusted as shown in Table 2 by dipping in a nitric hydrofluoric acid solution (nitric acid: 50 g / l, hydrofluoric acid 20 g / l, temperature 55 ° C.) and changing the dipping time. did. Then, in a nitric acid solution of 100g / l, 45 ℃, + 30C / dm 2, subjected twice each electrolytic treatment of -30C / dm 2, and a cold-rolled stainless steel sheet for evaluation test. However, the electrolytic treatment was not performed on some cold-rolled plates. For reference, a stainless cold-rolled steel sheet for evaluation tests was produced in the same manner for a steel plate equivalent to SUS436 (steel symbols: U and V).

Figure 0005018257
Figure 0005018257

上記のようにして得た各種ステンレス冷延鋼板の表面を、Auger分光分析およびGDS分析を行い、残存している酸化皮膜の厚みを測定した。   Auger spectroscopic analysis and GDS analysis were performed on the surfaces of various stainless cold-rolled steel sheets obtained as described above, and the thickness of the remaining oxide film was measured.

また、研磨性、耐食性の評価を、下記の要領で行った。
<研磨性>
♯600番のアルミナ砥粒を用いて、有機樹脂のバフロールによる湿式研磨を5分間行い、研磨後の光沢度を測定することにより評価した。
<耐食性試験>
耐食性は、上記研磨試験前および研磨後のサンプルを用いて、乾湿繰返し試験により評価した。乾湿繰り返し試験の条件は、噴霧(NaCl:5mass%溶液、温度35℃、0.5時間)→乾燥(温度60℃、1時間)→湿潤(温度40℃、湿度95%、1時間)を1サイクルとする試験を繰り返して行い、発錆までの時間を測定した。
Moreover, abrasiveness and corrosion resistance were evaluated in the following manner.
<Abrasiveness>
Evaluation was performed by performing wet polishing with organic resin buffol for 5 minutes using # 600 alumina abrasive grains and measuring the gloss after polishing.
<Corrosion resistance test>
Corrosion resistance was evaluated by a wet and dry repeated test using samples before and after the polishing test. The conditions of the dry / wet repeat test are 1 spray (NaCl: 5 mass% solution, temperature 35 ° C., 0.5 hour) → dry (temperature 60 ° C., 1 hour) → wet (temperature 40 ° C., 95% humidity, 1 hour). The cycle test was repeated and the time until rusting was measured.

上記試験の結果を、表2の(No.1〜28)に示した。表2の結果から、本発明の条件を満たす成分組成と酸化皮膜を有するフェライト系ステンレス鋼板は、いずれも、研磨性および耐食性に優れていることがわかる。   The result of the said test was shown to (No.1-28) of Table 2. From the results in Table 2, it can be seen that all of the ferritic stainless steel sheets having the component composition and oxide film satisfying the conditions of the present invention are excellent in polishing properties and corrosion resistance.

Figure 0005018257
Figure 0005018257

本発明のフェライト系ステンレス鋼板は、海上輸送コンテナや器物、厨房機器、建具等、意匠性と耐食性を要する部位に使用される用途に用いて好適である。   The ferritic stainless steel sheet of the present invention is suitable for use in parts that require design and corrosion resistance, such as marine transport containers, articles, kitchen equipment, and joinery.

Claims (2)

C:0.030mass%以下、Si:0.20〜1.0mass%、Mn:0.3mass%以下、P:0.04mass%以下、S:0.02mass%以下、Cr:20.0〜25.0mass%、Mo:0.01〜0.15mass%、Ti:0.10〜0.5mass%、N:0.025mass%未満、Ni:0.05mass%超え0.5mass%以下、Cu:0.2〜1.0mass%を含有し、残部がFeおよび不可避的不純物からなり、鋼板表層に残存する酸化皮膜の膜厚が30〜100nmであるフェライト系ステンレス鋼板。 C: 0.030 mass% or less, Si: 0.20 to 1.0 mass%, Mn: 0.3 mass% or less, P: 0.04 mass% or less, S: 0.02 mass% or less, Cr: 20.0 to 25 0.0 mass%, Mo: 0.01 to 0.15 mass%, Ti: 0.10 to 0.5 mass%, N: less than 0.025 mass%, Ni: more than 0.05 mass% and less than 0.5 mass%, Cu: 0 A ferritic stainless steel sheet containing .2 to 1.0 mass%, the balance being Fe and inevitable impurities, and the thickness of the oxide film remaining on the steel sheet surface layer being 30 to 100 nm. C:0.030mass%以下、Si:0.20〜1.0mass%、Mn:0.3mass%以下、P:0.04mass%以下、S:0.02mass%以下、Cr:20.0〜25.0mass%、Mo:0.01〜0.15mass%、Ti:0.10〜0.5mass%、N:0.025mass%未満、Ni:0.05mass%超え0.5mass%以下、Cu:0.2〜1.0mass%を含有し、残部がFeおよび不可避的不純物からなる冷延板を最終焼鈍して酸化皮膜を生成してから、硝弗酸溶液に浸漬して膜厚が30〜100nmの酸化皮膜を残存させることを特徴とするフェライト系ステンレス鋼板の製造方法。 C: 0.030 mass% or less, Si: 0.20 to 1.0 mass%, Mn: 0.3 mass% or less, P: 0.04 mass% or less, S: 0.02 mass% or less, Cr: 20.0 to 25 0.0 mass%, Mo: 0.01 to 0.15 mass%, Ti: 0.10 to 0.5 mass%, N: less than 0.025 mass%, Ni: more than 0.05 mass% and less than 0.5 mass%, Cu: 0 A cold-rolled sheet containing 0.2 to 1.0 mass%, the balance being Fe and unavoidable impurities is finally annealed to form an oxide film, and then immersed in a nitric hydrofluoric acid solution to have a film thickness of 30 to 100 nm A method for producing a ferritic stainless steel sheet, characterized by leaving an oxide film of
JP2007153617A 2007-06-11 2007-06-11 Ferritic stainless steel sheet excellent in abrasiveness and corrosion resistance and method for producing the same Active JP5018257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007153617A JP5018257B2 (en) 2007-06-11 2007-06-11 Ferritic stainless steel sheet excellent in abrasiveness and corrosion resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007153617A JP5018257B2 (en) 2007-06-11 2007-06-11 Ferritic stainless steel sheet excellent in abrasiveness and corrosion resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008303445A JP2008303445A (en) 2008-12-18
JP5018257B2 true JP5018257B2 (en) 2012-09-05

Family

ID=40232425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007153617A Active JP5018257B2 (en) 2007-06-11 2007-06-11 Ferritic stainless steel sheet excellent in abrasiveness and corrosion resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5018257B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150110762A (en) 2013-03-27 2015-10-02 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless steel with excellent surface corrosion resistance after polishing, and process for producing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5768641B2 (en) * 2010-10-08 2015-08-26 Jfeスチール株式会社 Ferritic stainless steel having excellent corrosion resistance and electrical conductivity, method for producing the same, polymer electrolyte fuel cell separator, and polymer electrolyte fuel cell
KR101518578B1 (en) 2013-09-10 2015-05-07 주식회사 포스코 Steel for complex corrosion resistance to hydrochloric acid and sulfuric acid having excellent wear resistance and surface qualities and method for manufacturing the same
CN109563597A (en) 2016-09-02 2019-04-02 杰富意钢铁株式会社 Ferrite-group stainless steel
CN108315651B (en) * 2018-04-11 2020-02-04 山西太钢不锈钢股份有限公司 Continuous cold rolling annealing pickling method for ultra-pure ferrite stainless steel cold-rolled strip steel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3263426B2 (en) * 1992-03-26 2002-03-04 日新製鋼株式会社 Ferritic stainless steel sheet excellent in weather resistance and method for producing the same
JPH06212364A (en) * 1993-01-13 1994-08-02 Kawasaki Steel Corp Mirror-finihsed stainless steel sheet whose reflected image has natural color tone
JPH08158078A (en) * 1994-12-02 1996-06-18 Sumitomo Metal Ind Ltd Pickling of stainless steel
JP2001240911A (en) * 2000-03-01 2001-09-04 Nisshin Steel Co Ltd Stainless steel-made member to be red-heated and its producing method
KR100730870B1 (en) * 2003-06-10 2007-06-20 수미도모 메탈 인더스트리즈, 리미티드 Steel for hydrogen gas environment, structural hardware member and method for producing same
JP4519483B2 (en) * 2004-03-01 2010-08-04 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent seizure resistance and method for producing the same
JP4396676B2 (en) * 2005-08-17 2010-01-13 Jfeスチール株式会社 Ferritic stainless steel sheet with excellent corrosion resistance and method for producing the same
JP4784364B2 (en) * 2006-03-28 2011-10-05 Jfeスチール株式会社 Ferritic stainless steel sheet with excellent rust removal and rust resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150110762A (en) 2013-03-27 2015-10-02 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless steel with excellent surface corrosion resistance after polishing, and process for producing same

Also Published As

Publication number Publication date
JP2008303445A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP5233346B2 (en) High-strength cold-rolled steel sheet excellent in chemical conversion treatment and post-coating corrosion resistance and method for producing the same
EP2548988B1 (en) Ferrite-based stainless steel for use in components of automobile exhaust system
JP6792951B2 (en) Duplex stainless steel for ozone-containing water
US10138796B2 (en) Ferritic stainless steel for automotive exhaust system, which have excellent corrosion resistance against condensate, moldability, and high-temperature oxidation resistance, and method for manufacturing same
JP5534119B1 (en) Ferritic stainless steel
WO1995020683A1 (en) Method of manufacturing stainless steel sheet of high corrosion resistance
JP5664826B2 (en) Ferritic stainless steel sheet
JP2003535973A (en) Cold rolled steel sheet with excellent corrosion resistance to sulfuric acid
JP5962541B2 (en) Manufacturing method of high-strength steel sheet
JP6196453B2 (en) Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
KR20220099566A (en) Ferritic stainless steel sheet
US11401567B2 (en) Manufacturing method of steel sheet
JP2013189709A (en) Ferritic stainless steel sheet excellent in scale peeling resistance, and method for manufacturing the same
JP5018257B2 (en) Ferritic stainless steel sheet excellent in abrasiveness and corrosion resistance and method for producing the same
JP4998132B2 (en) Ferritic stainless steel sheet for use around water
KR101485641B1 (en) Ferritic stainless steel for automotive exhaust system with excellent corrosion resistance for water condensation and formability and the method of manufacturing the same
KR20160122813A (en) High-strength steel plate and method for producing high-strength steel plate
JP4206029B2 (en) Hot-rolled steel sheet with excellent chemical conversion and its manufacturing method
US20220010451A1 (en) Ferritic stainless steel having improved corrosion resistance, and manufacturing method therefor
JP5794284B2 (en) Manufacturing method of high-strength steel sheet
JP4784364B2 (en) Ferritic stainless steel sheet with excellent rust removal and rust resistance
US20160168673A1 (en) Ferritic stainless steel having excellent corrosion resistance of weld zone
JP5556951B2 (en) Ferritic stainless steel
JP7196537B2 (en) Corrosion resistant steel for hold of coal carrier or coal carrier
JP7465955B2 (en) Low Cr ferritic stainless steel sheet with improved pipe expansion workability and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Ref document number: 5018257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250